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ABSTRACT
Inspired by our earlier semi-stochastic work aimed at converging high-level coupled-cluster (CC) energetics [J. E. Deustua, J. Shen, and
P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017) and J. E. Deustua, J. Shen, and P. Piecuch, J. Chem. Phys. 154, 124103 (2021)], we propose a
novel form of the CC(P; Q) theory in which the stochastic Quantum Monte Carlo propagations, used to identify dominant higher-than-doubly
excited determinants, are replaced by the selected configuration interaction (CI) approach using the perturbative selection made iteratively
(CIPSI) algorithm. The advantages of the resulting CIPSI-driven CC(P; Q) methodology are illustrated by a few molecular examples, including
the dissociation of F2 and the automerization of cyclobutadiene, where we recover the electronic energies corresponding to the CC calculations
with a full treatment of singles, doubles, and triples based on the information extracted from compact CI wave functions originating from
relatively inexpensive Hamiltonian diagonalizations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064400

I. INTRODUCTION
One of the key objectives of quantum chemistry is to obtain

accurate energetics of molecular systems in a computationally effi-
cient manner. Among the various post-Hartree–Fock (post-HF)
theories, the size extensive approaches derived from the exponen-
tial ansatz1,2 of coupled-cluster (CC) theory3–7 are among the best
techniques to accomplish this task.8,9 We recall that the CC wave
function for an N-electron system is defined as

∣Ψ⟩ = eT
∣Φ⟩, (1)

where ∣Φ⟩ is the reference (usually, HF) determinant and

T =
N

∑

n=1
Tn (2)

is the cluster operator, with Tn representing its n-body (n-
particle–n-hole) component. In practice, one truncates the

cluster operator T at a given many-body rank to define the standard
CC hierarchy of approximations. The most basic and most practical
one, obtained when T is truncated at T2, which has computational
steps that scale as O(N 6

) with the system size N, is the CC method
with singles and doubles (CCSD).10,11 The next two levels, namely,
the CC approach with singles, doubles, and triples, abbreviated
as CCSDT,12–14 which interests us in this study most, obtained
when T is truncated at T3, and the CC method with singles,
doubles, triples, and quadruples, abbreviated as CCSDTQ,15–17 in
which T is truncated at T4, involve the O(N 8

) and O(N 10
) steps,

respectively. It is well established that in the majority of chemical
applications, including molecules near equilibrium geometries,
bond dissociations involving smaller numbers of strongly correlated
electrons, noncovalent interactions, and photochemistry, the
conventional CCSD, CCSDT, CCSDTQ, etc. hierarchy and its
equation-of-motion (EOM)18–25 and linear-response26–34 extensions
rapidly approach the exact, full configuration interaction (FCI)
limit, so that by the time one reaches the CCSDT or CCSDTQ
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levels, the results are usually converged with respect to the relevant
many-electron correlation effects,9 but the O(N 8

) computational
steps of CCSDT or the O(N 10

) steps of CCSDTQ render the usage
of such methods unfeasible for most problems of interest. Thus, one
of the main activities in the CC development work has been the
design of high-fidelity approximations to CCSDT and CCSDTQ,
capable of reducing the above costs while being more robust than
perturbative approaches of the CCSD(T)35 type, which fail in more
multi-reference situations.8,9,36–38

To that end, our group has recently developed the semi-
stochastic CC(P; Q) formalism,39–41 a novel methodology that can
efficiently converge the energetics of high-level CC calculations,
such as CCSDT, CCSDTQ, and EOMCCSDT,21–23 by combin-
ing the deterministic CC(P; Q) framework42–46 with the stochas-
tic Quantum Monte Carlo (QMC) wave function propagations
in the many-electron Hilbert space defining the CIQMC47–51 and
CC Monte Carlo (CCMC)52–55 approaches. The semi-stochastic
CC(P; Q) methodology of Refs. 39–41 leverages the fact, recognized
long time ago in the context of active-space CC considerations (cf.
Ref. 38 for a review), that higher-order cluster operators, such as
T3 and T4, and their counterparts utilized in EOMCC are usu-
ally relatively sparse. In the semi-stochastic CC(P; Q) approaches,
the dominant higher-than-doubly excited cluster/excitation ampli-
tudes relevant to the parent CC/EOMCC theory of interest are auto-
matically selected using stochastic CIQMC or CCMC wave func-
tion propagations that provide lists of Slater determinants for the
initial CC(P)39,40 or EOMCC(P)41,56 calculations, which are sub-
sequently corrected using the biorthogonal moment expansions
adopted in the CC(P; Q) formalism to capture the remaining corre-
lations. The semi-stochastic CC(P; Q) methods have demonstrated
their ability to rapidly converge the CCSDT,39–41 CCSDTQ,40 and
EOMCCSDT41 energetics out of the early stages of the underlying
CIQMC or CCMC propagations, with minimal reliance on user- and
system-dependent inputs.

Encouraged by the above findings, in this study, we explore
the use of selected CI as an alternative provider of the lists of the
leading higher-than-doubly excited determinants needed to drive
the CC(P; Q) computations. The selected CI schemes, which date
back to the pioneering efforts in the late 1960s and early 1970s,57–60

have recently regained significant interest, as their modern imple-
mentations have demonstrated the ability to capture the bulk of
many-electron correlation effects in a computationally efficient
manner using a conceptually straightforward linear wave function
ansatz.61–73 The selected CI model adopted in the CC(P; Q) consid-
erations reported in this work is the CI method using perturbative
selection made iteratively (CIPSI),59 as recently reformulated and
further developed in Refs. 70 and 71.

II. THEORY AND ALGORITHMIC DETAILS
We begin by reviewing the key elements of the ground-state

CC(P; Q) formalism relevant to this work. Each CC(P; Q) calculation
starts by identifying two disjoint subspaces of the N-electron Hilbert
space, the P space designated as H (P) and the Q space denoted
as H (Q). The former space is spanned by the excited determi-
nants ∣ΦK⟩ = EK ∣Φ⟩, where EK is the elementary particle–hole exci-
tation operator generating ∣ΦK⟩ from ∣Φ⟩, which together with ∣Φ⟩

dominate the ground-state wave function, whereas the determinants
in H (Q) are used to construct the correction due to the correlation
effects the CC calculations in the P space do not describe. Once the
P and Q spaces are defined, we solve the CC amplitude equations

MK(P) = 0, ∣ΦK⟩∈H
(P), (3)

where
MK(P) = ⟨ΦK ∣H(P)∣Φ⟩, (4)

with
H(P) = e−T(P)

HeT(P)

, (5)

are moments of the CC equations,74–76 to obtain the approximate
form of the cluster operator in the P space,

T(P) = ∑

∣ΦK⟩∈H
(P)

tK EK , (6)

and the corresponding ground-state energy

E(P) = ⟨Φ∣H(P)∣Φ⟩, (7)

and calculate the noniterative correction δ(P; Q) to determine the
final CC(P; Q) energy as

E(P+Q)
= E(P) + δ(P; Q). (8)

The correction δ(P; Q) to the energy E(P) obtained in the P-space CC
[CC(P)] calculations is given by42,43

δ(P; Q) = ∑

∣ΦK⟩∈H
(Q)

ℓK(P)MK(P), (9)

where MK(P) is defined by Eq. (4) and

ℓK(P) = ⟨Φ∣(1 +Λ(P))H(P)∣ΦK⟩/D(P)K , (10)

with
D(P)K = E(P) − ⟨ΦK ∣H(P)∣ΦK⟩. (11)

The Λ(P) operator entering Eq. (10), given by

Λ(P) = ∑

∣ΦK⟩∈H
(P)

λK(EK)
† (12)

and obtained by solving the linear system

⟨Φ∣(1 +Λ(P))H(P)∣ΦK⟩ = E(P)λK , ∣ΦK⟩∈H
(P), (13)

is the hole–particle deexcitation operator defining the bra state
⟨Ψ̃(P)∣ = ⟨Φ∣(1 +Λ(P))e−T(P)

associated with the CC(P) ket state
∣Ψ(P)⟩ = eT(P)

∣Φ⟩.
The CC(P; Q) formalism includes the completely renormal-

ized CC methods, such as CR-CC(2,3),77–80 which works better than
CCSD(T) in bond breaking situations, but its main advantage is the
freedom to make unconventional choices of the P and Q spaces,
allowing one to relax the lower-order T1 and T2 clusters in the
presence of their higher-order counterparts, such as the leading T3
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contributions, which the CCSD(T), CR-CC(2,3), and other triples
corrections to CCSD cannot do. One can use active orbitals to iden-
tify the leading higher-than-doubly excited determinants for the
inclusion in the P space used in the CC(P) calculations, employ-
ing the δ(P; Q) corrections to capture the remaining correlations
of interest, as in the CC(t;3) and similar approaches,42–46 or adopt
a more black-box semi-stochastic CC(P; Q) framework, in which
the selection of the dominant higher-than-doubly excited determi-
nants entering the P space is automated with the help of CIQMC or
CCMC propagations.39–41 In this article, we propose an alternative
to the semi-stochastic CC(P; Q) methodology, in which we use the
information extracted from the CIPSI runs to populate the P spaces
employed in the CC(P) calculations preceding the determination of
the δ(P; Q) corrections.

We recall that the CIPSI approach, originally proposed in
Ref. 59 and further developed in Refs. 70 and 71, seeks to con-
struct an approximation to the FCI wave function by a series
of Hamiltonian diagonalizations in increasingly large, iteratively
defined, subspaces of the many-electron Hilbert space, designated
as V(k)int , where k = 0, 1, 2, . . . enumerates the consecutive CIPSI iter-
ations. The initial subspace V(0)int can be one-dimensional, if the
CIPSI calculations are started from a single determinant, such
as the restricted HF (RHF) wave function used throughout this
work as a reference, or multi-dimensional, if one prefers to start
from a multi-determinantal state generated in some preliminary
truncated CI computation, and the remaining subspaces are con-
structed via a recursive process in which V(k+1)

int is obtained by
augmenting V(k)int with a subset of the leading singly and dou-
bly excited determinants out of V(k)int identified with the help of
the many-body perturbation theory (MBPT). Thus, if ∣Ψ(CIPSI)

k ⟩

= ∑
∣ΦI⟩∈V

(k)
int

cI ∣ΦI⟩ is a CI wave function obtained by diagonalizing

the Hamiltonian in the current subspace V(k)int and Evar,k is the cor-
responding energy, and if V(k)ext is the space of all singly and dou-
bly excited determinants out of ∣Ψ(CIPSI)

k ⟩, for each determinant
∣Φα⟩ ∈ V(k)ext , we evaluate the second-order MBPT correction e(2)α,k

= ∣⟨Φα∣H∣Ψ(CIPSI)
k ⟩∣

2
/(Evar,k − ⟨Φα∣H∣Φα⟩) and use the resulting e(2)α,k

values to decide which determinants from V(k)ext should be added to
the determinants ∣ΦI⟩ already in V(k)int to construct the next diago-
nalization space V(k+1)

int . We can also use the e(2)α,k values to calcu-

late the perturbatively corrected CIPSI energies Evar,k + ΔE(2)k , where
ΔE(2)k = ∑

∣Φα⟩∈V
(k)
ext

e(2)α,k , and, after further manipulations, their Evar,k

+ ΔE(2)r,k counterparts, in which ΔE(2)k is replaced by its renormalized

ΔE(2)r,k form introduced in Ref. 71.
In the modern implementation of CIPSI, formulated in Refs. 70

and 71 and available in the Quantum Package 2.0 software,71 which
we used in the present study, the process of enlarging V(k)int to gen-
erate V(k+1)

int is executed in the following manner. First, prior to
examining the e(2)α,k corrections, one stochastically samples the most

important singly and doubly excited determinants out of ∣Ψ(CIPSI)
k ⟩,

so that not all singles and doubles from V(k)int are included in the
accompanyingV(k)ext space, only the sampled ones. Next, one arranges

the sampled determinants ∣Φα⟩ ∈ V(k)ext in descending order accord-
ing to their ∣e(2)α,k ∣ values. The process of enlarging the current

subspace V(k)int to construct the V(k+1)
int space for the subsequent

Hamiltonian diagonalization, which starts from the determinants
∣Φα⟩ characterized by the largest ∣e(2)α,k ∣ contributions, moving toward

those that have smaller ∣e(2)α,k ∣ values, continues until the number of

determinants in V(k+1)
int exceeds the dimension of V(k)int multiplied by

a user-defined factor f > 1. In this study, we used f = 2, which is the
default in Quantum Package 2.0 (we will examine other choices of
f in the future). In practice, a typical dimension of V(k+1)

int , includ-
ing each of the final diagonalization spaces used to generate lists of
higher-than-doubly excited determinants for the CC(P) calculations
reported in this work, is slightly larger than f times the dimension
of V(k)int , since the CIPSI algorithm adds extra determinants to V(k+1)

int

to ensure that the resulting ∣Ψ(CIPSI)
k+1 ⟩ wave function is an eigen-

state of the total spin S2 and Sz operators. The final wave function
∣Ψ(CIPSI)

⟩ of a given CIPSI run and the associated variational (Evar)
and perturbatively corrected [Evar + ΔE(2) and Evar + ΔE(2)r ] energies
are obtained by terminating the above procedure in one of the fol-
lowing two ways: (i) stopping at the first iteration k for which the
second-order MBPT correction ∣ΔE(2)k ∣ falls below a user-defined
threshold η, indicating that the CIPSI wave function is within a
tolerable distance from FCI, or (ii) stopping at the first iteration k
for which the number of determinants in the corresponding V(k)int
space exceeds a user-defined input parameter Ndet(in). Since our
main objective is to employ the CIPSI-driven CC(P; Q) algorithm
to accurately reproduce the high-level CC rather than FCI energet-
ics, without having to converge the underlying CIPSI sequence, we
chose the latter option, which we enforced by using η = 10−6 hartree.
As a result of setting the input parameter f at 2, the sizes of the final
wave functions ∣Ψ(CIPSI)

⟩ produced by our CIPSI runs, denoted as
Ndet(out), were always between Ndet(in) and 2Ndet(in).

Having discussed the key ingredients of the CC(P; Q) and CIPSI
methodologies relevant to this work, we proceed to the descrip-
tion of the CIPSI-driven CC(P; Q) algorithm, which consists of the
following steps:

1. Given a reference state ∣Φ⟩, which in all of the calculations
reported in this article was the RHF determinant, choose an
input parameter Ndet(in), used to terminate the CIPSI wave
function growth, and execute a CIPSI run to obtain the final
state ∣Ψ(CIPSI)

⟩ spanned by Ndet(out) determinants.
2. Extract a list of higher-than-doubly excited determinants rele-

vant to the desired CC theory level from ∣Ψ(CIPSI)
⟩ to define the

P space. If the goal is to converge the CCSDT energetics, the
P space consists of all singly and doubly excited determinants
plus the triply excited determinants contained in ∣Ψ(CIPSI)

⟩. To
recover the CCSDTQ energetics, quadruply excited determi-
nants contributing to ∣Ψ(CIPSI)

⟩ are included in the P space as
well.

3. Solve the nonlinear CC(P) system, Eq. (3), and the associ-
ated linear system given by Eq. (13), where E(P) is defined
by Eq. (7), in the P space determined in step 2 to obtain
the cluster operator T(P) and the deexcitation operator Λ(P).
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If the target approach is CCSDT, define T(P) = T1 + T2

+ T(CIPSI)
3 and Λ(P) = Λ1 +Λ2 +Λ(CIPSI)

3 , where the list of
triples entering T(CIPSI)

3 and Λ(CIPSI)
3 is identical to that

extracted from ∣Ψ(CIPSI)
⟩ in step 2. If the goal is to converge

the CCSDTQ energetics, define T(P) = T1 + T2 + T(CIPSI)
3

+ T(CIPSI)
4 and Λ(P) = Λ1 +Λ2 +Λ(CIPSI)

3 +Λ(CIPSI)
4 , where the

list of triples entering T(CIPSI)
3 and Λ(CIPSI)

3 and the list of
quadruples entering T(CIPSI)

4 and Λ(CIPSI)
4 are again extracted

from ∣Ψ(CIPSI)
⟩.

4. Use the information obtained in step 3 to determine correc-
tion δ(P; Q) [Eq. (9)], which describes the remaining correla-
tions of interest that were not captured by the CC(P) calcula-
tions. If the goal is to converge the CCSDT energetics, define
the Q space needed to calculate δ(P; Q) as the remaining triply
excited determinants that are not contained in ∣Ψ(CIPSI)

⟩. If the
target approach is CCSDTQ, define the Q space as the triply
and quadruply excited determinants absent in ∣Ψ(CIPSI)

⟩. Add
the resulting correction δ(P; Q) to E(P) to obtain the CC(P; Q)
energy E(P+Q) [Eq. (8)].

5. To check convergence, repeat steps 1–4 for a larger value
of Ndet(in). The CIPSI-driven CC(P; Q) calculations can be
regarded as converged if the difference between consecutive
E(P+Q) energies falls below a user-defined threshold. In analogy
to the semi-stochastic CC(P; Q) framework of Refs. 39–41, one
can also stop if the fraction(s) of higher-than-doubly excited
determinants contained in the final CIPSI state ∣Ψ(CIPSI)

⟩

is (are) sufficiently large to produce the desired accuracy
level.

In this initial exploratory study, we implemented the CIPSI-
driven CC(P; Q) approach that allows us to converge the CCSDT
energetics. We did this by modifying our standalone CC(P; Q) codes,
described in Refs. 39–45 and interfaced with the RHF and inte-
gral transformation routines available in GAMESS,81,82 such that
they can use the lists of triply excited determinants extracted from
the CIPSI wave functions ∣Ψ(CIPSI)

⟩, generated with Quantum Pack-
age 2.0, to set up the relevant P spaces (as already explained, the
corresponding Q spaces are automatically defined as the remain-
ing triples absent in the ∣Ψ(CIPSI)

⟩ wave functions). By design, as the
input parameter Ndet(in) used to terminate CIPSI runs increases, pro-
ducing longer and longer CI expansions to represent wave functions
∣Ψ(CIPSI)

⟩, the CC(P; Q) energies E(P+Q) approach their CCSDT par-
ents. The underlying CC(P) calculations converge the CCSDT ener-
getics too, but, as further elaborated on in Sec. III, by ignoring the
triples that were not captured by CIPSI, they do it at a much slower
rate. In examining the convergence of the CIPSI-driven CC(P) and
CC(P; Q) energies toward CCSDT, we sampled the Ndet(in) values
in a roughly semi-logarithmic manner, starting from Ndet(in) = 1.
Since all of the calculations reported in this work adopted RHF
determinants as reference functions, the ∣Ψ(CIPSI)

⟩ state becomes the
RHF determinant and the resulting CC(P) and CC(P; Q) energies
become identical to those obtained in the RHF-based CCSD and
CR-CC(2,3) calculations, respectively, when Ndet(in) = 1. Thus, in
analogy to the QMC propagation time τ used in our semi-stochastic
CC(P)/EOMCC(P) and CC(P; Q) studies,39–41,56 we can regard the

Ndet(in) input variable defining CIPSI computations as the param-
eter connecting CCSD [in the CC(P) case] or CR-CC(2,3) [in the
case of CC(P; Q) runs] with CCSDT. As a result, similarly to CCSD,
CR-CC(2,3), and CCSDT, the CIPSI-driven CC(P) and CC(P; Q)
approaches considered in this work remain size extensive for all
values of Ndet(in). The CC(P) calculations are size extensive, since
they are nothing else than the usual CC computations, in which
we solve the connected amplitude equations, Eq. (3), for the clus-
ter operator T(P) defined by Eq. (6). In the case of the CIPSI-driven
CC(P) method implemented in this study, T(P) = T1 + T2 + T(CIPSI)

3 ,
where T(CIPSI)

3 = ∑∣Φabc
ijk ⟩∈∣Ψ

(CIPSI)
⟩
tijk
abc Eabc

ijk is the T3 operator defined

using the list of triply excited determinants ∣Φabc
ijk ⟩ contained in the

final CIPSI state ∣Ψ(CIPSI)
⟩ (we use the usual notation in which i, j, k

and a, b, c designate the occupied and unoccupied spin-orbitals in
∣Φ⟩, respectively, and Eabc

ijk is the elementary triple excitation opera-
tor generating ∣Φabc

ijk ⟩ from ∣Φ⟩). The noniterative correction δ(P; Q)
[Eq. (9)], which in the case of the CIPSI-driven CC(P; Q) approach
developed in this work captures the T3 effects not described by
T(CIPSI)

3 and which involves the summation over the remaining triply
excited determinants that are not included in ∣Ψ(CIPSI)

⟩, i.e., δ(P; Q)
= ∑∣Φabc

ijk ⟩∉∣Ψ
(CIPSI)

⟩
ℓabc

ijk M
ijk
abc, being the connected quantity similar to

that used in the CR-CC(2,3) and CC(t;3) methods, is size exten-
sive too [for the early numerical illustration of the size extensivity
of CR-CC(2,3), see Ref. 78].

The numerical demonstration of the size extensivity of the
CIPSI-driven CC(P) and CC(P; Q) methods implemented in this
work is shown in Table I. Our example is the noninteracting F2 +Ne
system, described by the cc-pVDZ basis set,83 obtained by placing
the Ne atom at 1000 bohr from the stretched fluorine molecule in
which the F–F bond length was set at twice its equilibrium value to
increase the magnitude of T3 correlations. Along with the F2 +Ne
system, we consider the isolated F2 molecule having the same geom-
etry as in F2 +Ne and the isolated neon atom, both described by the
cc-pVDZ basis. The CIPSI diagonalization sequence used to pro-
vide the list of triply excited determinants for the inclusion in the
P space corresponding to the F2 +Ne system was initiated from the
RHF reference determinant and defined by setting the wave function
termination parameter Ndet(in), the input parameter f controlling the
CIPSI wave function growth, and the MBPT-based stopping param-
eter η at 5000, 2, and 10−6 hartree, respectively. Following the above
description, the P space used in the CIPSI-driven CC(P) calculation
for the noninteracting F2 +Ne dimer consisted of all singly and dou-
bly excited determinants and a subset of triply excited determinants
contained in the last ∣Ψ(CIPSI)

⟩ state of the Ndet(in) = 5000 CIPSI run.
The Q space needed to compute the corresponding CC(P; Q) cor-
rection δ(P; Q) was defined as the remaining triples not included
in ∣Ψ(CIPSI)

⟩. To ensure the consistency of the P spaces used in the
CC(P) calculations for the F2 +Ne system and the F2 and Ne frag-
ments, we generated the P space for F2 by removing the triply excited
determinants involving the orbitals of Ne from the list of triples
obtained in the Ndet(in) = 5000 CIPSI run for F2 +Ne. Similarly, the
P space used in the CC(P) calculations for Ne was obtained by start-
ing from the list of triples produced in the Ndet(in) = 5000 CIPSI
calculation for F2 +Ne and removing the triply excited determi-
nants involving the orbitals of F2. As in all CC(P; Q) calculations
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TABLE I. Numerical demonstration of the size extensivity of the CIPSI-driven CC(P) and CC(P; Q) approaches, alongside the analogous CCSD, CR-CC(2,3), and CCSDT
calculations, using the noninteracting F2 + Ne system, as described by the cc-pVDZ basis set, in which the F–F bond length R was fixed at twice its equilibrium value. In all
post-RHF calculations, the core orbitals correlating with the 1s shells of the fluorine and neon atoms were frozen and the Cartesian components of d orbitals were employed
throughout. All energy values are total electronic energies in hartree.

Method E(F2 +Ne)a E(F2)
b E(Ne) E(F2 +Ne) − [E(F2) + E(Ne)]

CCSDc
−327.692 849 962 −199.012 562 571 −128.680 287 394 0.000 000 003

CR-CC(2,3)d
−327.737 915 219 −199.056 339 293 −128.681 575 920 −0.000 000 006

CC(P)/Ndet(in) = 5000 −327.736 961 010e
−199.056 233 029f

−128.680 728 060g 0.000 000 080
CC(P; Q)/Ndet(in) = 5000 −327.739 651 938e

−199.058 190 353f
−128.681 461 627g 0.000 000 040

CCSDT −327.739 605 196 −199.058 201 287 −128.681 403 900 −0.000 000 009
aThe noninteracting F2 +Ne system was obtained by placing the Ne atom along the axis of the F–F bond at 1000 bohr from the center of mass of the stretched fluorine molecule in
which the internuclear separation R was set at 2Re , where Re = 2.668 16 bohr is the equilibrium geometry of F2 .
bThe stretched F2 molecule in which the F–F bond length R was set at 2Re .
cEquivalent to the CC(P) calculations with Ndet(in) = 1.
dEquivalent to the CC(P; Q) calculations with Ndet(in) = 1.
eThe P space used in the CC(P) calculation for the F2 +Ne system consisted of all singles and doubles and a subset of triples contained in the final ∣Ψ(CIPSI)⟩ state of the underlying
Ndet(in) = 5000 CIPSI run. The Q space needed to compute the CC(P; Q) correction δ(P; Q) was defined as the remaining triples absent in ∣Ψ(CIPSI)⟩. The Ndet(in) = 5000 CIPSI run for
F2 +Ne, which was initiated from the RHF reference determinant, used f = 2 and η = 10−6 hartree.
fThe P space used in the CC(P) calculation for F2 was obtained by removing the triply excited determinants involving Ne orbitals from the list of triples provided by the Ndet(in) = 5000
CIPSI run for the F2 +Ne system. The Q space needed to compute the corresponding CC(P; Q) correction δ(P; Q) was defined as the remaining triples missing in the P space.
gThe P space used in the CC(P) calculation for Ne was obtained by removing the triply excited determinants involving F2 orbitals from the list of triples provided by the Ndet(in) = 5000
CIPSI run for the F2 +Ne system. The Q space needed to compute the corresponding CC(P; Q) correction δ(P; Q) was defined as the remaining triples missing in the P space.

considered in this work, the Q spaces associated with the F2 and
Ne monomers were defined as the remaining triples missing in
the respective P spaces. We chose the Ndet(in) = 5000 value in the
size extensivity test reported in Table I, since it is sufficiently large
to introduce the leading triply excited determinants into the rel-
evant P spaces, while being small enough to produce the CC(P)
and CC(P; Q) energies that are visibly different than their CCSDT
counterparts.

It is clear from the results presented in Table I that, in anal-
ogy to CCSD, CR-CC(2,3), and CCSDT, the CIPSI-driven CC(P)
and CC(P; Q) methods are size extensive. Indeed, the CC(P) and
CC(P; Q) energies of the F2 +Ne dimer are numerically identi-
cal to the corresponding sums of the energies of the F2 and Ne
monomers. We observe the same behavior for other values of
the CIPSI wave function termination parameter Ndet(in). One may
ask a question why the interfragment triply excited determinants
∣Φabc

ijk ⟩ having spin-orbital indices located on different monomers,
which are present in the final CIPSI state ∣Ψ(CIPSI)

⟩ of the non-
interacting F2 +Ne system and thus end up in the corresponding
P space, do not result in the violation of size extensivity in the
CC(P) and CC(P; Q) calculations. The answer to this question is
that the connected triply excited cluster amplitudes tijk

abc carrying
indices located on different noninteracting fragments vanish when
obtained by solving the explicitly connected CC(P) amplitude equa-
tions, Eq. (3). We did not remove such interfragment tijk

abc ampli-
tudes from our CC(P) calculations for the F2 +Ne system and con-
firmed that they do indeed vanish. The use of CI diagonalizations
in constructing the P spaces for the CC(P) and CC(P; Q) computa-
tions does not affect the size extensivity of the CIPSI-driven CC(P)
and CC(P; Q) approaches, since all we need from these diagonal-
izations are the lists of higher-than-doubly excited determinants
relevant to the CC theory of interest (in our case, where we tar-
get the CCSDT energetics, the lists of triples), not the CI excitation

amplitudes themselves. For example, as in all conventional CC cal-
culations, the contributions from the interfragment triply excited
determinants ∣Φabc

ijk ⟩ to the ground-state wave function of the non-
interacting F2 +Ne dimer are represented in the CC(P) calcula-
tions by the disconnected T1T2 and (1/6)T3

1 clusters. The nonit-
erative correction δ(P; Q), which provides information about those
T3 correlations that were not captured by the preceding CC(P) run,
becomes the sum of the δ(P; Q) values for the isolated F2 and Ne
fragments.

Aside from size extensivity, as analyzed above, and high effi-
ciency in converging the parent CCSDT energetics discussed in
Sec. III, and in analogy to the active-orbital-based42–45 and semi-
stochastic39–41 CC(P; Q) approaches, the CIPSI-driven CC(P; Q)
methodology examined in this work offers significant savings in
the computational effort compared to full CCSDT. This is largely
related to the fact that, as shown in Sec. III, the convergence of the
CIPSI-driven CC(P; Q) energies toward their CCSDT parents with
the wave function termination parameter Ndet(in), with the num-
ber of determinants used to generate the final CIPSI state Ndet(out),
and with the fractions of triples in the P space captured by the
CIPSI algorithm is very fast. Indeed, the computational times asso-
ciated with the CIPSI calculations using smaller Ndet(in) values,
resulting in smaller diagonalization spaces, are relatively short com-
pared to the converged CIPSI runs. Next, as explained in detail in
Refs. 39–41, the CC(P) calculations using small fractions of triples
in the P space, which is all one needs to converge the CCSDT-
level energetics in the CIPSI-driven CC(P; Q) runs, are much faster
than the corresponding CCSDT computations. Finally, as also
explained in Refs. 39–41, the computational cost of determining the
CC(P; Q) correction δ(P; Q) is less than the cost of a single iteration
of CCSDT.

In examining the CIPSI-driven CC(P) and CC(P; Q) energies in
Sec. III, we are primarily interested in how fast they converge toward
their parent CCSDT values as Ndet(in) and the fraction of triples in the

J. Chem. Phys. 155, 174114 (2021); doi: 10.1063/5.0064400 155, 174114-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

P space increase. In the case of the Evar, Evar + ΔE(2), and Evar + ΔE(2)r
energies, we do what is often done in CIPSI calculations (see, e.g.,
Refs. 71 and 72) and compare them to their counterparts obtained
by extrapolating the data obtained in the CIPSI runs defined by the
largest Ndet(in) values to the FCI limit. Specifically, following the pro-
cedure used in Ref. 72, we performed a linear fit of the last four
Evar,k + ΔE(2)r,k energies leading to the final ∣Ψ(CIPSI)

⟩ state obtained for
the largest value of Ndet(in) in a given CIPSI sequence, plotted against
the corresponding ΔE(2)r,k corrections, and extrapolated the resulting

line to the ΔE(2)r,k = 0 limit.

III. NUMERICAL EXAMPLES
We illustrate potential benefits offered by the CIPSI-driven

CC(P; Q) methodology, when applied to recovering the CCSDT
energetics, using a few molecular examples. Our first example is
the frequently studied dissociation of the fluorine molecule, as
described by the cc-pVDZ basis set. We chose this example, since
it is well established that the CCSDT approach provides an accu-
rate description of bond breaking in F2 (cf., e.g., Refs. 77, 78, 84,
and 85) and since we previously used it to benchmark the CC(P; Q)-
based CC(t;3) approach42 and the semi-stochastic CC(P; Q) meth-
ods driven by CIQMC39,40 and CCMC39 propagations. The results

of our calculations for the F2/cc-pVDZ system, in which the F–F
bond length R was stretched from its equilibrium, Re = 2.668 16
bohr, value, where electron correlation effects are largely dynamical
in nature, to 1.5Re, 2Re, and 5Re, where they gain an increasingly
nondynamical character, are summarized in Table II and Fig. 1.
The complexity of electron correlations in F2 manifests itself in
the rapidly growing magnitude of T3 contributions as the F–F dis-
tance increases, as exemplified by the unsigned differences between
the CCSDT and CCSD energies, which are 9.485 millihartree at R
= Re, 32.424 millihartree at R = 1.5Re, 45.638 millihartree at R = 2Re,
and 49.816 millihartree at R = 5Re, when the cc-pVDZ basis set
is employed. They grow with R so fast that in the R = 2Re − 5Re
region, they become larger than the depth of the CCSDT potential
(estimated at ∼44 millihartree when the CCSDT energy at R = Re
is subtracted from its R = 5Re counterpart) and highly nonpertur-
bative. The latter feature of T3 contributions in the stretched F2
molecule can be seen by examining the errors relative to CCSDT
obtained in the CCSD(T) calculations at R = 1.5Re, 2Re, and 5Re,
which are −5.711, −23.596, and −39.348 millihartree, respectively,
when the cc-pVDZ basis set is used. As shown in Table II [see
the Ndet(in) = 1 CC(P; Q) energies], the CR-CC(2,3) triples cor-
rection to CCSD helps, reducing the large errors characterizing
CCSD(T) to 1.735 millihartree at R = 1.5Re, 1.862 millihartree at
R = 2Re, and 1.613 millihartree at R = 5Re, which are much more

TABLE II. Convergence of the CC(P) and CC(P; Q) energies toward CCSDT, alongside the variational and perturbatively corrected CIPSI energies, for the F2/cc-pVDZ molecule
in which the F–F bond length R was set at Re, 1.5Re, 2Re, and 5Re, where Re = 2.668 16 bohr is the equilibrium geometry. For each value of the wave function termination
parameter Ndet(in), the P space used in the CC(P) calculations consisted of all singles and doubles and a subset of triples contained in the final ∣Ψ(CIPSI)⟩ state of the underlying
CIPSI run, whereas the Q space needed to compute the corresponding CC(P; Q) correction δ(P; Q) was defined as the remaining triples absent in ∣Ψ(CIPSI)⟩. In all post-RHF
calculations, the two lowest-lying core orbitals were frozen and the Cartesian components of d orbitals were employed throughout. Each CIPSI run was initiated from the RHF
reference determinant and the MBPT-based stopping parameter η was set at 10−6 hartree. The input parameter f controlling the CIPSI wave function growth was set at the
default value of 2.

R/Re Ndet(in)/Ndet(out) % of triples Evar
a Evar + ΔE(2)a Evar + ΔE(2)r

a CC(P)b CC(P; Q)b

1.0 1/1 0 418.057c
−94.150d

−12.651 9.485e
−0.240f

10/17 0 330.754 −32.707 −4.877 9.485 −0.240
100/154 0 232.186 −7.963 2.338 9.485 −0.240
1 000/1 266 0 65.926 1.480 2.079 9.485 −0.240
5 000/5 072 0.4 23.596 −0.133(0) −0.069(0) 4.031 −0.129
10 000/10 150 1.2 19.197 0.045(2) 0.084(2) 3.010 −0.067
50 000/81 288 7.9 11.282 0.133(1) 0.145(1) 1.419 −0.031
100 000/162 430 14.5 9.222 0.138(1) 0.146(1) 0.983 −0.020
500 000/649 849 34.3 5.630 0.092(1) 0.095(1) 0.519 −0.009
1 000 000/1 300 305 42.2 4.816 0.072(0) 0.074(0) 0.464 −0.008
5 000 000/5 187 150 85.1 1.161 0.015(2) 0.016(2) 0.023 −0.001

1.5 1/1 0 541.109c
−130.718d 137.819 32.424e 1.735f

10/18 0 319.363 −11.279 10.126 32.424 1.735
100/177 0 235.819 2.527 12.175 32.424 1.735
1 000/1 442 0.1 77.306 5.218 5.948 16.835 0.202
5 000/5 773 0.7 21.091 0.811(2) 0.856(2) 2.490 0.009
10 000/11 578 1.5 17.333 0.811(2) 0.839(2) 1.892 0.028
50 000/92 682 8.8 10.879 0.762(1) 0.771(1) 0.991 0.033
100 000/185 350 13.9 9.243 0.632(1) 0.639(1) 0.727 0.023
500 000/742 754 30.8 5.586 0.391(1) 0.393(1) 0.390 0.005
1 000 000/1 484 218 37.1 4.795 0.330(0) 0.332(0) 0.362 0.004
5 000 000/5 907 228 74.3 1.165 0.079(2) 0.079(2) 0.028 −0.000
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TABLE II. (Continued.)

R/Re Ndet(in)/Ndet(out) % of triples Evar
a Evar + ΔE(2)a Evar + ΔE(2)r

a CC(P)b CC(P; Q)b

2.0 1/1 0 640.056c
−159.482d 289.080 45.638e 1.862f

10/10 0 337.263 −3.392 19.484 45.638 1.862
100/122 0.0 250.492 6.090 16.021 38.309 1.411
1 000/1 006 0.1 105.265 5.589 7.036 21.727 0.132
5 000/8 118 1.1 17.355 0.787(1) 0.815(1) 1.725 −0.003
10 000/16 291 2.1 14.555 0.860(1) 0.878(1) 1.338 0.012
50 000/65 172 5.2 11.064 0.800(1) 0.810(1) 0.922 0.015
100 000/130 448 8.4 9.410 0.655(1) 0.662(1) 0.695 0.009
500 000/521 578 19.8 5.929 0.375(1) 0.378(1) 0.400 0.005
1 000 000/1 043 539 28.0 4.820 0.306(0) 0.308(0) 0.314 0.002
5 000 000/8 190 854 72.8 0.764 0.047(1) 0.047(1) 0.009 −0.000

5.0 1/1 0 730.244c
−183.276d 430.051 49.816e 1.613f

10/15 0 310.757 4.700 21.059 49.816 1.613
100/151 0.0 236.876 13.785 21.508 37.524 1.418
1 000/1 241 0.2 70.879 6.966 7.491 5.154 0.144
5 000/9 977 1.2 14.531 1.033(0) 1.050(0) 1.489 0.029
10 000/19 957 2.2 12.550 1.039(0) 1.050(0) 1.156 0.029
50 000/79 866 4.6 9.025 0.764(1) 0.770(1) 0.764 0.022
100 000/159 668 7.6 7.495 0.580(1) 0.584(1) 0.584 0.013
500 000/639 593 18.0 4.391 0.276(0) 0.277(0) 0.294 0.003
1 000 000/1 278 976 22.0 3.682 0.238(0) 0.239(0) 0.259 0.003
5 000 000/5 099 863 46.1 0.675 0.041(1) 0.041(1) 0.009 −0.000

aFor each internuclear separation R, the Evar , Evar + ΔE(2) , and Evar + ΔE(2)
r energies are reported as errors, in millihartree, relative to the extrapolated Evar + ΔE(2)

r energy found
using a linear fit based on the last four Evar,k + ΔE(2)

r,k values leading to the largest CIPSI wave function obtained with Ndet(in) = 5 000 000, plotted against the corresponding ΔE(2)
r,k

corrections, following the procedure used in Ref. 72. These extrapolated Evar + ΔE(2)
r energies at R = Re , 1.5Re , 2Re , and 5Re are −199.104 422(6), −199.069 043(1), −199.060 152(8),

and −199.059 647(11) hartree, respectively, where the error bounds in parentheses correspond to the uncertainty associated with the linear fit. The error bounds for the Evar + ΔE(2)

and Evar + ΔE(2)
r energies obtained at the various values of Ndet(in) reflect on the semi-stochastic design of the V(k)

ext spaces discussed in the main text, but they ignore the uncertainties
characterizing the reference Evar + ΔE(2)

r energies obtained in the above extrapolation procedure.
bThe CC(P) and CC(P; Q) energies are reported as errors relative to CCSDT, in millihartree. The total CCSDT energies at R = Re , 1.5Re , 2Re , and 5Re are −199.102 796, −199.065 882,
−199.058 201, and −199.058 586 hartree, respectively.
cEquivalent to RHF.
dEquivalent to the second-order MBPT energy using the Epstein–Nesbet denominator.
eEquivalent to CCSD.
fEquivalent to CR-CC(2,3).

acceptable, but, as demonstrated in our earlier active-orbital-based
and semi-stochastic CC(P; Q) studies,39,40,42 further error reduc-
tion requires the relaxation of T1 and T2 clusters in the presence
of the dominant T3 contributions. This is what the CIPSI-driven
CC(P; Q) methodology, where we use CIPSI runs to identify the
leading triple excitations for the inclusion in the P space, allows
us to do.

Indeed, with as little as 1006–1442 Sz = 0 determinants of the
Ag(D2h) symmetry in the final Hamiltonian diagonalization spaces
(we used the D2h group, which is the largest Abelian subgroup of
the D∞h symmetry group of F2, in our calculations), generated by
the inexpensive Ndet(in) = 1000 CIPSI runs at R = 1.5Re, 2Re, and
5Re, which capture very small fractions, on the order of 0.1%–0.2%,
of all triples, the errors in the resulting CC(P; Q) energies relative
to CCSDT are 0.202 millihartree at R = 1.5Re, 0.132 millihartree at
R = 2Re, and 0.144 millihartree at R = 5Re. This is an approximately
tenfold error reduction compared to the CR-CC(2,3) calculations,
in which T1 and T2 clusters, obtained with CCSD, are decoupled

from T3 and an improvement of the faulty CCSD(T) energetics by
orders of magnitude. As explained in detail in our papers on the
CIQMC/CCMC-driven CC(P; Q) approaches,39–41 with the fractions
of triples in the relevant P spaces being so small, the post-CIPSI steps
of the CC(P; Q) calculations are not much more expensive than the
CCSD-based CR-CC(2,3) computations and a lot faster than the cor-
responding CCSDT computations. The CC(P; Q) calculations using
Ndet(in) = 1000 do not offer any improvements over CR-CC(2,3) at
the equilibrium geometry, since the final diagonalization space of
the underlying CIPSI run does not yet contain any triply excited
determinants, and the CR-CC(2,3) energy at R = Re is already very
accurate anyway, but with the relatively small additional effort cor-
responding to Ndet(in) = 10 000, which results in 10 150 Sz = 0 deter-
minants of the Ag(D2h) symmetry in the final CIPSI diagonaliza-
tion space and only 1.2% of all triples in the P space, the unsigned
error in the CC(P; Q) energy relative to its CCSDT parent substan-
tially decreases, from 0.240 millihartree, when Ndet(in) ≤ 1000, to 67
microhartree, when Ndet(in) is set at 10 000. The use of Ndet(in) =
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FIG. 1. Convergence of the CC(P) (red lines and circles) and CC(P; Q) (black lines and squares) energies toward their CCSDT parents as functions of the actual numbers
of determinants, Ndet(out), defining the sizes of the final wave functions ∣Ψ(CIPSI)⟩ generated in the underlying CIPSI runs, for the F2/cc-pVDZ molecule in which the F–F
bond length R was set at (a) Re, (b) 1.5Re, (c) 2Re, and (d) 5Re, where Re = 2.668 16 bohr is the equilibrium geometry. The P spaces used in the CC(P) calculations
consisted of all singles and doubles and subsets of triples contained in the final ∣Ψ(CIPSI)⟩ states of the underlying CIPSI runs, whereas the Q spaces needed to compute the
corresponding CC(P; Q) corrections δ(P; Q) were defined as the remaining triples absent in ∣Ψ(CIPSI)⟩. The insets show the percentages of triples captured by the CIPSI
runs as functions of Ndet(out).

10 000 for the remaining three geometries considered in Table II and
Fig. 1 produces similarly compact ∣Ψ(CIPSI)

⟩wave functions, spanned
by 11 578–19 957 determinants, similarly small fractions of triples in
the corresponding P spaces, ranging from 1.5% at R = 1.5Re to 2.2%
at R = 5Re, and even smaller errors in the CC(P; Q) energies relative
to CCSDT.

It is clear from Table II and Fig. 1 that the convergence of
the CIPSI-driven CC(P; Q) energies toward CCSDT with the wave
function termination parameter Ndet(in), with the number of deter-
minants used to generate the final CIPSI state ∣Ψ(CIPSI)

⟩ [Ndet(out)],
and with the fraction of triples in the P space captured by the CIPSI
procedure is very fast. The uncorrected CC(P) energies converge to
CCSDT too, but they do it at a considerably slower rate than their
CC(P; Q) counterparts. For example, the CIPSI-driven CC(P) cal-
culations reduce the 9.485, 32.424, 45.638, and 49.816 millihartree
errors relative to CCSDT obtained with CCSD to 1.419, 0.991, 0.922,

and 0.764 millihartree, respectively, when Ndet(in) = 50 000, which
translates in the Ndet(out) values ranging between 65 172 and 92 682
and about 5%–9% of all triples included in the underlying P spaces,
but the errors characterizing the corresponding CC(P; Q) energies
are already at the level of 20–30 microhartree at this stage, which
is obviously a substantial improvement over the CC(P) results. It is
also worth noticing that the convergence of the CIPSI-driven CC(P)
and CC(P; Q) energies toward their CCSDT parents with Ndet(in)
[or Ndet(out)] is considerably faster than the convergence of the cor-
responding variational and perturbatively corrected CIPSI energies
toward the extrapolated Evar + ΔE(2)r values. This is in line with the
above observations that indicate that the CIPSI-driven CC(P; Q) cal-
culations are capable of recovering the parent CCSDT energetics,
even when electronic quasi-degeneracies and T3 clusters become
significant, out of the unconverged CIPSI runs that rely on rela-
tively small diagonalization spaces. We observed similar patterns
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when comparing the semi-stochastic, CIQMC- and CCMC-driven,
CC(P)/EOMCC(P) and CC(P; Q) calculations with the underlying
CIQMC/CCMC propagations.39–41,56

In analogy to the previously considered determin-
istic, active-orbital-based42,43,45,46,86 and semi-stochastic,
CIQMC/CCMC-based39,40 CC(P; Q) studies, the convergence
of the CIPSI-driven CC(P; Q) computations toward the parent
CCSDT energetics remains equally rapid when we use basis sets
larger than cc-pVDZ. This is illustrated in Table III, where we
show the results of the CIPSI-driven CC(P; Q) calculations for
the F2 molecule at R = 2Re using the cc-pVTZ basis set.83 As
pointed out in Ref. 40, and in analogy to the cc-pVDZ basis, the
T3 contribution characterizing the stretched F2/cc-pVTZ system
in which the internuclear separation is set at twice the equilibrium
bond length, estimated by forming the difference between the
CCSDT and CCSD energies at −62.819 millihartree, is not only
very large but also larger, in absolute value, than the corresponding
CCSDT dissociation energy, which is about 57 millihartree, when
the CCSDT energy at Re is subtracted from its 5Re counterpart. It
is also highly nonperturbative at the same time, as demonstrated
by the −26.354 millihartree error relative to CCSDT obtained with

CCSD(T). Again, the CR-CC(2,3) triples correction to CCSD,
equivalent to the Ndet(in) = 1 CC(P; Q) calculation in Table III, works
a lot better than CCSD(T), but the 4.254 millihartree error relative
to CCSDT remains. With as little as 5118 Sz = 0 determinants of
the Ag(D2h) symmetry in the final diagonalization space obtained
by the nearly effortless Ndet(in) = 5 000 CIPSI run, which captures
0.03% of all triples, the difference between the CC(P; Q) and CCSDT
energies decreases to 0.345 millihartree, and with the help of the
Ndet(in) = 50 000 CIPSI calculation, which is still relatively inexpen-
sive, resulting in 82 001 Sz = 0 Ag(D2h)-symmetric determinants
in the final diagonalization space and less than 1% of the triples in
the P space, the error in the CC(P; Q) energy relative to its CCSDT
parent reduces to less than 0.1 millihartree. Similar to the cc-pVDZ
basis, the convergence of the CIPSI-driven CC(P; Q) energies
toward CCSDT with Ndet(in), Ndet(out) and the fraction of triples
in the P space captured by the CIPSI algorithm is not only fast,
when the larger cc-pVTZ basis set is employed, but also much faster
than in the case of the uncorrected CC(P) calculations. Once again,
as Ndet(in) increases, the rate of convergence of the CIPSI-driven
CC(P) and CC(P; Q) energies toward their CCSDT parent is
higher than those characterizing the corresponding variational and

TABLE III. Convergence of the CC(P) and CC(P; Q) energies toward CCSDT, alongside the variational and perturbatively
corrected CIPSI energies, for the F2/cc-pVTZ molecule in which the F–F bond length R was fixed at 2Re, where Re = 2.668 16
bohr is the equilibrium geometry. For each value of the wave function termination parameter Ndet(in), the P space used in the
CC(P) calculations consisted of all singles and doubles and a subset of triples contained in the final ∣Ψ(CIPSI)⟩ state of the
underlying CIPSI run, whereas the Q space needed to compute the corresponding CC(P; Q) correction δ(P; Q) was defined
as the remaining triples absent in ∣Ψ(CIPSI)⟩. In all post-RHF calculations, the two lowest-lying core orbitals were frozen and
the spherical components of d and f orbitals were employed throughout. Each CIPSI run was initiated from the RHF reference
determinant and the MBPT-based stopping parameter η was set at 10−6 hartree. The input parameter f controlling the CIPSI
wave function growth was set at the default value of 2.

Ndet(in)/Ndet(out) % of triples Evar
a Evar + ΔE(2)a Evar + ΔE(2)r

a CC(P)b CC(P; Q)b

1/1 0 758.849c
−165.740d 340.460 62.819e 4.254f

10/18 0 441.567 −0.554 31.337 62.819 4.254
100/156 0.00 393.749 6.420 28.790 58.891 3.683
1 000/1 277 0.01 253.172 13.595(0) 20.323 42.564 1.579
5 000/5 118 0.03 123.591 10.874(1) 12.149(1) 18.036 0.345
10 000/10 239 0.06 73.122 7.202(5) 7.636(5) 11.439 0.198
50 000/82 001 0.84 29.674 3.371(2) 3.428(2) 4.898 0.061
100 000/163 866 1.58 27.002 3.068(2) 3.113(2) 4.157 0.049
500 000/655 859 3.75 22.301 2.517(1) 2.547(1) 3.111 0.014
1 000 000/1 311 633 5.58 20.244 2.292(1) 2.316(1) 2.739 0.009
5 000 000/5 253 775 13.3 14.499 1.645(1) 1.657(1) 1.866 −0.015

aThe Evar , Evar + ΔE(2) , and Evar + ΔE(2)
r energies are reported as errors, in millihartree, relative to the extrapolated Evar + ΔE(2)

r

energy found using a linear fit based on the last four Evar,k + ΔE(2)
r,k values leading to the largest CIPSI wave function obtained with

Ndet(in) = 5 000 000, plotted against the corresponding ΔE(2)
r,k corrections, following the procedure used in Ref. 72. The extrap-

olated Evar + ΔE(2)
r energy is −199.242 119(59) hartree, where the error bounds in parentheses correspond to the uncertainty

associated with the linear fit. The error bounds for the Evar + ΔE(2) and Evar + ΔE(2)
r energies obtained at the various values

of Ndet(in) reflect on the semi-stochastic design of the V(k)
ext spaces discussed in the main text, but they ignore the uncertainties

characterizing the reference Evar + ΔE(2)
r energy obtained in the above extrapolation procedure.

bThe CC(P) and CC(P; Q) energies are reported as errors relative to CCSDT, in millihartree. The total CCSDT energy is
−199.238 344 hartree.
cEquivalent to RHF.
dEquivalent to the second-order MBPT energy using the Epstein–Nesbet denominator.
eEquivalent to CCSD.
fEquivalent to CR-CC(2,3).
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perturbatively corrected CIPSI energies in their attempt to recover
the extrapolated Evar + ΔE(2)r energy.

Our final test, shown in Table IV, is the frequently exam-
ined39,40,43,87–102 automerization of cyclobutadiene. In this case, one
of the key challenges is an accurate determination of the activation
barrier, which requires a well-balanced description of the nonde-
generate, rectangle-shaped, closed-shell reactant (or the equivalent
product) species, in which electron correlation effects are largely
dynamical in nature, and the quasi-degenerate, square-shaped,

transition state characterized by substantial nondynamical correla-
tions associated with its strongly diradical character. Experimental
estimates of the activation barrier for the automerization of cyclobu-
tadiene, which range from 1.6 to 10 kcal/mol,89,90 are not very pre-
cise, but the most accurate single- and multi-reference ab initio com-
putations, compiled, for example, in Refs. 43, 88, and 101, place it in
the 6–10 kcal/mol range. This, in particular, applies to the CCSDT
approach,43,87 which is of the primary interest in the present study.
Indeed, if we, for example, use the reactant and transition-state

TABLE IV. Convergence of the CC(P) and CC(P; Q) energies toward CCSDT, alongside the variational and perturbatively corrected CIPSI energies, for the reactant (R) and
transition-state (TS) species involved in the automerization of cyclobutadiene, as described by the cc-pVDZ basis set, and for the corresponding barrier height. The R and TS
geometries, optimized using the MR-AQCC approach, were taken from Ref. 95. For each value of the wave function termination parameter Ndet(in), the P space used in the
CC(P) calculations consisted of all singles and doubles and a subset of triples contained in the final ∣Ψ(CIPSI)⟩ state of the underlying CIPSI run, whereas the Q space needed to
compute the corresponding CC(P; Q) correction δ(P; Q) was defined as the remaining triples absent in ∣Ψ(CIPSI)⟩. In all post-RHF calculations, the four lowest-lying core orbitals
were frozen and the spherical components of d orbitals were employed throughout. Each CIPSI run was initiated from the RHF reference determinant and the MBPT-based
stopping parameter η was set at 10−6 hartree. The input parameter f controlling the CIPSI wave function growth was set at the default value of 2.

Species Ndet(in)/Ndet(out) % of triples Evar
a Evar + ΔE(2)a Evar + ΔE(2)r

a CC(P)b CC(P; Q)b

R 1/1 0 598.120c
−83.736d 120.809 26.827e 0.848f

50 000/55 653 0.0 121.880 26.065(182) 28.096(178) 25.468 0.678
100 000/111 321 0.1 109.688 23.819(163) 25.397(160) 22.132 0.382
500 000/890 582 1.2 93.413 19.049(141) 20.167(139) 16.260 0.267
1 000 000/1 781 910 2.0 89.989 18.322(137) 19.348(135) 15.359 0.251
5 000 000/7 125 208 7.9 78.122 16.311(123) 17.045(122) 10.794 0.150
10 000 000/14 253 131 11.8 73.250 15.514(115) 16.146(114) 9.632 0.127
15 000 000/28 493 873 25.8 60.872 12.842(96) 13.260(95) 4.817 0.046

TS 1/1 0 632.707c
−102.816d 282.246 47.979e 14.636f

50 000/56 225 0.0 146.895 45.357(180) 47.696(176) 42.132 9.563
100 000/112 481 0.1 130.832 36.716(183) 38.673(179) 31.723 3.507
500 000/899 770 1.0 93.288 18.106(139) 19.251(137) 14.742 0.432
1 000 000/1 800 183 1.6 89.049 17.458(142) 18.482(140) 13.645 0.412
5 000 000/7 195 780 5.4 78.472 15.587(124) 16.346(123) 10.720 0.260
10 000 000/14 400 744 9.7 71.784 14.397(114) 15.016(113) 8.358 0.155
15 000 000/28 793 512 15.2 63.375 12.587(102) 13.058(101) 7.080 0.108

Barrier 1/1; 1 0; 0 21.703c
−11.973d 101.303 13.274e 8.653f

50 000/55 653; 56 225 0.0; 0.0 15.697 12.106(161) 12.299(157) 10.457 5.576
100 000/111 321; 112 481 0.1; 0.1 13.268 8.093(154) 8.331(151) 6.018 1.961
500 000/890 582; 899 770 1.2; 1.0 −0.079 −0.592(124) −0.574(122) −0.953 0.104
1 000 000/1 781 910; 1 800 183 2.0; 1.6 −0.590 −0.542(124) −0.544(122) −1.075 0.101
5 000 000/7 125 208; 7 195 780 7.9; 5.4 0.220 −0.454(110) −0.439(109) −0.047 0.069
10 000 000/14 253 131; 14 400 744 11.8; 9.7 −0.920 −0.701(102) −0.710(100) −0.800 0.017
15 000 000/28 493 873; 28 793 512 25.8; 15.2 1.571 −0.159(88) −0.127(87) 1.420 0.039

aFor each of the two species, the Evar , Evar + ΔE(2) , and Evar + ΔE(2)
r energies are reported as errors, in millihartree, relative to the extrapolated Evar + ΔE(2)

r energy found using a linear
fit based on the last four Evar,k + ΔE(2)

r,k values leading to the largest CIPSI wave function obtained with Ndet(in) = 15 000 000, plotted against the corresponding ΔE(2)
r,k corrections,

following the procedure used in Ref. 72. These extrapolated Evar + ΔE(2)
r energies for the R and TS species are −154.249 292(314) and −154.235 342(321) hartree, respectively, where

the error bounds in parentheses correspond to the uncertainty associated with the linear fit. The error bounds for the Evar + ΔE(2) and Evar + ΔE(2)
r energies obtained at the various

values of Ndet(in) reflect on the semi-stochastic design of the V(k)
ext spaces discussed in the main text, but they ignore the uncertainties characterizing the reference Evar + ΔE(2)

r energies
obtained in the above extrapolation procedure. The Evar , Evar + ΔE(2) , and Evar + ΔE(2)

r barrier heights are reported as errors, in kcal/mol, relative to the reference value of 8.753(0)
kcal/mol obtained using the extrapolated Evar + ΔE(2)

r energies of the R and TS species.
bThe CC(P) and CC(P; Q) energies of the R and TS species are reported as errors relative to CCSDT, in millihartree. The total CCSDT energies of the R and TS species are−154.244 157
and −154.232 002 hartree, respectively. The CC(P) and CC(P; Q) barrier heights are reported in kcal/mol relative to the CCSDT value of 7.627 kcal/mol.
cEquivalent to RHF.
dEquivalent to the second-order MBPT energy using the Epstein–Nesbet denominator.
eEquivalent to CCSD.
fEquivalent to CR-CC(2,3).
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geometries obtained with the multi-reference average-quadratic CC
(MR-AQCC) approach103,104 in Ref. 95 and the cc-pVDZ basis
set, the CCSDT value of the activation energy characterizing the
automerization of cyclobutadiene becomes 7.627 kcal/mol,43 in good
agreement with the best ab initio calculations carried out to date. By
adopting the same geometries and basis set in this initial benchmark
study of the CIPSI-driven CC(P; Q) methodology, we can examine
if the CC(P; Q) calculations using the P spaces constructed with
the help of CIPSI runs are capable of converging this result. The
main challenge here is that the T3 effects, estimated as the differ-
ence between the CCSDT and CCSD energies, are not only very
large but also hard to balance. When the cc-pVDZ basis set used
in this study is employed, they are −26.827 millihartree for the reac-
tant and −47.979 millihartree for the transition state. Furthermore,
in the case of the transition state, the coupling of the lower-rank T1
and T2 clusters with their higher-rank T3 counterpart is so large
that none of the noniterative triples corrections to CCSD provide
a reasonable description of the activation barrier.43,87,88 This, in
particular, applies to the CR-CC(2,3) approach, equivalent to the
Ndet(in) = 1 CC(P; Q) calculation, which produces an activation bar-
rier exceeding 16 kcal/mol, when the cc-pVDZ basis set is employed,
instead of less than 8 kcal/mol obtained with CCSDT (cf. Table IV).
The failure of CR-CC(2,3) to provide an accurate description of
the activation energy is a consequence of its inability to accurately
describe the transition state. Indeed, the difference between the
CR-CC(2,3) and CCSDT energies at the transition-state geometry
is 14.636 millihartree, when the cc-pVDZ basis set is employed, as
opposed to only 0.848 millihartree obtained for the reactant. As dis-
cussed in detail in Refs. 43 and 88, other triples corrections to CCSD,
including the widely used CCSD(T) approach, face similar prob-
lems. We demonstrated in Refs. 39, 40, and 43 that the deterministic
CC(P; Q)-based CC(t;3) approach and the semi-stochastic CC(P; Q)
calculations using CIQMC and CCMC are capable of accurately
approximating the CCSDT energies of the reactant and transition-
state species and the CCSDT activation barrier, so it is interesting
to explore if the CIPSI-driven CC(P; Q) methodology can do the
same.

As shown in Table IV, the CC(P; Q) calculations using CIPSI
to identify the dominant triply excited determinants for the inclu-
sion in the P space are very efficient in converging the CCSDT
energetics. With the final diagonalization spaces spanned by a
little over 110 000 Sz = 0 determinants of the Ag(D2h) symme-
try (we used the D2h group for both the D2h-symmetric reactant
and the D4h-symmetric transition state in our calculations), gen-
erated in the relatively inexpensive CIPSI runs defined by Ndet(in)
= 100 000 that capture 0.1% of all triples, the 0.848 millihartree,
14.636 millihartree, and 8.653 kcal/mol errors in the reactant,
transition-state, and activation energies relative to CCSDT obtained
with CR-CC(2,3) are reduced by factors of 2–4, to 0.382 milli-
hartree, 3.507 millihartree, and 1.961 kcal/mol, respectively, when
the CC(P; Q) approach is employed. When Ndet(in) is increased to
500 000, resulting in about 890 000–900 000 Sz = 0 determinants of
the Ag(D2h) symmetry in the final diagonalization spaces used by
CIPSI and 1.0%–1.2% of the triples in the resulting P spaces, the
errors in the CC(P; Q) reactant, transition-state, and activation ener-
gies relative to CCSDT become 0.267 millihartree, 0.432 millihartree,
and 0.104 kcal/mol. Clearly, these are great improvements compared

to the initial Ndet(in) = 1, i.e., CR-CC(2,3), values, especially if we
realize that with the fractions of triples being so small, the post-
CIPSI steps of the CC(P; Q) computations are not only a lot faster
than the parent CCSDT runs but also not much more expensive
than the corresponding CR-CC(2,3) calculations, as elaborated on in
Refs. 39–41.

In analogy to the previously discussed case of bond breaking in
F2, the convergence of the CIPSI-driven CC(P; Q) energies toward
CCSDT for the reactant and transition-state species defining the
automerization of cyclobutadiene with Ndet(in), Ndet(out) and the frac-
tions of triples in the relevant P spaces captured by the underlying
CIPSI runs is not only very fast but also significantly faster than
that characterizing the uncorrected CC(P) calculations. For each of
the two species, the CC(P) energies converge toward their CCSDT
parent in a steady fashion, but, as shown in Table IV, their conver-
gence is rather slow, emphasizing the importance of correcting the
results of the CC(P) calculations for the missing triple excitations
not captured by the CIPSI runs using smaller diagonalization spaces.
Similar to the previously examined active-orbital-based42,43,45,46,86

and CIQMC/CCMC-based39,40 CC(P; Q) approaches, our moment
correction δ(P; Q), defined by Eq. (9), is very effective in this
regard. Another interesting observation, which can be made based
on the results presented in Table IV, is that while the CC(P) ener-
gies for the individual reactant and transition-state species con-
verge toward their CCSDT parent values in a steady fashion, the
corresponding activation barrier values behave in a less systematic
manner, oscillating between about −1 and 1 kcal/mol when Ndet(in)
= 500 000–15 000 000. One might try to eliminate this behavior,
which is a consequence of a different character of the many-electron
correlation effects in the reactant and transition-state species, by
merging the P spaces used to perform the CC(P) calculations for the
two structures, but, as shown in Table IV, the CC(P; Q) correction
δ(P; Q), which is highly effective in capturing the missing T3 corre-
lations, takes care of this problem too. As Ndet(in), Ndet(out) and the
fractions of triples in the P spaces used in the CC(P) calculations
for the reactant and transition state increase, the CC(P; Q) values
of the activation barrier converge toward its CCSDT parent rapidly
and in a smooth manner, eliminating, at least to a large extent, the
need to equalize the P spaces used in the underlying CC(P) steps.
As in the case of bond breaking in the fluorine molecule, the con-
vergence of the CIPSI-driven CC(P) and CC(P; Q) energies toward
their CCSDT parents with Ndet(in)/Ndet(out) is considerably faster
than the convergence of the variational and perturbatively corrected
CIPSI energies toward the extrapolated Evar + ΔE(2)r values, but we
must keep in mind that the calculated CCSDT and extrapolated
Evar + ΔE(2)r energies, while representing the respective parent limits
for the CC(P; Q) and CIPSI calculations, are fundamentally different
quantities, especially when higher-than-triply excited cluster com-
ponents, which are not considered in this work, become significant.
As one might anticipate, the Ndet(in) values needed to accurately
represent the CCSDT energies of the reactant and transition-state
species of cyclobutadiene by the CIPSI-driven CC(P; Q) approach
are considerably larger than those used in the analogous CC(P; Q)
calculations for the smaller F2 system, but they are orders of magni-
tude smaller than the values of Ndet(in) required to obtain the simi-
larly well converged Evar + ΔE(2)r energetics in the underlying CIPSI
runs.
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IV. CONCLUSIONS
Inspired by our recent studies39–41 aimed at determining accu-

rate electronic energies equivalent to the results of high-level CC
calculations, in which we combined the deterministic CC(P; Q)
framework42–46 with the stochastic CIQMC47–51 and CCMC52–55

propagations, and the successes of modern formulations61–71 of
selected CI techniques,57–60 we have proposed a new form of the
CC(P; Q) approach, in which we identify the dominant higher-
than-doubly excited determinants for the inclusion in the under-
lying P spaces with the help of the selected CI algorithm abbre-
viated as CIPSI.59,70,71 To illustrate potential benefits offered by
the proposed merger of the CC(P; Q) and CIPSI methodolo-
gies, we have implemented the CIPSI-driven CC(P; Q) method
designed to converge CCSDT energetics. The advantages of the
CIPSI-driven CC(P; Q) methodology have been illustrated by a
few numerical examples, including bond breaking in F2 and the
automerization of cyclobutadiene, which are accurately described by
CCSDT.

The reported benchmark calculations demonstrate that the
convergence of the CIPSI-driven CC(P; Q) energies toward CCSDT
with the wave function termination parameter Ndet(in) adopted by
CIPSI, with the number of determinants used to generate the final
CIPSI state [Ndet(out)], and with the fractions of triples in the P
space captured by the CIPSI procedure is very fast. As a result,
one can obtain CCSDT-level energetics, even when electronic quasi-
degeneracies and T3 clusters become substantial, based on the infor-
mation extracted from the relatively inexpensive CIPSI runs. This
can be attributed to two key factors. The first one is a tempered wave
function growth through iterative Hamiltonian diagonalizations in
the modern implementation of CIPSI available in Quantum Package
2.0,70,71 which we utilized in this work, resulting in an economical
selection of the dominant triply excited determinants (in general, the
dominant higher-than-doubly excited determinants) for the inclu-
sion in the P spaces driving the CC(P; Q) computations. The second
one is the efficiency of the moment corrections δ(P; Q) defining the
CC(P; Q) formalism, which provide an accurate and robust descrip-
tion of the missing T3 contributions that cannot be captured by the
underlying CC(P) calculations using small fractions of triples iden-
tified by the CIPSI runs employing smaller diagonalization spaces.
We have also shown that the uncorrected CC(P) energies converge
with Ndet(in), Ndet(out) and the fractions of triples in the P spaces con-
structed with the help of CIPSI to their CCSDT parent values too,
but they do it at a much slower rate, so that we do not recommend
the uncorrected CC(P) approach in calculations aimed at recovering
high-level CC energetics.

Clearly, the present study is only our initial exploration of the
CIPSI-driven (or, in general, selected-CI-driven) CC(P; Q) method-
ology, which needs more work. In addition to code optimization
and more numerical tests, especially including larger molecules
and basis sets, we would like to extend the proposed CIPSI-driven
CC(P; Q) framework to higher levels of the CC theory, beyond
CCSDT, as we already did in the context of the active-orbital-
based45,46 and CIQMC-based40 CC(P; Q) considerations, and exam-
ine if other selected CI methods, such as heat-bath CI67–69 or
adaptive CI,61,62 to mention a couple of examples, are as useful in the
context of CC(P; Q) considerations as the CIPSI approach adopted
in this work. Following our recent semi-stochastic EOMCC(P) and
CC(P; Q) work,41,56 we are also planning to extend the CIPSI-driven

CC(P; Q) methodology to excited electronic states. One of the main
advantages of CIPSI and other selected-CI methods, which are based
on Hamiltonian diagonalizations, is that they can be easily applied
to excited states (see, e.g., Refs. 62 and 105–110). This would allow
us to construct the state-specific P spaces, adjusted to the individ-
ual electronic states of interest, which is more difficult to accomplish
within the CIQMC framework (see Refs. 41 and 56 for additional
comments). Encouraged by our recent work on the semi-stochastic
CC(P; Q) models using truncated CIQMC rather than FCIQMC
propagations to determine the underlying P spaces,40 we would like
to examine if one can replace the unconstrained CIPSI algorithm
used in this study, which explores the entire many-electron Hilbert
space in the iterative wave function build-up, by its less expen-
sive truncated analogs compatible with the determinantal spaces
needed in the CC calculations of interest [e.g., the CISDT or CIS-
DTQ analogs of CIPSI if one is interested in converging the CCSDT
or CCSDTQ energetics through CIPSI-driven CC(P; Q) computa-
tions]. This may help us to achieve the desired high accuracy levels in
the CIPSI-driven CC(P; Q) calculations with the relatively short CI
wave function expansions, even when larger systems are examined,
since the diagonalization spaces generated by the truncated CIPSI
models will be significantly smaller than those produced when CIPSI
is allowed to explore the entire many-electron Hilbert space. Last but
not least, inspired by our recent work on the CIPSI-driven externally
corrected CC models,111 we would like to investigate the effect of the
CIPSI input parameter f that controls the wave function growth in
successive Hamiltonian diagonalizations, which was set in this study
at the default value of 2, on the rate of convergence of the CIPSI-
driven CC(P; Q) energies toward their high-level CC parents, such
as those obtained with CCSDT.
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