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An alternative route to extend the CCSD(T) approach to multireference problems is presented. The well-
known defect of the CCSD(T) model in describing the non-dynamic electron correlation effects is reme-
died by ‘tailoring’ the underlying coupled-cluster singles and doubles (CCSD) approach and applying the
perturbative triples correction to it. The TCCSD(T) approach suggested in the paper has the same compu-
tational demands as the CCSD(T) method, though being mostly free from its drawbacks pertinent to mul-
tireference (quasidegenerate) situations. To test the approach we calculate the potential energy surface
for the automerization of cyclobutadiene where the transition state exhibits a strong multireference
character.
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1. Introduction

Since the pioneering works of Bartlett and co-workers [1,2] the
perturbative-triples corrected CCSD method in its contemporary
form CCSD(T) [3], derived by Raghavachari et al., has become the
‘golden’ standard in electronic structure theory along with its gen-
eralization to non-RHF cases [4]. It has been shown that the meth-
od is capable of providing the so-called chemical accuracy
(�1 kcal/mol) in different quantum-chemical calculations where
the non-dynamic electron correlation effects are sufficiently small.
Being conceptually simple and computationally highly scalable
[5,6], the CCSD(T) approach is an excellent model for treating the
dynamic electron correlation in medium sized molecular systems.
However a well-known failure of the method in describing mul-
tireference (MR) problems has spawned a series of works commit-
ted to extending the single-reference (SR) CCSD(T) model to
quasidegenerate phenomena where the non-dynamic and/or static
electron correlation effects are significant. Such approaches in-
clude the CCSD(TQf) method [7], where a perturbative factorized-
quadruples correction is added, the KCCSD(T) approach [8,9],
where the left-hand eigenvector is used to improve the energy ob-
tained, the renormalized and completely-renormalized CCSD(T)
and CCSD(TQf) approaches [10,11], where a renormalization proce-
dure is applied to correct the final energy, and this is not a com-
plete list. Although these approaches have extended the
applicability of the perturbative (T) correction to moderately
quasidegenerate situations, they still fail when strong non-
dynamic electron correlation effects are present.
ll rights reserved.

.

From the other side, there has been a ‘boom’ in multireference
coupled-cluster (MRCC) methodology. The MRCC methods are well
suited to describe non-dynamic electron correlation effects
whereas the dynamic electron correlation often requires a more
complete treatment than offered by MRCC. This is especially true
when small active spaces are used in MRCC calculations. To im-
prove the description of dynamic electron correlation effects some
type of perturbative (T) correction has been adopted by different
MRCC methods. A (T) correction has been added to the two-
determinant state-universal (SU) 2D-MRCCSD method [12], general
state-universal (SU) MRCCSD method [13], the state-specific Muk-
herjee MRCCSD approach [14], the Brillouin-Wigner MRCCSD
method [15], and the single-reference based RMRCCSD method
[16]. Despite the relative success of such combinations the resulting
MRCC approaches (which employ a (T) correction) are, in general,
more computationally demanding than the CCSD(T) method itself.

Apart from the aforementioned theoretical routes we attempt
to extend the CCSD(T) model to MR problems in the simplest pos-
sible way to preserve the original computational demands of the
approach. The idea of such a correction is similar to that of correct-
ing the CCSD approach by ‘tailoring’ the most important cluster
amplitudes [17]. As this method has only singly and doubly excited
clusters, it is computationally equivalent to the CCSD approach it-
self. Considering the improvement over the standard CCSD method
by applying the (T) correction, we might also anticipate such an
improvement for the TCCSD(T) model. At the same time, ‘tailoring’
the CCSD(T) approach is expected to extend its applicability to MR
problems. In the next section we discuss the details of the
TCCSD(T) method and its interconnections with other formalisms.
The method is used to study the potential energy surface (PES) for
the automerization of cyclobutadiene. A correct description of the

http://dx.doi.org/10.1016/j.cplett.2010.11.058
mailto:quant4me@gmail.com
http://dx.doi.org/10.1016/j.cplett.2010.11.058
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett


D.I. Lyakh et al. / Chemical Physics Letters 501 (2011) 166–171 167
transition state of this transformation has been a challenging
quasidegenerate problem for many years [12–14,18–20].

2. Theory

The TCCSD(T) approach is based on the ‘tailored’ CCSD method
[17] instead of the regular CCSD approach. A multireference prob-
lem under consideration is approximately split into two separate
problems: (1) description of the non-dynamic (and/or static) elec-
tron correlation effects, and (2) description of the dynamic electron
correlation effects. Providing that we have a particular determi-
nant as the Fermi vacuum, the orbital space is divided into four
parts: inactive occupied orbitals (inactive holes), active occupied
orbitals (active holes), active virtual orbitals (active particles),
inactive virtual orbitals (inactive particles). This is one of the
standard classifications of orbitals in multireference theories (see
Figure 1). Determinants obtained by all possible electronic excita-
tions among the active orbitals (together with the determinant
which defines the Fermi vacuum) span the so-called reference space
(SR) with a corresponding projector bP . Other excited determinants,
limited to singles and doubles from any of the reference determi-
nants, span the external space (SE) with a corresponding projectorbQ . By bQ 2 we will label a projector associated with a manifold of
determinants from SE that are single and double excitations from
the Fermi-vacuum determinant. In particular, bQ bQ 2

bQ ¼ Q2 (in SR
theories, limited to single and double excitations, bQ ¼ bQ 2). The
projector associated with the Fermi-vacuum determinant will be
designated as bP0 (in SR theories bP ¼ bP0). An assumption is made
that the reference space must be sufficiently complete to provide
a qualitative zero-order description of the problem under consider-
ation (non-dynamic electron correlation). The rest of the dynamic
electron correlation is accounted for using the orthogonal comple-
ment to SR and the power of the CC formalism. The division of exci-
tations into ‘internal’ and ‘external’ is a rather standard concept
[21,22].

In the TCCSD(T) model the non-dynamic electron correlation is
accounted for by doing a Full CI calculation within the reference
space only [17]. That is, we search for the eigenvectors of the nor-
mal-ordered Hamiltonian [23], bHN , exclusively in the reference
space SR:

bHN jCðnÞi ¼ EðnÞjCðnÞi; jCðnÞi 2 SR; ð1Þ

where jCðnÞi is an nth eigenvector with an EðnÞ eigenvalue. One needs
to select an electronic state of interest from the eigenset obtained.
The corresponding active-space Full CI vector contains the major
part of the information about the non-dynamic electron correlation
Figure 1. Orbital classification in multireference methods.
pertinent to the considered electronic state. Then intermediate nor-
malization is applied to the chosen CI vector jCðnÞi:
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where j0i is the Fermi-vacuum determinant, jA1A2 ���Ak
I1 I2 ���Ik

i is a k-fold ex-
cited determinant with respect to the Fermi vacuum, CA1A2 ���Ak

I1 I2 ���Ik
is the

corresponding CI coefficient, and M is the maximal excitation rank
in the reference space. Here Ik designates active holes, Ak – active
particles. Small roman letters ik/ak will designate inactive holes/par-
ticles, respectively; small italic letters ik/ak will designate simply
holes/particles, respectively. The weight of the Fermi-vacuum
determinant in (2) is scaled to unity, appropriately modifying other
coefficients of jCðnÞi. We should note that due to the intermediate
normalization, h0jCðnÞi ¼ 1, it is important for the Fermi-vacuum
determinant j0i to be the top-weighted one in the jCðnÞi expansion
(2). Otherwise one should redefine it to be so.

The next important step is a similarity transformation of the
normal-ordered Hamiltonian, bHN:

bHND
N ¼ e�

bT 1�bT 2 bHNe
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; ð3Þ

where superscript ND stands for ‘non-dynamic’, subscript C

means ‘connected diagrams only’, and bT 1 ¼
P
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, come from the active-space Full CI decomposition
(2) according to the well-known conversion procedure:
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In such a way the original renormalized jCðnÞi vector (2) is
approximated by an exponential-form vector:

jCðnÞi � e
bT 1þbT 2 j0i: ð6Þ

The similarity transformation (3) serves to ‘hide’ the non-
dynamic electron correlation into the Hamiltonian bHND

N . Then the
dynamic electron correlation can be treated separately. In the ori-
ginal TCCSD approach [17] this is accomplished by including in the
exponential ansatz all external (and semi-internal) singly and dou-
bly excited clusters which correspond to the projector bQ 2. We go
further and add the perturbative triples (T) correction which is
highly efficient in accounting for the dynamic electron correlation.
In the same time accounting for higher (triple) connected clusters
makes the excitation space more symmetrical and balanced with
respect to reference determinants, thus reducing the overesti-
mated role played by the Fermi-vacuum determinant. This is a
different strategy than one used in genuine MRCC methods
where the excitation space is sufficiently complete from the
beginning whereas the (T) correction serves to get the residue of
the dynamic electron correlation. In the case of the TCCSD(T) meth-
od the perturbative triples correction is expected to play a much
more important role because it directly brings into play the effects
of important higher excitations absent in the parental TCCSD
ansatz.

Having constructed the similarity-transformed Hamiltonian,bHND
N , one can proceed to solving the TCCSD equations [17]:
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8hXj ¼ hXjQ 2 : hXje�t̂1�t̂2 bHND
N et̂1þt̂2 j0i ¼ 0;

ECC ¼ h0je�t̂1�t̂2 bHND
N et̂1þt̂2 j0i; ð7Þ

where hXj is an excited determinant from the conjugate external
space, SE, bX being the corresponding excitation operator, ECC is the
correlation energy, t̂1 ¼

P
a1
i1

ta1
i1

âþ1 î1; t̂2 ¼ 1
2!2!

P
a1 ;a2
i1 ;i2

ta1a2
i1 i2

âþ1 âþ2 î2 î1 are

the external cluster operators (completely active amplitudes are ex-
cluded by definition). These external amplitudes, ta1

i1
and ta1a2

i1 i2
,

whose indices cannot contain all active labels, are to be determined.
Eq. (7) are connected because the Hamiltonian bHND

N is built using
only connected diagrams due to Eq. (3):

8hXj ¼ hXjbQ 2 : hXj bHND
N et̂1þt̂2

� �
C
j0i ¼ 0;

ECC ¼ h0j bHND
N et̂1þt̂2

� �
C
j0i: ð8Þ

Because t̂k and bT k operators commute one can use the regular
CCSD solver keeping the internal amplitudes fixed on their CASFCI
values (Eqs. (4) and (5)).

Having obtained the external amplitudes, ta1
i1

and ta1a2
i1 i2

, one can
proceed to the final step and determine the perturbative triples
(T) energy correction. The important restriction here is that the
(T) correction is based upon solely the external cluster amplitudes,
ta1

i1
and ta1a2

i1 i2
. This is consistent with one of the purposes of the per-

turbative triples correction, namely, an efficient account of the dy-
namic electron correlation. Hence the following energy correction
terms, expressed diagrammatically as [1–3,24]
; ð9Þ
involve only external t-amplitudes (at least one index must be
inactive).

According to the nomenclature of Li and Paldus the TCCSD(T)
method suggested belongs to the so-called ‘externally corrected’
CC approaches [25] (the word ‘externally’ here has nothing to do
with the external space SE). In such approaches the information
about the non-dynamic electron correlation is ‘grabbed’ from an
external (usually not CC) calculation. Then the CC theory is em-
ployed for the dynamic electron correlation. One of the most suc-
cessful externally corrected schemes is the RMRCCSD method of
Paldus and Li [26], although other approaches exist [27]. In the
RMRCCSD method a MRCI calculation is used to obtain values of
higher-than-doubly excited clusters (triples and quadruples). Then
the CCSD equations are solved in the presence of these higher-
excited clusters that improve the values of the singly and doubly
excited amplitudes and in turn the energy. Alternatively, the
TCCSD approach does not deal with higher-excited clusters. In-
stead one insists on the correct structure of the reference part (2)
of the total wavefunction. However the reference part is still
approximated using only singly and doubly excited amplitudes
(Eq. (6)) whose values are ‘frozen’. Hence the TCCSD approach
has the same computational cost as the CCSD method, the
TCCSD(T) approach being of same cost as CCSD(T). Moreover there
is an important consequence of having the reference part of the
wavefunction frozen. Apart from other externally corrected ap-
proaches the TCCSD/TCCSD(T) methods can equally access excited
electronic states of the same symmetry because the reference T-
amplitudes are frozen and characterize the electronic state of
interest. In other words freezing the reference part of the wave-
function prevents a collapse to the ground electronic state. How-
ever there can still be some complications connected with the
non-linear nature of the coupled cluster equations. The application
of the TCCSD(T) scheme to excited states is under investigation. Let
us also note that because of the use of solely connected diagrams
and Full CI quantities for the reference part the TCCSD/TCCSD(T)
methods are size-extensive.

One can also introduce an alternative method which utilizes the
entire reference space explicitly. In such a scheme the approxima-
tion (6) would include up to 4-fold excited clusters from SR (be-
cause this is the maximal excitation level which can show up in
the CCSD equations):

jCðnÞi � e
bT 1þbT 2þbT 3þbT 4 j0i; ð10Þ

where all bT -operators act solely within the active space. This would
correct the values of triples and quadruples from SR which are
approximated by cluster products in the TCCSD scheme (Eq. (6)),
although both approaches are still ‘unrelaxed’. Such an approach
is somewhat closer to the RMRCCSD method [26], though the key
difference, namely freezing the entire reference wavefunction part,
still allows accessing both the ground and excited electronic states,
preventing a collapse to the ground state. Relaxation of the refer-
ence-space amplitudes in such an approach would give an asym-
metric (approximate) variant of the general SRMRCC method [28].
One of the drawbacks of ‘unrelaxed’ externally corrected
schemes is that usually they do not reproduce the Full CI results
in the limit unless the ‘unrelaxed’ (frozen) variables come from
that Full CI. However if the corresponding approximate ‘unrelaxed’
quantities are reasonable this should not constitute a serious prob-
lem. In other words, the TCCSD/TCCSD(T) approaches should give
accurate results when the reference coefficients (2) from the ac-
tive-space-only Full CI calculation (CASFCI) do not differ signifi-
cantly from those coming from the general Full CI calculation (FCI):

hCðnÞCASFCIjC
ðnÞ
FCIi � 1; ð11Þ

where normalization to unity is applied to both vectors.
Therefore apart from the systematically convergent hierarchical

methods, like CCSD, CCSDT, CCSDTQ, etc., the ‘externally corrected’
approaches depend upon the quality of this external correction
that is supposed to hide the effects of higher excitations into the
lower ones (the final method relies on the correction-supplying
method).

Potential disadvantage of the TCCSD approach is a noticeable
orbital dependence because of the ‘unrelaxed’ nature of the refer-
ence [17]. Apparently it is crucial to properly select the active orbi-
tals. Beside that, ozone molecule calculations, for example, favored
CASSCF orbitals [29], although, in general, other orbital sets can be
considered as well.

The TCCSD ansatz is also symmetry-broken as would be a SRCC
based model. Because the TCCSD ansatz does not involve higher
than double clusters, the exponential approximation, eT1þT2 j0i, of
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the true reference vector jCðnÞi (see Eq. (2)) can, in general, lead to
noticeable symmetry contaminations, when the condition

hCðnÞjebT 1þbT 2 j0i � 1 ð12Þ

does not hold (both vectors are assumed to be normalized to unity).
This is especially true when an open shell determinant is used as
the Fermi-vacuum determinant, j0i. Even if the energy is accurate
enough, the corresponding wavefunction can, in principle, be rather
poor in terms of molecular symmetry properties (spin and spatial).
However it should still be essentially better than the CCSD wave
function obtained for the same system (except for purely SR
situations).

All the above considerations show that ‘tailoring’ is an effective
patch to the CCSD and CCSD(T) models. Despite the formal draw-
backs, the TCCSD(T) method can provide electronic energies of
genuine MRCC quality as we demonstrate in the next section for
the automerization of cyclobutadiene.

3. Numerical results

Recently noticeable attention has been paid to an adequate
description of the automerization (see Figure 2) of cyclobutadiene
[12–14,18–20] that has been a challenge for both theoretical and
experimental chemists for a long time. The transition state of this
Figure 2. The automerization of cyclobutadiene. The left and right structures corresp
‘multireference’ transition state.

Figure 3. The potential energy surface for the automerization of cyclobutadiene calcu
transformation (geometrical square) has a pronounced multirefer-
ence character (exact quasidegeneracy) making its description
challenging for electronic structure methods. This is due to the
existence of two equivalent configurations of double C–C bonds.
The reference determinants fit the minimal (2,2) active space con-
taining HOMO, LUMO and 2 electrons. In transition state calcula-
tions standard SRCC methods significantly underestimate the
importance of the doubly excited reference determinant. This is
the case where a MRCC formalism is required.

Another problem, pointed out by Paldus and Li [13], is connected
with the use of restricted Hartree–Fock orbitals for the transition
state description. This often results into an unphysical cusp in the
PES if the underlying method is not sufficiently accurate (a similar
example is ethylene twisted to 90% [30]). Those authors built a two-
dimensional approximation to the PES of the cyclobutadiene auto-
merization using a variety of SRCC and MRCC methods. In their
work the sum of two C–C bond lengths was fixed at 2 � 1:4668 Å,
while the C–H bond length was 1.079 Å (\HCC = 135�).

In our work the restriction on C–C bond lengths is relaxed add-
ing one more degree of freedom, while the C–H bond length and
H–C–C angles are kept the same. We calculate a 3-D PES in the
standard spherical cc-pVDZ basis set (see Figure 3). The transition
state as well as the minimum regions are then refined in the
standard cc-pVTZ basis set. The calculations are done with the
ond to the degenerate minima. The structure in the middle corresponds to the

lated with the TCCSD(T) method in the spherical cc-pVDZ basis set (frozen core).



Table 2
Electronic energies calculated with different (T)-corrected methods in the cc-pVDZ
basis set. The values in parentheses are the deviations from the SUCCSD(T) values in
mH. Geometries used in the SUCCSD(T) calculations are only slightly different from
those used in other calculations (only 0.003 Å). Only significant energy digits are
shown.

Method Energy of the
minimum, H/(mH)

Energy of the transition
state, H/(mH)

SUCCSD(T) �154.246/(0) �154.238/(0)
TCCSD(T) �154.244/(2) �154.237/(1)
CCSD(T) �154.242/(4) �154.217/(21)
KCCSD(T) �154.241/(5) �154.214/(24)
CR-CCSD(T) �154.235/(11) �154.206/(32)
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ACES III computer package [5]. The RHF orbitals are used and the
core is frozen in all calculations. Though we employed the RHF
orbitals the calculated PES does not contain ‘sharply’ visible cusps
reflecting the correctness of the TCCSD(T) model. The PES is used to
localize the minima and the transition state. These extreme points
are determined by polynomial fitting of the corresponding PES re-
gions. The corresponding pseudo-extreme geometries are:

� Minimum (rectangle): R1C–C = 1.37 Å; R2C–C = 1.575 Å(cc-
pVDZ);R1C–C = 1.35 Å; R2C–C = 1.58 Å (cc-pVTZ).
� Transition state (square): RC–C = 1.47 Å (cc-pVDZ); RC–C = 1.46 Å

(cc-pVTZ).

The automerization barrier height is estimated using cc-pVDZ
and cc-pVTZ basis sets. The peculiarity of the barrier height calcu-
lation is that the barrier value is so small that any approximation
can noticeably affect it (like bond length freezing, basis set, meth-
od, etc.). Though we put one more degree of freedom into consid-
eration, the C–H bond length and H–C–C angle are still frozen.
This makes comparison of the barrier height, obtained with differ-
ent methods and different approximations to geometry, somewhat
less rigorous. But it still permits a facile comparison of different
methods. Thus, our aim is to achieve agreement of the TCCSD(T)
value with a range of the most accurate MRCC results available
for the problem. The experimental value of the automerization bar-
rier is believed to lie within the range of 1.6–10 kcal/mol [31].

Table 1 illustrates the results. One can see that the TCCSD(T)
method significantly reduces the original CCSD(T) barrier height,
the TCCSD(T) value being similar to the SUCCSD(T) one. Actually
the absolute energies obtained with TCCSD(T) and SUCCSD(T) are
also very similar (see Table 2). The latter approach is a genuine
multi-state MRCC method with perturbative triples correction. As
Table 1
Automerization barrier heights in kcal/mol calculated with differ-
ent methods in the spherical cc-pVDZ and cc-VTZ basis sets
(geometry optimization does not necessarily correspond to the
final ab initio level presented).

Method cc-pVDZ,
kcal/mol

cc-pVTZ,
kcal/mol

CCSD 21.0 23.2
CCSD(T) 15.8 18.3
CR-CCSD(T) 18.3 –
KCCSD(T) 16.8 19.2
TCCSD 9.4 12.9
TCCSD(T) 4.6 7.0
2D-MRCCSD(T)a 6.6 –
SUCCSD(T)b 4.8 5.9
BWCCSD(T)(a.c.)c 6.1 7.0
BWCCSD(T)(i.c.)c 5.7 6.8
MkCCSD(T)c 7.8 8.9
RMRCCSD(T)b 7.2 9.5
SUCCSDb 7.0 8.7
BWCCSD(a.c.)c 6.5 7.6
BWCCSD(i.c.)c 6.2 7.4
MkCCSDc 7.8 9.1
RMRCCSDb 10.4 13.0
MRCISDd 7.3 8.4
MRCISD + Qd 7.6 8.8
MRAQCCd 7.7 8.9
DIP-EOM-CCSD 8.3 10.7
SS-EOM-CCSD[+2]e 8.3 9.5
Experimental range 1.6–10f

a Taken from Ref. [12] where a split-valence [3s2p1d/1s] basis
set was used. The method is equivalent to SUCCSD, being an
early application.

b Taken from Ref. [13].
c Taken from Ref. [14].
d Taken from Ref. [20].
e Taken from Ref. [19].
f Taken from Ref. [31].
expected the TCCSD(T) results differ noticeably from the TCCSD
values showing the significance of the (T) correction for externally
corrected schemes. Actually the difference in absolute energy val-
ues is much more pronounced. One can notice that the perturba-
tive (T) correction is less significant for genuine MRCC methods
being almost negligible for the MkCCSD (Mukherjee MRCCSD
method [32,33]). The value of 7.0 kcal/mol obtained with the
TCCSD(T) approach falls in the middle of the experimental range
(the zero-point vibrational energy correction would make it smal-
ler). Other corrected single reference CCSD(T) approaches, like CR-
CCSD(T) or KCCSD(T), do not improve upon the original CCSD(T)
value. In particular, the tendency of KCCSD(T) to give the quasi-
upper-bound description, usually useful for bond-breaking, works
against the method in the current case. The double-ionization
DIP-EOMCCSD method (CCSD for the ground state, up to Ra1

i1 i2 i3
term

for excited states) is a potential approach to tackle multireference
problems with the EOMCC formalism. Its results and generalization
will be published elsewhere [30].

It is also interesting to compare the absolute energies given by
(T)-corrected methods for the minimum and transition state. Table
2 provides these values calculated in the cc-VDZ basis set. The gen-
uine MRCC SUCCSD(T) values taken from Ref. [13] are believed to
be of the best quality (these values are estimated from Figure 3
of Ref. [13]). While the minimum energies are reproduced more-
less satisfactory by all methods shown, the transition state descrip-
tion is absolutely not acceptable for the CCSD(T), KCCSD(T) and
CR-CCSD(T) methods. One can see that the corresponding energy
errors have the same magnitude as the calculated barrier height
value itself, the error difference between the minimum and transi-
tion state calculations being of the same order. At the same time
the TCCSD(T) energies are very close and perfectly ‘parallel’ to
the SUCCSD(T) results (2 and 1 mH errors).
4. Conclusions

The applicability of the CCSD(T) approach to MR problems has
been extended by ‘tailoring’ the underlying CCSD approach. The
extension provides reciprocal gains: CCSD(T) benefits from TCCSD
and TCCSD benefits from the perturbative triples correction (T). In
particular, the (T) correction brings noticeable relaxation effects to
the ‘unrelaxed’ TCCSD approach by more complete accounting for
both the dynamic and non-dynamic electron correlation. Despite
some formal drawbacks the resulting TCCSD(T) method is believed
to be capable of describing MR problems at the cost of CCSD(T). In
particular, the barrier height of the automerization of cyclobutadi-
ene calculated with the TCCSD(T) method agrees with the results
obtained by genuine MRCC methods, demonstrating significant
improvement over the CCSD(T) value. For this particular calcula-
tion the TCCSD(T) model essentially outperforms other corrected
SR-(T) approaches. The TCCSD(T) value is also better than the
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TCCSD one reflecting the importance of the perturbative (T) correc-
tion for the TCCSD approach.

Therefore ‘tailoring’ of the CCSD(T) approach presents a conve-
nient way to extend the applicability of SR methods to MR prob-
lems. More extensive numerical studies are to be presented in
the future.
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