
FCIQMC-Tailored Distinguishable Cluster Approach
Eugenio Vitale,* Ali Alavi,* and Daniel Kats*

Cite This: J. Chem. Theory Comput. 2020, 16, 5621−5634 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The tailored approach is applied to the distinguishable cluster method
together with a stochastic FCI solver (FCIQMC). It is demonstrated that the new
method is more accurate than the corresponding tailored coupled cluster and the pure
distinguishable cluster methods. An F12 correction for tailored methods and
FCIQMC is introduced, which drastically improves the basis set convergence. A
new black-box approach to define the active space using the natural orbitals from the
distinguishable cluster is evaluated and found to be a convenient alternative to the
usual CASSCF approach.

1. INTRODUCTION

Coupled cluster (CC) theory1−3 is a reliable and standard tool in
quantum chemistry to treat many-body electron correlations at
high accuracy level.4−7 However, the standard CC methods
yield qualitatively erroneous results when applied to strongly
correlated systems, e.g., multicenter transition metal complexes
and other multiradicals, or in other highly degenerate situations
encountered, e.g., in systems away from the equilibrium
geometry. These complex systems require multiple similarly
weighted configurations in the wave function even for
qualitatively correct description and represent a challenging
problem for the contemporary quantum chemistry.
Conventional methods applied to such strongly correlated

systems rely on the multireference approach. However, the
complexity and computational cost of this methodology is
comparably high and makes the single-reference-based (SR-
based) approaches more appealing. There have been many
attempts to design SR-CC type methods able to properly
describe also static electron correlation.8−19 Generally, these
approaches can be divided into two classes of corrections
externally and internally corrected CC methods, and a good
overview of these methods can be found in a recent review by
Paldus.20

The externally corrected CC methods rely on externally
generated cluster amplitudes, which are adopted as a correction
to the CC amplitudes. These methods make use of the fact that
the wave function can be expressed in the split-amplitude
ansatz.17,18 The external source of the cluster amplitudes can be
chosen to describe well the static part of the electron correlation
in the system, leaving the rest to the CC methodology, thereby
alleviating the sensitivity of the CC methods to the static
correlation. Usually, the separation is done at the orbital level,

introducing an active space, which is treated at the full
configuration interaction (FCI) level. The separation can be
combined with the self-consistent orbital optimization, yielding
the well-known complete-active-space self-consistent field
(CASSCF) method, which defines the strong electron
correlation part and generates the external cluster amplitudes.
In the tailored CC (TCC) methods19,21,22 the external
amplitudes do not change during the solution of the CC
amplitude equations and are simply replacing the corresponding
CC amplitudes; the remaining CC amplitudes are relaxed as
usual.
The internally corrected CCmethods, on the other hand, rely

on possible mutual cancellations of certain cluster components,
e.g., approximate coupled pair (ACP),9−11,23,24 approximate
coupled-cluster doubles (ACCDs),25 nCC hierarchy,14 para-
metrized coupled-cluster (pCCSD),26 or the distinguishable
cluster (DC)27−31 methods, or introduce new terms into the CC
amplitude equations, e.g., quasi-variational CC15 or CC valence
bond.16 The DC with singles and doubles (DCSD) method27,28

has been introduced as a small modification of the CC with
singles and doubles (CCSD) amplitude equations, and it has
been demonstrated in numerous studies that the resulting
method is more accurate than CCSD for weakly correlated
systems.7,29,31−35 Additionally, DCSD often provides a qual-
itatively correct description of the strongly correlated systems.
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Recently, it has been demonstrated that the DC approximation
is also applicable to triple excitations.36,37

The high accuracy of the DCSD method and improved
stability to the onset of the static correlation suggest its
superiority over CCSD also in the tailored formalism, and in this
work we investigate the applicability of the tailored CC
methodology to the DCSD method, denoted in the following
as TDC.
Further, calculation of the external correction can easily

become a bottleneck in this method, since the tailored methods
generally require large active spaces to accurately describe
multiradicals. In this respect different ideas have been
investigated, and especially the density-matrix-renormaliza-
tion-group (DMRG) based TCC38−40 demonstrated very
promising results. In the present study, we utilize the full
configuration interaction quantum Monte Carlo (FCIQMC)
method41−44 to obtain the external amplitudes in large active
spaces well beyond 20 active orbitals. We will refer to this
combination of TCC/TDC with FCIQMC as FCIQMC-TCC/
FCIQMC-TDC methods.
Additionally, in the present work we investigate various

possibilities to define the active space. Apart from the usual (but
expensive) CASSCF route, we employ natural orbitals from a
preceding DCSD calculation, with occupation numbers
significantly differing from zero and two, as the active orbital
subspace for FCI or FCIQMC calculations. This route is
especially appealing as a basis set correction for the expensive
FCIQMC calculations, and in this respect we also introduce a
simple F12 explicit correlation correction on top of the TCC/
TDC methods based on the Valeev’s perturbative F12
approach.45

Finally, we compare the tailored methods to a simple
subtractive embedding scheme for strongly correlated systems,
similar to the one utilized in the embedded MRCC methods.46

Here, the embedded FCI calculation is performed in the space of
most active DCSD natural orbitals, and the correction to the
total DCSD correlation energy is calculated as the difference
between the embedded FCI energy and the embedded DCSD
energy.

2. OVERVIEW OF COMPUTATIONAL APPROACHES
In the following, we will briefly describe the computational
methods exploited in this work. The tailored DC and CC
methods have been implemented in the Molpro package,47−49

and the FCIQMC calculations have been done using the NECI
program.44

2.1. Distinguishable Cluster Approach. In the DC with
doubles (DCD) method exchange diagrams in quadratic terms
in the CC with doubles (CCD) amplitude equations are
removed and the remaining quadratic terms are rescaled to
retain the overall exactness for two electrons (after orbital
relaxation) and the particle−hole symmetry of the equa-
tions.27,50 Alternatively, the method can be derived from a
screened Coulomb formalism by introducing a direct-random-
phase-approximation (dRPA) screening and considering all
possible pairwise interactions.30

The resulting DCD amplitude equations are very similar to
CCD equations, and the method is also size-extensive and
orbital-invariant. The orbital relaxation can be added using
similarity transformation of the Hamiltonian with eT̂1 (as well as
other techniques),28 and the resulting DCSD method exhibits
the same level of insensitivity with respect to occupied-virtual
orbital rotations as CCSD.

However, the DCSD method possesses a number of
advantages compared to the CCSD method. It can be applied
to strongly correlated systems without exhibiting the usual
breakdown of the traditional CC methods; it is also much more
accurate than CCSD even for weakly correlated systems.29

Besides, it can be implemented more efficiently and has a lower
computational scaling in some representations.36,51,52

For particle−hole symmetric systems as Pariser−Parr−Pople
or Hubbard models, DCD is equivalent to the ACP-D14
method,10 which has been shown to be exact in the fully
correlated limit of these models. We refer the interested reader
to the recent review by Paldus,20 which discusses the connection
of ACP and DCD methods.
The one-body density matrices can be calculated using the

established Lagrange technique, which is approximately twice as
expensive as the energy calculation, since Lagrange multiplier
equations have to be solved. Natural orbitals and the
corresponding occupation numbers can be obtained as
eigenvectors and eigenvalues of the density matrices.
The basis set convergence of the method can be very much

improved by adopting the F12 techniques, either by adding the
F12 terms to the amplitude equations29,53 or as a perturbative
correction.45,54 The later approach will be utilized here to speed
up the basis set convergence in the tailored methods.

2.2. FCI Quantum Monte Carlo. FCIQMC is a stochastic
method to compute the ground-state energy of extremely large
many-body Hamiltonians in the context of FCI methods, i.e.,
electronic wave functions expanded in Slater determinant spaces
comprising all possible determinants constructable from a given
spatial orbital basis. Compared to the deterministic FCI, much
larger systems can be calculated with over 100 active orbitals.
FCIQMC samples the Slater determinant space by a number

of walkers, whose population dynamics evolves according to a
simple set of rules: spawning, death, and annihilation processes.
The equation that guides the walkers population dynamics is

N
H S N H N

d
d

( )i
ii i

j i
ij j∑

τ
− = − +

≠ (1)

where Ni is the number of walkers on the determinant i, τ is the
imaginary time, Hij are the Hamiltonian matrix elements in the
basis of Slater determinants, and S is the shift parameter that
controls the total walker number.
The idea is to perform a long time integration of the

imaginary-time Schrödinger equation, with the propagator
expanded to first order using a discrete time step Δτ. In the
limit of long imaginary-time propagation, the algorithm
converges to the ground-state wave function, as long as the
number of walkers used is sufficient to sample the Hilbert space.
However, the last condition is not straightforward to follow
because the number of walkers usually scales with the size of the
Hilbert space itself. In this respect, the initiator method (i-
FCIQMC) introduced in 2010 by Cleland et al.,42 here used by
default, made possible to get a stable convergence with a lower
number of walkers. However, this method introduces a bias
which can get substantial in large systems. This initiator error
can be seen as the sign of size-inconsistency error that normally
affects CI methods. A recent development of the so-called
adaptive-shift method dramatically reduces this error and allows
one to obtain near-FCI quality results up to systems such as
benzene.55 The latter method modifies the shift applied to a
non-initiator determinant such that only a suitable local shift is
used.
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Additionally, the semistochastic approach56,57 can be used,
where a number of the most populated determinants is selected
and this part of the imaginary-time propagation is performed
deterministically, which dramatically reduces the stochastic
noise. It turned out to be especially beneficial for our purposes of
extracting accurate CI coefficients from the FCIQMC
calculation, since it allows one to reduce the time-averaging of
the coefficients.
Recently, FCIQMC has been combined with coupled-cluster

methods,58,59 either as a means to select important high-order
excitations for CC(P,Q) methods, or as a means to accelerate
the convergence of the FCIQMC method with respect to
imaginary-time propagation; in both cases the objective being to
approach the exact FCI energy with greater efficiency than
allowed either by pure high-order CC methods or FCIQMC
methods. In the methodology to be presented below the
objective is different: it is to use FCIQMC as a complete-active-
space solver, whose amplitudes are then used in an externally
corrected tailored method to solve the CC or DC amplitude
equations in the full space. This should enable us to treat much
larger problems, for which the direct application of the
FCIQMC or any similar exact method would be impractical,
taking advantage of the fact that the coupled-cluster description
of the correlation outside of the active space is likely to be very
accurate, if not perfect. Such an approach would present a
computationally attractive alternative to true multireference
methods.
2.3. FCIQMC-TDC and FCIQMC-TCC. The TCC method

exploits the concept of the dynamic and static correlation
separation,17,18

e eT T T
TCC 0 0

CC CAS

|Ψ ⟩ = |Φ ⟩ = |Φ ⟩̂ ̂ + ̂
(2)

Here, T̂CAS represents the cluster amplitudes of the active space
calculated from the extracted CI coefficients in the FCI (or
FCIQMC) calculations, while T̂CC is the rest of the cluster
operator. In this way, we assume that T̂CAS describes most of the
static electron correlation of the system, and this information is
contained in the amplitudes of the singles and doubles cluster
excitation operators, T̂1

CAS and T̂2
CAS. In the tailored formalism,19

these amplitudes of the cluster operators T̂CAS are kept frozen
during the CC iterations. Only the T̂1

CC and T̂2
CC are optimized

with the usual projective CCSD amplitude equations,

H i a

H i j a b

e e 0 , CAS

e e 0 , , , CAS

i
a T T T T

ij
ab T T T T

0

0

CC CAS CC CAS

CC CAS CC CAS

⟨Φ | ̂ |Φ ⟩ = { } ⊄

⟨Φ | ̂ |Φ ⟩ = { } ⊄

− ̂ − ̂ ̂ + ̂

− ̂ − ̂ ̂ + ̂

where a, b, ... and i, j, ... represent the unoccupied and occupied
orbitals in the Φ0 reference determinant, respectively. The
resulting tailored CCSD (TCCSD) method is size-consistent,19

as long as the CI coefficients have been extracted from a size-
consistent calculation.
The tailored methods are based on a single-reference

formalism, and therefore a qualitatively correct description of
the strong electron correlation in the underlying coupled-cluster
approaches can be beneficial. Besides, the enhanced accuracy of
the distinguishable cluster methods for weakly correlated
systems is expected to be transferable to the respective tailored
approaches. Although the DCSD method cannot be formulated
in terms of excitation operators as CCSD, it is still possible to
apply the same strategy to the DCSD amplitude equations in
order to define the TDCSDmethod. Since the DCSDmethod is

size-consistent, the TDCSD is size-consistent as well (again, for
size-consistent CI calculations).
Freezing active amplitudes facilitates a straightforward

implementation into an existing CCSD or DCSD code.
However, the missing relaxation of the complete-active-space
(CAS) amplitudes in the presence of other amplitudes obviously
represents an approximation of the method. We have
investigated a simple intermediate region approach to alleviate
this error; i.e., only amplitudes from a subset of the CAS space
are frozen in the TDCSD/TCCSD amplitude equations, and the
rest of the CAS space represents a buffer region, in which
amplitudes are relaxed both in FCI and in the subsequent TDC/
TCC calculation.
Extraction of the CC amplitudes from the FCIQMC run

requires collecting and averaging singles and doubles CI
coefficients from the FCIQMC wave function. The singles and
doubles amplitudes (TCAS)a

i and (TCAS)ab
ij are computed using

the well-known relation between the CC amplitudes and CI
coefficients in the spin−orbitals,

T C T C T T T T,a
i

a
i

ab
ij

ab
ij

a
i

b
j

b
i

a
j= = − + (3)

For the definition of the active orbital space various
techniques can be utilized. CASSCF calculations are an obvious
choice, which however require expensive CASSCF optimiza-
tions and can easily become a bottleneck for large active spaces.
Therefore, we have investigated an alternative procedure of
using DCSD active natural orbitals, i.e., with occupation
numbers significantly different from two and zero, as the simple
low-cost option, which can be applied in a black-boxmanner and
relies on the ability of the DC methods to describe strongly
correlated systems qualitatively correctly. Additionally, ampli-
tudes from the tailored run (e.g., with a small active space) can
be used as a starting guess for the DC methods, which helps to
target the physical solutions in complicated cases.
Another option to utilize the TDCSD/TCCSD amplitudes is

to calculate a basis set correction to the FCIQMC. It can be
achieved either by simply running the tailored calculations for
the frozen virtual natural orbitals or by additionally calculating a
perturbative F12 correction.45,54 For the latter we calculate the
DCSD/CCSD F12 Lagrangian removing the contribution of the
DCSD/CCSD active-space residual,

L ET T C T T C T T T C

T T T C T T C

, , , , , ,

, , ,

i
i i

i i

1 2 1 2
1

2

1 2

AS
1 2

F12
1 2

∑ Ω

Ω Ω

[ ] = [ ] + ̃ [ ]

− ̃ [ ] + ̃ [ ]
=

(4)

where T1, T2, and C denote singles and doubles TDCSD/
TCCSD amplitudes, and the F12 amplitudes that satisfy the
first-order coalescence conditions, respectively, and the tilde
denotes the corresponding contravariant quantities, which
replace the Lagrange multipliers. Ωi, Ωi

AS, and ΩF12 are the
DCSD-F12/CCSD-F12 amplitude equations, DCSD/CCSD
residuals in the active space, and the F12 amplitude equations.
Here we employ the F12a and F12b approaches.29,53,60 If the
active space spans the complete orbital space, the F12 correction
is in fact applied to the FCIQMC method and is therefore
denoted FCIQMCF12, which is an alternative to the previously
introduced explicitly correlated FCIQMC methods.61,62

3. RESULTS
3.1. Computational Details. Performance of the

FCIQMC-TDCSDmethod was evaluated through computation
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of potential energy curves (PECs) for a number of test systems,
N2, F2, H2O, and the equidistant hydrogen chain H10. Further,
C2H4 and C4H4 were also considered in order to evaluate the
TDCSD behavior in wave functions where a sudden change
arises from small changes in the geometry. For all these systems
also the corresponding FCIQMC-TCCSD PECs have been
calculated for comparison. Whenever possible, the FCIQMC-
tailored methods have been benchmarked versus calculations
with CAS amplitudes obtained from the deterministic FCI
(denoted as FCI-TDCSD and FCI-TCCSD).
Accurate reference results have been obtained using internally

contracted multireference CI (MRCI) with a Davidson
correction (MRCI+Q),63 optionally including explicit correla-
tion,64 from the Molpro program package,47−49 CCSDTQ from
the MRCC program package,65 and full FCIQMC from the
NECI program package.44

All tailored calculations have been done on top of natural
orbitals, either from CASSCF or from DCSD calculations. For
the DCSD natural orbitals we have used the orbital-relaxed
densitymatrices produced by the closed-shell implementation in
Molpro.
Finally, we extended our study to the ozone molecule in order

to investigate the accuracy of the approach for calculation of
absolute and relative energies and for somewhat larger systems.
The ozone molecule is not trivial for many quantum chemical
methods, because of the strong interplay of dynamical and static

electron correlation, even when no bond breaking is
involved.66−69

In all calculations, the cc-pVTZ basis set has been employed
and the core electrons have been kept frozen in the correlated
calculations. In the F12 calculations the cc-pVTZ/jkfit and cc-
pVTZ/mp2fit basis sets have been used for the complementary
auxiliary basis (CABS) and for density fitting, respectively.
All of the FCIQMC calculations have been characterized by a

fixed number of iterations (5000) to average the CI coefficients.
These iterations are supposed to be the last 5000 in order to
extract the coefficients when the calculation is already
converged. Further, the number of walkers has been defined
each time according to the CAS under study and the
multireference character of the system. This has brought from
aminimumof 105 walkers in theN2 case for the CAS(10,8) up to
a maximum of 108 walkers used in the ozone case. Moreover, the
deterministic space in the semistochastic method was chosen to
be represented by the most populated 1000 Slater determinants
inmost of the calculations. Larger values were considered only in
a few sensitive cases. Additionally, the initiator method is used
by default in all calculations. The set of initiator determinants is
not fixed during a calculation but can be enlarged when a non-
initiator determinant reaches a population which is larger than a
preset value. The latter has been defaulted to 3 in all our
calculations. Finally, we also made use of the adaptive-shift
method55 in FCIQMC, in order to deal with the ozone case. The

Figure 1. Potential energy curves for N2 with (10,8) active space in cc-pVTZ basis.

Figure 2. Potential energy curves for N2 with (10,16) active space in cc-pVTZ basis.
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trial space that defines our new shift S was composed of 1000
determinants.
The sizes of the active spaces are denoted in the usual manner

as (nelectrons,norbitals).
3.2. Nitrogen (N2). First, we examine the triple-bond-

breaking process in the N2 molecule. Figure 1 shows PECs
calculated using TDCSD and TCCSD with the CI coefficients
extracted from the deterministic and the stochastic FCI. The
active space contains 10 electrons in 8 orbitals, (10,8), and the 8
active orbitals represent the complete valence space of the
molecule with two σ, two π, two σ*, and two π* orbitals, given by
the 2s and 2p orbitals from both of the atoms. It is evident from
Figure 1 that the TDCSD curve is much closer to the reference
MRCI+Q curve than TCCSD, especially further away from the
equilibrium geometry. Note that the TDCSD curve is on top of
the DCSD curve up to a distance of 3.4 bohr, i.e., in the region
where DCSD has been shown to be very accurate in the previous
studies.27,29 However, for larger distances the error in DCSD
increases while the TDCSD curve stays close to the reference
curve. As expected, the FCI- and FCIQMC-tailored calculations
yield the same results.
In Figure 2, TDCSD and TCCSD PECs with a larger active

space (10,16) originating from CASSCF natural orbitals
(CASSCF NOs) and DCSD natural orbitals (DCSD NOs)
are presented. The additional 8 virtual orbitals in the active space
of the CASSCF calculations correspond to 3s and 3p orbitals for

short distances, gradually acquiring the 3d character for larger
distances. The DCSD natural orbitals in the active space are also
composed of s, p, and d atomic orbitals. Evidently, in this case
TDCSD and TCCSD based on the CASSCF defined active
space yield considerably more accurate results than the ones
based on the DCSD-NOs active space. Accidentally, the
TDCSD curve using DCSD NOs is very close to the TCCSD
curve using CASSCF NOs, which demonstrates that the
accuracy of the correlated approach here is of similar importance
as the quality of the active space. As in the previous example with
the smaller active space, the TDCSD method outperforms
TCCSD for both choices of the active orbitals. Additionally, the
CASSCF-based TDCSD curve is much more parallel to the
MRCI+Q reference curve than other methods, with non-
parallelity errors of 5 mHa in the region between 1.4 and 5 bohr
(compared to nearly 15 mHa for TCCSD on CASSCF orbitals).
In Figure 3, various choices of the active space for TDCSD are

compared, all using DCSD natural orbitals. Additionally to the
previously used (10,16), a larger active space (10,26) is tested
with the size of a double-ζ basis set. This active space includes a
large portion of the dynamical correlation, and the TDCSD part
of the calculation acts as a basis set correction. As a result the
PEC from these calculations is very accurate and lies on top of
the MRCI+Q (10,16) curve. Besides, results from the TDCSD
method with a buffer region for a partial relaxation of the
amplitudes are shown. In this approach we utilize the CI

Figure 3. Comparison of N2 PECs from various TDCSD methods with MRCI+Q and the subtractive embedding in cc-pVTZ basis.

Figure 4. Potential energy curves for N2 with the F12 correction in cc-pVTZ basis.
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coefficients from a FCIQMC(10,26) calculation, but only from
a smaller region of (10,16), denoted as FCIQMC(10,26)(10,16)-
TDCSD. As a result, the amplitudes from the intermediate
region influence the CI coefficients but still are relaxed in the
subsequent DCSD calculation. As can be seen in Figure 3, PEC
from calculations with the buffer region lies between TDCSD
with (10,16) and (10,26) PECs. Evidently, in this case the
relaxation of the amplitudes in the buffer region is less important
than the accuracy of the method in this region. However, we also
see that inclusion of some screening effects outside of the active
space can lead to large improvements in the accuracy. This will
be investigated further in a forthcoming publication.
The remaining curves in Figure 3, FCIQMC-

(10,16)+ΔDCSD and FCIQMC(10,26)+ΔDCSD, are ob-
tained with a subtractive embedding scheme of the FCI or
FCIQMC methods into DCSD,

E E E EFCI DCSD DCSD DCSD
AS

FCI
AS= − ++Δ (5)

The energies from FCIQMC(10,16)+ΔDCSD are much higher
than from the equally sized TDCSD calculations, which clearly
demonstrates the importance of the coupling between the active
region and the rest. However, the results from the subtractive
embedding are much closer to the corresponding TDCSD
values if larger active spaces are used, as can be seen from the
(10,26) curves.

In the last graph on N2, Figure 4, the F12b basis set
correction53,54 is applied to two TDCSD calculations with
different active spaces and to FCIQMC in the full cc-pVTZ basis
set; see eq 4. The TDCSD and FCIQMC F12b results match
very nicely the MRCI+Q-F12 numbers around the equilibrium;
however, they start to deviate much more for stretched
geometries. One of the problems is certainly the usage of
contravariant amplitudes instead of Lagrange multipliers in eq 4,
which in the case of ODCDF12b calculations led to errors of
around 10 mHa for the dissociated N2 geometries.54 Another
source of the discrepancy is the F12 approximations themselves,
as can be seen from the TDCSDF12a curve, which uses a different
F12 approximation and is extremely close to the reference
MRCI+Q-F12 PEC.

3.3. Fluorine (F2).Now we turn our attention to the PEC of
the F2 molecule. The first active space considered here
corresponds to the full-valence active space, (14,8), composed
of 2s and 2p atomic orbitals and, therefore, contains only one
single virtual spatial orbital. Thus, only single and double
excitation are possible inside of this active space, and CCSD and
DCSD are in fact equivalent to FCI there. As has to be expected,
the accuracy of the tailored methods is very low with such
limited active space; see Figure 5. In fact, even MRCI+Q with
this active space is not very accurate compared to the CCSDTQ
reference, although the curve is much more parallel to the
reference than from the tailored methods. The TCCSD curve is

Figure 5. Potential energy curves for F2 with (14,8) active space in cc-pVTZ basis.

Figure 6. Potential energy curves for F2 with (14,16) active space in cc-pVTZ basis.
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very close to MRCI+Q around the equilibrium geometry but is
too high for stretched geometries. The TDCSD curve is too low
at the equilibrium, and comparing to the DCSD curve, it is
obvious that adding some relaxation or screening to the active
region would improve the results.
The results are much better in Figure 6, where a larger (14,16)

active space is considered. It includes eight more virtual orbitals,
composed in the case of CASSCFmostly of the 3s and 3p atomic

orbitals, and with somewhat larger 3d contributions in the case
of DCSD natural orbitals. Here, in contrast to the N2 molecule,
tailored methods on top of the DCSD NOs are much closer to
the reference than the ones based on the CASSCF NOs. And,
again, TDCSD performs noticeably better than TCCSD using
any of the representations.
In Figure 7, TDCSDPECusing a further enlarged active space

of the double-ζ size, (14,26), is presented. Even though it is still

Figure 7. Comparison of F2 PECs from various TDCSD methods with CCSDTQ in cc-pVTZ basis.

Figure 8. Potential energy curves for F2 with the F12 correction in cc-pVTZ basis.

Figure 9. Potential energy curves for H2O with (8,6) active space in cc-pVTZ basis.
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shifted compared to the CCSDTQ curve, it runs much more
parallel to the reference than the (14,16) PEC. The (14,26) and
(14,16) curves agree quite well at the equilibrium geometry and
start to deviate more along the dissociation. As expected, the
FCI and FCIQMC values are essentially equal.
In Figure 8, PECs from explicitly correlated methods are

shown. Again, the PEC from TDCSD with the (14,26) active

space is consistent with the FCIQMC curve and shifted up by a
constant.

3.4. Water Molecule (H2O). Next, we evaluate the double-
bond-breaking process in the H2O molecule. The two O−H σ
bonds are stretched simultaneously while the bond angle is kept
fixed to 107.6°. We again start with a full-valence active space
(8,6) with 1s hydrogen orbitals and 2s and 2p oxygen orbitals.

Figure 10. Potential energy curves for H2O with (8,18) active space in cc-pVTZ basis.

Figure 11. Potential energy curves for H2O with the F12 correction in cc-pVTZ basis.

Figure 12. Potential energy curves for H-chain with (10,10) active space in the cc-pVTZ basis set.
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The corresponding PECs are presented in Figure 9. All curves
overlap in the equilibrium region; however, the TDCSD curve is
too low in the intermediate region compared to the reference
MRCI+Q curve, while the TCCSD curve is too high in the
dissociation region. Thus, one has to increase the active space
size in order to get accurate results over the whole potential
energy curve.
In Figure 10, calculations for a larger (8,18) space with 12

additional virtual orbitals given by the 3s and 3p orbitals of the
oxygen and the 2s and 2p orbitals of the hydrogen atoms are
shown. With this active space the TDCSD, TCCSD, and MRCI
+Q curves are indistinguishable from each other on this scale.
Adding the explicit correlation to the methods does not change
the picture in this case: the TDCSDF12b curve is still essentially
on top of the MRCI+Q-F12 curve; see Figure 11.
3.5. H-Chain (H10). The uniform dissociation of a 1D

hydrogen chain is another challenging problem for the
conventional coupled cluster methods. Here, we focus on a
simple case of 10 hydrogen atoms, and the active space
corresponds to the minimal active space of 10 electrons in 10
orbitals. As evident from Figure 12, in this example TDCSD and
TCCSD methods produce very similar results, and all tailored
methods overestimate the correlation in the intermediate region
compared to the reference MRCI+Q values, with the TDCSD
and TCCSD on DCSDNOs showing a slight improvement with
respect to the CASSCF NOs ones. Compared to the simple

DCSD approach, the tailored DCSD is in fact less accurate,
which can be attributed again to the frozen amplitudes in the
active space. The corresponding second-order CAS perturba-
tion theory (CASPT2) results are much less accurate around the
equilibrium but approach the MRCI+Q reference results for
larger separations.
In Figure 13, TDCSD PEC using a larger active space with 10

more virtual DCSD natural orbitals with the largest occupation
numbers are presented (FCIQMC(10,20)-TDCSD). However,
the results become only slightly better compared to (10,10)
numbers. Putting the added space instead to the buffer region
(FCIQMC(10,20)(10,10)-TDCSD) results in a small further
improvement, which suggests that the main problem here is the
missing relaxation of the frozen amplitudes. Interestingly, a
simple subtractive embedding procedure (FCIQMC-
(10,10)+ΔDCSD) yields much better results in this case, with
a perfect overlap with the MRCI+Q curve.

3.6. Ethylene (C2H4). Another case of study of processes
governed by static electron correlation is here given by the
torsion of ethylene. While at the equilibrium the wave function
of this molecule is dominated by a single determinant, at the
transition state the bonding π and antibonding π* orbitals
become degenerate, and two equally weighted determinants
represent the main contribution to the wave function. Potential
energy curves corresponding to the rotation along the C−C axis
are presented in Figure 14. The full-valence active space (12,12)

Figure 13. Comparison of the H-chain PECs from various TDCSD methods with MRCI+Q and subtractive embedding in cc-pVTZ basis.

Figure 14. Potential energy curves for C2H4 with (12,12) active space in cc-pVTZ basis.
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has been employed, and as in previous studies,29,36 the geometry
is relaxed at the DCSD level for each fixed torsion angle.
Evidently, results from both tailored methods are in a good
agreement with MRCI+Q, both being quite parallel to the
reference curve. The nonparallelity error of the TDCSD curve
amounts tomerely 0.5mHa and of the TCCSD to 1.4mHa, with
respect to MRCI+Q.
As in the water molecule case, adding the explicit correlation

to the methods does not change the picture: curves from the
tailored methods remain parallel to the MRCI+Q-F12 curve,
and the TDCSDF12b results are essentially on top of the MRCI
+Q-F12; see Figure 15.
3.7. Cyclobutadiene (C4H4). Cyclobutadiene (CBD) has

been studied for many decades70−73 and it has been shown
already in early works that its ground state is a closed-shell
singlet in a planar rectangle geometry.74−76 Here, we focus on
the automerization reaction coming from the double-bond
flipping of two equivalent rectangular singlets, which exhibits a
challenging wave function transition in its square transition-state
geometry. The corresponding potential energy curves can be
found in Figure 16. The molecular geometries are obtained as a
linear interpolation of the optimized structures from ref 73, with
the internal coordinates li calculated as li(λ) = (1 − λ)li(rt) +
λli(sq) and with λ varying in a range of 0−1 in steps of 0.2. Here,
li(sq) and li(rt) represent the optimized parameters in the square
and rectangle geometries, respectively, and correspond to the
two different C−C bond distances (l1(rt) = 1.349 Å; l2(rt) =

1.562 Å; l1(sq) = l2(sq) = 1.447 Å). The remaining internal
coordinates, i.e., the H−C−C angle (135.0°), H−C distance
(1.076 Å), and C−C−C angle (90.0°), are kept frozen. The
CASSCF (12,12) active space employed here includes
molecular orbitals related to the C−C bonds.
CCSD, CCSD(T), and DCSD produce qualitatively wrong

curves, although DCSD noticeably improves upon CCSD in the
absolute energies as well as in the barrier height, cf., Table 1. The
tailored methods show a trend comparable to the MRCI+Q
curve, and the absolute energy of TDCSD matches well the
CCSD(T) energy in the equilibrium geometry.
Energy barrier heights of the double-bond shift are listed in

Table 1. The experimental value spreads over a wide range from
1.6 to 10 kcal/mol,77,78 and one of the best theoretical estimates
from the multireference average-quadratic coupled cluster (MR-
AQCC) amounts to 8.8 kcal/mol.73 The tailored methods yield
very accurate barrier heights, with the one from TCCSD
coinciding with the MRCI+Q result, and the one from TDCSD
coinciding with MR-AQCC73 and very close to the multi-
reference Mukherjee’s CCSD(T) (MR-MkCCSD(T)).81 The
results of TCCSD and TDCSD using (12,12) CASSCF improve
upon previous TCCSD calculations employing restricted
Hartree−Fock (RHF) orbitals and (2,2) active space.79

3.8. Ozone (O3). The ozone molecule is well-known to be
difficult to describe accurately without high-order excitations or
multireference methods. The electronic structure of O3 was first
investigated decades ago, with the pioneering studies of Hay et

Figure 15. Potential energy curves for C2H4 with the F12 correction in cc-pVTZ basis.

Figure 16. Potential energy curves for C4H4 with (12,12) active space in cc-pVTZ basis.
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al.66,67 Since then many further investigations have been
focusing on the understanding of this system with respect to
structural optimizations and vibrational frequencies,68,69,82−89

including an application of the TCCSDmethod.21 The potential
energy surface of ozone has two ground-state minima, the global
open minimum and the local ring minimum.66,90,91 The latter
was shown to exist only by theoretical calculations, and no
experimental evidence is available so far. Further, it was
demonstrated by the CI wave function analysis in earlier
works66,91 that both the open and the ring isomers have a large
multireference character, making this system a nontrivial
problem for single-reference methods. The transition state
between these two minima has an even larger multireference
character, and therefore an accurate prediction of the energy
differences between these geometrical structures is especially
difficult without high excitations or a multireference treatment,
which would ensure a balanced description. In the present work,
we use three geometries, the open minimum (OM), the ring
minimum (RM), and the transition state (TS), taken from ref
92. According to the previous studies,88,92 in the transition-state
geometry the ground and the first excited state are almost
degenerate with the excitation energy of 0.01−0.1 eV; therefore,
we have calculated both states and denote them as TS and TS2,
ordered as in ref 88.
As before, we start with the full-valence active space of ozone,

(18,12), which is defined either byCASSCF or byDCSD natural
orbitals. The absolute energies of OM and relative energies of
TS, TS2, and RM with respect to OM are shown in Table 2. For
this confined active space the tailored methods based on the
CASSCF natural orbitals work very well. Deviations in the
relative energies from the reference values of Chien et al.,92 given
by the semistochastic Heath−Bath CI (SHCI) method, are well
below 0.1 eV. The RM−OM gap differs from the SHCI value
only by 0.02 eV in the case of TDCSD and by 0.04 eV in the case
of TCCSD. The deviations for the TS states are slightly larger:
0.03 and 0.06 eV for the first state and 0.04 and 0.04 eV for the
second state, for TDCSD and TCCSD, respectively. Addition-
ally, the energetic order of the states is swapped for both tailored
methods. Using the DCSD natural orbitals to define the active
space increases the errors in most of the relative energies.
However, even then the errors are much smaller than from pure
DCSD and CCSD calculations, and the accuracy can be
improved further by increasing the active space.

For large active-space calculations, we have used the DCSD
natural orbitals and selected a (18,39) active space of the
double-ζ size, i.e., representing again a basis-set-correction type
approach. The results can be found in Table 2. The absolute
energies from the (18,39)-tailored methods agree well with
high-level coupled-cluster results. For the OM geometry, the
TDCSD(18,39) total energy turned out to be almost exactly in
the middle of the CCSDT (−225.1317 Ha) and CCSDTQ
(−225.1378 Ha) energies. The relative energies of TDCSD and
TCCSD agree with each other within the given precision and are
very close to the SHCI reference values with discrepancies of
only 0.01−0.02 eV.

4. CONCLUSIONS
We have implemented and benchmarked the tailored distin-
guishable cluster method and combined it with the stochastic
FCI (FCIQMC) solver, facilitating large active spaces.
The TDCSD calculations show an evident improvement to

the standard DCSD in six representative cases, N2, F2, H2O,
C2H4, C4H4, and O3 potential energies. Compared to a simple
subtractive embedding, TDCSD provides more accurate
absolute energies in the nitrogen case, especially for smaller
active spaces. However, DCSD still produces considerably
better results for the uniform dissociation of a hydrogen chain,
even if large active spaces are used in TDCSD, and a correction
from the subtractive embedding makes the results essentially
exact. For the ozone molecule, FCIQMC-TDCSD and
FCIQMC-TCCSD using an active space (18,39) produce very
accurate isomerization energies, which differ only by 0.01−0.02
eV from the reference values.
In most of the cases a tailored distinguishable cluster is

noticeably more accurate than the tailored coupled cluster.
Obviously, the larger the active space is, the less pronounced is
the difference; however, the higher accuracy of DCSD will be
especially important for larger systems with large inactive spaces.
Additionally, we have investigated accuracy of the tailored

methods with active spaces defined by most active DCSD
natural orbitals. Depending on the system and the size of the
active space, the accuracy is quite comparable to CASSCF-
defined active spaces. These findings allow for faster and more

Table 1. Energy Barrier Heights (ΔE) of the Automerization
Reaction of Cyclobutadiene

method ΔE (kcal/mol)

DCSD 18.2
CCSD 22.6
CCSD(T) 18.1
TDCSD-CASSCF NOs 8.8
TCCSD-CASSCF NOs 9.2
MRCI+Q 9.2

TCCSD-(2,2) RHF orbitals79 12.9
TCCSD(T)-(2,2) RHF orbitals79 7.0
RMR CCSD(T)80 7.5
MR-MkCCSD(T)81 8.9
MR-AQCC73 8.8

experimental range77,78 1.6−10

Table 2. (T)DCSD and (T)CCSD Absolute Energies of the
Ozone in the Open Minimum Geometry (OM) and Relative
Energies of the Transition States (TS and TS2) and the Ring
Minimum (RM) with Respect to OMa

method OM (Ha)
TS−OM
(eV)

TS2−OM
(eV)

RM−OM
(eV)

DCSD −225.1204 2.33 2.75 1.11
CCSD −225.0838 2.42 3.13 0.95

FCI(18,12) Using CASSCF NOs
TDCSD −225.1440 2.44 2.38 1.28
TCCSD −225.1258 2.47 2.46 1.26

FCI(18,12) Using DCSD NOs
TDCSD −225.1413 2.39 2.59 1.20
TCCSD −225.1233 2.42 2.66 1.19

FCIQMC(18,39) Using DCSD NOs
TDCSD −225.1347 2.43 2.44 1.29
TCCSD −225.1337 2.43 2.44 1.29

SHCI92 2.41 2.42 1.30
aThe SHCI values are taken from ref 92.
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black-box type calculations, especially if large active spaces are
involved.
Furthermore, an explicit correlation correction for tailored

methods has been introduced and benchmarked, yielding
remarkably accurate results along the H2O double-dissociation
and the C2H4 torsion curves, overlapping with the reference
MRCI+Q-F12 curves. Besides, this F12 correction represents a
new type of explicitly correlated FCIQMC method
(FCIQMCF12) when the active space spans the full orbital space.
A simple buffer region test applied here demonstrated the

importance of a relaxation of the amplitudes in the active space.
There are various possibilities of the active-space relaxa-
tion,93−95 which can be applied to the TDCSD (and TCCSD)
methods. Higher order excitations can also be easily extracted
from FCIQMC calculations and employed to improve results
further.
Our present implementation is limited to closed-shell

molecular systems; however, this is a purely technical limitation,
and an unrestricted open-shell version is currently being
developed. Additionally, an extension to linear-scaling local-
correlation-tailored methods is possible,96 which greatly
increases the applicability of the approach.
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