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Singlet�triplet gaps in diradical organic π-systems are of interest in many applications. In this study,
we calculate them in a series of molecules, including cyclobutadiene and its derivatives and cyclopen-
tadienyl cation, by using correlated participating orbitals within the complete active space (CAS)
and restricted active space (RAS) self-consistent field frameworks, followed by second-order per-
turbation theory (CASPT2 and RASPT2). These calculations are evaluated by comparison with the
results of doubly electron-attached (DEA) equation-of-motion (EOM) coupled-cluster (CC) calcu-
lations with up to 4-particle–2-hole (4p-2h) excitations. We find active spaces that can accurately
reproduce the DEA-EOMCC(4p-2h) data while being small enough to be applicable to larger organic
diradicals. Published by AIP Publishing. https://doi.org/10.1063/1.4998256

I. INTRODUCTION

Organic diradicals are of interest as reaction interme-
diates1 and in a variety of applications including photo-
chemical pathways,2 molecular magnets,3 magnetic reso-
nance imaging,4 spintronics,5,6 nonlinear optics,7 and pho-
tovoltaics.8–12 One of the most important characteristics of
diradical molecules is the energy gap between their lowest
singlet and triplet states, ∆EST. The persistence of magnetic
properties at room temperature typically requires a triplet
ground state with ∆EST of at least a couple of kcal/mol13

and the magnitude of ∆EST plays a direct role in singlet
fission.8 However, determining accurate values of ∆EST for
diradicals remains a challenge, even when high-level ab ini-
tio methods are employed.14–19 This is because diradicals
feature low-lying open-shell singlet states with nearly degen-
erate singly occupied molecular orbitals (SOMOs)20–22 and
challenging closed-shell singlets with multiple significantly
contributing configuration state functions (CSFs),19,23 and the
treatment of these states has to be balanced with the treatment
of triplet states that have a single-reference nature. One can
try to use conventional single-reference methods of coupled-
cluster (CC) theory,24–29 such as the CC singles and doubles
(CCSD) approach30 or the CC method with singles, dou-
bles, and quasiperturbative connected triples [CCSD(T)],31

or use Kohn-Sham (KS) density functional theory (DFT)
with symmetry-broken solutions,15 but these approaches can
lead to spin-contaminated results and an erratic description
of the multi-determinantal singlet states.19,32,33 In this work,
we turn to multi-reference methods and a new generation of

a)Authors to whom correspondence should be addressed: piecuch@
chemistry.msu.edu; truhlar@umn.edu; and gagliard@umn.edu

particle non-conserving single-reference CC schemes that can
address deficiencies of other quantum chemistry approaches
in applications involving diradicals in a computationally
manageable fashion.

The most widely used multi-reference methods are based
on complete active space self-consistent field (CASSCF)34–36

reference states. In the CASSCF method, the wave function is
defined by partitioning MOs into three disjoint sets, namely,
the inactive, active, and external orbitals. The inactive orbitals
are kept doubly occupied and the external orbitals are kept
empty during the calculations. The electrons in the active
orbitals are allowed to distribute in all possible ways, generat-
ing a full configuration interaction (CI) state within the active
space.35,37 In order to obtain reliable results, the active orbitals
should be chosen such that the CSFs included in the CASSCF
calculation dominate the electronic states of interest, captur-
ing the correlation effects due to electronic near-degeneracies.
CASSCF should provide a good treatment of static correlation,
but it neglects most of the dynamic correlation effects that orig-
inate from short-range electron-electron repulsion and long-
range dispersion interactions.38 In one approach employed in
the present work, the missing dynamic correlations are added
with the help of multi-reference perturbation theory36 follow-
ing the complete active space second order perturbation theory
(CASPT2) model.39,40

CASPT2 allows one to handle electronic near-
degeneracies and dynamic correlations in a reasonably accu-
rate and balanced manner if adequate active spaces can be
found and used. However, in analogy to full CI, the number of
CSFs in the active space scales factorially with the numbers
of active orbitals and electrons.41 As a result, the CASSCF
and CASPT2 approaches with active spaces larger than 16
electrons in 16 orbitals are unaffordable with current standard
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programs.41 Thus, it is desirable to consider less expensive
alternatives to CASSCF for generating reference wave func-
tions for the subsequent multi-reference perturbation theory,
CI, and CC calculations. One such alternative is offered by
the restricted active space SCF (RASSCF) approach,42 which
decomposes the active orbital space into three subspaces,
abbreviated as RAS1, RAS2, and RAS3, so that the num-
bers of CSFs used in the CI diagonalization steps are much
smaller than those characterizing CASSCF calculations. In
RAS1, all orbitals are doubly occupied except for electronic
excitations up to a certain excitation rank (typically, two) into
RAS2 and RAS3. The active orbitals in RAS3 are unoccu-
pied except for electronic excitations up to a certain excitation
rank (once again, typically, two) from RAS1 and RAS2. The
remaining active electrons are distributed among the avail-
able RAS2 orbitals in all possible ways. RASSCF allows
much larger active spaces than those that can presently be
used in CASSCF computations, but the calculations can still
become unaffordable as the system size increases, so finding
ways to minimize the numbers of active electrons and active
orbitals in multi-reference work remains an important objec-
tive.43–46 In a typical application, the choice of active space is
made by chemical intuition and trial and error. This makes the
results of multi-reference calculations user-dependent and the
choice of adequate active space can be labor intensive. Here,
we instead consider a more systematic procedure, namely,
the “correlated participating orbital” (CPO) scheme proposed
in Ref. 47. Originally developed for reactions and barrier
heights, the CPO scheme has recently been systematically
and successfully applied to singlet–triplet splittings in divalent
radicals.48,49

The main objective of the present study is to explore
the usefulness of CPOs in CASPT2 and RASPT2 calcula-
tions of the singlet�triplet gaps in a series of organic diradical
π-systems that were previously explored by Saito et al.33

using the restricted and unrestricted CCSD and CCSD(T)
methods, the state-specific multi-reference CCSD approach
of Mukherjee and co-workers,50 abbreviated as MkCCSD,
and unrestricted KS-DFT approaches employing selected
exchange–correlation functionals. We systematically examine
three CPO-type active spaces and their subdivisions with the
goal of finding active spaces that can provide a reliable descrip-
tion of the systems examined in this work and that can serve
as the basis for a more general recipe, which might be used in
CASPT2 and RASPT2 calculations for other diradical organic
π-systems in the future.

The significant disagreements among the different meth-
ods employed by Saito et al.,33 as well as in various other
papers (e.g., Refs. 51–53), show that the systems examined
by these authors and in the present study are computationally
very challenging. In particular, the various single- and multi-
reference CC results for the singlet�triplet gaps reported in
Ref. 33 are not consistent enough to serve as reliable reference
values to benchmark our CPO-based CASPT2 and RASPT2
methods. To address this concern, we performed in this work
new benchmark calculations using methods based on the dou-
bly electron-attached (DEA) equation-of-motion (EOM) CC
formalism,54–59 which belongs to a broader category of par-
ticle non-conserving EOMCC theories (see Refs. 60 and 61

for selected reviews). The DEA-EOMCC framework allows
one to determine ground and excited states of systems, such
as diradicals, that are formally obtained by attaching two
electrons to closed shells. In addition to the usual features
of the CC/EOMCC methodology, such as fast convergence
toward the exact, full CI limit, size extensivity in describ-
ing the underlying ground states, and size intensivity of the
excitation (in this case, electron attachment) energies, the
DEA-EOMCC calculations produce wave functions that are
automatically adapted to the spin symmetry, i.e., one avoids
the spin-contamination issues that arise when the conven-
tional single-reference CC and EOMCC approaches using
the unrestricted Hartree-Fock (UHF) or restricted open-shell
Hartree-Fock (ROHF) references are exploited. Because of our
interest in providing reliable data for benchmarking the CPO-
based CASPT2 and RASPT2 approaches, we focus on the
DEA-EOMCC calculations with up to four-particle�two-hole
(4p-2h) components in the corresponding electron-attachment
operator, which, as shown in Refs. 57–59, provide a nearly
exact description of the electronic spectra of diradicals. Since
the full DEA-EOMCC(4p-2h) calculations for systems with
larger numbers of electrons are prohibitively expensive, we
use the more practical active-space DEA-EOMCC mod-
els, in which one selects the leading 4p-2h or 4p-2h and
3p-1h contributions with the help of small subsets of active
orbitals.57–59 As shown in Refs. 57–59, the DEA-EOMCC
approaches with an active-space treatment of 4p-2h or 4p-2h
and 3p-1h components accurately reproduce the results of the
full DEA-EOMCC(4p-2h) calculations at the small fraction
of the computational cost, so they are well suited for generat-
ing reliable data for benchmarking the CPO-based CASPT2
and RASPT2 methods in this work. Although, as shown in
this work, the effect of the basis set on the calculated sin-
glet�triplet values is small, we consider it as well by combin-
ing the highest-level DEA-EOMCC(4p-2h)-type data obtained
with a smaller basis set with the results of the larger-basis set
DEA-EOMCC(3p-1h) calculations, in which 4p-2h terms are
neglected.

In summary, the main objective of this work is to test
various choices of the CPO active spaces and their RAS sub-
divisions, so that we can find optimum spaces that predict
singlet�triplet gaps that are in good agreement with the DEA-
EOMCC benchmark data, while being small enough to be
applicable to larger organic diradicals. By having access to
the DEA-EOMCC information at the 3p-1h and 4p-2h levels,
we can also comment on the importance of 4p-2h contributions
in studies of diradicals.

The paper is organized as follows. In Sec. II, we describe
the molecular systems under consideration and the computa-
tional methods. In Sec. III, we present the results and discuss
them. Section IV contains conclusions.

II. COMPUTATIONAL DETAILS
A. Molecular systems examined in this study

The following diradical systems, shown in Fig. 1,
are considered in this work: D4h-symmetric form of
cyclobutadiene (1), D5h-symmetric cyclopentadienyl cation
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FIG. 1. Diradical systems under investigation. 1: C4H4, 2: C5H5
+, 3:

C4H3NH2, 4: C4H3CHO, 5: C4H2NH2CHO, 6: C4H2-1,2-(CH2)2, 7: C4H2-
1,3-(CH2)2.

(2), and five cyclobutadiene derivatives with polar sub-
stituents, including C1-symmetric aminocyclobutadiene (3),
C1-symmetric formylcyclobutadiene (4), C1-symmetric
1-amino-2-formyl-cyclobutadiene (5), C2v-symmetric 1,2-
bis(methylene)cyclobutadiene (6), and D2h-symmetric 1,3-
bis(methylene)cyclobutadiene (7). All geometries were taken
from the work of Saito et al.33 Notice that, even for the more
symmetric systems, all calculations were performed in the C1

point group. Each system features two degenerate (systems
1 and 2) or nearly degenerate (the remaining systems) singly
occupied π orbitals centered primarily on the carbon rings.
The singly occupied orbitals of system 1 are shown in Fig. 2.
In each case, the lowest-energy singlet and triplet states differ
by a spin-flip π→ π* transition and the corresponding energy
gap is defined by

∆EST = Esinglet − Etriplet, (1)

where a negative number indicates that the singlet is lower
in energy. In the case of system 1, the singlet is 1B1g and
the triplet is 3A2g (however, we run the calculations without
imposing symmetry constraints).62

The orbitals involved in the singlet�triplet transition,
whose occupancies change in the dominant CSFs, are always
the frontier orbitals, which are the SOMOs except for system

FIG. 2. Singly occupied π orbitals for system 1.

5. These SOMOs are singly occupied π orbitals located pri-
marily on the carbon ring, although the substituents are also
involved for systems 6 and 7. The lowest singlet of system 5
has frontier orbitals with occupation numbers close to two or
zero, so for the singlet state of system 5, the frontier orbitals
are the highest occupied and lowest unoccupied MOs.

B. Benchmark DEA-EOMCC calculations

The DEA-EOMCC methods aim at the determination of
ground and excited states of systems, such as diradicals, which
can be obtained by attaching two electrons to the correspond-
ing closed-shell cores. This is accomplished using the wave
function ansatz ���Ψ

(N)
µ

〉
= R(+2)

µ
���Ψ

(N−2)
0

〉
, where ���Ψ

(N)
µ

〉
is the

ground (µ = 0) or excited (µ > 0) state of the N-electron dirad-
ical of interest, ���Ψ

(N−2)
0

〉
= eT ���Φ

(N−2)
〉

is the CC ground state

of the (N – 2)-electron closed-shell core (with T and ���Φ
(N−2)
〉

representing the corresponding cluster operator and reference
determinant), and R(+2)

µ = Rµ,2p+Rµ,3p−1h +Rµ,4p−2h + · · · is the

operator attaching two electrons to ���Ψ
(N−2)
0

〉
using the 2p com-

ponent Rµ,2p, while allowing the relaxation of the remaining
electrons via its 3p-1h (Rµ,3p−1h), 4p-2h (Rµ,4p−2h), and other
many-body components.

As shown in Refs. 57–59, the level of the DEA-EOMCC
theory that provides a very accurate description of diradical
electronic spectra, including energy gaps between the low-
lying singlet and triplet states, is DEA-EOMCC(4p-2h), where
the electron-attaching operator R(+2)

µ is truncated at the 4p-
2h component Rµ,4p−2h. Unfortunately, the most expensive
steps of full DEA-EOMCC(4p-2h) scale as no

2nu
6, where no

(nu) is the number of orbitals occupied (unoccupied) in the
underlying reference determinant ���Φ

(N−2)
〉
, limiting the DEA-

EOMCC(4p-2h) calculations to small systems. However, as
demonstrated in Refs. 57–59, it is sufficient to use small sub-
sets of orbitals unoccupied in ���Φ

(N−2)
〉

to select the dominant
4p-2h terms, with virtually no loss in accuracy and at the small
fraction of the cost of parent DEA-EOMCC(4p-2h) compu-
tations. The resulting DEA-EOMCC(4p-2h){Nu} approach,
where Nu << nu designates the number of active unoccu-
pied orbitals used to select the leading 4p-2h contributions,
which belongs to a larger family of the active-space CC and
EOMCC theories,63 reduces the no

2nu
6 steps of its full DEA-

EOMCC(4p-2h) parent to a more manageable Nu
2no

2nu
4

level. One can use similar ideas to select the dominant 3p-
1h contributions, either within the DEA-EOMCC(4p-2h){Nu}
scheme or within its lower-level DEA-EOMCC(3p-1h) coun-
terpart where 4p-2h terms are neglected, replacing the nonu

5

steps associated with 3p-1h contributions by the less expensive
Nunonu

4 operations.59 As shown in Ref. 59, the resulting DEA-
EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(3p-1h){Nu}
approaches accurately reproduce the corresponding DEA-
EOMCC(4p-2h) or DEA-EOMCC(4p-2h){Nu} and DEA-
EOMCC(3p-1h) data at the small fraction of the computational
costs.

The highest level of the DEA-EOMCC theory used in
this work is DEA-EOMCC(4p-2h){Nu}. In carrying out the
DEA-EOMCC(4p-2h){Nu} calculations, we followed Saito
et al.33 and used the cc-pVDZ basis set.64 In order to exam-
ine the dependence of our results on the basis set, we also
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used the larger maug-cc-pVTZ basis.65 For the larger systems
considered in this study, namely, cyclobutadiene derivatives,
the DEA-EOMCC(4p-2h){Nu}/maug-cc-pVTZ calculations
using our present codes turned out to be quite expensive,
so to estimate the DEA-EOMCC(4p-2h){Nu}/maug-cc-pVTZ
results we adopted a simple extrapolation scheme, abbreviated
as DEA-EOMCC[4p-2h], where we calculate the final energies
as follows:

E[4p-2h] = E(4p-2h){Nu}/DZ + E(3p-1h){Nu}/mTZ

−E(3p-1h){Nu}/DZ. (2)

The first term on the right-hand side of Eq. (2) is the DEA-
EOMCC(4p-2h){Nu}/cc-pVDZ energy. The effect of going
from the cc-pVDZ basis set (abbreviated as DZ) to maug-
cc-pVTZ (abbreviated as mTZ) is estimated by forming the
difference of energies obtained in the DEA-EOMCC(3p-
1h){Nu}/maug-cc-pVTZ and DEA-EOMCC(3p-1h){Nu}/cc-
pVDZ calculations.

In addition to the calculations entering Eq. (2), we per-
formed the full DEA-EOMCC(3p-1h) and active-space DEA-
EOMCC(3p-1h,4p-2h){Nu} computations using the cc-pVDZ
basis set (all seven systems) and the DEA-EOMCC(3p-
1h,4p-2h){Nu}/maug-cc-pVTZ calculations for the smallest
system 1. We carried out these extra computations to validate
Eq. (2), especially the usefulness of the DEA-EOMCC(3p-
1h){Nu} approach in estimating the effect of going from the
cc-pVDZ basis set to maug-cc-pVTZ (see Sec. III A for a dis-
cussion). Following Refs. 57–59, in all of the DEA-EOMCC
calculations performed in this work, the ground states of the
underlying (N – 2)-electron closed-shell cores were obtained
using CCSD.

All of the DEA-EOMCC calculations reported in this
work and the underlying CCSD computations were performed
using the restricted Hartree-Fock (RHF) MOs corresponding
to the (N – 2)-electron closed-shell cores. In this way, we could
maintain all of the relevant symmetries throughout the cal-
culations. We tested the usage of other orbitals, such as the
N-electron ROHF MOs obtained for the triplet states of diradi-
cals examined in this work, but, in agreement with Refs. 57–59,
the resulting singlet�triplet gaps, especially those obtained
with the highest DEA-EOMCC(4p-2h)-type levels, turned out
to be virtually independent of the type of MOs used in the
calculations. As in Ref. 33, in all of the post-HF calculations,
the core orbitals correlating with the 1s shells of the C, N, and
O atoms were kept frozen and the spherical components of d
and f basis functions were employed throughout.

In carrying out the various DEA-EOMCC computations,
we followed the strategy employed in Ref. 33. Thus, we used
the D4h point group for system 1, the D5h group for system
2, and C1 for the remaining systems 3�7. In each case, the
closed-shell (N � 2)-electron reference system used to set up
the DEA-EOMCC calculations was obtained by vacating the
two valence partly occupied orbitals that define the singlet
and triplet states of interest, which are exactly degenerate
in systems 1 and 2 and nearly degenerate in systems 3�7.
For example, the (N � 2)-electron reference dication used in
the DEA-EOMCC calculations for system 1 was obtained
by vacating the two valence SOMOs of eg symmetry. For
system 2, we vacated the degenerate valence e′′1 shell, etc.

Consistent with the structure of the valence π shells in sys-
tems 1�7, which consist of one doubly occupied, two partly
occupied, and one unoccupied MOs in systems 1, 3, and 4 and
one doubly occupied, two partly occupied, and two unoccu-
pied MOs in systems 2 and 5�7, the active spaces needed to
perform the DEA-EOMCC(3p-1h){Nu}, DEA-EOMCC(3p-
1h,4p-2h){Nu}, and DEA-EOMCC(4p-2h){Nu} calculations
were defined in the following manner. For systems 1, 3, and 4,
we used the Nu = 3 MOs, which are the three lowest-energy
unoccupied orbitals in the respective 12+, 32+, and 42+ refer-
ence dications. For systems 2, 5, 6, and 7, we used the Nu = 4
orbitals, which are the four lowest-energy unoccupied MOs in
the respective (N � 2)-electron 22+, 52+, 62+, and 72+ species.
We verified the appropriateness of the above active orbital
choices by comparing the full DEA-EOMCC(3p-1h)/cc-
pVDZ and active-space DEA-EOMCC(3p-1h){Nu}/cc-pVDZ
data (see Sec. III A for further discussion).

All of the DEA-EOMCC calculations reported in
this work were performed using the codes developed in
Refs. 57–59, interfaced with GAMESS66 and taking advantage
of the spin-free CCSD GAMESS routines67 and the routines
used in some of our earlier EOMCC studies.68–70

C. CASPT2 and RASPT2 calculations

CASPT239 and RASPT271 calculations, including the
underlying reference state calculations by CASSCF34 and
RASSCF,42 were performed using the maug-cc-pVTZ72 and
ANO-RCC-VTZP73 basis sets with the Cholesky decomposi-
tion74 using a developer version of Molcas 8.1.41,75,76 Orbitals
were visualized using Luscus 0.8.3.77 All calculations were
performed without symmetry restrictions, i.e., in C1 symmetry.

For CASSCF calculations, the active space notation is
(n,N), where n is the number of active electrons, and N is the
number of orbitals in the active space. For RASSCF calcula-
tions, the active space notation is (n,h,p;N1,N2,N3), where n is
the total number of active electrons, h is the maximum number
of holes in RAS1, p is the maximum number of particles in
RAS3, and N i is the number of orbitals in RASi.

CASPT2 and RASPT2 calculations were performed with
an imaginary shift of 0.1 hartree to alleviate intruder state prob-
lems. The default ionization potential-electron affinity (IPEA)
shift of 0.25 hartree78 was used to compensate for the sys-
tematic overestimation of correlation energy in CASPT2. (In
the supplementary material, we give some comparison results
obtained without an IPEA shift.)

1. CPO definitions

The CPO scheme is based on the idea that the active space
should consist of “participating” orbitals, i.e., the orbitals most
strongly involved in the process of interest, plus one correlating
orbital for each participating orbital.47 Participating orbitals
are identified based on the orbital occupations from the dom-
inant configurations, not the occupation numbers from the
zeroth-order wave function. For all systems studied other than
system 5, considering the occupation numbers from the zeroth-
order wave function would erroneously suggest that there is
no difference between the singlet and the triplet, as the frontier
orbitals are singly occupied in both cases. However, although
the triplet has a single dominant CSF, the singlet has two

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-018740
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FIG. 3. Correlating π′ orbitals of the nCPO scheme for system 1.

dominant configurations: one in which one of the frontier
orbitals is doubly occupied and one in which the other is doubly
occupied. More specific information regarding the wave func-
tions and dominant configurations is included in Sec. III B and
in the supplementary material.

The original CPO scheme had three choices: nominal,
moderate, and extended, abbreviated as nom-, mod-, and ext-
CPO.47 In the present article, we introduce a fourth option for
π-systems that lies between nominal and moderate, referred to
as “π-CPO.” These four choices will be referred to for the rest
of the paper as nCPO, πCPO, mCPO, and eCPO. In nCPO,
active orbitals are the frontier orbitals and their correlating
orbitals. See Figs. 2 and 3 for examples of frontier orbitals and
their correlating orbitals, respectively, for system 1. In the other
CPO options, as discussed next, we add additional orbitals on
the atoms on which the frontier orbitals reside; these atoms
are called “participating atoms.” The substituent carbons of
systems 6 and 7 are participating atoms, but the substituents
of systems 3, 4, and 5 are not.

In the πCPO scheme, all valence π orbitals of partici-
pating atoms are active, and correlating orbitals are added as
needed to ensure that each singly or doubly occupied orbital
is paired with an unoccupied orbital. See Fig. 4 for examples
of participating π orbitals in system 1.

In the mCPO scheme, all valence p orbitals of partici-
pating atoms are active, and correlating orbitals are added as
needed to ensure that each singly or doubly occupied orbital is
paired with an unoccupied orbital. Where there is significant
s-p mixing, the s orbitals are taken to be those of lowest energy
(one for each participating atom), and the rest are treated as p
orbitals. For example, in system 1, there are four participating
atoms, and the four lowest valence orbitals are considered to
be the s orbitals. See Fig. 5 for examples of included p orbitals
for system 1.

FIG. 4. Included π orbitals in the πCPO scheme for system 1.

FIG. 5. Included p orbitals of the mCPO scheme for system 1.

In the eCPO scheme, all valence p and s orbitals of partic-
ipating atoms are active, and correlating orbitals are added as
needed to ensure that each singly or doubly occupied orbital
is paired with an unoccupied orbital. See Fig. 6 for examples
of included s orbitals for system 1.

2. RAS subdivisions

As discussed in the Introduction, active spaces larger than
16 electrons in 16 orbitals are unaffordable in current stan-
dard implementations of CASSCF and CASPT2. However,
the active spaces chosen using eCPO would be larger than the
(16,16) limit, even for systems as small as those studied here.
For system 1, the smallest system under consideration, the
active space chosen with eCPO would be (20,22), with 6× 1010

CSFs for the singlet state. In order to employ such large active
spaces, RASPT2 was employed. We also employed RASPT2
for some systems where CASPT2 is affordable because the
goal is to test the accuracy of RASPT2 against the bench-
marks that are available on small systems so we know whether
it is expected to be accurate for large systems where CASPT2
is not affordable.

In RASSCF calculations in this work, two excitations
were permitted from RAS1 and two excitations were permit-
ted into RAS3. Just as CPO provides a scheme for choosing
which orbitals are included in the active space, it is also helpful
to have a systematic way of choosing how to divide the active
space into the three RAS subspaces. For the systems studied
here, we define two schemes: “valence-π” and “limited-π.” In
the “valence-π” scheme, RAS2 includes any valenceπ orbitals
that are included in the given CPO level; any π orbitals that
are higher in energy than the valence orbitals are placed in
RAS3, along with any other unoccupied orbitals. Any doubly
occupied orbitals that are not part of the π-system are placed
in RAS1.

For eCPO with systems 6 and 7, the valence-π RAS divi-
sion scheme results in active spaces of (30,2,2;12,6,14). The
RASPT2 portion would have taken more than 22 days of com-
puter time, so valence-π was not performed for systems 6
and 7. Instead, only the “limited-π” scheme was employed.

FIG. 6. Included s orbitals of the eCPO scheme for system 1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-018740
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Limited-π is similar to valence-π, but instead of all valence π
orbitals being in RAS2, occupied π orbitals below the high-
est two occupied π orbitals are in RAS1 and their correlating
orbitals are in RAS3. Systems 1 through 5 have only two occu-
pied π orbitals, so the limited-π active spaces are identical to
the valence-π active spaces for those systems.

For systems 6 and 7, convergence could not be achieved
with limited-π RASSCF using an active space defined by
πCPO, so instead restricted active space CI calculations were
performed using orbitals from valence-π RASSCF with an
active space defined by πCPO. Additionally, the CASSCF
active space defined by mCPO for system 2 was prohibitively
expensive to perform, and instead complete active space CI
calculations were performed using orbitals from valence-π
RASSCF with an active space defined by mCPO.

III. RESULTS AND DISCUSSION
A. DEA-EOMCC benchmark calculations

The results of our various DEA-EOMCC calculations
for the singlet�triplet gaps in systems 1�7 are summarized
in Table I. Our highest-level calculated DEA-EOMCC(4p-
2h){Nu}/cc-pVDZ data and their extrapolation to the larger
maug-cc-pVTZ basis set using Eq. (2), abbreviated as DEA-
EOMCC[4p-2h], which we treat in this work as best esti-
mates of the ∆EST values of interest, indicate that sys-
tems 1 and 3�6 have singlet ground states, whereas the
ground states of systems 2 and 7 are triplets. As shown
in Table II, where we compare our extrapolated DEA-
EOMCC[4p-2h] values with the singlet�triplet gaps result-
ing from the symmetry-broken, UHF-based, calculations
using the single-reference CCSD(T) [UCCSD(T)] approach
and its Brueckner-orbital analog, abbreviated as UBD(T),79

and the multi-reference MkCCSD computations using the
ROHF and CASSCF orbitals, our DEA-EOMCC(4p-2h)-
level results agree in this regard with the findings of
Saito et al.33

Before making further comparisons between the results of
our DEA-EOMCC calculations and the ∆EST values reported
in Ref. 33, we comment on the extrapolation procedure defined
by Eq. (2), which is used in this work to provide reference
data for benchmarking the CPO-based CASPT2 and RASPT2

schemes. We begin with the choice of active orbitals used
to select the dominant 3p-1h and 4p-2h contributions in the
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(4p-2h){Nu}
computations. A comparison of the results of the full DEA-
EOMCC(3p-1h) and active-space DEA-EOMCC(3p-1h){Nu}
calculations using the cc-pVDZ basis set demonstrates that
our choice of active orbitals allowing us to select the domi-
nant higher-than-2p contributions in the DEA-EOMCC wave
function ansatz is appropriate. Indeed, as shown in Table I, the
differences between the singlet�triplet gaps resulting from the
DEA-EOMCC(3p-1h)/cc-pVDZ and DEA-EOMCC(3p-1h)
{Nu}/cc-pVDZ calculations are very small, ranging from
0.05 kcal/mol for system 1 to 0.56 kcal/mol for system
5, where the DEA-EOMCC(3p-1h)/cc-pVDZ gap value is
�7.46 kcal/mol. In fact, one observes similarly small differ-
ences when comparing the results of the higher-level DEA-
EOMCC(4p-2h){Nu} calculations, in which 4p-2h terms are
treated using active orbitals, but 3p-1h terms are treated
fully, with the results obtained with the DEA-EOMCC(3p-
1h,4p-2h){Nu} approach, in which both types of terms are
treated using active orbitals. These observations are consis-
tent with the well-known characteristic of the active-space
CC and EOMCC methods, including the active-space DEA-
EOMCC approaches employed in this study, which is their
ability to reproduce the results of the parent CC/EOMCC
calculations with small numbers of active-orbitals used in
selecting higher-order excitations.57–59,63 We can certainly
conclude that the use of the active-space DEA-EOMCC(3p-
1h){Nu} approach in Eq. (2), as a substitute for the con-
siderably more expensive full DEA-EOMCC(3p-1h) par-
ent in estimating the effect of going from the cc-pVDZ
basis set to the maug-cc-pVTZ basis, is an appropriate
procedure.

Equation (2) is also justified by the fact that the effect
of going from the smaller cc-pVDZ basis to the larger maug-
cc-pVTZ basis set on the calculated ∆EST values is generally
rather small, implying that it is safe to estimate it using the
lower-level DEA-EOMCC(3p-1h){Nu}method, as opposed to
the significantly more expensive DEA-EOMCC(4p-2h){Nu}
approach. Indeed, as shown in Table I, the differences between
the singlet�triplet gaps resulting from the DEA-EOMCC(3p-
1h){Nu}/cc-pVDZ and DEA-EOMCC(3p-1h){Nu}/maug-cc-
pVTZ calculations range from 0.03 kcal/mol for system 2 to

TABLE I. The various DEA-EOMCC results for the singlet–triplet gaps ∆EST (in kcal/mol) in systems 1�7.

Method 1 2 3 4 5 6 7

cc-pVDZ
(3p-1h){Nu} −1.37 16.38 0.44 −1.24 −6.90 −81.63 18.26
(3p-1h) −1.42 16.06 0.34 −1.32 −7.46 −81.84 17.95
(3p-1h,4p-2h){Nu} −4.98 14.25 −3.22 −4.32 −4.82 −78.42 20.03
(4p-2h){Nu} −5.04 13.91 −3.30 −4.40 −5.49 −78.75 19.76

maug-cc-pVTZ
(3p-1h){Nu} −0.53 16.35 1.09 −0.48 −7.09 −80.56 16.98
[4p-2h]a −4.20b 13.88 −2.65 −3.65 −5.68 −77.68 18.49
Nu 3 4 3 3 4 4 4

aBest estimate defined by the extrapolation formula given by Eq. (2).
bThe DEA-EOMCC(3p-1h,4p-2h){3}/maug-cc-pVTZ calculation gives �4.08 kcal/mol.
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TABLE II. A comparison of the ∆EST values (in kcal/mol) characterizing systems 1�7 obtained with the DEA-
EOMCC[4p-2h] extrapolation defined by Eq. (2) and in the DEA-EOMCC(4p-2h){Nu}/cc-pVDZ calculations
with the UCCSD(T), UBD(T), ROHF-MkCCSD, and CASSCF-MkCCSD results reported by Saito et al.33

DEA-EOMCC
Saito et al.33

Molecule [4p-2h]/(4p-2h){Nu} UCCSD(T) UBD(T) ROHF-MkCCSD CASSCF-MkCCSD

1 �4.2/�5.0 −4.8 −5.1 −8.6 −8.1
2 13.9/13.9 14.8 14.0 13.5 9.4
3 �2.7/�3.3 −3.2 −3.6 −6.5 −7.3
4 �3.6/�4.4 −4.5 −4.5 −7.1 −6.9
5 �5.7/�5.5 −0.6 −0.9 −2.7 −4.5
6 �77.7/�78.8 −82.7 −79.8 −82.7 −84.2
7 18.5/19.8 15.0 17.1 20.0 19.5
MUEa 0.0/0.7 2.4 1.6 3.1 3.6

aMean unsigned errors relative to the extrapolated DEA-EOMCC[4p-2h] results using Eq. (2).

1.28 kcal/mol for system 7, where the DEA-EOMCC(3p-
1h)/cc-pVDZ gap value is 18.26 kcal/mol, for an average
of 0.69 kcal/mol. Furthermore, although we were unable to
perform the DEA-EOMCC/maug-cc-pVTZ calculations with
3p-1h and 4p-2h terms in the electron-attaching R(+2)

µ opera-
tor using our existing codes for all of the systems examined
in this work, we managed to obtain the DEA-EOMCC(3p-
1h,4p-2h){3}/maug-cc-pVTZ value for the singlet�triplet gap
in system 1, obtaining �4.08 kcal/mol (see Table I). Our
extrapolation of the DEA-EOMCC(4p-2h)/maug-cc-pVTZ-
level result based on Eq. (2) gives �4.20 kcal/mol, in vir-
tually perfect agreement with the DEA-EOMCC(3p-1h,4p-
2h){3}/maug-cc-pVTZ calculation. This means that Eq. (2)
works well, allowing us to capture the effect of high-order
4p-2h correlations and the effect of going from the cc-pVDZ
basis set to maug-cc-pVTZ in an accurate and computationally
manageable manner.

Having established the validity of Eq. (2), which, given
the above analysis and previous extensive studies of the
DEA-EOMCC approaches with up to 4p-2h excitations,57–59

is expected to produce singlet�triplet gap values in sys-
tems 1�7 to within 1 kcal/mol or better, we comment
on our best DEA-EOMCC[4p-2h] [and the corresponding
DEA-EOMCC(4p-2h){Nu}/cc-pVDZ] ∆EST values. First, it
is important to note that although bulk of the correlation effects
is captured at the DEA-EOMCC(3p-1h) level, the high-order
4p-2h effects can be quite substantial. When we compare
the extrapolated DEA-EOMCC[4p-2h] and calculated DEA-
EOMCC(3p-1h){Nu}/maug-cc-pVTZ gap values or, equiv-
alently, the DEA-EOMCC(4p-2h){Nu}/cc-pVDZ and DEA-
EOMCC(3p-1h){Nu}/cc-pVDZ data, the 4p-2h effects range,
in absolute value, from 1.4 kcal/mol in system 5 to 3.7 kcal/mol
in systems 1 and 3. Although they typically reduce the total
electronic energies of the individual states, their net effect
on the calculated singlet�triplet gaps can go either way.
Indeed, we may encounter lowering of the signed ∆EST val-
ues due to 4p-2h correlations, as in systems 1�4, or we can
find cases where the signed singlet�triplet gaps defined by
Eq. (1) increase, as in systems 5�7. In some cases, the 4p-
2h effects can change a singlet�triplet gap near zero to a
considerably larger absolute value, as in systems 1 and 4,
but there also are situations, such as system 3, where 4p-2h

correlations change state ordering and the sign of ∆EST. It
is quite clear from the results shown in Table I that one
has to account for the high-order 4p-2h effects within the
DEA-EOMCC framework to obtain reasonably converged
values of the singlet�triplet gaps in diradicals. This is con-
sistent with our earlier DEA-EOMCC studies reported in
Refs. 57–59.

High accuracy of our extrapolated DEA-EOMCC[4p-
2h] data and the underlying DEA-EOMCC(4p-2h){Nu}/cc-
pVDZ calculations, which include sophisticated 4p-2h terms,
in addition to their lower-rank 2p and 3p-1h counterparts,
on top of CCSD, implies that we should be able to judge
other methods. Before discussing our assessment of the
various CPO-based CASPT2 and RASPT2 calculations in
Sec. III B, we comment on the UCCSD(T), UBD(T), ROHF-
MkCCSD, and CASSCF-MkCCSD computations reported by
Saito et al.33 As already pointed out, all of these methods
agree in predicting correct state ordering. Unfortunately, as
shown in Table II, they disagree, sometimes rather signif-
icantly, in quantitative predictions. In the case of systems
1�4, there is a great deal of consistency among the sin-
glet�triplet gap values provided by UCCSD(T) and UBD(T)
and those obtained in our DEA-EOMCC(4p-2h){Nu}/cc-
pVDZ and DEA-EOMCC[4p-2h] calculations, which agree
to within ∼1 kcal/mol, but one cannot say the same about
the MkCCSD data, which seem to have rather large errors,
on the order of 3�4 kcal/mol, displaying a significant depen-
dence of the resulting ∆EST values on the type of orbitals used
in the calculations in the case of system 2. The poor perfor-
mance of MkCCSD for system 1 is reinforced by the results
of the multi-reference averaged quadratic CC calculations,80

reported in Ref. 33 as well, which give ∆EST of �5.5 kcal/mol,
in good agreement with our highest-level DEA-EOMCC[4p-
2h] and DEA-EOMCC(4p-2h){Nu}/cc-pVDZ calculations
and the UCCSD(T) and UBD(T) data, but in sharp disagree-
ment with the ROHF- and CASSCF-based MkCCSD values.
Based on the results for systems 1�4 and the mean-unsigned
error (MUE) values relative to DEA-EOMCC[4p-2h] reported
in Table II, one might recommend the use of the symmetry-
broken UCCSD(T) and UBD(T) methods in the calculations of
singlet�triplet gaps in diradicals, but the results for system 5,
where errors relative to DEA-EOMCC(4p-2h){Nu}/cc-pVDZ
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and DEA-EOMCC[4p-2h] in the UCCSD(T) and UBD(T)
∆EST values are on the order of 5 kcal/mol, show that this
would be misleading. The agreement among the UCCSD(T),
UBD(T), ROHF-MkCCSD, and CASSCF-MkCCSD ∆EST

values improves, when systems 6 and 7 are examined, but
one still observes substantial differences among the results
obtained with these four methods, on the order of 4-5
kcal/mol, which do not allow us to use them to benchmark our
CPO-based CASPT2 and RASPT2 approaches. Our extrap-
olated DEA-EOMCC[4p-2h] data and the underlying DEA-
EOMCC(4p-2h){Nu}/cc-pVDZ calculations are considerably
more reliable in this regard.

B. CASPT2 and RASPT2 calculations

CASPT2 and RASPT2 results using the maug-cc-pVTZ
basis set are presented in Table III. The various active spaces
and their sizes are presented in Table IV. Results with the
ANO-RCC-VTZP basis set are similar and are presented in
the supplementary material.

The MUEs relative to the benchmark DEA-EOMCC[4p-
2h] data shown in Table III are significantly larger for nCPO
than for the other CPO choices. The MUEs of πCPO, mCPO,
and eCPO are all under 1.0 kcal/mol, while the MUEs of nCPO
are between 6 and 8 kcal/mol. Moreover, the maximum error of
nCPO is above 16 kcal/mol. These poor results indicate that the
nCPO calculations do not properly reflect the multi-reference
character of the singlets. As explained in Sec. II C 1, the triplet
states are dominated by a single configuration, while the singlet
states have two dominant configurations; the weights of these
two configurations vary depending on system and active space,
but they are roughly equal except for all systems other than
system 5. With nCPO, however, one configuration frequently
outweighs the other, resulting in an inaccurate description of
the wave function.

Although nCPO performs poorly, it most closely corre-
sponds to the (2,2) active spaces used in the multi-reference
CC calculations of Saito et al.33 For both the singlet and triplet
states, the π orbital directly below the nominal participating
orbitals has an occupation number between 1.90 and 1.94, and

TABLE III. CASPT2/RASPT2 results. All values are ∆EST (kcal/mol), where a negative number indicates that
the singlet is lower.

Active RASPT2 RASPT2 DEA-EOMCC
System space CASPT2 valence-π limited-π [4p-2h]

1: C4H4 eCPO a
�3.8 �3.8 �4.2

mCPO �4.3 �4.0 �4.0
πCPO �4.4 �4.4 �4.4
nCPO �12.0 �12.0 �12.0

2: C5H5
+ eCPO a 14.5 14.5 13.9

mCPO 13.5b 13.7 13.7
πCPO 14.9 15.0 15.0
nCPO 21.9 20.5 20.5

3: C4H3NH2 eCPO a
�2.2 �2.2 �2.7

mCPO �2.7 �2.8 �2.8
πCPO �2.5 �2.5 �2.5
nCPO 8.0 13.5 13.5

4: C4H3CHO eCPO a
�3.5 �3.5 �3.6

mCPO �4.0 �4.0 �4.0
πCPO �3.9 �3.6 �3.6
nCPO 8.6 7.7 7.7

5: C4H2NH2CHO eCPO a
�7.2 �7.2 �5.7

mCPO �6.3 �6.3 �6.3
πCPO �6.7 �7.4 �7.4
nCPO �3.1 3.6 3.6

6: C4H2-1,2-(CH2)2 eCPO a a
�75.9 �77.7

mCPO a
�75.1 �77.0

πCPO �75.5 �75.3 �75.4b

nCPO �81.9 �81.9 �81.9
7: C4H2-1,3-(CH2)2 eCPO a a 18.7 18.5

mCPO a 18.8 18.4
πCPO 18.6 18.4 19.0b

nCPO 18.3 18.3 18.3
MUEc eCPO . . . 0.6 0.7 0.0

mCPO 0.3 0.6 0.3
πCPO 0.7 0.8 0.9
nCPO 6.5 7.9 7.9

aNot available.
bCI only rather than CASSCF or RASSCF.
cMUEs exclude absent data.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-018740
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TABLE IV. CASSCF/RASSCF active space sizes and numbers of CSFs, including cases that were too large to
attempt. Exact numbers, including RASSCF limited-π, are presented in the supplementary material.

Active
CASSCF RASSCF valence-π

System space size CSFs sing. CSFs trip. Size CSFs sing. CSFs trip.

1: C4H4 eCPO (20,22)a 6 × 1010a 1 × 1011a (20,2,2; 8,4,10) 2 × 105 3 × 105

mCPO (12,14) 2 × 107 4 × 107 (12,2,2; 4,4,6) 2 × 104 3 × 104

πCPO (4,6) 105 105 (4,0,2; 0,4,2) 96 97
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

2: C5H5
+ eCPO (24,26)a 1 × 1013a 3 × 1013a (24,2,2; 10,5,11) 9 × 105 2 × 106

mCPO (14,16)b 3 × 108b 5 × 108b (14,2,2; 5,5,6) 8 × 104 1 × 105

πCPO (4,6) 105 105 (4,0,2; 0,5,1) 105 105
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

3: C4H3NH2 eCPO (20,22)a 6 × 1010a 1 × 1011a (20,2,2; 8,4,10) 2 × 105 3 × 105

mCPO (12,14) 2 × 107 4 × 107 (12,2,2; 4,4,6) 2 × 104 3 × 104

πCPO (4,6) 105 105 (4,0,2; 0,4,2) 96 97
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

4: C4H3CHO eCPO (20,22)a 6 × 1010a 1 × 1011a (20,2,2; 8,4,10) 2 × 105 3 × 105

mCPO (12,14) 2 × 107 4 × 107 (12,2,2; 4,4,6) 2 × 104 3 × 104

πCPO (4,6) 105 105 (4,0,2; 0,4,2) 96 97
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

5: C4H2NH2CHO eCPO (20,22)a 6 × 1010a 1 × 1011a (20,2,2; 8,4,10) 2 × 105 3 × 105

mCPO (12,14) 2 × 107 4 × 107 (12,2,2; 4,4,6) 2 × 104 3 × 104

πCPO (4,6) 105 105 (4,0,2; 0,4,2) 96 97
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

6: C4H2-1,2- (CH2)2 eCPO (30,32)a 4 × 1016a 9 × 1016a (30,2,2; 12,6,14)c 7 × 106c 7 × 106c

mCPO (18,20)a 5 × 109a 1 × 1010a (18,2,2; 6,6,8) 2 × 105 1 × 106

πCPO (6,8) 1176 1512 (6,0,2; 0,6,2) 1015 1317
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

7: C4H2-1,3- (CH2)2 eCPO (30,32)a 4 × 1016a 9 × 1016a (30,2,2; 12,6,14)c 7 × 106c 7 × 106c

mCPO (18,20)a 5 × 109a 1 × 1010a (18,2,2; 6,6,8) 2 × 105 1 × 106

πCPO (6,8) 1176 1512 (6,0,2; 0,6,2) 1015 1317
nCPO (2,4) 10 6 (2,0,2; 0,2,2) 10 6

aNot possible due to size. Number of CSFs calculated with Weyl’s formula.44

bCI only rather than CASSCF or RASSCF.
cNot attempted due to excessive time required.

the π orbital directly above the nominal participating orbitals
has an occupation number between 0.06 and 0.10. See Fig. 4
for examples of these orbitals for system 1. Active spaces cho-
sen with nCPO and the (2,2) active space used in the work of
Saito et al.33 force these orbitals to have occupation numbers
of 2.00 and 0.00, respectively. In contrast, the DEA-EOMCC
calculations used for our reference values permit holes in the
occupiedπorbital and excitations into the unoccupiedπorbital
(among other possible holes and excitations that are more
case-dependent), as do all CASPT2 and RASPT2 calculations
presented here other than those using nCPO active spaces.

For πCPO, mCPO, and eCPO, there is little difference
among the MUEs, as all MUEs are under 1.0 kcal/mol. The
maximum errors vary depending on how the active space is
divided, but in all cases they are 2.6 kcal/mol or below. We con-
clude that little is to be gained by using the eCPO active space,
which roughly corresponds to a full-valence active space for
participating atoms and is unaffordable for CASPT2, even with
the small systems studied here. The mCPO active space is also

unaffordable for systems 6 and 7, which are still very small
systems, as the CASSCF active space would be (18,20) and
have 5 × 109 CSFs for the singlet. Overall, πCPO offers the
best balance between affordability and accuracy, as it provides
a comparable level of accuracy with mCPO and eCPO, espe-
cially since Table IV shows that it requires active spaces many
orders of magnitude smaller than the order of 107 to 1011 CSFs
required by mCPO and eCPO. Good accuracy is achieved with
πCPO because only π orbitals have occupation numbers less
than 1.97 or more than 0.03, regardless of whether additional
orbitals are included in the active space. Therefore, πCPO
allows for a sufficient description of the multi-reference char-
acter of these systems, and mCPO and eCPO add considerable
expense for no significant benefit.

Valence-π RASPT2 has very similar MUEs to the corre-
sponding CASPT2 calculations. All of the orbitals in RAS1
or RAS3 in valence-π RASSCF have occupation numbers
between 2.00 and 1.97 or between 0.03 and 0.00, just as
for CASSCF. Encouragingly, limited-π RASPT2 also enjoys

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-018740
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similar accuracy to CASPT2, even though some orbitals placed
in RAS1 or RAS3 have more intermediate occupation num-
bers associated with multi-reference character. This suggests
that for larger systems featuring many more π orbitals, it may
be possible to use limited-πRASPT2 with πCPO to keep com-
putational costs low by placing most of the active orbitals in
RAS1 or RAS3.

IV. CONCLUSIONS

Singlet�triplet gaps in several diradical organic π-
systems, including cyclobutadiene and its derivatives and
cyclopentadienyl cation, were calculated using the CPO-based
CASPT2 and RASPT2 approaches benchmarked against high-
level DEA-EOMCC data including up to 4p-2h excitations.
The goal was to develop a systematic way to choose and sub-
divide active spaces within the CPO framework and find active
spaces that can accurately reproduce the DEA-EOMCC(4p-
2h)-level data, while being small enough to be applicable to
larger organic diradicals.

To generate benchmark data for assessing the accu-
racy of the CPO-based CASPT2 and RASPT2 approaches,
we performed a large number of DEA-EOMCC calcula-
tions, including full DEA-EOMCC(3p-1h) and active-space
DEA-EOMCC(3p-1h){Nu} computations, in which the high-
order 4p-2h terms are neglected, and active-space DEA-
EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(4p-2h){Nu}
calculations, in which 4p-2h effects are accounted for. We then
developed a useful extrapolation scheme that allowed us to
capture 3p-1h and 4p-2h correlations and the effect of going
from the cc-pVDZ basis set to its larger maug-cc-pVTZ coun-
terpart in an accurate and computationally manageable man-
ner. While generating the benchmark DEA-EOMCC infor-
mation, we investigated the role of high-order 4p-2h effects,
showing that they can be quite important in obtaining accu-
rate singlet�triplet gaps in diradicals, confirming the earlier
findings in this regard.57–59

We find that the CPO scheme is quite successful for these
systems; eCPO and mCPO are highly accurate, with MUEs
relative to the DEA-EOMCC(4p-2h)-level data of 0.3–0.7
kcal/mol, but would usually be cost-prohibitive for systems
of practical interest. At the other end of the quality spectrum,
nCPO is insufficient, with MUEs of 6.5 and 7.9 kcal/mol. How-
ever πCPO has MUEs of 0.7-0.9 kcal/mol almost as good as
mCPO and eCPO, and it is much more affordable and thus
shows promise for calculation ofπ-system excitations in larger
systems.

Examination of occupation numbers demonstrated that π
orbitals, in general, not merely the two nominal participating
orbitals, are important contributors to the multi-reference char-
acter, but orbitals outside of the π system are effectively either
doubly occupied or unoccupied. These observations explain
why eCPO and mCPO do not show improvements in accu-
racy over πCPO, but nCPO is inaccurate. This observation
also explains why methods using only a (2,2) active space
have not been able to achieve consistent and accurate results.
Based on this data, πCPO is recommended for these sorts of
systems, providing significant cost savings over full-valence
approaches to selecting active spaces. Even greater savings can

be obtained by using RASSCF to further reduce the cost of the
CI expansion, especially in light of the fact that the RASPT2
MUEs are only 0.1–0.2 kcal/mol higher than CASPT2 MUEs
for πCPO.

SUPPLEMENTARY MATERIAL

See supplementary material for active spaces (including
visualized orbitals and occupation numbers) and absolute ener-
gies for all CASPT2 and RASPT2 calculations presented,
exact numbers of CSFs, including for limited-π RASSCF, and
ANO-RCC-VTZP results, including a select comparison with
a zero IPEA shift.
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