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ABSTRACT: The previously developed active-space doubly electron-attached
(DEA) equation-of-motion (EOM) coupled-cluster (CC) method with up to four-
particle−two-hole (4p-2h) excitations [Shen, J.; Piecuch, P. J. Chem. Phys. 2013, 138,
194102], which utilizes the idea of applying a linear electron-attaching operator to the
CC ground state of an (N − 2)-electron closed-shell system to generate ground and
excited states of the N-electron open-shell species of interest, has been extended to a
considerably less expensive model, in which both 3p-1h and 4p-2h terms rather than
4p-2h contributions only are selected using active orbitals. As illustrated by the
calculations involving low-lying singlet and triplet states of methylene, trimethylene-
methane, cyclobutadiene, and cyclopentadienyl cation and bond breaking in F2, the
proposed DEA-EOMCC method with the active-space treatment of 3p-1h and 4p-2h
excitations and its lower-level counterpart neglecting 4p-2h contributions are capable
of accurately reproducing the results obtained using their considerably more expensive parent counterparts with a full treatment
of 3p-1h and full or active-space treatment of 4p-2h excitations.

1. INTRODUCTION

Quantum chemistry methods based on the exponential wave
function ansatz1,2 of the single-reference coupled-cluster (CC)
theory3−8 and their extensions to excited states and properties
other than energy exploiting the equation-of-motion
(EOM)9−13 and linear response14−21 frameworks have
witnessed considerable success in a wide range of molecular
applications.22,23 This includes extensions of the EOMCC
formalism to open-shell systems obtained by adding electron(s)
to or removing electron(s) from the corresponding closed-shell
cores via the electron-attached (EA)24−30 or ionized
(IP)26,28−38 methodologies, their linear response39 and
symmetry-adapted-cluster configuration interaction (CI)40−43

counterparts, and their multiply attached/ionized general-
izations, such as the doubly electron-attached (DEA) and
doubly ionized (DIP) EOMCC schemes44−52 or the EOMCC
approach to triple electron attachment.53 There is growing
interest in the EA/IP-EOMCC, DEA/DIP-EOMCC, and
similar approaches, as a way to handle ground and excited
states of open-shell species around closed shells, such as radicals
and biradicals, in an accurate and rigorously spin-adapted
manner.
Recently, our group developed high-level variants of the

DEA- and DIP-EOMCC approaches with up to four-particle−
two-hole (4p-2h) and four-hole−two-particle (4h-2p) excita-
tions, abbreviated as DEA-EOMCC(4p-2h) and DIP-EOMCC-
(4h-2p), respectively, and their less expensive active-space
counterparts, designated as DEA-EOMCC(4p-2h){Nu} and

DIP-EOMCC(4h-2p){No}, where Nu and No indicate the
numbers of active unoccupied and active occupied orbitals used
to select the corresponding 4p-2h and 4h-2p contributions, as
promising new ways to describe multireference systems having
two electrons outside the corresponding closed-shell cores.51,52

The DEA-EOMCC(4p-2h){Nu} and DIP-EOMCC(4h-
2p){No} approaches of refs 51 and 52 have been shown to
be highly successful in challenging test cases involving single
bond breaking in closed-shell molecules leading to doublet
dissociation fragments and electronic spectra of biradicals,
almost perfectly reproducing the parent full DEA-EOMCC(4p-
2h) and DIP-EOMCC(4h-2p) data at the small fraction of the
computer cost, but even with the help of active orbitals to select
the dominant 4p-2h excitations, calculations at the DEA-
EOMCC(4p-2h) level remain quite expensive, especially when
larger basis sets are employed. This has encouraged us to
investigate economical approximations to the existing active-
space DEA-EOMCC(4p-2h){Nu} and full DEA-EOMCC(4p-
2h) methods,51,52 capable of maintaining high accuracies the
DEA-EOMCC(4p-2h)-level theories offer.
To better appreciate the benefits the new DEA-EOMCC

methods proposed and tested in this work offer, let us examine
computer costs of the DEA-EOMCC(4p-2h) calculations. The
most expensive central processing unit (CPU) operations of
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the DEA-EOMCC(4p-2h) computations with a full treatment
of 3p-1h and 4p-2h contributions scale as no

2nu
6, where no and nu

are the numbers of occupied and unoccupied orbitals,
respectively, or as 8 with the system size (see refs 51
and 52). As a result, the DEA-EOMCC(4p-2h) approach,
although highly accurate in applications involving single bond
breaking in closed-shell molecules and biradical electronic
spectra,51,52 is usually prohibitively expensive (for the examples
of timings, see Section II.B of ref 51). The active-space DEA-
EOMCC(4p-2h){Nu} approach, which uses a subset of Nu
unoccupied orbitals to select the dominant 4p-2h excitations,
reduces the most expensive no

2nu
6 steps of full DEA-EOMCC-

(4p-2h) to a considerably more manageable Nu
2no

2nu
4 or ∼ 6

level, equivalent to costs of the standard EOMCC calculations
with singles and doubles (EOMCCSD)10−12 or costs of the
ground-state CCSD computations54,55 times a relatively small
prefactor if Nu ≪ nu, but this does not solve the problem in its
entirety. Indeed, the DEA-EOMCC(4p-2h){Nu} calculations
remain quite expensive, since the lower-rank 3p-1h components
are still treated in them fully using all orbitals in the basis set,
which is a serious problem in applications using larger basis
sets. The full treatment of 3p-1h excitations within the DEA-
EOMCC framework requires CPU steps that scale as nonu

5,
which can be as demanding as or, in some cases, more time-
consuming than the Nu

2no
2nu

4 steps of the DEA-EOMCC(4p-
2h){Nu} method associated with 4p-2h terms, especially when
nu becomes larger, since typical values of Nu and no are much
smaller than nu. The same analysis applies to the lower-level
DEA-EOMCC(3p-1h) approach,44,45,47,48,51,52 in which the
electron-attaching operator of the DEA-EOMCC formalism is
truncated at 3p-1h component. The DEA-EOMCC(3p-1h)
calculations can be quite expensive too due to the nonu

5 steps
resulting from a full treatment of 3p-1h excitations.
In this article, we present a solution to the above problems by

proposing and testing a new class of computationally affordable
variants of the DEA-EOMCC approach, abbreviated as DEA-
EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}.
In analogy to the DEA-EOMCC(4p-2h){Nu} and DIP-
EOMCC(4h-2p){No} methods of refs 51 and 52 and their
act ive-space CC,56−67 EOMCC,68−73 and EA/IP-
EOMCC28−30,43 predecessors (see ref 74 for a review), the
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-
2h){Nu} schemes developed in this work employ active orbitals
to capture dominant excitation (in this case, electron attaching)
amplitudes. Thus, the DEA-EOMCC(3p-1h){Nu} approach
uses Nu active unoccupied orbitals to select a small subset of the
dominant 3p-1h amplitudes within the standard DEA-
EOMCC(3p-1h) framework. Similarly, the DEA-EOMCC(3p-
1h,4p-2h){Nu} method uses Nu active unoccupied orbitals to
select the dominant 3p-1h and 4p-2h amplitudes within the
higher-level DEA-EOMCC(4p-2h) scheme. In other words, the
DEA-EOMCC(3p-1h){Nu} approach is a natural approxima-
tion to its DEA-EOMCC(3p-1h) parent, which becomes full
DEA-EOMCC(3p-1h) when all unoccupied orbitals in the basis
set are active (i.e., Nu = nu). Similarly, the DEA-EOMCC(3p-
1h,4p-2h){Nu} approach is a natural approximation to its DEA-
EOMCC(4p-2h) parent or to the DEA-EOMCC(4p-2h){Nu}
method of refs 51 and 52, becoming full DEA-EOMCC(4p-2h)
when Nu = nu. The DEA-EOMCC(3p-1h){Nu} and DEA-
EOMCC(3p-1h,4p-2h){Nu} approaches proposed in this work
offer significant savings in the computer effort compared to
their full DEA-EOMCC(3p-1h) and DEA-EOMCC(4p-2h)

counterparts by reducing the expensive 6-like nonu
5 steps

associated with 3p-1h excitations to a 5-like Nunonu
4 level,

which for larger systems is less expensive than costs of the
underlying CCSD calculations. As in the case of the previously
proposed DEA-EOMCC(4p-2h){Nu} approximation,51,52 the
DEA-EOMCC(3p-1h,4p-2h){Nu} method replaces the 8-like
no
2nu

6 steps associated with 4p-2h contributions by the much
more affordable, CCSD-type, Nu

2no
2nu

4 steps, in addition to using
the relatively inexpensive 5-like Nunonu

4 steps in handling 3p-
1h terms.
To test the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC-

(3p-1h,4p-2h){Nu} approaches, especially when compared to
the previously examined51,52 DEA-EOMCC(3p-1h), DEA-
EOMCC(4p-2h){Nu}, and DEA-EOMCC(4p-2h) methods,
we investigate adiabatic excitation energies characterizing low-
lying states of methylene, singlet−triplet gaps in trimethylene-
methane (TMM), cyclobutadiene (CBD), and cyclopentadien-
yl cation (CPC), and bond breaking in the F2 molecule. We
show that the new DEA-EOMCC(3p-1h,4p-2h){Nu} approach
with the active-space treatment of 3p-1h and 4p-2h excitations
and its lower-level DEA-EOMCC(3p-1h){Nu} counterpart
accurately reproduce the results obtained with the considerably
more expensive parent DEA-EOMCC methods with a full
treatment of 3p-1h and full or active-space treatment of 4p-2h
excitations.

2. THEORY AND ALGORITHMIC DETAILS
2.1. The Existing DEA-EOMCC(3p-1h), DEA-EOMCC-

(4p-2h), and DEA-EOMCC(4p-2h){Nu} Approximations. In
the DEA-EOMCC formalism exploited in this work, one
represents the ground and excited states |Ψμ

(N)⟩ of the N-
electron system obtained by adding two electrons to the closed-
shell core using the following wave function an-
satz:44,45,47,48,51,52

|Ψ ⟩ = |Ψ ⟩μ μ
+ −RN N( ) ( 2)

0
( 2)

(1)

where

|Ψ ⟩ = |Φ ⟩− −eN T N
0
( 2) ( 2)

(2)

is the CC ground state of the (N − 2)-electron closed-shell
species, with |Φ(N−2)⟩ designating the corresponding reference
determinant that serves as a Fermi vacuum. The operator T
entering eq 2 is the usual particle-conserving cluster operator,
obtained in the ground-state CC calculations for the (N − 2)-
electron reference system, and

∑=μ μ
+

=
‐ −R R

n

M

n n
( 2)

2
, p ( 2)h

R

(3)

where MR = N in the exact case and MR < N in approximate
schemes is the EOM operator attaching two electrons to the
corresponding (N− 2)-electron closed-shell core, while allow-
ing excitations of the remaining electrons via the Rμ,np-(n−2)h
components with n > 2. Assuming that the highest many-body
rank in T, designated as MT, is at least (MR − 2), we obtain the
Rμ,np-(n−2)h components of the Rμ

(+2) operator and the
corresponding vertical electron-attachment energies

ω = −μ μ
−E EN N N( ) ( )

0
( 2)

(4)

where Eμ
(N) is the energy of the N-electron state |Ψμ

(N)⟩ and
E0
(N−2) is the ground-state CC energy of the (N − 2)-electron
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reference system, by solving the following nonhermitian
eigenvalue problem:51,52

ω̅ |Φ ⟩ = |Φ ⟩μ μ μ
+ − + −H R R( )N C

N N N
,open

( 2) ( 2) ( ) ( 2) ( 2)
(5)

in the space of N-electron determinants corresponding to the
Rμ,np-(n−2)h components included in Rμ

(+2). Here, H̅N,open is the
open part of the similarity-transformed form of the
Hamiltonian H, written in the normal-ordered representation
HN = H − ⟨Φ(N−2)|H|Φ(N−2)⟩, that is, the open part of the

̅ = =−H e H e H e( )N
T

N
T

N
T

C (6)

operator obtained in the underlying CC calculations for the (N
− 2)-electron reference system, and subscript C designates the
connected operator product. Thus, H̅N,open is this part of H̅N, eq
6, that corresponds to diagrams of (HNe

T)C, which have
external Fermion lines. It is easy to show that H̅N,open = H̅ −
E0
(N−2)1, where H̅ = e−T H eT and 1 is the unit operator. As

explained in refs 51 and 52 (cf. refs 13, 28−30, and 43 for an
analogous discussion of the EA/IP cases), the aforementioned
condition MR − 2 ≤ MT is needed to obtain the connected
form of the eigenvalue problem represented by eq 5, which is,
in turn, important if we are to retain the desired size
intensivity19 of the resulting electron-attachment energies ωμ

(N).
Different truncations in the cluster and electron attaching

operators, T and Rμ
(+2), respectively, satisfying the MR − 2 ≤ MT

condition, lead to various DEA-EOMCC schemes. In particular,
in the DEA-EOMCC(4p-2h) method developed in refs 51 and
52, we truncate T at double excitations, so that MT = 2, use the
CCSD approach to determine the (N − 2)-electron reference
ground state |Ψ0

(N−2)⟩, and set MR in eq 3 at 4, obtaining

= + +μ μ μ μ
+

‐ ‐R R R R( 2)
,2p ,3p 1h ,4p 2h (7)

where

∑ μ=μ
<

R r a a( )
a b

ab
a b

,2p (8)

∑ μ=μ ‐
< <

R r a a a a( )
k a b c

abc
k a b c

k,3p 1h
,

(9)

and

∑ μ=μ ‐
> < < <

R r a a a a a a( )
k l a b c d

abcd
kl a b c d

l k,4p 2h
,

(10)

are the relevant 2p, 3p-1h, and 4p-2h components. We
determine these components, or the amplitudes rab(μ),
rabc

k(μ), and rabcd
kl(μ) that represent them, along with the

corresponding vertical electron-attachment energies ωμ
(N), eq 4,

by diagonalizing the similarity-transformed Hamiltonian of
CCSD obtained in the calculations for the (N − 2)-electron
reference system, given by eq 6 in which T is truncated at two-
body clusters, in the space spanned by the N-electron |Φab⟩ =
aaab|Φ(N−2)⟩, |Φ k

abc⟩ = aaabacak|Φ(N−2)⟩, and |Φ kl
abcd⟩ =

aaabacadalak|Φ(N−2)⟩ determinants. The DEA-EOMCC(3p-1h)
approach,44,45,47,48 implemented in refs 51 and 52 as well, is
obtained by neglecting the 4p-2h component of Rμ

(+2), Rμ,4p-2h,
in eq 7, that is, by setting MR in eq 3 at 3. In this case, we
diagonalize the similarity-transformed Hamiltonian of CCSD in
the space spanned by the |Φab⟩ and |Φ k

abc⟩ determinants. Here
and elsewhere in this article, we use the conventional notation
in which i, j, k, l,... (a, b, c, d,...) indices are the spin−orbitals
occupied (unoccupied) in the reference determinant |Φ(N−2)⟩

and ap (ap) are the creation (annihilation) operators associated
with the spin−orbital basis {|p⟩}.
As is well-established and known for as long as the EOMCC

theory has been in use, the diagonalization of the similarity-
transformed Hamiltonian that accounts for the many-electron
correlation effects originating from the underlying ground-state
problem (in our case, correlations in the (N − 2)-electron
closed-shell core), which is the main characteristic of all
EOMCC calculations, not only those performed in this work,
offers great improvements in the accuracy of the resulting
energies over the analogous CI-type diagonalizations of the
bare Hamiltonian. In the specific context of the DEA-EOMCC
considerations, the diagonalization of the bare Hamiltonian in
the space defined by the truncated Rμ

(+2) operator, in addition to
being much less accurate than the diagonalization of H̅ or H̅N,
destroys several fundamental properties, such as the afore-
mentioned size intensivity of the resulting ωμ

(N) values. Indeed,
the use of the bare Hamiltonian, H or HN, instead of H̅ or H̅N,
formally means setting the cluster operator T (i.e., the value of
MT) at 0, which violates the condition MR − 2 ≤ MT if MR ≥ 3,
that is, when 3p-1h or higher-rank Rμ,np-(n−2)h components are
included in Rμ

(+2). We did compare the EOMCC-type and CI-
type diagonalizations in the context of the EA and IP EOMCC
considerations reported in ref 43, showing that the EA/IP CI
diagonalizations of the bare Hamiltonian in the space up to 4p-
3h or 4h-3p excitations are a lot less accurate than the
corresponding EOMCC diagonalizations of H̅ or H̅N. We
illustrate the same point in a later part of this work at the
various DEA levels up to 3p-1h and 4p-2h excitations.
As shown in refs 51 and 52, the full DEA-EOMCC(4p-2h)

approach provides a virtually exact description of biradical
electronic spectra, improving the results of the lower-level
DEA-EOMCC(3p-1h) calculations, but this comes at a very
high price of iterative no

2nu
6 CPU steps and the need to store a

large number of ∼no2nu4 4p-2h amplitudes rabcd
kl(μ). It is,

therefore, important to seek approximate treatments of 4p-2h
contributions. One such treatment is offered by the active-space
DEA-EOMCC(4p-2h){Nu} approach, which replaces the
Rμ,4p-2h component in the many-body expansion of the DEA-
EOMCC(4p-2h) electron-attaching operator Rμ

(+2), eq 7, by its
active-space counterpart

∑ μ=μ ‐
> < < <

r r a a a a a a( )
k l c d

cd
kl c d

l k
A B

AB
A B

,4p 2h
,

(11)

where the capital-case bold symbols A and B in eq 11 designate
the active spin−orbitals unoccupied in the (N − 2)-electron
reference determinant |Φ(N−2)⟩ (formally, any subset of
unoccupied spin−orbitals, which we hope to be relatively
small). The resulting Rμ

(+2){Nu} operator defining the DEA-
EOMCC(4p-2h){Nu} method is given by

= + +μ μ μ μ
+

‐ ‐R N R R r{ }u
( 2)

,2p ,3p 1h ,4p 2h (12)

where Rμ,2p, Rμ,3p-1h, and rμ,4p-2h are defined by eqs 8, 9, and 11,
respectively. We obtain the relevant rab(μ), rabc

k(μ), and rABcd
kl(μ)

amplitudes by diagonalizing the similarity-transformed Hamil-
tonian obtained in the CCSD calculations for the (N − 2)-
electron reference system in the subspace of the N-electron
Hilbert space spanned by the |Φab⟩, |Φ k

abc⟩, and |Φ kl
ABcd⟩

determinants. If the number of active unoccupied orbitals Nu
is small compared to the number of all unoccupied orbitals
(nu), the number of 4p-2h amplitudes to be determined in
DEA-EOMCC(4p-2h){Nu} calculations, which equals the
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number of double excitations times a prefactor on the order of
Nu

2, is much smaller than the number of all rabcd
kl(μ) amplitudes

(∼no2nu4). This is precisely the source of savings in the computer
effort offered by the active-space DEA-EOMCC(4p-2h){Nu}
approach, when compared to full DEA-EOMCC(4p-2h).
2.2. The Active-Space DEA-EOMCC(3p-1h){Nu} and

DEA-EOMCC(3p-1h,4p-2h){Nu} Approaches. The active-
space DEA-EOMCC(4p-2h){Nu} method offers major savings
in the computer effort compared to its full DEA-EOMCC(4p-
2h) parent, replacing the prohibitively expensive no

2nu
6 steps of

the latter approach by steps that scale as Nu
2no

2nu
4, but, as

explained in the Introduction, the CPU time associated with
3p-1h component Rμ,3p-1h, which scales as nonu

5, can be
significant too, especially when larger basis sets are employed.
To address this problem, in this paper we test a new, more
economical variant of the active-space DEA-EOMCC(4p-2h)
approach, designated DEA-EOMCC(3p-1h,4p-2h){Nu}, in
which both 3p-1h and 4p-2h components of the electron
attaching operator Rμ

(+2), eq 7, are replaced by their active-space
counterparts rμ,3p-1h and rμ,4p-2h, respectively, to obtain a new
form of the Rμ

(+2) operator, designated R̃μ
(+2){Nu} and defined as

̃ = + +μ μ μ μ
+

‐ ‐R N R r r{ }u
( 2)

,2p ,3p 1h ,4p 2h (13)

where rμ,4p-2h is given by eq 11 and

∑ μ=μ ‐
< <

r r a a a a( )
k b c

bc
k b c

k
A

A
A

,3p 1h
,

(14)

In analogy to eq 11, the capital-case bold index A in eq 14 runs
over active spin−orbitals unoccupied in |Φ(N−2)⟩. If we want to
limit ourselves to the simpler DEA-EOMCC(3p-1h) level and
reduce costs of the DEA-EOMCC(3p-1h) calculations further
as well, we can consider the active-space variant of the DEA-
EOMCC(3p-1h) approach, designated in this work as DEA-
EOMCC(3p-1h){Nu}, which is obtained by neglecting rμ,4p-2h
in eq 13. In defining the above rμ,3p-1h component, we adopt the
general philosophy of all active-space CC and EOMCC
theories,28−30,43,51,52,56−74 especially the previously formu-
lated51,52 DEA-EOMCC(4p-2h){Nu} method, emphasizing
the dominant role of the lowest-energy unoccupied orbitals
of the (N − 2)-electron closed-shell core in the electron
attachment process that leads to the formation of the N-
electron biradical species of interest.
In analogy to the previously discussed full and active-space

DEA-EOMCC(4p-2h) approaches,51,52 in the DEA-EOMCC-
(3p-1h,4p-2h){Nu} calculations we determine the Rμ,2p, rμ,3p-1h,
and rμ,4p-2h components of the electron attaching operator
R̃μ
(+2){Nu}, eq 13, by diagonalizing the similarity-transformed

Hamiltonian H̅N,open obtained in the CCSD calculations for the
(N − 2)-electron reference system, but now the diagonalization
subspace is much smaller if Nu ≪ nu. Indeed, in the DEA-
EOMCC(3p-1h,4p-2h){Nu} method, we diagonalize H̅N,open in
the subspace spanned by the |Φab⟩, |Φ k

Abc⟩, and |Φ kl
ABcd⟩

determinants. Thus, instead of having to deal with ∼nonu3
3p‑1h and ∼no2nu4 4p-2h amplitudes and determinants defining
the eigenvalue problem of DEA-EOMCC(4p-2h), we consider
∼Nunonu

2 amplitudes and determinants of the 3p-1h type and
∼Nu

2no
2nu

2 amplitudes and determinants of the 4p-2h type, which
reflect on the content of R̃μ

(+2){Nu}. This results in enormous
savings in the computer effort compared to full DEA-
EOMCC(4p-2h) calculations by reducing the expensive nonu

5

steps associated with 3p-1h excitations and even more
expensive no

2nu
6 steps associated with 4p-2h contributions to

the much more affordable Nunonu
4 and Nu

2no
2nu

4 levels. As
shown in Section 2.3, the active-space DEA-EOMCC-
(3p-1h,4p-2h){Nu} approach proposed in this work is also
substantially less expensive than its previously proposed51,52

DEA-EOMCC(4p-2h){Nu} counterpart, which reduces the
no
2nu

6 steps associated with 4p-2h excitations to the Nu
2no

2nu
4 level,

but treats 3p-1h contributions fully using expensive nonu
5 CPU

steps. Similar remarks apply to the active-space DEA-
EOMCC(3p-1h){Nu} method, where we diagonalize H̅N,open
in the small subspace spanned by |Φab⟩ and |Φ k

Abc⟩
determinants, so that instead of dealing with ∼nonu3 3p-1h
amplitudes and determinants defining the full DEA-EOMCC-
(3p-1h) eigenvalue problem, we consider a much smaller
number of such amplitudes and determinants that scales as
∼Nunonu

2. As illustrated in Section 2.3, this leads to significant
reductions in the CPU time needed to perform the DEA-
EOMCC(3p-1h)-level calculations, since the CPU steps of
DEA-EOMCC(3p-1h) that normally scale as nonu

5 are replaced
by the Nunonu

4 operations. Following our earlier remarks about
EOMCC versus CI, it may be worth pointing out that the DEA-
EOMCC(3p-1h,4p-2h){Nu} approach uses the same diagonal-
ization space as its CI analogue, designated in this work as
CI(3p-1h,4p-2h){Nu}, which is essentially equivalent to the
uncontracted multireference CI calculation in the same active
space. The difference between the two methods is in the
operator being diagonalized, which is the similarity-transformed
Hamiltonian of CCSD in the former case and the bare
Hamiltonian in the latter case. As shown in Section 3.1, the
DEA-EOMCC(3p-1h,4p-2h){Nu} approach is much more
accurate than its CI(3p-1h,4p-2h){Nu} counterpart.

2.3. Futher Details and Timings of DEA-EOMCC(3p-
1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} Calculations.
In analogy to the previously developed DEA-EOMCC(3p-1h),
DEA-EOMCC(4p-2h), and DEA-EOMCC(4p-2h){Nu} codes
and their DIP counterparts described and tested in refs 51 and
52, our present computer implementation of the active-space
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-
2h){Nu} approaches proposed in this work has been interfaced
with the atomic integral, restricted Hartree−Fock (RHF) as
well as restricted open-shell Hartree−Fock (ROHF), and
integral transformation routines available in the GAMESS
package.75,76 We benefited from the previously developed spin-
free CCSD GAMESS routines,77 which can use any set of
orbitals and which help us solve the (N − 2)-electron closed-
shell CCSD equations prior to the DEA-EOMCC diagonaliza-
tion steps, and from the routines that were used in some of our
earlier EOMCC studies,78−80 which provide us with the one-
and two-body matrix elements of the similarity-transformed
Hamiltonian of CCSD. Most importantly, in programming the
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-
2h){Nu} approaches, we took advantage of the explicit,
computationally efficient equations defining the DEA-
EOMCC(3p-1h) and DEA-EOMCC(4p-2h) eigenvalue prob-
lems in terms of one- and two-body matrix elements of the
similarity-transformed Hamiltonian of CCSD and other
recursively generated intermediates, reported in the appendix
of ref 51, imposing suitable active-space logic on these
equations with the help of our home-grown automated
derivation and implementation software, which was previously
exploited in coding the DEA-EOMCC(4p-2h){Nu} approach
and its DIP counterpart51 and a number of other CC/EOMCC
methods that rely on similar logic, including those developed in
refs 81−83. Further details, including the algorithms used to
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solve the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-
1h,4p-2h){Nu} equations for the amplitudes defining the
corresponding Rμ

(+2) operators and generate initial guesses, are
similar to those reported in our earlier DEA-EOMCC
work,51,52 so they are not repeated here.
As already alluded to above, the active-space DEA-EOMCC-

(4p-2h){Nu} method offers a massive reduction in computer
effort compared to its DEA-EOMCC(4p-2h) parent with
virtually no loss of accuracy. Indeed, as shown in ref 51, it is not
unusual for the CPU timings of DEA-EOMCC(4p-2h){Nu}
calculations to be hundreds of times smaller than the timings of
the corresponding full DEA-EOMCC(4p-2h) computations.
The DEA-EOMCC(3p-1h,4p-2h){Nu} approach developed in
this study, which treats both 3p-1h and 4p-2h components of
the Rμ

(+2) operator, not just the 4p-2h components, using active
orbitals is even more economical. This is illustrated in Table 1,

where we compare the CPU times per iteration characterizing
the DEA-EOMCC diagonalization steps required by the full
and active-space DEA-EOMCC(3p-1h) and active-space DEA-
EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(4p-2h){Nu}
calculations for the X 3A2′ state of the TMM molecule, as
described by the cc-pVDZ and cc-pVTZ basis sets,84 which we
also discuss in the next section.
We recall that we used the various DEA- and DIP-EOMCC

methods to study the TMM system in refs 51 and 52. The
TMM molecule is large enough to make the full DEA-
EOMCC(4p-2h) calculations using the cc-pVDZ and cc-pVTZ
basis sets prohibitively expensive, so the highest DEA-EOMCC
level included in Table 1 is DEA-EOMCC(4p-2h){Nu}. This is
sufficient for the analysis presented here, since the CPU time
savings offered by the active-space DEA-EOMCC(4p-2h){Nu}
approach versus its full DEA-EOMCC(4p-2h) counterpart have
already been discussed in refs 51 and 52. As one can see in
Table 1, the DEA-EOMCC(3p-1h,4p-2h){Nu} calculations for
the X 3A2′ state of TMM, which use three active unoccupied
orbitals to select the dominant 3p-1h and 4p-2h amplitudes, are

approximately twice as fast as the corresponding DEA-
EOMCC(4p-2h){Nu} computations, in which 3p-1h contribu-
tions are treated fully. At the same time, as shown in the next
section, there is virtually no loss of accuracy when the singlet−
triplet gaps in TMM resulting from the DEA-EOMCC(3p-
1h,4p-2h){3} and DEA-EOMCC(4p-2h){3} calculations are
compared with each other and with experiment.
Interestingly, the CPU timings of the higher-level DEA-

EOMCC(3p-1h,4p-2h){3} calculations for the TMM system,
which include 3p-1h and 4p-2h contributions, are on the same
order as the timings characterizing the corresponding lower-
level DEA-EOMCC(3p-1h) computations, which neglect 4p-2h
effects altogether. This is especially true when the larger cc-
pVTZ basis set is employed. We observe the same when other
molecular systems are examined. Thus, with the development
of the DEA-EOMCC(3p-1h,4p-2h){Nu} method in this work,
we gained the ability to perform routine calculations at the very
high DEA-EOMCC(4p-2h) level, at least for the medium-size
molecular systems, which, as shown in the next section and our
earlier work,51,52 provide chemical (∼1 kcal/mol) or better
accuracy in describing low-lying states of biradicals and single
bond breaking in closed-shell species, improving the results of
the corresponding DEA-EOMCC(3p-1h) calculations. At the
same time, through the development of the active-space DEA-
EOMCC(3p-1h){Nu} approach in this study, we made the
DEA-EOMCC(3p-1h) calculations a lot more practical. For
example, as shown in Table 1, the DEA-EOMCC(3p-1h){3}
calculations for TMM are ∼30 times faster than the
corresponding full DEA-EOMCC(3p-1h) computations, when
the cc-pVTZ basis set is employed, and, as demonstrated in the
next section, there is virtually no loss of accuracy in the
description of the singlet−triplet gap in TMM when full DEA-
EOMCC(3p-1h) is replaced by its active-space DEA-EOMCC-
(3p-1h){Nu} counterpart.

3. NUMERICAL EXAMPLES
To assess the performance of the active-space DEA-EOMCC-
(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} methods,
we performed several benchmark calculations that are
representative of the types of problems such methods may be
useful for, which are low-lying singlet and triplet states of
biradical species and single bond breaking in closed-shell
molecules leading to doublet radical fragments. We compare
the results obtained in the DEA-EOMCC(3p-1h){Nu} and
DEA-EOMCC(3p-1h,4p-2h){Nu} calculations, in which 3p-1h
or 3p-1h and 4p-2h components of Rμ

(+2) are treated using
active orbitals, with the parent full DEA-EOMCC(3p-1h) and
DEA-EOMCC(4p-2h) data and the results of the DEA-
EOMCC(4p-2h){Nu} computations, in which 4p-2h ampli-
tudes are selected using active orbitals, but 3p-1h contributions
are treated fully. Some of the benchmark systems discussed in
this section are small enough to allow for the exact, full CI, and
nearly exact, full DEA-EOMCC(4p-2h) calculations, and all of
them can be treated with the DEA-EOMCC(3p-1h) and DEA-
EOMCC(4p-2h){Nu} approaches that provide useful reference
data for their less expensive DEA-EOMCC(3p-1h){Nu} and
DEA-EOMCC(3p-1h,4p-2h){Nu} counterparts.
We examine the following molecular problems: (i) the

adiabatic energy gaps between the triplet ground state (X 3B1)
and the three low-lying singlet excited states (A 1A1, B

1B1, and
C 1A1) of methylene, as described by the [5s3p/3s] triple-ζ
basis set of Dunning85 augmented with two sets of polarization
functions, abbreviated as TZ2P, for which the exact, full CI,

Table 1. A Comparison of CPU Times Required by the
Various DEA-EOMCC Calculations Characterizing the X 3A2′
State of TMM, as Described by the cc-pVDZ and, in
Parentheses, cc-pVTZ Basis Sets, along with the Formal
Scalings of the Most Expensive Steps in the Diagonalization
of H̅N,open with no, nu, and Nu

a

method CPU time scaling
CPU time/

iteration (min)b

DEA-EOMCC(3p-1h){Nu} Nunonu
4 0.05 (1.5)

DEA-EOMCC(3p-1h) nonu
5 0.43 (43.5)

DEA-EOMCC(3p-1h,4p-2h){Nu} Nu
2no

2nu
4 + Nunonu

4 2.75 (65.0)
DEA-EOMCC(4p-2h){Nu} Nu

2no
2nu

4 + nonu
5 4.43 (136.0)

aThe TMM2+ reference system used in the DEA-EOMCC calculations
was obtained by vacating the doubly degenerate valence 1e″ orbitals of
the TMM’s π system (using the D3h symmetry of the X

3A2′ state). The
lowest-energy core orbitals correlating with the 1s shells of the carbon
atoms were frozen in the post-SCF calculations and the spherical
components of the d and f orbitals were employed throughout. The
active space used to select 3p-1h and 4p-2h components consisted of
the doubly degenerate 1e″ and nondegenerate 2a2″ orbitals, which are
the three lowest-energy unoccupied MOs in the TMM2+ reference
system, so Nu was set at 3.

bThe CPU time per iteration characterizing
the DEA-EOMCC diagonalization step obtained on a single core of
the PowerEdge R910 system from Dell using eight-core Intel Xeon
X7560 2.26 GHz processor boards.
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results have been reported in ref 86 (see Tables 2 and 3), (ii)
the adiabatic separation between the D3h-symmetric X 3A2′
ground state, which has a largely single-reference nature, and
the C2v-symmetric B 1A1 excited state, which has a multi-
reference, biradical character, in TMM, as described by the cc-
pVDZ and cc-pVTZ basis sets, which has accurately been
determined in ref 87 by subtracting the theoretical zero-point
vibrational energy corrections (ΔZPVE) resulting from the
spin-flip density functional theory (SF-DFT/6-31G(d)) calcu-
lations87 from the experimental values of the B 1A1 − X 3A2′ gap
obtained in photoelectron spectroscopy measurements in ref 88
(see Table 4; cf. Table 1 for the corresponding CPU timings),
(iii) the vertical singlet−triplet gaps in the antiaromatic CBD
(C4H4) and CPC [(C5H5)

+] biradicals, as described by the cc-
pVDZ basis set, assuming the D4h-symmetric (CBD) and D5h-
symmetric (CPC) geometries of the corresponding triplet
states optimized in ref 89 (see Table 5), and (iv) the F−F bond
dissociation in the F2 molecule, as described by the double-ζ
(DZ) basis set,90 for which the exact, full CI, results can be
found in ref 91 (see Table 6). In the methylene and F2
examples, where our DEA-EOMCC data are compared with
the corresponding full CI results, in addition to the individual
errors for the various energy gaps (methylene) or electronic
energies at different nuclear geometries (F2), we provide
information about the corresponding maximum unsigned error
(MUE) and nonparallelity error (NPE) values relative to full CI
(see Tables 2, 3, and 6). In the case of the adiabatic energy gaps
in methylene obtained in the various DEA-EOMCC calcu-
lations (Table 2), we compare them with the corresponding CI

computations, where we diagonalize the bare Hamiltonian
instead of the similarity-transformed Hamiltonian in the same
spaces as those used in the DEA-EOMCC diagonalizations
(Table 3), to illustrate the point that diagonalizing H̅ instead of
H greatly benefits the resulting energetics. Also, our description
of the adiabatic B 1A1 − X 3A2′ gap in TMM at the DEA-
EOMCC(3p-1h) and DEA-EOMCC(4p-2h){Nu} levels, which
provide reference data for the considerably less demanding
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-
2h){Nu} calculations, is enriched by reporting the results
obtained with the larger cc-pVTZ basis sets, in addition to the
cc-pVDZ basis set used in refs 51 and 52 (see Table 4).
One of the important aspects of any DEA-EOMCC work is

the choice of orbitals used to construct the corresponding wave
function expansions. Thus, in analogy to refs 51 and 52 (see
also refs 47 and 48), we examine this aspect here as well. As
explained in refs 51 and 52, one typically has a choice between
the symmetry-adapted RHF or ROHF orbitals obtained in the
calculations for the singlet (RHF) and triplet (ROHF) states of
the N-electron target system or the RHF MOs optimized for
the corresponding (N − 2)-electron closed-shell core. Both
strategies are considered in this work. In doing so, one must be
aware of the fact that the singlet RHF orbitals of the target N-
electron system may lift orbital degeneracies when the N-
electron species of interest has a non-Abelian symmetry,
resulting in the undesirable symmetry-broken DEA-EOMCC
wave function expansions.51,52 As further elaborated on below,
this would, for example, happen if we tried to exploit the RHF
MOs optimized for the B 1A1 singlet state of TMM in the

Table 2. A Comparison of the Full CI and Various DEA-EOMCC Adiabatic Excitation Energies, along with the Corresponding
MUE and NPE Values Relative to Full CI, Characterizing the Low-Lying States of Methylene, as Described by the TZ2P Basis
Seta

orbitals method A 1A1 − X 3B1 B 1B1 − X 3B1 C 1A1 − X 3B1 MUE NPE

(N − 2)-electron RHFb DEA-EOMCC(3p-1h){2}c 1.30 −0.82 −1.00 1.30 2.30
DEA-EOMCC(3p-1h) −0.11 −1.89 −3.64 3.64 3.53
DEA-EOMCC(3p-1h,4p-2h){2}c 1.67 0.82 2.28 2.28 1.46
DEA-EOMCC(4p-2h){2}c 0.13 −0.35 −0.54 0.54 0.67
DEA-EOMCC(4p-2h) 0.38 −0.02 0.21 0.38 0.40

N-electron ROHFd DEA-EOMCC(3p-1h){2}c 1.47 0.63 1.42 1.47 0.84
DEA-EOMCC(3p-1h) 0.64 0.10 0.45 0.64 0.54
DEA-EOMCC(3p-1h,4p-2h){2}c 0.63 0.48 0.58 0.63 0.16
DEA-EOMCC(4p-2h){2}c −0.22 −0.05 −0.29 0.29 0.24
DEA-EOMCC(4p-2h) 0.19 0.08 0.37 0.37 0.29

N-electron RHFe DEA-EOMCC(3p-1h){2}c −0.11 −0.50 0.17 0.50 0.67
DEA-EOMCC(3p-1h) 0.29 −0.15 −0.31 0.31 0.60
DEA-EOMCC(3p-1h,4p-2h){2}c 0.16 −0.42 −0.01 0.42 0.60
DEA-EOMCC(4p-2h){2}c 0.66 −0.02 −0.28 0.66 0.94
DEA-EOMCC(4p-2h) 0.14 0.09 0.38 0.38 0.29

N-electron ROHF/RHFf DEA-EOMCC(3p-1h){2}c 2.19 1.79 2.46 2.46 0.67
DEA-EOMCC(3p-1h) 1.53 1.09 0.93 1.53 0.60
DEA-EOMCC(3p-1h,4p-2h){2}c 0.76 0.18 0.59 0.76 0.58
DEA-EOMCC(4p-2h){2}c 0.12 −0.56 −0.82 0.82 0.94
DEA-EOMCC(4p-2h) 0.19 0.14 0.43 0.43 0.29
full CIa 11.14 35.59 61.67

aThe basis set, geometries, and full CI energies were taken from ref 86. The full CI values are the adiabatic excitation energies (in kcal/mol), whereas
the remaining values are errors relative to full CI (also in kcal/mol). The CH2

2+ reference system used in the DEA-EOMCC calculations was created
by vacating the 3a1 HOMO of CH2. As in ref 86, the lowest occupied orbital and the highest unoccupied orbital were frozen in the post-SCF
calculations and the spherical components of the carbon d orbital were employed throughout. bThe DEA-EOMCC calculations using the RHF
orbitals obtained for the singlet ground state of CH2

2+. cThe active space consisted of the HOMO and LUMO of CH2, 3a1 and 1b1, respectively,
which are unoccupied in the CH2

2+ reference system used in the DEA-EOMCC calculations. dThe DEA-EOMCC calculations using the ROHF
orbitals obtained for the X 3B1 state of CH2.

eThe DEA-EOMCC calculations using the RHF orbitals obtained for the A 1A1 state of CH2.
fThe DEA-

EOMCC calculations using the ROHF orbitals of CH2 for the X 3B1 state and the A 1A1 RHF orbitals of CH2 for the remaining three states.
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calculations for the corresponding D3h-symmetric X 3A2′ triplet
state. In cases like this, one can either use the high-spin ROHF
orbitals of the N-electron target system or the dicationic RHF
orbitals corresponding to the (N − 2)-electron closed-shell
core, which allow us to maintain the relevant spatial symmetries
throughout the DEA-EOMCC calculations (adaptation to spin

symmetry is automatic as long as restricted orbitals are
employed). This is what we do in this work, that is, all of the
DEA-EOMCC calculations discussed in this paper provide
spin- and symmetry-adapted results. One of the main findings
of our previous studies,51,52 especially those reported in ref 52,
was the observation that the results of the DEA-EOMCC

Table 3. A Comparison of the Full CI and Various CI(np-(n−2)h), where n > 2, Adiabatic Excitation Energies, along with the
Corresponding MUE and NPE Values Relative to Full CI, Characterizing the Low-Lying States of Methylene, as Described by
the TZ2P Basis Seta

orbitals method A 1A1 − X 3B1 B 1B1 − X 3B1 C 1A1 − X 3B1 MUE NPE

(N − 2)-electron RHFb CI(3p-1h){2}c 3.00 0.43 7.31 7.31 6.88
CI(3p-1h) 1.40 −0.72 4.12 4.12 4.84
CI(3p-1h,4p-2h){2}c 4.17 2.25 11.26 11.26 9.01
CI(4p-2h){2}c 2.42 0.96 7.75 7.75 6.79
CI(4p-2h) 2.73 1.38 8.57 8.57 7.19

N-electron ROHFd CI(3p-1h){2}c 7.79 6.73 10.14 10.14 3.40
CI(3p-1h) 7.44 6.49 9.70 9.70 3.21
CI(3p-1h,4p-2h){2}c 9.29 5.96 8.11 9.29 3.33
CI(4p-2h){2}c 9.14 5.85 8.03 9.14 3.29
CI(4p-2h) 8.94 5.10 7.58 8.94 3.84

N-electron RHFe CI(3p-1h){2}c 6.21 4.08 11.68 11.68 7.60
CI(3p-1h) 7.95 4.77 11.32 11.32 6.54
CI(3p-1h,4p-2h){2}c 9.80 4.04 11.36 11.36 7.32
CI(4p-2h){2}c 11.93 4.89 11.58 11.58 7.03
CI(4p-2h) 10.14 4.65 11.38 11.38 6.74

N-electron ROHF/RHFf CI(3p-1h){2}c 1.42 −0.71 6.89 6.89 7.60
CI(3p-1h) 0.69 −2.49 4.05 4.05 6.54
CI(3p-1h,4p-2h){2}c 0.53 −5.24 2.08 5.24 7.32
CI(4p-2h){2}c −0.07 −7.10 −0.41 7.10 7.03
CI(4p-2h) −0.34 −5.83 0.91 5.83 6.74
full CIa 11.14 35.59 61.67

aThe basis set, geometries, and full CI energies were taken from ref 86. The full CI values are the adiabatic excitation energies (in kcal/mol), whereas
the remaining values are errors relative to full CI (also in kcal/mol). The CH2

2+ reference system used in the CI(np-(n−2)h) calculations was created
by vacating the 3a1 HOMO of CH2. As in ref 86, the lowest occupied orbital and the highest unoccupied orbital were frozen in the post-SCF
calculations and the spherical components of the carbon d orbital were employed throughout. bThe CI(np-(n−2)h) calculations using the RHF
orbitals obtained for the singlet ground state of CH2

2+. cThe active space consisted of the HOMO and LUMO of CH2, 3a1 and 1b1, respectively,
which are unoccupied in the CH2

2+ reference system used in the CI(np-(n−2)h) calculations. dThe CI(np-(n−2)h) calculations using the ROHF
orbitals obtained for the X 3B1 state of CH2.

eThe CI(np-(n−2)h) calculations using the RHF orbitals obtained for the A 1A1 state of CH2.
fThe

CI(np-(n−2)h) calculations using the ROHF orbitals of CH2 for the X
3B1 state and the A 1A1 RHF orbitals of CH2 for the remaining three states.

Table 4. Selected DEA-EOMCC Results for the Adiabatic Singlet−Triplet Separation ΔES−T = E(B 1A1) − E(X 3A2′) (in kcal/
mol) in Trimethylenemethane, as Described by the cc-pVDZ and, in Parentheses, cc-pVTZ Basis Sets, Calculated Using the SF-
DFT/6-31G(d) Geometries Obtained in Ref 87a

orbitals

method (N − 2)-electron RHFb N-electron ROHFc N-electron ROHF/RHFd

DEA-EOMCC(3p-1h){3}e 24.2 (24.0) 19.6 (22.3) 21.5 (22.3)
DEA-EOMCC(3p-1h) 23.9 (23.5) 19.4 (21.1) 20.9 (21.1)
DEA-EOMCC(3p-1h,4p-2h){3}e 19.3 (18.9) 18.7 (19.9) 19.4 (19.9)
DEA-EOMCC(4p-2h){3}e 19.0 (18.4) 18.6 (18.7) 18.9 (18.7)
exptf 16.1 ± 0.1
expt − ΔZPVEg 18.1

aThe TMM2+ reference system used in the DEA-EOMCC calculations was created by vacating the doubly degenerate valence 1e″ (the D3h-
symmetric X 3A2′ state) or nondegenerate 1a2 and 2b1 (the C2v-symmetric B

1A1 state) orbitals of the TMM’s π system. The lowest-energy core
orbitals correlating with the 1s shells of the carbon atoms were frozen in the post-SCF calculations and the spherical components of the d and f
orbitals were employed throughout. bThe DEA-EOMCC calculations using the RHF orbitals of the singlet ground state of TMM2+. cThe DEA-
EOMCC calculations using the ROHF orbitals obtained for the triplet ground state of TMM. dThe DEA-EOMCC calculations using the ROHF
orbitals of TMM for the X 3A2′ state and the RHF orbitals of TMM for the B 1A1 state.

eThe active space consisted of the doubly degenerate 1e″ and
nondegenerate 2a2″ orbitals (using the D3h symmetry of the X

3A2′ state) or the 1a2, 2b1, and 3b1 orbitals (using the C2v symmetry of the B
1A1 state),

which are the three lowest-energy unoccupied MOs in the TMM2+ reference system. fFrom ref 88. gThe estimate of the purely electronic ΔES−T gap
obtained by subtracting the zero-point vibrational energy corrections, ΔZPVE, resulting from the SF-DFT/6-31G(d) calculations reported in ref 87
from the experimental singlet−triplet separation determined in ref 88.
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computations including 4p-2h contributions are practically
insensitive to the choice of the underlying MO basis, whereas
their lower-order DEA-EOMCC(3p-1h) counterparts may
display a significant dependence on the type of orbitals used
in the calculations. A similar behavior is observed in this work;
that is, the results obtained with the active-space DEA-
EOMCC(3p-1h,4p-2h){Nu} approach are not only in very
good agreement with the corresponding DEA-EOMCC(4p-
2h){Nu} and DEA-EOMCC(4p-2h) data, especially if we take
into account the relatively low costs of the DEA-EOMCC(3p-
1h,4p-2h){Nu} calculations, but they are also less sensitive to
the choice of the underlying MO basis than the corresponding
DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h) results.
At the same time, the results of the active-space DEA-

EOMCC(3p-1h){Nu} calculations display a similar dependence
on the underlying MO basis as their parent DEA-EOMCC(3p-
1h) counterparts.

3.1. Adiabatic Energy Gaps Involving Low-Lying
Singlet and Triplet States of Methylene. We begin our
discussion with the various DEA-EOMCC results for the X 3B1,
A 1A1, B

1B1, and C 1A1 electronic states of methylene, as
described by the TZ2P basis set used in ref 86, where the
authors performed the corresponding full CI calculations,
optimizing the geometry of each of the four states at the full CI
level as well. In performing the DEA-EOMCC calculations with
the full and active-space treatments of 3p-1h and 4p-2h
excitations, summarized in Table 2, and the analogous CI
calculations, in which the diagonalization of the similarity-
transformed Hamiltonian of CCSD was replaced by the
diagonalization of the bare Hamiltonian, summarized in Table
3, we adopted the full CI/TZ2P geometries of the X 3B1, A

1A1,
B 1B1, and C 1A1 states reported in ref 86. We focus on the
adiabatic energy gaps between the triplet ground state and the
three lowest-energy singlet excited states.
Let us recall that a few decades ago methylene was the

subject of serious controversies between theory and experiment
concerning the geometry of its triplet ground state and the
small energy gap between the X 3B1 and A 1A1 states, where
theory turned out to be crucial for providing correct answers
(cf. refs 92−97 for selected historical accounts). Because of its
small size, which allows for all kinds of electronic structure
calculations, and because of its complicated electronic
spectrum, which consists of excited states that are difficult to
describe in an accurate and balanced manner, methylene has
become an important benchmark system for testing quantum
chemistry methods (cf. refs 51 and 52 and a long list of papers
cited therein for some of the most representative examples of
the past ab initio computations for CH2). We also recall that,
while the ground and second excited states, X 3B1 and B 1B1,
respectively, can be characterized as having a single-reference
character, which is well represented by the high-spin triplet and
open-shell singlet configurations of the (1a1)

2(2a1)
2-

(1b2)
2(3a1)

1(1b1)
1 type, the first excited A 1A1 state and the

third excited C 1A1 state have a manifestly multireference
nature that originates from mixing the (1a1)

2(2a1)
2(1b2)

2(3a1)
2

and (1a1)
2(2a1)

2(1b2)
2(1b1)

2 configurations, which is partic-
ularly severe in the case of the strongly biradical C 1A1 state.
Thus, to obtain accurate results for the adiabatic energy gaps
between the X 3B1 ground state and the A

1A1, B
1B1, and C

1A1

Table 5. Selected DEA-EOMCC Results for the Vertical
Singlet−Triplet Gaps, ΔES−T = E(S) − E(T) (in kcal/mol),
in the Cyclobutadiene C4H4 System (CBD) and the
Cyclopentadienyl (C5H5)

+ Cation (CPC), as Described by
the cc-pVDZ Basis Set, Calculated at the Corresponding D4h-
Symmetric (CBD) and D5h-Symmetric (CPC) Triplet
Geometries Optimized in Ref 89a

method CBD CPC

DEA-EOMCC(3p-1h){Nu} −1.37b 16.38c

DEA-EOMCC(3p-1h) −1.42 16.06
DEA-EOMCC(3p-1h,4p-2h){Nu} −4.98b 14.25c

DEA-EOMCC(4p-2h){Nu} −5.04b 13.91c

aThe CBD2+ and CPC2+ reference systems used in the DEA-EOMCC
calculations were created by vacating the doubly degenerate valence π
orbitals of the CBD and CPC molecules, respectively (i.e., the highest
singly occupied MOs of eg(D4h) symmetry in the triplet CBD species
and the highest singly occupied MOs of e1″(D5h) symmetry in the
triplet CPC species). The lowest-energy core orbitals correlating with
the 1s shells of the carbon atoms were frozen in the post-SCF
calculations and the spherical components of the d orbitals were
employed throughout. All DEA-EOMCC calculations were performed
using the RHF MOs optimized for the CBD2+ and CPC2+ reference
systems. bThe active space consisted of the Nu = 3 lowest-energy
unoccupied π MOs in the CBD2+ system, including the doubly
degenerate eg(D4h) orbital, which was vacated when forming CBD2+

from CBD, and the nondegenerate b2u(D4h) orbital, which is empty in
CBD2+ and CBD. cThe active space consisted of the Nu = 4 lowest-
energy unoccupied π MOs in the CPC2+ system, including the doubly
degenerate e1″(D5h) orbital, which was vacated when forming CPC2+

from CPC, and the doubly degenerate e2″(D5h) orbital, which is empty
in CPC2+ and CPC.

Table 6. A Comparison of the Full CI and Various DEA-EOMCC Ground-State Energies of F2 at the Equilibrium (Re = 2.668 16
bohr) and a Few Other F−F Distances, along with the Corresponding MUE and NPE Values Relative to Full CI, Obtained with
the DZ Basis Seta

method Re 1.1Re 1.2Re 1.5Re 2Re 3Re 4Re MUE NPE

DEA-EOMCC(3p-1h){2}b −3.538 −2.808 −2.210 1.585 1.860 1.360 1.279 3.538 5.398
DEA-EOMCC(3p-1h) −3.947 −3.181 −2.563 1.305 1.485 1.015 0.935 3.947 5.432
DEA-EOMCC(3p-1h,4p-2h){2}b 3.807 3.508 3.193 1.665 1.895 1.656 1.601 3.807 2.206
DEA-EOMCC(4p-2h){2}b 3.437 3.161 2.855 1.371 1.505 1.298 1.244 3.437 2.193
DEA-EOMCC(4p-2h) 2.314 2.195 2.061 0.628 0.807 0.762 0.720 2.314 1.686
full CIa 0.968 128 0.976 458 0.972 125 0.952 558 0.945 201 0.944 819 0.944 831

aThe full CI values are total energies E, taken from ref 91, reported as −(E + 198) Ha. The remaining energies are errors relative to full CI, in
millihartree (mHa). The F2

2+ reference system used in the DEA-EOMCC calculations was created by vacating the valence σg orbital of F2. Following
ref 91, the RHF orbitals of F2 were employed throughout and the two lowest-energy core orbitals and the corresponding two highest-energy
unoccupied orbitals were frozen in the post-SCF calculations. bThe active space consisted of the valence σg and σu orbitals, which are unoccupied in
the F2

2+ reference system utilized in the DEA-EOMCC calculations.
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excited states, one must use methods that can provide a well-
balanced treatment of the dynamical and nondynamical
electron correlation effects. This makes methylene a valuable
benchmark system for testing the active-space DEA-EOMCC-
(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} methods
developed in this work.
In all of the DEA-EOMCC calculations summarized in Table

2, the (N − 2)-electron CH2
2+ reference system was obtained by

vacating the highest occupied MO (HOMO), 3a1, of CH2. To
examine the dependence of the various DEA-EOMCC results
on the type of orbitals that are used to define the corresponding
wave function expansions, we used both the ground-state RHF
orbitals of the CH2

2+ reference dication and the RHF or ROHF
MOs optimized for the CH2 target system. In the latter case, we
followed refs 51 and 52 and adopted three different strategies.
In the first strategy, we constructed the DEA-EOMCC wave
function expansions for all the calculated states using the
ROHF orbitals obtained for the X 3B1 state of methylene. In
the second strategy, we utilized the RHF orbitals optimized for
the A 1A1 state. In the third strategy, we used the X 3B1 ROHF
orbitals in the DEA-EOMCC calculations for the triplet ground
state and the A 1A1 RHF orbitals for the remaining three singlet
states. For each choice of the MO basis, the active orbitals
employed in the DEA-EOMCC(3p-1h){Nu}, DEA-EOMCC-
(3p-1h,4p-2h){Nu}, and DEA-EOMCC(4p-2h){Nu} calcula-
tions were the HOMO orbital 3a1 and the lowest unoccupied
MO (LUMO) 1b1 of methylene, which are unoccupied in the
CH2

2+ dication that serves as a reference system for the DEA-
EOMCC considerations. In other words, the number of active
unoccupied orbitals Nu, used to define 3p-1h component in the
DEA-EOMCC(3p-1h){Nu} calculations, 3p-1h and 4p-2h
components in the DEA-EOMCC(3p-1h,4p-2h){Nu} compu-
tations, and 4p-2h component in the DEA-EOMCC(4p-
2h){Nu} calculations, was set at 2, making the resulting
diagonalizations of the similarity-transformed Hamiltonian only
a few times more expensive than the conventional closed-shell
CCSD calculations in the DEA-EOMCC(3p-1h,4p-2h){Nu}
and DEA-EOMCC(4p-2h){Nu} cases and less expensive than
CCSD in the case of DEA-EOMCC(3p-1h){Nu}. As shown in
ref 51, the DEA-EOMCC(4p-2h){2} calculations for the TZ2P
model of methylene considered here are ∼400 times faster than
the corresponding full DEA-EOMCC(4p-2h) computations
and only 4 times slower than the DEA-EOMCC(3p-1h)
calculations. The DEA-EOMCC(3p-1h,4p-2h){2} computa-
tions are even faster.
The adiabatic A 1A1 − X 3B1, B

1B1 − X 3B1, and C 1A1 −
X 3B1 excitation energies collected in Table 2 and the
corresponding MUE and NPE values demonstrate that there
is a generally good agreement between the results of the
inexpensive active-space DEA-EOMCC(3p-1h){2} calculations
and their full DEA-EOMCC(3p-1h) counterparts and among
the results of the active-space DEA-EOMCC(3p-1h,4p-2h){2}
and DEA-EOMCC(4p-2h){2} and full DEA-EOMCC(4p-2h)
computations. As opposed to the DIP-EOMCC approach
truncated at 3h-1p excitations, which we examined in our
previous studies51,52 and which in the case of the TZ2P model
of methylene may produce errors as large as 10.94 kcal/mol,
none of the DEA-EOMCC methods examined in the present
work fails; that is, the DEA-EOMCC calculations truncated at
3p-1h terms are capable of providing reasonable gap values,
especially when one uses MOs optimized for the target CH2
system. Nevertheless, the inclusion of 4p-2h correlations
through the relat ively inexpensive DEA-EOMCC-

(3p-1h,4p-2h){2} calculations, which describe 3p-1h and
4p‑2h effects using active orbitals, is helpful and worth
analyzing here.
We first observe that the differences between the DEA-

EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h) gap values are
almost identical to the analogous differences between the gaps
obtained in the DEA-EOMCC(3p-1h,4p-2h){2} and DEA-
EOMCC(4p-2h){2} calculations. Indeed, if we, for example,
examine the A 1A1 − X 3B1 energy separations calculated using
the RHF MOs of the CH2

2+ reference system, the ROHF MOs
optimized for the triplet ground state of CH2, the RHF MOs
optimized for the A 1A1 state of CH2, and the ROHF MOs of
CH2 for the X

3B1 state combined with the RHF MOs of CH2
for the singlet states, the differences between the DEA-
EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h) results, of
1.41, 0.83, 0.40, and 0.66 kcal/mol, respectively, are almost
identical to the analogous differences between the DEA-
EOMCC(3p-1h,4p-2h){2} and DEA-EOMCC(4p-2h){2} data,
which are 1.54, 0.85, 0.50, and 0.64 kcal/mol. This is not
surprising, since the DEA-EOMCC(3p-1h){2} and DEA-
EOMCC(3p-1h) calculations and the DEA-EOMCC(3p-
1h,4p-2h){2} and DEA-EOMCC(4p-2h){2} calculations differ
in exactly the same manner, namely, DEA-EOMCC(3p-1h){2}
and DEA-EOMCC(3p-1h,4p-2h){2} treat 3p-1h terms using
active orbitals, whereas DEA-EOMCC(3p-1h) and DEA-
EOMCC(4p-2h){2} treat them fully. Because of the approx-
imate treatment of 3p-1h contributions in the DEA-EOMCC-
(3p-1h,4p-2h){2} calculations, the agreement between the
DEA-EOMCC(3p-1h,4p-2h){2} and full DEA-EOMCC-
(4p-2h) data is not as good as in the case of DEA-EOMCC-
(4p-2h){2}, which uses active orbitals to select the higher-rank
4p‑2h excitations, while treating 3p-1h contributions fully, but
the relatively inexpensive DEA-EOMCC(3p-1h,4p-2h){2}
calculations, which capture the dominant 3p-1h and 4p-2h
correlations, improve the DEA-EOMCC(3p-1h){2} and DEA-
EOMCC(3p-1h) results that neglect 4p-2h physics altogether.
For example, if we look at the largest unsigned errors relative to
full CI obtained in the calculations of the adiabatic A 1A1 −
X 3B1, B

1B1 − X 3B1, and C 1A1 − X 3B1 energy gaps,
represented in Table 2 by the MUE values, and focus on the
DEA-EOMCC results obtained using the ROHF MOs of CH2
for the triplet ground state and the RHF MOs of CH2 for the
remaining three singlet states, we can see significant improve-
ment when going from DEA-EOMCC(3p-1h){2} and DEA-
EOMCC(3p-1h), which give MUEs of 2.46 and 1.53 kcal/mol,
respectively, to DEA-EOMCC(3p-1h,4p-2h){2}, which gives
MUE of 0.76 kcal/mol. In fact, the MUE value characterizing
the DEA-EOMCC(3p-1h,4p-2h){2} calculations is virtually
identical to that obtained with the more expensive DEA-
EOMCC(4p-2h){2} approach, which gives 0.82 kcal/mol, and
not much worse than the MUE of 0.43 kcal/mol characterizing
the corresponding full DEA-EOMCC(4p-2h) computations.
When the ROHF MOs of CH2 are used in the calculations for
all four states, the largest errors obtained with the active-space
DEA-EOMCC(3p-1h,4p-2h){2} and full DEA-EOMCC-
(3p-1h) approaches are virtually identical, but the NPE
characterizing the DEA-EOMCC(3p-1h,4p-2h){2} data, of
0.16 kcal/mol, is more than 3 times smaller than the NPE
characterizing the corresponding DEA-EOMCC(3p-1h) results
(0.54 kcal/mol). The use of MOs obtained in the RHF
calculations for the CH2

2+ dication worsens the DEA-EOMCC-
(3p-1h,4p-2h){2} results somewhat, but they are still better
than the results of the corresponding DEA-EOMCC(3p-1h)
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computations, reducing the MUE and NPE values character-
izing the adiabatic A 1A1 − X 3B1, B

1B1 − X 3B1, and C 1A1 −
X 3B1 separations by 1.36 and 2.07 kcal/mol, respectively.
Consistent with our earlier work,52 we observe a smaller

dependence of the A 1A1 − X 3B1, B
1B1 − X 3B1, and C 1A1 −

X 3B1 gaps obtained with the DEA-EOMCC(3p-1h,4p-2h){2},
DEA-EOMCC(4p-2h){2}, and DEA-EOMCC(4p-2h) ap-
proaches on the orbitals used in the calculations than that
observed when the lower-order DEA-EOMCC(3p-1h){2} and
DEA-EOMCC(3p-1h) methods, neglecting 4p-2h contribu-
tions, are employed. Indeed, if we look at the numerical data
listed in Table 2, we can see that the ranges of the NPE values
characterizing the DEA-EOMCC(3p-1h){2} and DEA-
EOMCC(3p-1h) results, when all types of MOs are included
in the analysis, are 0.67−2.30 and 0.54−3.53 kcal/mol,
respectively. The DEA-EOMCC(3p-1h,4p-2h){2}, DEA-
EOMCC(4p-2h){2}, and DEA-EOMCC(4p-2h) calculations
reduce these ranges to 0.16−1.46, 0.24−0.94, and 0.29−0.40
kcal/mol, respectively. This can be understood if we realize that
by incorporating 4p-2h components in the DEA-EOMCC
diagonalizations we bring the results closer to the orbital-
invariant exact, full CI, limit, in which all Rμ ,np-(n−2)h
components with n = 2, ..., N are included in Rμ

(+2). As one
might expect, the largest singly excited (T1) cluster amplitudes
obtained in the underlying CCSD calculations for the CH2

2+

reference dication increase in absolute value when the (N − 2)-
electron MO basis optimized for CH2

2+ is replaced by one of the
N-electron bases optimized for CH2, from a 0.01−0.02 level,
when the RHF MOs determined for CH2

2+ are employed, to
∼0.13−0.17, when the RHF/ROHF orbitals optimized for CH2
are adopted, but this is not a key factor in the understanding
orbital dependence or the lack thereof in the case of the DEA-
EOMCC results shown in Table 2. By the virtue of the
presence of the Thouless-like eT1 factor in the CCSD wave
function, the CCSD calculations for CH2

2+ can absorb orbital
rotations that result in T1 amplitudes on the order of 0.1−0.2.
What is the key is the neglect or the incorporation of the higher
many-body components of the Rμ

(+2) operator in the DEA-
EOMCC diagonalizations. The inclusion of the higher-order
4p-2h components, fully, as in the DEA-EOMCC(4p-2h)
approach, or approximately, as in the active-space DEA-
EOMCC(4p-2h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}
schemes, makes the resulting excitation energies less sensitive
to the MO basis employed in the calculations. Clearly, the
DEA-EOMCC(3p-1h,4p-2h){2} computations, in which both
3p-1h and 4p-2h components are treated approximately using a
small number of active MOs, have a larger sensitivity to the
underlying MO basis than the corresponding DEA-EOMCC-
(4p-2h){2} and DEA-EOMCC(4p-2h) calculations, but the
variation in the NPE values characterizing the DEA-EOMCC-
(3p-1h,4p-2h){2} results, of 0.16−1.46 kcal/mol, remains
relatively small, being acceptable in many applications.
Interestingly, the variation in the NPE values characterizing
the DEA-EOMCC(3p-1h,4p-2h){2} calculations becomes even
smaller when we exclude the results obtained with the MOs
optimized for the CH2

2+ dication. When we do this,
the range of the NPE values characterizing the DEA-
EOMCC(3p-1h,4p-2h){2} results reduces to 0.16−0.60
kcal/mol (a similarly small error range, 0.42−0.76 kcal/mol,
is obtained when examining the corresponding MUE data).
When the data obtained with the ionic MOs are ignored, the
active-space DEA-EOMCC(3p-1h,4p-2h){2} approach be-
comes competitive with its more expensive DEA-EOMCC-

(4p-2h){2} counterpart, which produces the NPE and MUE
ranges of 0.24−0.94 and 0.29−0.82 kcal/mol, respectively.
It is well known that the diagonalization of the similarity-

transformed Hamiltonian of CC theory exploited in EOMCC
considerations offers substantial improvements in the results
over the analogous CI diagonalizations of the bare Hamiltonian.
As pointed out in Section 2.1, the latter diagonalizations also
violate important formal conditions, such as the requirement of
size intensivity of the resulting excitation, electron attachment,
and ionization energies. We already discussed the relative
performance of H̅ versus H diagonalizations in the context of
the EA/IP EOMCC calculations through 4p-3h/4h-3p
excitations in ref 43, demonstrating that the diagonalizations
of H̅ are a lot more effective than the corresponding
diagonalizations of H. However, encouraged by the reviewer,
we decided to compare the results of the various DEA-EOMCC
calculations for methylene, summarized in Table 2, with their
CI analogues, where we diagonalize the bare Hamiltonian in the
spaces used in the DEA-EOMCC calculations. The results are
shown in Table 3. In abbreviating the various CI methods, we
use the same convention as that used in the DEA-EOMCC
case. Thus, CI(3p-1h) stands for the CI diagonalization of the
Hamiltonian in the space of 2p determinants |Φab⟩ and 3p-1h
determinants |Φ k

abc⟩, whereas CI(3p-1h,4p-2h){Nu} designates
the CI calculation in the space of all 2p determinants |Φab⟩ and
a subset of 3p-1h and 4p-2h determinants, |Φ k

Abc⟩ and |Φ kl
ABcd⟩,

respectively, defined using Nu active unoccupied orbitals, etc.
As mentioned in Section 2.2, the CI(3p-1h,4p-2h){Nu}
diagonalization has the configurational freedom similar to that
of the uncontracted multireference CI considerations in the
same active space. Independent of the type of orbitals
employed in this work, none of the CI calculations shown in
Table 3 can compete with the analogous DEA-EOMCC
approaches. The typical errors obtained in the CI diagonaliza-
tions are a few times larger than those resulting from the
corresponding DEA-EOMCC computations. The DEA CI and
EOMCC calculations would produce identical and exact, full
CI, results in the limit of including all Rμ,np-(n−2)h components of
Rμ
(+2) with n = 2, ..., N in the corresponding H and H̅

diagonalizations, but, as with other methods based on the CC
theory, the convergence toward full CI in the DEA-EOMCC
case is faster than in the case of CI.
It is encouraging to observe good performance of the DEA-

EOMCC(3p-1h,4p-2h){Nu} method in the methylene case,
but, as already pointed out above, the lower-level DEA-
EOMCC calculations truncated at 3p-1h excitations are capable
of providing reasonable results too. Our next examples,
described in Sections 3.2 and 3.3, demonstrate the utility of
the DEA-EOMCC(3p-1h,4p-2h){Nu} approach in situations
where 4p-2h contributions are considerably larger than in the
case of methylene.

3.2. Adiabatic Singlet−Triplet Gap in TMM. We now
turn to the TMM molecule, a non-Kekule ́ hydrocarbon
characterized by the delocalization of four π electrons over
four closely spaced π-type orbitals (see, e.g., refs 87 and
98−100 for the relevant information). The four valence MOs of
TMM’s π network include the nondegenerate 1a2″, the doubly
degenerate 1e″, and the nondegenerate 2a2″ orbitals, when D3h
symmetry of the triplet ground state is used, or the 1b1, 1a2,
2b1, and 3b1 orbitals, when C2v symmetry relevant to the low-
lying singlet states is adopted. Because of its fascinating and
challenging electronic structure, the TMM molecule has
attracted a lot of attention over the years among many
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theoretical and experimental groups (cf. refs 51 and 52 and refs
cited therein for the historical account and further informa-
tion). In particular, a lot of effort has been devoted to an
accurate determination of the relatively small energy gaps
between the low-lying singlet and triplet states. As implied by
Hund’s rule and the electron paramagnetic resonance data,101

TMM has a D3h-symmetric triplet ground state, X 3A2′,
dominated by the |{core}(1a2″)2 (1e1″)1 (1e2″)1| configuration
(which in a C2v description becomes the X 3B2 state dominated
by the |{core}(1b1)

2 (1a2)
1 (2b1)

1| configuration). The next
two states in TMM’s electronic spectrum are the nearly
degenerate singlets stabilized by the Jahn−Teller distortion that
lifts their exact degeneracy in a D3h description, which have a
multireference, biradical, character. The lower of the two
singlets is an open-shell singlet state characterized by a Cs
minimum, which can be approximated by a twisted C2v
structure, so this state is usually labeled as the A 1B1 state.
The second singlet, which interests us in this work, studied
experimentally, using photoelectron spectroscopy, in ref 88,
abbreviated B 1A1, is a C2v-symmetric state dominated by the
closed-shell |{core}(1b1)

2 (1a2)
2| and |{core}(1b1)

2 (2b1)
2|

determinants (see, e.g., refs 87, 98, and 99 for more
information).
The highest ab initio levels of electronic structure theory

applied to TMM to date reproduce the adiabatic, purely
electronic energy gap between the D3h-symmetric X 3A2′ ground
state and the C2v-symmetric B 1A1 excited state, which is
estimated at 18.1 kcal/mol,87 to within 1−6 kcal/mol, that is,
some high-level approaches work well, but some struggle (cf.
Table 6 in ref 83 for a compilation of representative examples).
Our most accurate previously published51,52 full and active-
space DIP-EOMCC calculations truncated at 4h-2p excitations
and the corresponding active-space DEA-EOMCC computa-
tions truncated at 4p-2h excitations using the cc-pVDZ basis set
place the adiabatic B 1A1 − X 3A2′ gap in TMM within 1 kcal/
mol from the recommended value of 18.1 kcal/mol,
independent of the type of MOs used to define the
corresponding wave function expansions. The DIP-EOMCC
method truncated at 3h-1p excitations and its DEA-EOMCC
counterpart truncated at 3p-1h terms worsen these results,
producing values that are very sensitive to the type of MOs
used in the calculations, which can be as good as 18.3 kcal/mol
and as bad as 23.9 kcal/mol if 3h-1p and 3p-1h components are
treated fully (see refs 51 and 52 and Table 4). As shown in
Table 4, the use of the larger cc-pVTZ basis does not
significantly alter these conclusions; that is, the highest-level
affordable DEA-EOMCC/cc-pVTZ calculations with a full
treatment of 3p-1h contributions and an active-space treatment
of 4p-2h terms (as already mentioned, the corresponding full
DEA-EOMCC(4p-2h) calculations are prohibitively expensive
for us at this time) produce the adiabatic gaps between the
B 1A1 and X

3A2′ states in the narrow 18.4−18.7 kcal/mol range,
in excellent agreement with the recommended value of 18.1
kcal/mol, whereas the DEA-EOMCC approach truncated at
3p-1h excitations treated fully gives generally less accurate
values that vary from 21.1 to 23.5 kcal/mol. Our goal is to
examine if we can reproduce the high-accuracy results provided
by the DEA-EOMCC method with a full treatment of 3p‑1h
and an active-space treatment of 4p-2h terms, summarized in
Table 4, with the considerably less expensive (cf. Table 1)
DEA-EOMCC(3p-1h,4p-2h){Nu} approach. We also inves-
tigate if it is sufficient to handle 3p-1h excitations within the
DEA-EOMCC schemes truncated at 3p-1h or 4p-2h

components, which in refs 51 and 52 were treated fully, using
a small subset of active orbitals. As in our earlier work,51,52 in
performing the DEA-EOMCC calculations with the full and
active-space treatments of 3p-1h excitations and the active-
space treatment of 4p-2h contributions, we adopted the
geometries of the X 3A2′ and B 1A1 states of TMM optimized
at the SF-DFT/6-31G(d) level in ref 87.
In all of the DEA-EOMCC calculations for TMM reported in

this study, the (N − 2)-electron closed-shell TMM2+ reference
system was obtained by vacating the doubly degenerate 1e″
shell (the D3h-symmetric X

3A2′ state) or the nondegenerate 1a2
and 2b1 orbitals (the C2v-symmetric B

1A1 state) of the TMM’s
valence π network. To examine the dependence of the various
DEA-EOMCC results on the type of MO basis that defines the
corresponding wave function expansions, we used both the
ground-state RHF orbitals of the TMM2+ reference dication
and the RHF or ROHF orbitals optimized for the TMM target
species. When utilizing the orbitals optimized for TMM, we
followed refs 51 and 52 and adopted two different strategies. In
the first strategy in this category, we relied on only one type of
orbitals, namely, the high-spin ROHF MOs optimized for the
triplet ground state, which we used to perform the DEA-
EOMCC calculations for both electronic states of TMM that
are examined here. In the second strategy, we used two
different sets of MOs, namely, the ROHF orbitals optimized for
the X 3A2′ state in the DEA-EOMCC calculations for this D3h-
symmetric triplet ground state and the RHF orbitals obtained
for the B 1A1 state in the DEA-EOMCC calculations for the
C2v-symmetric B 1A1 state. As already alluded to above, the
third possibility of exploiting the RHF MOs optimized for the
B 1A1 state in the DEA-EOMCC calculations for both states of
TMM that interest us here was not pursued, since such orbitals
break the degeneracy of the valence 1e″ shell at the D3h
geometry of the triplet ground state, resulting in a symmetry-
broken description of the X 3A2′ state. Consistent with the
structure of the valence shells of TMM, for each choice of the
MO basis, the active orbitals employed in the DEA-EOMCC-
(3p-1h){Nu}, DEA-EOMCC(3p-1h,4p-2h){Nu}, and DEA-
EOMCC(4p-2h){Nu} calculations were the doubly degenerate
1e″ and nondegenerate 2a2″ MOs in the case of the D3h-
symmetric X 3A2′ state and the 1a2, 2b1, and 3b1 orbitals for the
C2v-symmetric B

1A1 state, that is, Nu was set at 3, making all of
these calculations affordable, even when the cc-pVTZ basis set
is employed. As shown in Table 1 and as discussed in Section
2.3, this is particularly true in the case of the DEA-EOMCC-
(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} methods,
which are substantially less expensive than the corresponding
DEA-EOMCC(3p-1h) and DEA-EOMCC(4p-2h){Nu} ap-
proaches, not to mention full DEA-EOMCC(4p-2h), which
becomes prohibitively expensive for TMM.
It is apparent from Table 4 that the agreement between the

adiabatic B 1A1 − X 3A2′ gap values obtained in the inexpensive
DEA-EOMCC(3p-1h){3} calculations, which use only three
active unoccupied orbitals to select the dominant 3p-1h
excitations, and their counterparts obtained with the consid-
erably more demanding DEA-EOMCC(3p-1h) approach,
where 3p-1h excitations are treated fully, is generally very
good. Independent of the basis set and independent of the type
of MOs used to construct the corresponding wave function
expansions, the differences between the active-space DEA-
EOMCC(3p-1h){3} and full DEA-EOMCC(3p-1h) data do
not exceed 1.2 kcal/mol, and they are, in most cases,
considerably smaller, on the order of 0.2−0.6 kcal/mol. The

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.6b11393
J. Phys. Chem. A 2017, 121, 3469−3485

3479

http://dx.doi.org/10.1021/acs.jpca.6b11393


same is observed when we compare the higher-level DEA-
EOMCC(3p-1h,4p-2h){3} and DEA-EOMCC(4p-2h){3}
methods, which use active orbitals to select the dominant
4p‑2h contributions, but differ in the treatment of 3p-1h
component of the electron attaching operator Rμ

(+2). The
differences between the B 1A1 − X 3A2′ gap values obtained in
the DEA-EOMCC(4p-2h){3} computations, where 3p-1h
component is treated fully, with their counterparts obtained
with the considerably less expensive DEA-EOMCC-
(3p-1h,4p-2h){3} approach vary between 0.1 and 1.2 kcal/
mol, with the majority of these differences falling into the 0.1−
0.5 kcal/mol range. On the basis of the comparison of the full
DEA-EOMCC(3p-1h), active-space DEA-EOMCC(4p-2h){3},
and experimentally derived data for the adiabatic separation
between the X 3A2′ and B 1A1 states in TMM, 4p-2h effects are
important if we are to obtain a fully quantitative description.
The DEA-EOMCC(3p-1h,4p-2h){3} calculations reflect on
this in a proper manner by improving the results of the DEA-
EOMCC(3p-1h){3} and DEA-EOMCC(3p-1h) calculations by
∼1−5 kcal/mol, with the largest error reductions observed
when the (N − 2)-electron ionic orbitals are employed. Indeed,
when one uses the RHF MOs optimized for the TMM2+

dication, the DEA-EOMCC(3p-1h,4p-2h){3} approach brings
the results of the DEA-EOMCC(3p-1h){3} and DEA-
EOMCC(3p-1h) calculations, which neglect 4p-2h correlations,
closer to the recommended B 1A1 − X 3A2′ gap value of 18.1
kcal/mol by 4.9 and 4.6 kcal/mol, respectively, when the cc-
pVDZ basis set is employed, and 5.1 and 4.6 kcal/mol, when
the cc-pVTZ basis set is exploited. As a result, the adiabatic
gaps between the X 3A2′ and B 1A1 states obtained in the DEA-
EOMCC(3p-1h,4p-2h){3} calculations, which range from 18.7
and 19.4 kcal/mol, when the cc-pVDZ basis set is used, and
18.9 and 19.9 kcal/mol, when one uses the cc-pVTZ basis, are
generally in very good agreement with the experimentally
derived value of 18.1 kcal/mol. They are only slightly worse
than the corresponding DEA-EOMCC(4p-2h){3} results,
which range from 18.6 and 19.0 kcal/mol in the cc-pVDZ
case and 18.4 and 18.7 kcal/mol when the cc-pVTZ basis is
employed.
In analogy to the DEA-EOMCC(4p-2h){3} approach, the

improvements offered by its less expensive DEA-EOMCC-
(3p-1h,4p-2h){3} counterpart over the DEA-EOMCC calcu-
lations truncated at 3p-1h excitations can also be seen when we
compare the sensitivity of the various DEA-EOMCC
calculations to the type of orbitals used to construct the
corresponding wave function expansions. Indeed, when we
probe the (N − 2)-electron MOs obtained in the RHF
calculations for the TMM2+ reference dication and the
N‑electron ROHF or ROHF and RHF orbitals optimized for
the TMM target system, the variation in the DEA-
EOMCC(3p-1h){3} and DEA-EOMCC(3p-1h) results for
the adiabatic B 1A1 − X 3A2′ gap in TMM is 4.6 and 4.5
kcal/mol, respectively, when the cc-pVDZ basis set is
employed, and 1.7 and 2.4 kcal/mol, when one uses cc‑pVTZ.
DEA-EOMCC(4p-2h){3} reduces these variations to the
impressively small 0.3−0.4 kcal/mol level, but it is encouraging
to observe that the considerably less expensive DEA-EOMCC-
(3p-1h,4p-2h){3} computations, in which the resulting gap
values vary by 0.7 kcal/mol in the cc-pVDZ case and 1.0
kcal/mol in the case of cc-pVTZ, remain rather insensitive to
the type of MOs used in the calculations.
3.3. Vertical Singlet−Triplet Gaps in CBD and CPC

Biradicals. Continuing on the topic of biradical π systems, we

also applied the DEA-EOMCC(3p-1h){Nu} and DEA-
EOMCC(3p-1h,4p-2h){Nu} approaches and their more ex-
pensive full DEA-EOMCC(3p-1h) and active-space DEA-
EOMCC(4p-2h){Nu} counterparts to the vertical energy gaps
between the lowest singlet and triplet states in the antiaromatic
CBD (C4H4) and CPC [(C5H5)

+] species (see Table 5). In
doing so, we followed the computational strategy of ref 89.
Thus, we used the cc-pVDZ basis set and adopted the D4h-
symmetric (CBD) and D5h-symmetric (CPC) geometries of the
corresponding lowest-energy triplet states optimized in ref 89.
Assuming these geometries, the ground electronic states of
CBD and CPC are singlet and triplet, respectively, that is, the
vertical singlet−triplet gaps, ΔES−T = E(S) − E(T), which
interest us in this work, should be negative for CBD and
positive for CPC.
The CBD system is characterized by the delocalization of

four π electrons over four π MOs, which in a D4h description
include the nondegenerate doubly occupied a2u orbital, the
doubly degenerate eg shell, where each component orbital is
singly occupied, and the unoccupied b2u orbital. When the two
valence eg electrons have identical projections of the spin, one
ends up with the high-spin triplet state. The corresponding
singlet state is obtained when the valence eg electrons have
opposite spins recoupled to an open-shell singlet configuration.
The CPC system is characterized by the delocalization of four π
electrons over five π MOs, which in a D5h description include
the nondegenerate doubly occupied a2″ orbital, the doubly
degenerate e1″ shell, where each component orbital is singly
occupied, and the doubly degenerate unoccupied e2″ shell. Once
again, if the two valence e1″ electrons have identical projections
of the spin, one ends up with the high-spin triplet state. The
singlet state is obtained when the e1″ electrons have opposite
spins recoupled to a singlet.
In analogy to TMM, the CBD2+ ≡ (C4H4)

2+ and CPC2+ ≡
(C5H5)

3+ closed-shell reference systems used in the DEA-
EOMCC calculations for the CBD and CPC species reported
in Table 5 were obtained by vacating the doubly degenerate
valence π orbitals of each of the two target molecules. This
meant vacating the highest singly occupied MOs of eg
symmetry in the case of the D4h-symmetric CBD molecule
and the highest singly occupied orbitals of e1″ symmetry in the
D5h-symmetric CPC species. Since we already discussed the
effect of using different types of MOs in the DEA-EOMCC
calculations, which is relatively small when 4p-2h excitations are
included, all DEA-EOMCC calculations for CBD and CPC
discussed in this section were performed using only one type of
orbitals, namely, the RHF MOs optimized for the CBD2+ and
CPC2+ reference systems. Consistent with the structure of the
valence shells of the D4h-symmetric CBD species, as described
above, the active orbitals employed in the DEA-EOMCC(3p-
1h){Nu}, DEA-EOMCC(3p-1h,4p-2h){Nu}, and DEA-
EOMCC(4p-2h){Nu} calculations for the singlet−triplet gap
in CBD included the Nu = 3 lowest-energy unoccupied π MOs
in the CBD2+ reference system, that is, the two orbitals of the
doubly degenerate eg shell, which was vacated when forming
CBD2+ from CBD, and the nondegenerate b2u orbital, which is
empty in CBD2+ and CBD. Similarly, the active space used in
the DEA-EOMCC(3p-1h){Nu}, DEA-EOMCC(3p-1h,4p-
2h){Nu}, and DEA-EOMCC(4p-2h){Nu} calculations for the
singlet−triplet gap in the D5h-symmetric CPC species consisted
of the Nu = 4 lowest-energy unoccupied π MOs in the CPC2+

reference system, including the doubly degenerate e1″ shell,
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which was vacated when forming CPC2+ from CPC, and the
doubly degenerate e2″ shell, which is empty in CPC2+ and CPC.
The results in Table 5 clearly demonstrate that the vertical

singlet−triplet gaps in the CBD and CPC systems obtained in
the inexpensive active-space DEA-EOMCC(3p-1h){3} and
DEA-EOMCC(3p-1h){4} calculations are in virtually perfect
agreement with the corresponding full DEA-EOMCC(3p-1h)
data. Indeed, the difference between the DEA-EOMCC-
(3p-1h){3} and DEA-EOMCC(3p-1h) ΔES−T values in CBD
and the analogous difference between the results of the DEA-
EOMCC(3p-1h){4} and DEA-EOMCC(3p-1h) calculations
for CPC are 0.05 and 0.32 kcal/mol, respectively. The similarly
small differences in the calculated ΔES−T values are observed
when the results of the DEA-EOMCC(3p-1h,4p-2h){3}
calculations for CBD and the results of the analogous DEA-
EOMCC(3p-1h,4p-2h){4} calculations for CPC, in which
3p‑1h and 4p-2h components of the electron attaching operator
Rμ
(+2) are selected using active orbitals, are compared with the

corresponding DEA-EOMCC(4p-2h){3} and DEA-EOMCC-
(4p-2h){4} computations, in which 3p-1h excitations are
treated fully. This shows once again that the economical,
active-space treatment of 3p-1h contributions advocated in this
study provides us with a faithful representation of these
important correlation effects.
The results in Table 5 also confirm that high-order 4p-2h

effects can be quite large in biradical π systems. We saw this
when examining the singlet−triplet gap in TMM, and we see it
again when determining the singlet−triplet gaps in CBD and
CPC. Indeed, in the case of the D4h-symmetric CBD species,
we observe a nearly 4 kcal/mol lowering of the calculated
ΔES−T value, which stabilizes the singlet state, when 4p-2h
contributions are included in the DEA-EOMCC calculations.
The effect of 4p-2h correlations is smaller in the CPC case,
lowering the ΔES−T value obtained in the DEA-EOMCC-
(3p-1h){4} and DEA-EOMCC(3p-1h) calculations by ∼2
kcal/mol, but it is still quite important. Because of prohibitive
computer costs, we could not perform the corresponding full
DEA-EOMCC(4p-2h) calculations, but based on the results for
methylene discussed in Section 3.1, our earlier benchmark
DEA-EOMCC calculations,51,52 and experience with
using the various active-space CC,56−67 EOMCC,68−73 and
EA/IP-EOMCC28−30,43 methods, which are known for their
ability to recover relative and excitation energies of the parent
CC/EOMCC calculations, often to within fractions of
kilocalorie per mole (see ref 74 for a review), we may expect
that the ΔES−T values for CBD obtained in the DEA-
EOMCC(3p-1h,4p-2h){3} and DEA-EOMCC(4p-2h){3} cal-
culations and the ΔES−T values for CPC resulting from
the DEA-EOMCC(3p-1h,4p-2h){4} and DEA-EOMCC-
(4p-2h){4} computations are almost identical to the corre-
sponding full DEA-EOMCC(4p-2h) data, which should in turn
be virtually exact.
High accuracy of the DEA-EOMCC(3p-1h,4p-2h){Nu} and

DEA-EOMCC(4p-2h){Nu} approaches, which include sophis-
ticated 4p-2h terms, in addition to their lower-rank 2p and 3p-
1h counterparts, on top of CCSD, implies that we should be
able to treat the DEA-EOMCC(3p-1h,4p-2h){3} and DEA-
EOMCC(4p-2h){3} results for CBD and the analogous DEA-
EOMCC(3p-1h,4p-2h){4} and DEA-EOMCC(4p-2h){4} re-
sults for CPC, reported in Table 5, as practically converged
with respect to the relevant many-electron correlation effects,
allowing us to use them to judge other methods. For example,
the unrestricted, symmetry-broken calculations using the single-

reference CC approach with singles, doubles, and noniterative
quasi-perturbative triples (CCSD(T))102 and its Brueckner-
orbital BCCD(T) analogue,103 and the state-specific multi-
reference CC calculations with singles and doubles using the
MkCCSD approach of ref 104 applied to the D5h-symmetric
CPC species considered in this work produce ΔES−T values that
are (with an exception of one, seemingly erratic, MkCCSD
result) in the 13.5−14.8 kcal/mol range,89 in excellent
agreement with our DEA-EOMCC(3p-1h,4p-2h){4} and
DEA-EOMCC(4p-2h){4} results in Table 5, which are 14.3
and 13.9 kcal/mol, respectively. However, when the MkCCSD
method is applied to the D4h-symmetric CBD system, one
obtains ΔES−T values that vary from −9.0 to −8.1 kcal/mol89

and that do not agree with our best DEA-EOMCC(3p-1h,4p-
2h){3} and DEA-EOMCC(4p-2h){3} calculations, which give
−5.0 kcal/mol. At the same time, as shown in ref 89, the
unrestricted, symmetry-broken CCSD(T) and BCCD(T)
calculations and the multireference averaged quadratic CC
(MR-AQCC) approach105,106 produce the vertical singlet−
triplet gaps in the D4h-symmetric CBD species that range from
−5.5 to −4.8 kcal/mol, in perfect agreement with our DEA-
EOMCC(3p-1h,4p-2h){3} and DEA-EOMCC(4p-2h){3} data.
On the basis of our experiences with the DEA-EOMCC
calculations including high-rank 4p-2h excitations, such as those
described in this paper and the earlier work,51,52 we are quite
confident that the MkCCSD ΔES−T values for the D4h-
symmetric CBD system reported in ref 89 are in error, whereas
the corresponding unrestricted CCSD(T) and BCCD(T) data
and their MR-AQCC counterpart, reported in ref 89 as well, are
correct. It is quite possible that the failure of the MkCCSD
approach in this case is a consequence of neglecting the
connected triples in the MkCCSD calculations. Indeed, as
shown in ref 89, the MkCCSD values of ΔES−T for the D4h-
symmetric CBD system are almost identical to the results of the
unrestricted, symmetry-broken, single-reference CCSD calcu-
lations. Normally, in the absence of independent information,
we would be forced to speculate which of the ΔES−T values for
CBD reported in ref 89 are correct. The DEA-EOMCC(3p-
1h,4p-2h){3} and DEA-EOMCC(4p-2h){3} results given in
Table 5, which are expected to be nearly exact, solve this
problem. This is an example of the kinds of things we can do
having access to the high-level DEA-EOMCC(3p-1h,4p-
2h){Nu} and DEA-EOMCC(4p-2h){Nu} or at least DEA-
EOMCC(3p-1h,4p-2h){Nu} data, which we will be able to
produce in many cases because of the use of the active-space
ideas to select the dominant 4p-2h or 3p-1h and 4p-2h
contributions. Encouraged by the above results, especially those
obtained with the high-level and yet relatively inexpensive
DEA-EOMCC(3p-1h,4p-2h){Nu} approach, we are planning to
extend the DEA-EOMCC(3p-1h){Nu}, DEA-EOMCC(3p-1h),
DEA-EOMCC(3p-1h,4p-2h){Nu}, and DEA-EOMCC(4p-
2h){Nu} calculations for the CBD and CPC biradicals discussed
here to other antiaromatic molecules examined in ref 89.

3.4. F−F Bond Dissociation in the Fluorine Molecule.
Our final example is the potential energy curve of the
challenging F2 molecule, as described by the DZ basis set, for
which the results of the exact, full CI calculations were reported
in ref 91 and which was examined by us earlier, using the full
DEA-EOMCC(3p-1h) and DEA-EOMCC(4p-2h) and active-
space DEA-EOMCC(4p-2h){Nu} approaches and their DIP
counterparts51 (see Table 6). As in the other examples in this
section, our discussion focuses on a comparison of the active-
space DEA-EOMCC(3p-1h){Nu} approach with its full DEA-
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EOMCC(3p-1h) parent and on the ability of the DEA-
EOMCC(3p-1h,4p-2h){Nu} method to reproduce the corre-
sponding DEA-EOMCC(4p-2h) and DEA-EOMCC(4p-
2h){Nu} results. Following refs 51 and 91, all of the DEA-
EOMCC calculations for F2 reported in this article use the
RHF orbitals of the target species. The corresponding closed-
shell reference F2

2+ system, needed to set up the various DEA-
EOMCC calculations summarized in Table 6, was obtained by
vacating the valence σg orbital, which is doubly occupied in the
RHF determinant for F2. The active orbitals used in the DEA-
EOMCC(3p-1h){Nu}, DEA-EOMCC(3p-1h,4p-2h){Nu}, and
DEA-EOMCC(4p-2h){Nu} computations consisted of the
valence σg and σu MOs involved in the dissociation of the
fluorine molecule, which are empty in the reference F2

2+ system,
as defined above, that is, Nu was set at 2.
As established in our earlier study51 and as shown in Table 6,

4p-2h excitations, treated fully or with active orbitals, play a
substantial role in improving the results of the DEA-EOMCC
calculations, offering a considerably more accurate description
of bond breaking in F2 than that provided by the DEA-
EOMCC(3p-1h) approach. Indeed, the full DEA-EOMCC(4p-
2h) and active-space DEA-EOMCC(4p-2h){2} approaches
reduce the relatively large NPE value relative to full CI
characterizing the DEA-EOMCC(3p-1h) potential energy
curve of F2, of 5.432 millihartree (mHa), to as little as 1.686
and 2.193 mHa, respectively. The considerably less expensive
DEA-EOMCC(3p-1h,4p-2h){2} calculations are capable of
maintaining these high accuracies, providing the NPE of 2.206
mHa, which is in excellent agreement with the NPEs provided
by the parent DEA-EOMCC(4p-2h){2} and DEA-EOMCC-
(4p-2h) calculations. The largest errors relative to full CI,
represented in Table 6 by the MUE values, do not change
much when going from the DEA-EOMCC(3p-1h) to the DEA-
EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC(4p-2h){2}, and
DEA-EOMCC(4p-2h) levels, but the potential energy curves
obtained with the latter three approaches are much more
parallel to the full CI curve than the curve obtained in the DEA-
EOMCC(3p-1h) calculations. As a result, if we define the
energy difference De ≡ E(4Re) − E(Re) as a measure of the
dissociation energy characterizing the F2 molecule, where Re is
the equilibrium geometry, we can see an excellent agreement
between the DEA-EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC-
(4p-2h){2}, and DEA-EOMCC(4p-2h) De values, which are
13.23, 13.24, and 13.62 kcal/mol, respectively, and full CI,
which gives De = 14.62 kcal/mol. Given its relatively low
computer cost compared to the remaining two DEA-EOMCC
approaches including 4p-2h excitations considered in this study,
the good performance of the DEA-EOMCC(3p-1h,4p-2h){2}
method with an active-space treatment of both 3p-1h and 4p-2h
components is most encouraging.
The DEA-EOMCC(3p-1h) result for De, as defined above, of

17.68 kcal/mol, is substantially worse, largely because of the
increase in the corresponding NPE value, from a
2 mHa level in the DEA-EOMCC(3p-1h,4p-2h){2}, DEA-
EOMCC(4p-2h){2}, and DEA-EOMCC(4p-2h) calculations
to 5.432 mHa in the DEA-EOMCC(3p-1h) case, but the good
news is that the active-space DEA-EOMCC(3p-1h){2}
approach provides the energetics of full DEA-EOMCC-
(3p-1h) at the small fraction of the computer cost. Indeed,
the DEA-EOMCC(3p-1h){2} values of NPE and De, which are
5.398 mHa and 17.64 kcal/mol, respectively, are in perfect
agreement with their full DEA-EOMCC(3p-1h) counterparts.
The inexpensive active-space treatment of 3p-1h excitations,

which we advocate in this study, is clearly sufficient to capture
the relevant 3p-1h correlation effects.

4. SUMMARY AND CONCLUDING REMARKS
We have demonstrated that the previously developed DEA-
EOMCC approaches with full and active-space treatments of
4p-2h excitations, abbreviated as DEA-EOMCC(4p-2h) and
DEA-EOMCC(4p-2h){Nu}, respectively,

51,52 which represent
state-of-the-art methodologies within the DEA-EOMCC frame-
work and which are particularly well-suited to describe
electronic structure and spectra of biradical systems and single
bond breaking in closed-shell molecules leading to doublet
radical fragments, can be made considerably more economical if
the corresponding 3p-1h contributions are treated using active
orbitals. The resulting DEA-EOMCC(3p-1h,4p-2h){Nu} ap-
proach, developed and implemented in this work, replaces the
expensive 6-like nonu

5 steps associated with 3p-1h excitations
by the much less time-consuming 5-like Nunonu

4 operations,
where Nu is the number of active unoccupied orbitals in the
underlying (N − 2)-electron closed-shell core, in addition to
downscaling the prohibitively expensive 8-like no

2nu
6 steps

associated with 4p-2h contributions to a manageable 6-like
Nu

2no
2nu

4 level. By examining the low-lying singlet and triplet
states of methylene, trimethylenemethane, cyclobutadiene, and
cyclopentadienyl cation and bond breaking in F2, we have
demonstrated that the DEA-EOMCC(3p-1h,4p-2h){Nu} meth-
od is practically as accurate as its parent DEA-EOMCC-
(4p-2h){Nu} and DEA-EOMCC(4p-2h) models at the fraction
of the computational cost involved in the DEA-EOMCC-
(4p-2h){Nu} and DEA-EOMCC(4p-2h) calculations, while
preserving all other features of the DEA-EOMCC method-
ology, such as rigorous spin and symmetry adaptation, which
are difficult to achieve within the standard particle-conserving
CC/EOMCC framework. We have also demonstrated that the
DEA-EOMCC(3p-1h,4p-2h){Nu} scheme is almost as insensi-
tive to the choice of the underlying MO basis used in the
calculations as the considerably more expensive DEA-EOMCC-
(4p-2h){Nu} and DEA-EOMCC(4p-2h) approaches.
The methodological advances reported in this article have

also benefited the lower-level DEA-EOMCC approach
truncated at 3p-1h excitations, which can be useful in
applications involving biradicals too, by replacing the nonu

5

steps associated with a full treatment of 3p-1h contributions
by the much less demanding Nunonu

4 steps of the active-space
DEA-EOMCC(3p-1h){Nu} approach, implemented in this
work as well. Just like its DEA-EOMCC(3p-1h) parent, the
DEA-EOMCC(3p-1h){Nu} model with an active-space treat-
ment of 3p-1h excitations, which ignores 4p-2h correlation
effects , is less accurate than the DEA-EOMCC-
(3p-1h,4p-2h){Nu}, DEA-EOMCC(4p-2h){Nu}, and DEA-
EOMCC(4p-2h) methods, but it faithfully reproduces the
results of DEA-EOMCC(3p-1h) calculations at the small
fraction of the computer cost, offering a useful alternative to
the DEA-EOMCC(3p-1h) approximation, where 3p-1h terms
are treated fully.
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(6) Čízěk, J. On the use of the Cluster Expansion and the Technique
of Diagrams in Calculations of Correlation Effects in Atoms and
Molecules. Adv. Chem. Phys. 1969, 14, 35−89.
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