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ABSTRACT
We recently proposed a novel approach to converging electronic energies equivalent to high-level coupled-cluster (CC) computations by
combining the deterministic CC(P;Q) formalism with the stochastic configuration interaction (CI) and CC Quantum Monte Carlo (QMC)
propagations. This article extends our initial study [J. E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)], which focused
on recovering the energies obtained with the CC method with singles, doubles, and triples (CCSDT) using the information extracted from full
CI QMC and CCSDT-MC, to the CIQMC approaches truncated at triples and quadruples. It also reports our first semi-stochastic CC(P;Q)
calculations aimed at converging the energies that correspond to the CC method with singles, doubles, triples, and quadruples (CCSDTQ).
The ability of the semi-stochastic CC(P;Q) formalism to recover the CCSDT and CCSDTQ energies, even when electronic quasi-degeneracies
and triply and quadruply excited clusters become substantial, is illustrated by a few numerical examples, including the F–F bond breaking in
F2, the automerization of cyclobutadiene, and the double dissociation of the water molecule.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045468., s

I. INTRODUCTION
One of the main goals of quantum chemistry is to provide

an accurate and systematically improvable description of many-
electron correlation effects needed to determine molecular potential
energy and property surfaces and understand chemical reactivity
and various types of spectroscopy. In searching for the best solutions
in this area, the size extensive methods based on the exponential
wave function ansatz1,2 of coupled-cluster (CC) theory,3–7

∣Ψ⟩ = eT ∣Φ⟩, (1)

where

T =
N

∑
n=1

Tn (2)

is the cluster operator, Tn is the n-body component of T, N
is the number of correlated electrons, and |Φ⟩ is the reference

determinant, and their extensions to excited, open-shell, and
multi-reference states8–12 are among the top contenders. In this
study, we focus on the higher-ranking members of the single-
reference CC hierarchy beyond the basic CC singles and doubles
(CCSD) level, where T is truncated at T2,13–16 especially on the CC
approach with singles, doubles, and triples (CCSDT), where T is
truncated at T3,17–19 and the CC approach with singles, doubles,
triples, and quadruples (CCSDTQ), where T is truncated at T4.20–22

This is motivated by the fact that in a great many cases relevant to
chemistry, including molecular properties at equilibrium geome-
tries, multi-reference situations involving smaller numbers of
strongly correlated electrons, as in the case of bond breaking and
formation in the course of chemical reactions, noncovalent inter-
actions, and photochemistry, the single-reference CCSD, CCSDT,
CCSDTQ, etc. methods and their equation-of-motion (EOM)23–30

and linear response31–39 extensions rapidly converge to the exact,
full configuration interaction (FCI) limit, allowing one to incorpo-
rate the relevant many-electron correlation effects in a conceptually
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straightforward manner through particle–hole excitations from a
single Slater determinant defining the Fermi vacuum without loss of
accuracy as the system becomes larger characterizing truncated CI
methods.10

The convergence of the single-reference CCSD, CCSDT, CCS-
DTQ, etc. hierarchy toward FCI in situations other than larger num-
bers of strongly entangled electrons is fast, but costs of the post-
CCSD computations needed to achieve a quantitative description,
which are determined by the iterative n3

on5
u steps in the CCSDT case

and the iterative n4
on6

u steps in the case of CCSDTQ, where no (nu) is
the number of occupied (unoccupied) correlated orbitals, are usu-
ally prohibitively expensive. This is why part of the CC method
development effort has been devoted to finding approximate ways
of incorporating higher-than-two-body components of the cluster
operator T, i.e., Tn components with n > 2, and the analogous
higher-order components of the EOMCC excitation, electron-
attachment, and electron-detachment operators, which could reduce
enormous computational costs of the CCSDT, CCSDTQ, and
similar schemes, while eliminating failures of the CCSD[T],40

CCSD(T),41 CCSDT-1,42,43 CC3,44,45 and other perturbative CC
approaches (see Ref. 10 for a review) that fail when bond breaking,
biradicals, and other typical multi-reference situations in chemistry
are examined.8,10,46–48 In fact, the analogous effort has been taking
place in other areas of many-body theory, such as studies of nuclear
matter, where a systematic, computationally efficient, and robust
incorporation of higher-order many-particle correlation effects is
every bit as important as in the case of electronic structure theory
and where the quantum-chemistry-inspired CC and EOMCC meth-
ods, thanks, in part, to our group’s involvement,49–55 have become
quite popular (see, e.g., Ref. 56 and references therein). While
substantial progress in the above area, reviewed, for example, in
Refs. 10, 48, and 57, has already been made, the search for the
optimum solution that would allow us to obtain the results of
the full CCSDT, full CCSDTQ, or similar quality at the fraction
of the cost and without having to rely on perturbative concepts
or user- and system-dependent ideas, such as the idea of active
orbitals to select higher-than-two-body components of the cluster
and EOMCC excitation operators,48 continues.

In order to address this situation, we have started exploring
a radically new way of converging accurate electronic energetics
equivalent to those obtained with the high-level CC approaches
of the full CCSDT, full CCSDTQ, and similar types, at the small
fraction of the computational cost and preserving the black-box
character of conventional single-reference methods, even when
higher-than-two-body components of the cluster and excitation
operators characterizing potential energy surfaces along bond
stretching coordinates become large.58 The key idea of the approach
suggested in Ref. 58, which we have recently extended to excited
states,59,60 is a merger of the deterministic formalism, abbrevi-
ated as CC(P;Q),57,61–63 which enables one to correct energies
obtained with conventional as well as unconventional truncations
in the cluster and EOMCC excitation operators for any category
of many-electron correlation effects of interest, with the stochastic
FCI Quantum Monte Carlo (FCIQMC)64–67 and CC Monte Carlo
(CCMC)68–71 methods (see Refs. 72–74 for alternative ways of com-
bining FCIQMC with the deterministic CC framework). As shown
in Refs. 58 and 60, where we reported preliminary calculations aimed
at recovering full CCSDT and EOMCCSDT26–28 energetics, the

resulting semi-stochastic CC(P;Q) methodology, using the FCIQMC
and CCSDT-MC approaches to identify the leading determinants or
cluster amplitudes in the wave function and the a posteriori CC(P;Q)
corrections to capture the remaining correlations, rapidly converges
to the target energetics based on the information extracted from
the early stages of FCIQMC or CCSDT-MC propagations. If con-
firmed through additional tests and comparisons involving various
QMC and CC levels, the merger of the deterministic CC(P;Q) and
stochastic CIQMC and CCMC ideas, originally proposed in Ref. 58,
may substantially impact accurate quantum calculations for many-
electron and other many-fermion systems, opening interesting new
possibilities in this area.

The present study is our next step in the development and
examination of the semi-stochastic CC(P;Q) methodology. In this
work, we extend our initial study,58 which focused on recover-
ing the full CCSDT energetics based on the information extracted
from the FCIQMC and CCSDT-MC propagations, to the CIQMC
methods truncated at triples (CISDT-MC) or triples and quadru-
ples (CISDTQ-MC), which may offer significant savings in the
computational effort compared to FCIQMC and which are for-
mally compatible with the CCSDT and CCSDTQ excitation man-
ifolds we would like to capture. We also report our initial results
of the semi-stochastic CC(P;Q) calculations aimed at converging
the full CCSDTQ energetics. The ability of the semi-stochastic
CC(P;Q) approaches to recover the CCSDT and CCSDTQ ener-
gies based on the truncated CISDT-MC and CISDTQ-MC prop-
agations, even when electronic quasi-degeneracies and T3 and T4
clusters become substantial, is illustrated using the challenging cases
of the F–F bond breaking in F2, the automerization of cyclobu-
tadiene, and the double dissociation of the water molecule as
examples.

II. THEORY AND ALGORITHMIC DETAILS
As pointed out in the Introduction, the semi-stochastic

CC(P;Q) approach proposed in Ref. 58 is based on combining the
deterministic CC(P;Q) framework, developed mainly in Refs. 57,
61, and 63, with the CIQMC and CCMC ideas that were origi-
nally laid down in Refs. 64, 65, and 68. Thus, we divide this section
into two subsections. In Sec. II A, we summarize the key elements
of the deterministic CC(P;Q) formalism, focusing on the ground-
state problem relevant to the calculations reported in this study.
Section II B provides information about the semi-stochastic
CC(P;Q) methods developed and tested in this work, which aim at
converging the CCSDT and CCSDTQ energies with the help of the
FCIQMC, CISDT-MC, and CISDTQ-MC propagations.

A. Basic elements of the ground-state CC(P ;Q )
formalism

The CC(P;Q) formalism has emerged out of our interest in gen-
eralizing the biorthogonal moment energy expansions, which in the
past resulted in the completely renormalized (CR) CC and EOMCC
approaches, including CR-CC(2,3),75–79 CR-EOMCC(2,3),77,80

δ-CR-EOMCC(2,3),81 and their higher-order extensions,52,63,82–84

such that one can correct the CC/EOMCC energies obtained with
unconventional truncations in the cluster and EOMCC excitation
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operators, in addition to the conventional ones at a given many-
body rank, for essentially any category of many-electron correlation
effects of interest. The CC(P;Q) framework is general, i.e., it applies
to ground as well as excited states, but since this work deals with
the calculations that aim at recovering the ground-state CCSDT
and CCSDTQ energetics, in the description below, we focus on the
ground-state CC(P;Q) theory.

According to the formal CC(P;Q) prescription, the ground-
state energy of a N-electron system is determined in two steps. In
the initial, iterative, CC(P) step, we solve the CC equations in the
subspace H (P) of the N-electron Hilbert space H. We assume that
the subspace H (P), which we also call the P space, is spanned by
the excited determinants |ΦK⟩ = EK |Φ⟩ that together with the refer-
ence determinant |Φ⟩ provide the leading contributions to the target
ground state |Ψ⟩ (EK designates the usual elementary particle–hole
excitation operator generating |ΦK⟩ from |Φ⟩). In other words, we
approximate the cluster operator T in Eq. (1) by

T(P) = ∑
∣ΦK⟩∈H

(P)
tKEK (3)

and solve the usual system of CC equations,

MK(P) = 0, ∣ΦK⟩ ∈H (P), (4)

where

MK(P) = ⟨ΦK ∣H
(P)
∣Φ⟩ (5)

are the generalized moments of the P-space CC equations85–87 and

H(P) = e−T
(P)
HeT

(P)
= (HeT

(P)
)C (6)

is the relevant similarity-transformed Hamiltonian, for the cluster
amplitudes tK [subscript C in Eq. (6) designates the connected oper-
ator product]. Once the cluster operator T(P) and the ground-state
energy

E(P) = ⟨Φ∣H(P)∣Φ⟩ (7)

that corresponds to it are determined, we proceed to the second
step of CC(P;Q) considerations, which is the calculation of the non-
iterative correction δ(P;Q) to the CC(P) energy E(P) that accounts
for the many-electron correlation effects captured by another sub-
space of the N-electron Hilbert space H, designated as H (Q) and
called the Q space, which satisfies the condition H (Q)

⊆ (H (0)
⊕

H (P)
)
⊥, where H (0) is a one-dimensional subspace of H spanned

by the reference determinant |Φ⟩. The formula for the δ(P;Q)
correction is57,58,60,61,63

δ(P;Q) = ∑

∣ΦK⟩∈H
(Q)

rank(∣ΦK⟩)≤min(N(P)0 ,Ξ(Q))

ℓK(P)MK(P), (8)

where integer N(P) defines the highest many-body rank of the
excited determinants |ΦK⟩ relative to |Φ⟩ [rank(|ΦK⟩)] for which

moments MK(P), Eq. (5), are still non-zero and Ξ(Q) is the high-
est many-body rank of the excited determinant(s) |ΦK⟩ included in
H (Q). In practical CC(P;Q) calculations, including those discussed
in Sec. III, the ℓK(P) coefficients entering Eq. (8) are calculated as

ℓK(P) = ⟨Φ∣(1 + Λ(P))H(P)∣ΦK⟩/DK(P), (9)

where 1 is the unit operator,

Λ(P) = ∑
∣ΦK⟩∈H

(P)
λK(EK)† (10)

is the hole–particle de-excitation operator defining the bra state
⟨Ψ̃(P)∣ = ⟨Φ∣(1 + Λ(P))e−T

(P)
corresponding to the CC(P) ket state

∣Ψ(P)⟩ = eT
(P)
∣Φ⟩, and

DK(P) = E(P) − ⟨ΦK ∣H
(P)
∣ΦK⟩. (11)

One determines Λ(P), or the amplitudes λK that define it, by solving
the linear system of equations representing the left eigenstate CC
problem10 in the P space, i.e.,

⟨Φ∣(1 + Λ(P))H(P)∣ΦK⟩ = E(P)λK , ∣ΦK⟩ ∈H (P), (12)

where E(P) is the previously determined CC(P) energy. Once the
noniterative correction δ(P;Q) is determined, the CC(P;Q) energy
is obtained as

E(P+Q)
= E(P) + δ(P;Q). (13)

In practice, we often distinguish between the complete version
of the CC(P;Q) theory, designated, following Refs. 58 and 62,
as CC(P;Q)EN, which uses the Epstein–Nesbet-like denominator
DK(P), Eq. (11), in calculating the ℓK(P) amplitudes, and the approx-
imate version of CC(P;Q), abbreviated as CC(P;Q)MP, which relies
on the Møller–Plesset form of DK(P) obtained by replacing H(P) in
Eq. (11) by the bare Fock operator (see, e.g., Refs. 58, 62, and 63).
Both of these variants of the CC(P;Q) formalism are considered in
this study.

We must now come up with the appropriate choices of the
P and Q spaces entering the CC(P;Q) considerations that would
allow us to match the quality of the high-level CC computations
of the CCSDT, CCSDTQ, and similar type at the small fraction
of the cost. As is often the case in the CC work, one could start
from the conventional choices, where the P space H (P) is spanned
by all excited ∣Φa1...an

i1...in ⟩ determinants with the excitation rank
n ≤ mA, where i1, i2, . . . (a1, a2, . . .) designate the spin-orbitals
occupied (unoccupied) in |Φ⟩, and the Q space H (Q) by those
with mA < n ≤ mB, where mB ≤ N. In that case, one ends up with
the well-established CR-CC(mA,mB) hierarchy,52,57,63,75–80,83 includ-
ing the aforementioned CR-CC(2,3) approximation, where mA = 2
and mB = 3, and the related CCSD(2)T

88 (see also Refs. 89–91),
CCSD(T)Λ,92–94 Λ-CCSD(T),95,96 and similar46,47,86,87,97 schemes that
allow one to correct the CCSD energies for triples. The CR-CC(2,3)
method is useful, improving, for example, poor performance of
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CCSD(T) in covalent bond breaking situations57,75–78,83,98,99 and for
certain classes of noncovalent interactions82,100 without a substan-
tial increase in the computational effort, but neither CR-CC(2,3) nor
its CCSD(2)T, CCSD(T)Λ, and Λ-CCSD(T) counterparts [which are
all approximations to CR-CC(2,3)] are free from drawbacks. One
of the main problems with CR-CC(2,3), CCSD(2)T, Λ-CCSD(T),
and other noniterative corrections to CCSD is the fact that, in
analogy to CCSD(T), they decouple the higher-order Tn compo-
nents with n > mA, such as T3 or T3 and T4, from their lower-
order n ≤ mA (e.g., T1 and T2) counterparts. This can result in
substantial errors, for example, when the activation energies and
chemical reaction profiles involving rearrangements of π bonds
and singlet–triplet gaps in certain classes of biradical species are
examined.61–63 The automerization of cyclobutadiene, which is one
of the benchmark examples in Sec. III, provides an illustration
of the challenges the noniterative corrections to CCSD, including
CCSD(2)T and CR-CC(2,3), face when the coupling of the lower-
order T1 and T2 and higher-order T3 clusters becomes significant
(see Ref. 61 for further analysis and additional remarks). One can
address problems of this type by using active orbitals to incor-
porate the dominant higher-than-doubly excited determinants, in
addition to all singles and doubles, in the P space, as in the success-
ful CC(t;3), CC(t,q;3), and CC(t,q;3,4) hierarchy,57,61–63,82,100 which
uses the CC(P;Q) framework to correct the results of the active-
space CCSDt48,101–108 or CCSDtq48,102,103,107,109 calculations for the
remaining T3 or T3 and T4 correlations that were not captured
via active orbitals, but the resulting methods are no longer com-
putational black boxes. The semi-stochastic CC(P;Q) methodology,
introduced in Ref. 58, extended to excited states in Ref. 60, and fur-
ther developed in this work, which takes advantage of the FCIQMC
or truncated CIQMC/CCMC propagations that can identify the
leading higher-than-doubly excited determinants for the inclusion
in the P space, while using the noniterative δ(P;Q) corrections to
capture the remaining correlations of interest, offers an automated
way of performing CC(P;Q) computations without any reference to
the user- and system-dependent active orbitals. The semi-stochastic
CC(P;Q) methods developed and tested in this study are discussed
next.

B. Semi-stochastic CC(P ;Q ) approaches using
FCIQMC and its truncated CISDT-MC
and CISDTQ-MC counterparts

In our original examination of the semi-stochastic CC(P;Q)
framework58 and its recent extension to excited states,60 where we
focused on converging the full CCSDT and EOMCCSDT energetics,
we demonstrated that the FCIQMC and CCSDT-MC approaches
are capable of generating meaningful P spaces for the subse-
quent CC(P)/EOMCC(P) iterations, which precede the determina-
tion of the δ(P;Q) moment corrections, already in the early stages
of the respective QMC propagations. The main objective of this
work is to explore if the same remains true when FCIQMC is
replaced by its less expensive truncated CISDT-MC and CISDTQ-
MC counterparts, in which spawning beyond the triply excited
(CISDT-MC) or quadruply excited (CISDTQ-MC) determinants is
disallowed, and if one can use the CIQMC-driven CC(P;Q) calcula-
tions to converge the higher-level CCSDTQ energetics with similar
efficiency.

The key steps of the semi-stochastic CC(P;Q) algorithm
exploited in this study, which allows us to converge the CCSDT and
CCSDTQ energetics using the P spaces extracted from the FCIQMC
and truncated CISDT-MC and CISDTQ-MC propagations, are as
follows:

1. Initiate a CIQMC run appropriate for the CC method of
interest by placing a certain number of walkers on the ref-
erence state |Φ⟩, which in all of the calculations reported
in this article is the restricted Hartree–Fock (RHF) determi-
nant. Among the CIQMC schemes that can provide mean-
ingful P spaces for the CC(P;Q) calculations targeting the
CCSDT energetics are the FCIQMC approach used in our ear-
lier work58–60 and the CISDT-MC and CISDTQ-MC meth-
ods examined in the present study. If the objective is to
converge the CCSDTQ energetics, one can use FCIQMC
or CISDTQ-MC, which are the two choices pursued in the
present work, but not CISDT-MC, which ignores quadru-
ply excited determinants. As in our earlier semi-stochastic
CC(P)/EOMCC(P) and CC(P;Q) work,58–60 all of the calcu-
lations reported in this article adopted the initiator CIQMC
(i-CIQMC) algorithm, originally proposed in Ref. 65, based on
integer walker numbers, but the procedure discussed here is
flexible and could be merged with other CIQMC techniques
developed in recent years, such as those described in Refs. 67
and 114.

2. After a certain number of CIQMC time steps, called MC iter-
ations, i.e., after some QMC propagation time τ, extract a
list of higher-than-doubly excited determinants relevant to the
CC theory of interest to construct the P space for executing
the CC(P) calculations. If one is interested in targeting the
CCSDT-level energetics, the P space used in the CC(P) iter-
ations consists of all singly and doubly excited determinants
and a subset of triply excited determinants identified by the
underlying FCIQMC, CISDT-MC, or CISDTQ-MC propaga-
tion, where each triply excited determinant in the subset is
populated by at least nP positive or negative walkers. In analogy
to our previous CC(P)/EOMCC(P) and CC(P;Q) studies,58–60

all of the CC(P) and CC(P;Q) computations carried out in this
work use nP = 1. If the goal is to converge the CCSDTQ ener-
getics, the P space for the CC(P) computations is defined as all
singly and doubly excited determinants and a subset of triply
and quadruply excited determinants identified by the under-
lying FCIQMC or CISDTQ-MC propagation, where, again,
each triply and quadruply excited determinant in the sub-
set is populated by a minimum of nP positive or negative
walkers.

3. Solve the CC(P) and left-eigenstate CC(P) equations, Eqs. (4)
and (12), respectively, where E(P) is given by Eq. (7), for the
cluster operator T(P) and the de-excitation operator Λ(P) in the
P space determined in step 2. If the objective is to converge
the CCSDT-level energetics, we define T(P) = T1 + T2 + T(MC)

3
and Λ(P) = Λ1 + Λ2 + Λ(MC)

3 , where T(MC)
3 and Λ(MC)

3 are the
three-body components of T(P) and Λ(P), respectively, defined
using the list of triples identified by the FCIQMC, CISDT-MC,
or CISDTQ-MC propagation at time τ, as described in step 2.
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If one is targeting the CCSDTQ-level energetics, T(P) = T1 +T2

+T(MC)
3 +T(MC)

4 and Λ(P) = Λ1 +Λ2 +Λ(MC)
3 +Λ(MC)

4 , where T(MC)
3

andΛ(MC)
3 are the three-body components andT(MC)

4 andΛ(MC)
4

are the four-body components of T(P) and Λ(P), respectively,
defined using the lists of triples and quadruples identified by
the FCIQMC or CISDTQ-MC propagation at time τ.

4. Use the CC(P;Q) correction δ(P;Q), Eq. (8), to correct the
energy E(P) obtained in step 3 for the remaining correlation
effects of interest, meaning those correlations that were not
captured by the CC(P) calculations performed at the time τ
the list of higher-than-doubly excited determinants entering
the relevant P space was created. If the objective is to converge
the CCSDT-level energetics, the Q space entering the defini-
tion of δ(P;Q) consists of those triply excited determinants
that in the FCIQMC, CISDT-MC, or CISDTQ-MC propaga-
tion at time τ are populated by less than nP positive or neg-
ative walkers (in this study, where nP = 1, the triply excited
determinants that were not captured by the FCIQMC, CISDT-
MC, or CISDTQ-MC propagation at time τ). If the goal is
to recover the CCSDTQ-level energetics, the Q space used to
calculate δ(P;Q) consists of the triply and quadruply excited
determinants that in the FCIQMC or CISDTQ-MC propaga-
tion at time τ are populated by less than nP positive or negative
walkers.

5. Check the convergence of the CC(P;Q) energy E(P+Q), Eq. (13),
obtained in step 4 by repeating steps 2–4 at some later
CIQMC propagation time τ′ > τ. If the resulting energy
E(P+Q) no longer changes within a given convergence thresh-
old, the CC(P;Q) calculation can be stopped. As pointed out
in Refs. 58–60, one can also stop it once the fraction (frac-
tions) of higher-than-doubly excited determinants captured
by the CIQMC propagation relevant to the target CC the-
ory level, included in the P space, is (are) sufficiently large
to obtain the desired accuracy. This is further discussed in
Sec. III, where the numerical results obtained in this study are
presented.

The above semi-stochastic CC(P;Q) algorithm, allowing us to
recover the CCSDT and CCSDTQ energetics using the P spaces
identified with the help of FCIQMC or truncated CISDT-MC
and CISDTQ-MC propagations, has been implemented by modi-
fying our previously developed standalone deterministic CC(P;Q)
codes,57,61,63 which rely on the RHF, restricted open-shell Hartree–
Fock, and integral routines in the GAMESS package,110,111 such
that they could handle the stochastically determined lists of triples
and quadruples, and by interfacing the resulting program with the
i-CIQMC routines available in the HANDE software.112,113 As in our
earlier semi-stochastic CC(P)/EOMCC(P) and CC(P;Q) work,58–60

we rely on the original form of the initiator CIQMC (i-CIQMC)
algorithm proposed in Ref. 65, where only those determinants that
acquire walker population exceeding a preset value na are allowed
to attempt spawning new walkers onto empty determinants, but,
as already alluded to above, one could consider interfacing our
CC(P;Q) framework with the improved ways of converging CIQMC,
such as the adaptive-shift method developed in Refs. 67 and 114.
While the choice of a specific CIQMC algorithm may not be as
critical in the context of CC(P;Q) considerations as in the case

of other applications of QMC techniques, since the only role of
CIQMC propagations in the semi-stochastic CC(P;Q) calculations
is to identify the leading higher-than-doubly excited determinants
for the inclusion in the P space and, as shown in Sec. III and our
previous studies,58,60 moment corrections δ(P;Q) are very efficient
in accounting for the many-electron correlation effects due to the
remaining determinants not captured by CIQMC, we are planning
to integrate our CC(P;Q) codes with the CIQMC methods described
in Refs. 67 and 114 in the future work. It will be interesting to
examine if the excellent performance of the semi-stochastic CC(P;Q)
methods observed in the calculations reported in this article can
be improved further by replacing the i-CIQMC algorithm by better
ways of converging CIQMC.

In the case of the semi-stochastic CC(P;Q) codes aimed at
converging the CCSDT energetics, which we have extended in the
present study by allowing them to work with the CISDT-MC and
CISDTQ-MC approaches, in addition to the previously examined
FCIQMC58–60 and CCSDT-MC58 options, we follow the algorithm
summarized in steps 1–5 without any alterations. In particular, all
of the quantities entering Eq. (8) for the noniterative correction
δ(P;Q) are treated in the present study fully. This is an improve-
ment compared to our original semi-stochastic CC(P;Q) compu-
tations utilizing FCIQMC and CCSDT-MC, reported in Ref. 58,
where we adopted an approximation in which the three-body com-
ponent Λ(MC)

3 of the de-excitation operator Λ(P) used to determine
amplitudes ℓK(P) entering Eq. (8) was neglected. In analogy to
this work, the similarity-transformed Hamiltonian H(P), defining
moments MK(P) and entering the linear system defined by Eq. (12),
which is used to determine Λ(P), was treated in Ref. 58 fully, i.e.,
H(P) employed in the CC(P;Q) calculations aimed at recovering the
CCSDT energetics was defined as (HeT1+T2+T(MC)

3 )C, so that the one-
and two-body components of Λ(P) employed in Ref. 58 were prop-
erly relaxed in the presence of the three-body component T(MC)

3
of the cluster operator T(P) obtained in the preceding CC(P) cal-
culations, but Λ(MC)

3 was neglected. Although all of our numerical
tests to date indicate that this approximation has a small effect on
the results of the semi-stochastic CC(P;Q) calculations utilizing full
and truncated CIQMC and no effect on our main conclusions, we
no longer use it in this work. In other words, all of the calcula-
tions reported in the present study rely on the complete represen-
tations of H(P) and Λ(P) when constructing moments MK(P) and
amplitudes ℓK(P) entering Eq. (8). This means that H(P) and Λ(P)

used to determine the CC(P;Q) correction δ(P;Q) in the calculations
aimed at the CCSDT energetics are defined as (HeT1+T2+T(MC)

3 )C and
Λ1 + Λ2 + Λ(MC)

3 , respectively.
We have, however, introduced an approximation in the semi-

stochastic CC(P;Q) routines that are used to converge the CCSDTQ-
level energetics. Given the pilot nature of these routines, the nonit-
erative correction δ(P;Q) that they produce corrects the E(P) energy,
which is obtained in this case by solving the CC(P) equations in the
space of all singles and doubles and subsets of triples and quadruples
captured by FCIQMC or CISDTQ-MC, for the remaining triples
not included in the P space, but the quadruples contributions to
δ(P;Q) are ignored. This approximation is acceptable since in the
τ =∞ limit, where the P space contains all triples and quadruples,
i.e., the corresponding Q space is empty, the uncorrected CC(P) and
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partially or fully corrected CC(P;Q) calculations recover the CCS-
DTQ energetics. All of our tests to date, including those discussed in
Sec. III, indicate that the convergence of the CC(P;Q) computations,
in which the quadruples component of δ(P;Q) is ignored, toward
CCSDTQ is rapid, even when the T4 effects become significant, so
the above approximation does not seem to have a major effect on the
convergence rate, but we will implement the full correction δ(P;Q)
due to the missing triples as well as quadruples in the future to
examine if one can accelerate convergence toward CCSDTQ even
further.

As explained in Refs. 58 and 60 (see also Ref. 59), the semi-
stochastic CC(P;Q) approaches of the type summarized above offer
a number of advantages. Among them are substantial savings in the
computational effort compared to the parent high-level CC theories
they target and a systematic behavior of the resulting E(P+Q) ener-
gies as τ approaches ∞. The latter feature is a direct consequence
of the fact that if we follow the definitions of the P and Q spaces
introduced in steps 2 and 4 above, the initial, τ = 0, CC(P;Q) ener-
gies are identical to those obtained with CR-CC(2,3) or CR-CC(2,4),
which are approximations to CCSDT and CCSDTQ, respectively,
that account for some T3 [CR-CC(2,3)] or T3 and T4 [CR-CC(2,4)]
correlations. In the τ =∞ limit, the CC(P;Q) energies E(P+Q) become
equivalent to their respective high-level CC parents, which account
for the Tn components with n > 2, such as T3 or T3 and T4, fully,
so that the QMC propagation time τ becomes a parameter connect-
ing CR-CC(2,3) with CCSDT and CR-CC(2,4) with CCSDTQ. In the
case of our current implementation of the semi-stochastic CC(P;Q)
approach aimed at converging the CCSDTQ energetics, where the
quadruples contributions to correction δ(P;Q) are ignored, the ini-
tial, τ = 0, CC(P;Q) energy is equivalent to that obtained with the
CR-CC(2,3) approach, i.e., the QMC propagation time τ connects
CR-CC(2,3) with CCSDTQ. When τ approaches∞, the uncorrected
CC(P) energies E(P) converge to their CCSDT and CCSDTQ parents
as well, but the convergence toward CCSDT and CCSDTQ is in this
case slower, since the CC(P) energies at τ = 0 are equivalent to those
of CCSD, which has no information about the Tn components with
n > 2, and, as shown in our earlier work,58,60 and as clearly demon-
strated in the present study, the CC(P;Q) corrections δ(P;Q) greatly
accelerate the convergence toward the target CC energetics. The
above relationships between the semi-stochastic CC(P) and CC(P;Q)
approaches and the deterministic CCSD, CR-CC(2,3)/CR-CC(2,4),
and CCSDT/CCSDTQ theories are also helpful when debugging the
CC(P) and CC(P;Q) codes.

As far as the savings in the computational effort offered by the
semi-stochastic CC(P;Q) methods, when compared to their high-
level CC parents, such as CCSDT or CCSDTQ, are concerned, they
were already discussed in Refs. 58 and 60, so here we focus on the
information relevant to the calculations discussed in Sec. III. There
are three main factors that contribute to these savings. First, the
computational times associated with the early stages of the CIQMC
walker propagations, which are sufficient to recover the parent
CCSDT or CCSDTQ energetics to within small fractions of a milli-
hartree when the semi-stochastic CC(P;Q) framework is employed,
are very short compared to the converged CIQMC runs. They are
already short when one uses FCIQMC, and they are even shorter
when one replaces FCIQMC by the CISDT-MC and CISDTQ-MC
truncations. As further elaborated in Sec. III, the convergence of the
semi-stochastic CC(P;Q) calculations toward the parent CCSDT and

CCSDTQ energies is so fast that the underlying CIQMC computa-
tions use much smaller walker populations than those required to
converge the CIQMC propagations. They are small when one uses
FCIQMC, and they become even smaller when one relies on the
truncated CISDT-MC and CISDTQ-MC approaches in the CC(P;Q)
runs.

Second, the CC(P) calculations using small fractions of higher-
than-doubly excited determinants, which is how the P spaces used
in these calculations look like when the early stages of the CIQMC
walker propagations are considered, are much faster than the par-
ent CC computations. For example, when the most expensive
⟨Φabc

ijk ∣[H,T3]∣Φ⟩ or ⟨Φabc
ijk ∣[H

(2),T3]∣Φ⟩ contributions to the CCSDT

equations, where H(2) = e−T1−T2HeT1+T2 , are isolated and imple-
mented using programming methods similar to those exploited in
selected CI algorithms (rather than the usual diagrammatic tech-
niques that assume continuous excitation manifolds labeled by all
occupied and all unoccupied orbitals), one can accelerate their deter-
mination by a factor of up to (D/d)2, where D is the number of all
triples and d is the number of triples included in the P space, cap-
tured with the help of CIQMC propagations. Other contributions to
the CCSDT equations that involve T3 or the projections on the triply
excited determinants, such as ⟨Φab

ij ∣[H,T3]∣Φ⟩ and ⟨Φabc
ijk ∣[H,T2]∣Φ⟩,

may offer additional speedups, on the order of (D/d). Our cur-
rent CC(P) codes are still in the pilot stages, but the speedups
on the order of (D/d) in the determination of the most expensive
⟨Φabc

ijk ∣[H,T3]∣Φ⟩ (or ⟨Φabc
ijk ∣[H

(2),T3]∣Φ⟩) terms are attainable. Simi-
lar remarks apply to the CC(P)/CC(P;Q) calculations aimed at con-
verging the CCSDTQ energetics, where one can considerably speed
up the determination of the most expensive ⟨Φabcd

ijkl ∣[H,T4]∣Φ⟩ or

⟨Φabcd
ijkl ∣[H

(2),T4]∣Φ⟩ contributions and other terms containing the
T3 and T4 clusters and the projections on the triply and quadruply
excited determinants. It should also be noted that the CC(P) calcula-
tions do not require storing the entire T3 and T4 vectors. The T(MC)

3
and T(MC)

4 operators use much smaller numbers of amplitudes than
their full T3 and T4 counterparts.

Third, the computation of the noniterative correction δ(P;Q) is
much less expensive than a single iteration of the target CC calcu-
lation. In the case of the CC(P;Q) calculations aimed at converging
the CCSDT energetics, the computational time required to deter-
mine the corresponding correction δ(P;Q) scales no worse than
∼ 2n3

on4
u, which is much less than the n3

on5
u scaling of each iteration of

CCSDT. In the case of the CC(P;Q) approach aimed at CCSDTQ, the
computational time required to determine correction δ(P;Q) scales
as ∼ 2n3

on4
u in the case of the contributions due to the remaining

triples and is on the order of n4
on5

u in the case of the quadruples
part of δ(P;Q), when the more complete CC(P;Q)EN approach is
used, or n2

on5
u, when the CC(P;Q)MP form of δ(P;Q) is employed.

This is all much less than the n4
on6

u scaling of every CCSDTQ iter-
ation. As mentioned above, in our current implementation of the
semi-stochastic CC(P;Q) approach aimed at converging the CCS-
DTQ energetics, the quadruples contribution to correction δ(P;Q)
is neglected, so the computational time required to obtain δ(P;Q)
scales as ∼ 2n3

on4
u, at worst, which points to the usefulness of such

an approximation, especially that the convergence of the resulting
CC(P;Q) energies toward CCSDTQ is, as shown in Sec. III, very
fast.
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III. NUMERICAL EXAMPLES

In order to demonstrate the benefits offered by the semi-
stochastic CC(P;Q) framework, especially the new CC(P;Q)
approaches implemented in this work that replace FCIQMC by
the less expensive CISDT-MC and CISDTQ-MC propagations,
we applied the FCIQMC-, CISDT-MC-, and CISDTQ-MC-driven
CC(P;Q) methods aimed at converging the CCSDT and CCSDTQ
energetics to a few molecular problems, for which the parent full
CCSDT and CCSDTQ results had previously been determined or
were not too difficult to be recalculated. Thus, we carried out
an extensive series of the CISDT-MC- and CISDTQ-MC-driven
CC(P;Q) calculations, along with the analogous computations using
FCIQMC, which was utilized in our earlier study,58 to examine
the ability of the semi-stochastic CC(P;Q) approaches using vari-
ous types of CIQMC to recover the CCSDT energetics for the F–
F bond dissociation in the fluorine molecule (Sec. III A) and the
automerization of cyclobutadiene (Sec. III B). In order to illus-
trate the performance of the FCIQMC- and CISDTQ-MC-driven
CC(P;Q) methods in calculations aimed at converging the CCS-
DTQ energetics, we considered the symmetric stretching of the O–H
bonds in the water molecule (Sec. III C). We chose bond break-
ing in F2, which is accurately described by full CCSDT,57,61,75,76,115

since we examined the same system in our original FCIQMC- and
CCSDT-MC-driven CC(P;Q) work58 and in the preceding deter-
ministic CC(P;Q)-based CC(t;3) calculations reported in Ref. 57.
Our choice of the automerization of cyclobutadiene, which is accu-
rately described by CCSDT as well,61,116 was motivated by similar
reasons. We studied this problem, where all noniterative triples cor-
rections to CCSD, including CCSD(T), Λ-CCSD(T), CCSD(2)T, and
CR-CC(2,3) fail,61,116,117 using the deterministic CC(t;3) approach
exploiting the CC(P;Q) ideas in Ref. 61, and we studied it again
using the semi-stochastic CC(P;Q) framework utilizing FCIQMC
and CCSDT-MC in Ref. 58. We would like to explore now what
the effect of replacing FCIQMC propagations by their less expensive
CISDT-MC and CISDTQ-MC counterparts on the convergence of
the CC(P;Q) energies toward CCSDT is. We would also like to learn
if the incorporation of the previously neglected58 three-body com-
ponent of the de-excitation operator Λ(P), which is used to construct
amplitudes ℓK(P) entering Eq. (8), helps the accuracy of the resulting
semi-stochastic CC(P;Q) energies. We studied the C2v-symmetric
double dissociation of H2O, since by simultaneously stretching both
O–H bonds by factors exceeding 2, one ends up with a catastrophic
failure of CCSDT.63,75,118 One needs an accurate description of the
T3 and T4 clusters to obtain a more reliable description of the water
potential energy surface in that region.63

Following our earlier semi-stochastic and deterministic CC(P;Q)
work,57,58,61,63 which also provides the parent CCSDT57,58,61,63 and
CCSDTQ63 energetics, we used the cc-pVDZ,119 cc-pVTZ,119 and
aug-cc-pVTZ120 basis sets for F2 and the cc-pVDZ bases for cyclobu-
tadiene and water. For consistency with Refs. 57, 58, and 61, in all of
the post-RHF computations for the F–F bond breaking in F2 and the
automerization of cyclobutadiene, the core electrons corresponding
to the 1s shells of the fluorine and carbon atoms were kept frozen.
As in Refs. 63 and 118, which provide the reference CCSDTQ data
and, in the case of Ref. 118, the geometries of the equilibrium and
stretched water molecule used in our semi-stochastic CC(P;Q) calcu-
lations aimed at converging the CCSDTQ energetics, we correlated

all electrons. Each of the relevant i-FCIQMC (all systems), i-CISDT-
MC (F2 and cyclobutadiene), and i-CISDTQ-MC (all systems) runs
was initiated by placing 100 walkers on the RHF reference determi-
nant, and we set the initiator parameter na at 3. All of the i-FCIQMC,
i-CISDT-MC, and i-CISDTQ-MC propagations used the time step
δτ of 0.0001 a.u.

A. Bond breaking in F2
We begin our discussion of the semi-stochastic CC(P;Q) calcu-

lations carried out in this study with the F–F bond dissociation in
the fluorine molecule, as described by the cc-pVDZ basis set using
the Cartesian components of d orbitals (see Table I and Figs. 1–3).
In analogy to Ref. 58, where our initial FCIQMC- and CCSDT-
MC-based CC(P;Q) results for F2 were presented, we considered the
equilibrium geometry Re = 2.668 16 bohr, where the many-electron
correlation effects have a predominantly dynamical character, and
three stretches of the F–F bond length R, including R = 1.5Re, 2Re,
and 5Re, which are characterized by the increasingly large nondy-
namical correlations. The increasingly important role of nondynam-
ical correlation effects as the F–F bond is stretched is reflected in the
magnitude of T3 contributions, defined by forming the difference
of the CCSDT and CCSD energies, which grows, in absolute value,
from 9.485 millihartree at R = Re to 32.424, 45.638, and 49.816 mil-
lihartree at R = 1.5Re, 2Re, and 5Re, respectively, when the cc-pVDZ
basis set is employed. The T3 effects in the R = 2Re − 5Re region
are so large that they exceed the depth of the CCSDT potential well,
estimated at about 44 millihartree when the difference between the
CCSDT energies at R = 5Re, where F2 is essentially dissociated, and
R = Re is considered. They grow with R so fast that the popular
perturbative CCSD(T) correction to CCSD fails at larger F–F sep-
arations, producing the −5.711, −23.596, and −39.348 millihartree
errors relative to CCSDT at R = 1.5Re, 2Re, and 5Re, respectively,
misrepresenting the physics of T3 correlations in the stretched F2
molecule.

The triples corrections to CCSD that rely on the biorthog-
onal moment expansions of the CC(P;Q) type, including CR-
CC(2,3), work much better than CCSD(T). This is especially true
when the most complete variant of the CR-CC(2,3) approach
using the Epstein–Nesbet form of the DK(P) denominator in deter-
mining the ℓK(P) amplitudes that enter the corresponding triples
correction to CCSD, abbreviated sometimes as CR-CC(2,3),D or
CR-CC(2,3)D

62,63,78,80,83 and represented in Table I by the τ = 0
CC(P;Q)EN results, is considered. Indeed, the CR-CC(2,3)D calcu-
lations reduce large errors in the CCSD(T) energies at R = 1.5Re,
2Re, and 5Re to 1.735, 1.862, and 1.613 millihartree, respectively,
improving the CCSD(2)T or the equivalent62,63,78,80,83 CR-CC(2,3),A
or CR-CC(2,3)A calculations, which adopt the Møller–Plesset DK(P)
denominators, at the same time [see the τ = 0 CC(P;Q)MP values
in Table I]. The CR-CC(2,3)D approach eliminates the failure of
CCSD(T) at stretched nuclear geometries while being more effec-
tive in capturing the physics of T3 correlations than CCSD(2)T, but
the only way to obtain further improvements toward CCSDT is by
incorporating at least some triples in the iterative part of the cal-
culations, relaxing the T1 and T2 amplitudes, which in CCSD(T),
CCSD(2)T, and CR-CC(2,3) are fixed at their CCSD values, in the
presence of the leading T3 contributions, and correcting the result-
ing energies for the remaining T3 effects accordingly. One can
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TABLE I. Convergence of the CC(P), CC(P;Q)MP, and CC(P;Q)EN energies toward CCSDT, where the P spaces consisted of all singles and doubles and subsets of triples
identified during the i-FCIQMC, i-CISDTQ-MC, or i-CISDT-MC propagations with δτ = 0.0001 a.u. and where the corresponding Q spaces consisted of the triples not captured
by the corresponding QMC simulations, for the F2/cc-pVDZ molecule in which the F–F distance R was set at Re, 1.5Re, 2Re, and 5Re, with Re = 2.668 16 bohr representing the
equilibrium geometry. The i-FCIQMC, i-CISDTQ-MC, and i-CISDT-MC calculations preceding the CC(P) and CC(P;Q) steps were initiated by placing 100 walkers on the RHF
determinant and the na parameter of the initiator algorithm was set at 3. In all post-RHF calculations, the lowest two core orbitals were kept frozen, and the Cartesian components
of d orbitals were employed throughout.

% of triples CC(P)a CC(P;Q)MP
a CC(P;Q)EN

a

R/Re MC iterations FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd

1.0 0 0 9.485e 1.398f −0.240g

10 000 3 3 4 5.692 5.692 5.229 0.760 0.760 0.688 −0.151 −0.151 −0.152
20 000 9 8 8 3.548 3.804 3.962 0.444 0.473 0.472 −0.107 −0.093 −0.140
30 000 15 16 14 2.290 2.498 2.769 0.284 0.301 0.334 −0.059 −0.046 −0.067
40 000 25 26 22 1.791 1.523 1.765 0.212 0.184 0.210 −0.037 −0.030 −0.034
50 000 37 38 34 0.933 0.940 1.151 0.113 0.115 0.137 −0.014 −0.013 −0.021
60 000 51 52 46 0.536 0.498 0.698 0.064 0.058 0.083 −0.008 −0.008 −0.010
70 000 63 64 58 0.383 0.308 0.410 0.044 0.036 0.047 −0.006 −0.004 −0.007
80 000 73 74 68 0.177 0.164 0.224 0.020 0.018 0.025 −0.003 −0.002 −0.003

100 000 89 89 85 0.044 0.050 0.073 0.005 0.006 0.008 0.000 −0.001 −0.001
120 000 97 97 94 0.013 0.010 0.024 0.001 0.001 0.003 0.000 0.000 0.000

∞ 100 −199.102 796h . . . . . .

1.5 0 0 32.424e 5.984f 1.735g

10 000 3 3 3 14.312 14.220 15.874 2.198 1.980 2.115 0.351 0.321 0.193
20 000 9 8 7 5.589 3.572 5.564 0.629 0.428 0.657 −0.003 −0.000 0.052
30 000 16 18 14 2.728 2.391 2.206 0.323 0.285 0.262 −0.002 0.020 0.021
40 000 27 30 24 1.065 0.706 1.387 0.142 0.084 0.171 0.020 0.009 0.015
50 000 42 45 35 0.482 0.459 0.687 0.062 0.055 0.087 0.009 0.006 0.008
60 000 57 60 49 0.273 0.219 0.336 0.029 0.027 0.041 0.001 0.000 0.005
70 000 70 72 61 0.128 0.106 0.231 0.013 0.011 0.028 0.000 0.000 0.001
80 000 81 82 72 0.064 0.048 0.102 0.006 0.004 0.010 0.000 −0.001 −0.001

100 000 93 94 88 0.012 0.009 0.026 0.001 0.001 0.003 0.000 0.000 0.000
120 000 99 100 96 0.001 0.002 0.005 0.000 0.000 0.000 0.000 0.000 0.000

∞ 100 −199.065 882h . . . . . .

2.0 0 0 45.638e 6.357f 1.862g

10 000 4 4 3 12.199 17.779 12.687 0.998 1.886 1.181 −0.063 0.280 −0.008
20 000 10 9 9 4.127 2.529 3.672 0.328 0.245 0.310 −0.014 0.009 −0.025
30 000 21 19 17 0.802 1.172 1.393 0.081 0.115 0.128 0.008 0.011 0.004
40 000 35 32 28 0.456 0.499 0.627 0.040 0.047 0.058 −0.001 0.000 0.000
50 000 51 48 41 0.216 0.215 0.305 0.018 0.019 0.027 −0.001 0.000 −0.001
60 000 66 64 56 0.083 0.112 0.160 0.007 0.010 0.014 −0.001 −0.001 −0.001
70 000 79 75 68 0.037 0.048 0.074 0.003 0.004 0.006 0.000 −0.001 −0.001
80 000 87 85 78 0.013 0.019 0.034 0.001 0.002 0.003 0.000 0.000 0.000

100 000 97 95 91 0.001 0.002 0.007 0.000 0.000 0.001 0.000 0.000 0.000
120 000 100 100 98 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

∞ 100 −199.058 201h . . . . . .

J. Chem. Phys. 154, 124103 (2021); doi: 10.1063/5.0045468 154, 124103-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. (Continued.)

% of triples CC(P)a CC(P;Q)MP
a CC(P;Q)EN

a

R/Re MC iterations FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd

5.0 0 0 49.816e 3.895f 1.613g

10 000 3 3 3 10.887 13.326 9.776 0.455 0.672 0.642 −0.005 0.059 0.202
20 000 8 8 8 1.968 2.535 1.315 0.152 0.165 0.102 0.040 0.026 0.012
30 000 17 15 15 0.529 0.752 1.042 0.041 0.056 0.081 0.001 0.006 0.015
40 000 27 26 26 0.295 0.351 0.346 0.022 0.024 0.025 0.001 −0.001 −0.001
50 000 38 37 36 0.116 0.147 0.166 0.008 0.011 0.011 −0.001 0.000 −0.001
60 000 47 46 44 0.047 0.059 0.070 0.003 0.004 0.005 −0.001 0.000 −0.001
70 000 54 52 50 0.016 0.020 0.030 0.001 0.001 0.002 0.000 0.000 0.000
80 000 60 59 55 0.006 0.006 0.014 0.000 0.000 0.001 0.000 0.000 0.000

100 000 74 73 66 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
120 000 89 87 78 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
∞ 100 −199.058 586h . . . . . .

aUnless otherwise stated, all energies are reported as errors relative to CCSDT in millihartree.
bFCI stands for i-FCIQMC.
cCIQ stands for i-CISDTQ-MC.
dCIT stands for i-CISDT-MC.
eEquivalent to CCSD.
fEquivalent to the CCSD energy corrected for the effects of T3 clusters using the CCSD(2)T approach of Ref. 88, which is equivalent to the approximate form of the completely
renormalized CR-CC(2,3) approach of Refs. 75 and 76, abbreviated sometimes as CR-CC(2,3),A or CR-CC(2,3)A .62,63,78,80,83

gEquivalent to the CCSD energy corrected for the effects of T3 clusters using the most complete variant of the completely renormalized CR-CC(2,3) approach of Refs. 75 and 76,
abbreviated sometimes as CR-CC(2,3),D or CR-CC(2,3)D .62,63,78,80,83

hTotal CCSDT energy in hartree.

do this deterministically by turning to the previously mentioned
CC(t;3) method, which uses the CC(P;Q) formalism to correct the
energies obtained in the active-space CCSDt calculations for the
remaining T3 correlation effects that the CCSDt approach did not
capture,57,61 or by the approximation to CC(t;3) that replaces the
CC(P;Q) triples correction to CCSDt by its perturbative CCSD(T)
analog, abbreviated as CCSD(T)-h.121–123 Alternatively, one can
resort to the semi-stochastic CC(P;Q) framework advocated in this
work, in which the same goal is accomplished by using full or trun-
cated CIQMC propagations to identify the leading triply excited
determinants for the inclusion in the underlying P space without
having to use active orbitals.

The semi-stochastic CC(P;Q) results and the underlying CC(P)
energies shown in Table I and Figs. 1–3 confirm the above expec-
tations. Indeed, with only about 30%–40% of the triples in the P
space, captured after the relatively short FCIQMC, CISDT-MC, and
CISDTQ-MC runs at R = Re and 1.5Re and even less than that (∼15%
to 20%) when the R = 2Re and 5Re geometries are considered, the
errors in the uncorrected CC(P) energies relative to their CCSDT
parents are already on the order of 1 millihartree or smaller. This
is a massive error reduction compared to the initial, τ = 0, CC(P),
i.e., CCSD energy values, especially at the larger F–F separations,
where the differences between the CCSD and CCSDT energies are
as high as 45.638 millihartree at R = 2Re or 49.816 millihartree at
R = 5Re. The CC(P;Q) corrections based on Eq. (8) accelerate the
convergence toward CCSDT even further, allowing one to reach the
submillihartree accuracy levels relative to the parent CCSDT ener-
getics almost instantaneously, out of the early stages of the FCIQMC,

CISDT-MC, and CISDTQ-MC propagations, when no more than
10% of all triples are included in the corresponding P spaces and
when the total numbers of walkers used in the CIQMC runs repre-
sent tiny fractions of the walker populations required to converge
these runs.

The CC(P;Q)EN correction, which adopts the Epstein–Nesbet
form of the DK(P) denominator in determining the ℓK(P) ampli-
tudes entering Eq. (8), is particularly effective in this regard. With
less than 10% triples in the stochastically determined P spaces, cap-
tured after 20 000 or fewer δτ = 0.0001 a.u. MC iterations, where,
as shown in Figs. 1–3, the FCIQMC, CISDT-MC, and CISDTQ-
MC runs are very far from convergence, the differences between the
CC(P;Q)EN energies and their CCSDT parents are on the order of 0.1
millihartree, being usually even smaller. This is not only true at the
equilibrium geometry but also at the larger values of R, including R
= 5Re, where the F–F bond in F2 is already de facto broken. As
shown in Table S.1 of the supplementary material, the total numbers
of walkers corresponding to 20 000 δτ = 0.0001 a.u. MC iterations
initiated by placing 100 walkers on the RHF reference determinant
|Φ⟩, which range from about 6300 to 9400 when one uses FCIQMC,
5800 to 7600 when FCIQMC is replaced by CISDTQ-MC, and 3500
to 4300 when the CISDT-MC approach is employed, represent tiny
fractions of the walker populations at τ = 12.0 a.u., where we stopped
our CIQMC runs (0.02%–0.53% in the case of FCIQMC, 0.07%–
0.72% in the case of CISDTQ-MC, and 0.21%–1.78% in the CISDT-
MC case, where total walker populations are smallest). When we
perform somewhat longer FCIQMC, CISDT-MC, and CISDTQ-
MC propagations, allowing them to capture about 40%–50% of the
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FIG. 1. Convergence of the CC(P) (red
filled circles and dashed lines) and
CC(P;Q)EN (black open squares and
solid lines) energies toward CCSDT for
the F2/cc-pVDZ molecule in which the
F–F distance R was set at (a) Re, (b)
1.5Re, (c) 2Re, and (d) 5Re, where
Re = 2.668 16 bohr is the equilibrium
geometry. The P spaces consisted of
all singles and doubles and subsets of
triples identified during the i-FCIQMC
propagations with δτ = 0.0001 a.u.
(depicted by the green lines representing
the corresponding projected energies).
The Q spaces consisted of the triples not
captured by i-FCIQMC. All energies are
errors relative to CCSDT in millihartree,
and the insets show the percentages
of triples captured during the i-FCIQMC
propagations.

triples in the P space, when R = Re and 1.5Re, and 20%–30% when
R ≥ 2Re, the CC(P;Q)EN calculations recover the CCSDT energetics
to within 10 or so microhartree. This happens after 50 000–60 000
δτ = 0.0001 a.u. MC iterations, when R = Re and 1.5Re, and 30 000–
40 000 MC time steps when R ≥ 2Re, i.e., when the underlying
CIQMC propagations are still in their early stages (cf. Figs. 1–3). As
demonstrated in Table S.1 of the supplementary material, even in
this case, the total numbers of walkers characterizing the FCIQMC,
CISDT-MC, and CISDTQ-MC runs used to obtain these highly
accurate CC(P;Q)EN results remain much smaller than the walker
populations required to converge the CIQMC runs. In the case of
FCIQMC, they are about 60 000 or 1%–5% of the walker populations
at τ = 12.0 a.u., where we stopped our CIQMC propagations, for R
= Re and 1.5Re and about 20 000–50 000 or 0.1%–0.2% of the walker
populations at τ = 12.0 a.u. when the R ≥ 2Re region is explored.
They are even smaller when the truncated CIQMC approaches, espe-
cially CISDT-MC, are utilized. In the case of CISDT-MC, the total
numbers of walkers allowing us to converge the CCSDT energet-
ics using the semi-stochastic CC(P;Q)EN calculations to within ∼10
microhartree are as little as ∼20 000 or 5%–12% of the total walker
populations at τ = 12.0 a.u., which themselves are 6–12 times smaller
than those used at τ = 12.0 a.u. by FCIQMC, for R = Re and 1.5Re
and about 10 000 or 1% of the CISDT-MC walker populations at
τ = 12.0 a.u., which themselves are 4%–5% of their τ = 12.0 a.u.
FCIQMC counterparts, when R ≥ 2Re. The CC(P;Q)MP correction,

in which the Epstein–Nesbet DK(P) denominator, Eq. (11), in the
definition of ℓK(P) amplitudes entering Eq. (8) is replaced by its sim-
plified Møller–Plesset form, is not as accurate as CC(P;Q)EN, but it
still accelerates the convergence of the underlying CC(P) energies,
allowing one to recover the parent CCSDT energies to within ∼0.1
millihartree once about 40% (R =Re and 1.5Re) or 15%–20% (R = 2Re
and 5Re) of the triples are captured by the FCIQMC, CISDT-MC,
and CISDTQ-MC propagations.

The results shown in Table I and Figs. 1–3 demonstrate that it
is practically irrelevant whether one uses FCIQMC or one of its less
expensive truncated forms, such as CISDT-MC and CISDTQ-MC
examined in this study, to identify the leading triply excited deter-
minants for the inclusion in the P space used in the CC(P;Q) and
the underlying CC(P) calculations. Clearly, as τ approaches∞, the
FCIQMC, CISDT-MC, and CISDTQ-MC propagations converge to
completely different limits (FCI in the case of FCIQMC, CISDT-MC
in the case of CISDT-MC, and CISDTQ in the case of CISDTQ-
MC), but this has virtually no impact on the convergence patterns
observed in our semi-stochastic CC(P) and CC(P;Q) calculations.
This is a consequence of the fact that the uncorrected CC(P) and cor-
rected CC(P;Q) computations are capable of recovering the parent
high-level CC energetics, such as those corresponding to full CCSDT
discussed in this subsection, based on the information extracted
from the early stages of the corresponding CIQMC runs. In par-
ticular, if we are targeting CCSDT, all we need from the CIQMC
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FIG. 2. Same as Fig. 1 except that the
subsets of triples included in the CC(P)
calculations are now identified by the i-
CISDTQ-MC simulations and the corre-
sponding Q spaces consist of the triples
not captured by i-CISDTQ-MC. As in
Fig. 1, the F–F distance R was set at
(a) Re, (b) 1.5Re, (c) 2Re, and (d) 5Re,
where Re = 2.668 16 bohr is the equilib-
rium geometry.

calculations is a meaningful list of the leading triply excited deter-
minants, which any CIQMC calculation that is allowed to sample
the triples subspace of the Hilbert space, even the crude CISDT-
MC approach, can provide. One can see, for example, in Table I
that the fractions of triples captured by the FCIQMC, CISDT-MC,
and CISDTQ-MC runs at the various numbers of MC iterations
(various propagation times τ) are very similar. Detailed inspection
of the corresponding lists of triply excited determinants shows that
while the numbers of walkers on the individual determinants may
substantially differ, the lists of triples identified by the FCIQMC,
CISDT-MC, and CISDTQ-MC propagations, especially the more
important ones that result in larger T(MC)

3 amplitudes in the subse-
quent deterministic CC(P) steps, are not much different. Once the
lists of the leading triples are identified, we turn to the CC(P) com-
putations, correcting them for the remaining triples not captured by
CIQMC, and this makes the semi-stochastic CC(P) and CC(P;Q)
calculations rather insensitive to the type of the CIQMC approach
used to construct these lists.

All of the above observations regarding the ability of the semi-
stochastic CC(P;Q) calculations using the FCIQMC, CISDT-MC,
and CISDTQ-MC propagations to rapidly converge the full CCSDT
energetics remain true when the cc-pVDZ basis set is replaced by
its larger cc-pVTZ and aug-cc-pVTZ counterparts (both using the
spherical components of d and f functions). This is illustrated in
Table II, where we examine the stretched F2 molecule, in which the
F–F distance R is set at 2Re. We chose R = 2Re since, in analogy to

the previously discussed cc-pVDZ basis set, the T3 effects at this
geometry, obtained by calculating differences of the respective
CCSDT and CCSD energies, which are −62.819 millihartree, when
the cc-pVTZ basis set is employed, and −65.036 millihartree, when
the aug-cc-pVTZ basis is used, are not only very large but also larger,
in absolute value, than the corresponding CCSDT dissociation ener-
gies (differences between the CCSDT energies at R = 5Re, where the
F–F bond is broken, and R = Re obtained with the cc-pVTZ and
aug-cc-pVTZ basis sets are about 57 and 60 millihartree, respec-
tively). We also chose it since the R = 2Re stretch of the F–F bond
length is large enough for the conventional CCSD(T) approach to
fail in a major way when the cc-pVTZ and aug-cc-pVTZ basis sets
are employed, resulting in the −26.354 and −27.209 millihartree
errors relative to CCSDT, respectively. The CCSD(2)T correction to
CCSD or the equivalent CR-CC(2,3)A approximation, represented
in Table II by the τ = 0 CC(P;Q)MP results, helps, but large differ-
ences between the CCSD(2)T and CCSDT energies, of 9.211 milli-
hartree in the cc-pVTZ case and 9.808 millihartree when the aug-cc-
pVTZ basis set is employed, remain. The CR-CC(2,3)D approach,
represented in Table II by the τ = 0 CC(P;Q)EN data, is more effec-
tive than other triples corrections to CCSD, reducing the large errors
relative to CCSDT observed in the CCSD(T) and CCSD(2)T calcu-
lations to 4.254 (cc-pVTZ) and 5.595 (aug-cc-pVTZ) millihartree,
but none of the above results are as good as the energies result-
ing from the semi-stochastic CC(P;Q) calculations using FCIQMC,
CISDT-MC, and CISDTQ-MC.
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FIG. 3. Same as Fig. 1 except that
the subsets of triples included in the
CC(P) calculations are now identified
by the i-CISDT-MC simulations and the
corresponding Q spaces consist of the
triples not captured by i-CISDT-MC. As
in Fig. 1, the F–F distance R was set
at (a) Re, (b) 1.5Re, (c) 2Re, and (d)
5Re, where Re = 2.668 16 bohr is the
equilibrium geometry.

Indeed, as shown in Table II, we observe a rapid error reduc-
tion relative to the parent CCSDT data once we start migrat-
ing the triply excited determinants identified during the FCIQMC,
CISDT-MC, and CISDTQ-MC propagations into the underlying
P space. With about 20%–30% (cc-pVTZ) or 30%–40% (aug-cc-
pVTZ) of the triples in the P space, the 62.819 and 65.036 milli-
hartree errors resulting from the initial CCSD [τ = 0 CC(P)] compu-
tations decrease to a 1–2 millihartree level when the CC(P) method
is employed. The CC(P;Q) corrections due to the remaining triples
not captured by FCIQMC, CISDT-MC, and CISDTQ-MC acceler-
ate the convergence toward CCSDT even further, with the semi-
stochastic CC(P;Q)EN approach being particularly efficient in this
regard. With only 2%–4% of the triples in the stochastically deter-
mined P spaces, captured after 20 000–30 000 δτ = 0.0001 a.u. MC
iterations, which are the very early stages of the FCIQMC, CISDT-
MC, and CISDTQ-MC propagations, the CC(P;Q)EN calculations
recover the full CCSDT energetics corresponding to the cc-pVTZ
and aug-cc-pVTZ basis sets to within 0.1–0.2 millihartree. After
50 000 (cc-pVTZ) or 60 000 (aug-cc-pVTZ) MC iterations, where
the FCIQMC, CISDT-MC, and CISDTQ-MC runs are still far from
convergence, capturing only about 20%–30% (cc-pVTZ) or 30%–
40% (aug-cc-pVTZ) of the triples, the errors in the CC(P;Q)EN
energies relative to CCSDT reduce to a 10 microhartree level. Sim-
ilar to the previously discussed calculations using the cc-pVDZ
basis set, the total numbers of walkers characterizing the CIQMC

propagations that allowed us to reproduce the CCSDT/cc-pVTZ
and CCSDT/aug-cc-pVTZ energies so accurately represent tiny frac-
tions of the walker populations required to converge the CIQMC
runs (see Table S.2 of the supplementary material). For example, the
total number of walkers corresponding to 30 000 δτ = 0.0001 a.u.
FCIQMC iterations initiated by placing 100 walkers on the RHF ref-
erence determinant, which enable the FCIQMC-driven CC(P;Q)EN
approach to recover the CCSDT/aug-cc-pVTZ energy of F2 at
R = 2Re to within ∼0.1 millihartree, is only about 200 000. As shown
in Table S.2 of the supplementary material, this translates into less
than 0.1% of the total walker population used by the FCIQMC run at
τ = 10.0 a.u., where we terminated our CIQMC propagations. With
about 2 × 106 walkers in the FCIQMC computation, reached after
50 000 δτ = 0.0001 a.u. MC iterations, i.e., with less than 1% of the
total walker population at τ = 10.0 a.u., the difference between the
FCIQMC-based CC(P;Q)EN energy and its CCSDT parent reduces
to 16 microhartree. The analogous τ = 5.0 a.u. CISDTQ-MC and
CISDT-MC calculations, which allow the CC(P;Q)EN approach to
recover the CCSDT/aug-cc-pVTZ energy of F2 at R = 2Re to within
19 and 38 microhartree, respectively, use even smaller numbers of
walkers, namely, a little over 1 × 106 in the case of CISDTQ-MC
and less than 300 000 in the CISDT-MC case. In analogy to the
cc-pVDZ basis set, the CC(P;Q)MP correction is less accurate than
its CC(P;Q)EN counterpart when the cc-pVTZ and aug-cc-pVTZ
basis sets are employed, recovering the CCSDT energetics to within
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TABLE II. Convergence of the CC(P), CC(P;Q)MP, and CC(P;Q)EN energies toward CCSDT, where the P spaces consisted of all singles and doubles and subsets of triples
identified during the i-FCIQMC, i-CISDTQ-MC, or i-CISDT-MC propagations with δτ = 0.0001 a.u. and where the corresponding Q spaces consisted of the triples not captured
by the corresponding QMC simulations, for the F2 molecule in which the F–F distance R was set at twice the equilibrium bond length, using the cc-pVTZ and aug-cc-pVTZ basis
sets, abbreviated as VTZ and AVTZ, respectively. The i-FCIQMC, i-CISDTQ-MC, and i-CISDT-MC calculations preceding the CC(P) and CC(P;Q) steps were initiated by placing
100 walkers on the RHF determinant and the na parameter of the initiator algorithm was set at 3. In all post-RHF calculations, the lowest two core orbitals were kept frozen, and
the spherical components of d and f orbitals were employed throughout.

% of triples CC(P)a CC(P;Q)MP
a CC(P;Q)EN

a

Basis set MC iterations FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd

VTZ 0 0 62.819e 9.211f 4.254g

10 000 1 1 1 29.714 31.973 31.571 2.738 3.104 2.636 0.728 0.896 0.539
20 000 2 2 2 11.179 14.687 20.194 0.824 1.097 1.487 0.071 0.151 0.217
30 000 6 6 4 5.787 6.031 9.294 0.400 0.425 0.617 0.028 0.030 0.025
40 000 14 14 10 2.406 2.574 4.203 0.160 0.171 0.284 0.002 0.001 0.014
50 000 27 26 19 1.193 1.237 2.177 0.076 0.078 0.138 −0.003 −0.002 −0.002
60 000 42 42 30 0.490 0.489 1.144 0.029 0.029 0.071 −0.002 −0.002 −0.005
70 000 59 57 44 0.178 0.171 0.576 0.011 0.010 0.037 −0.001 −0.001 −0.002
80 000 72 71 56 0.045 0.054 0.309 0.003 0.003 0.020 0.000 0.000 −0.001

100 000 90 89 78 0.002 0.003 0.130 0.000 0.000 0.009 0.000 0.000 0.000
∞ 100 −199.238 344h . . . . . .

AVTZ 0 0 65.036e 9.808f 5.595g

10 000 0 0 0 36.316 38.874 42.801 3.641 4.144 4.851 1.594 1.786 2.304
20 000 1 1 1 17.190 20.799 26.557 1.276 1.656 2.288 0.382 0.512 0.791
30 000 4 4 3 8.065 9.272 13.279 0.549 0.623 0.928 0.138 0.138 0.246
40 000 10 10 7 4.408 4.677 7.477 0.291 0.307 0.499 0.057 0.062 0.106
50 000 23 22 15 2.208 2.425 3.951 0.136 0.150 0.244 0.016 0.019 0.038
60 000 41 39 27 1.021 1.137 2.052 0.058 0.070 0.124 0.002 0.005 0.013
70 000 61 58 61 0.385 0.455 0.385 0.021 0.025 0.059 0.000 0.000 0.001
80 000 78 76 78 0.125 0.154 0.125 0.007 0.008 0.026 0.000 0.000 0.000

100 000 97 96 97 0.007 0.009 0.007 0.000 0.001 0.004 0.000 0.000 0.000
∞ 100 −199.253 022h . . . . . .

aUnless otherwise stated, all energies are reported as errors relative to CCSDT in millihartree.
bFCI stands for i-FCIQMC.
cCIQ stands for i-CISDTQ-MC.
dCIT stands for i-CISDT-MC.
eEquivalent to CCSD.
fEquivalent to the CCSD energy corrected for the effects of T3 clusters using the CCSD(2)T approach of Ref. 88, which is equivalent to the approximate form of the completely
renormalized CR-CC(2,3) approach of Refs. 75 and 76, abbreviated sometimes as CR-CC(2,3),A or CR-CC(2,3)A .62,63,78,80,83

gEquivalent to the CCSD energy corrected for the effects of T3 clusters using the most complete variant of the completely renormalized CR-CC(2,3) approach of Refs. 75 and 76,
abbreviated sometimes as CR-CC(2,3),D or CR-CC(2,3)D .62,63,78,80,83

hTotal CCSDT energy in hartree.

0.1–0.2 millihartree after 50 000 rather than 20 000–30 000 MC itera-
tions, i.e., after about 20%–30% rather than 2%–4% of the triples are
captured by the CIQMC propagations, but the overall error reduc-
tion compared to the underlying CC(P) calculations or the various
noniterative triples corrections to CCSD is still impressive.

Similar to the cc-pVDZ basis set, the semi-stochastic CC(P;Q)
calculations using larger cc-pVTZ and aug-cc-pVTZ bases are rather
insensitive to the type of the CIQMC approach used to identify the
leading triples for the inclusion in the P space. Based on the results
in Table II, one might try to argue that the energies obtained with
the uncorrected CC(P) approach using the CISDT-MC propaga-
tions are characterized by slower convergence compared to their
CISDTQ-MC- and FCIQMC-driven counterparts, but this would

be misleading, since CISDT-MC captures the leading triples at a
somewhat slower rate, while being less expensive than CISDTQ-MC
and FCIQMC at the same time. For example, the CISDT-MC-driven
CC(P) computations for F2 at R = 2Re using the cc-pVTZ basis set
need 60 000 δτ = 0.0001 a.u. MC iterations to reach a ∼1 millihartree
accuracy relative to the corresponding CCSDT energy. The CC(P)
approach using CISDTQ-MC and FCIQMC reaches the same accu-
racy level sooner, after 50 000 MC iterations. One should keep in
mind, however, that it takes 60 000 MC time steps for the CISDT-
MC propagation to capture about 30% of the triples, needed to reach
a ∼1 millihartree accuracy level in the subsequent CC(P) calcula-
tions, and the analogous CISDTQ-MC and FCIQMC runs capture
a similar fraction of the triples after 50 000 time steps. Ultimately,
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one needs to remember that all CIQMC-driven CC(P) computa-
tions considered in this subsection converge to CCSDT as τ → ∞,
independent of the type of the CIQMC approach used to define the
underlying P spaces, as long as the CIQMC propagation is allowed
to spawn walkers on the triply excited determinants. Perhaps more
importantly, the CC(P;Q) corrections to the CC(P) energies make
the convergence toward CCSDT not only much faster but also less
dependent on the type of the CIQMC approach used in the calcula-
tions since they take care of the triples that were not captured by the
respective QMC propagations.

Before discussing our next molecular example, it is worth
pointing out that the FCIQMC-driven CC(P;Q) calculations
reported in Tables I and II and Fig. 1, in which, as explained in
Sec. II B, we used complete representations of H(P) and Λ(P) in
determining corrections δ(P;Q), approach the parent CCSDT ener-
getics of the stretched F2 system in the early stages of the under-
lying FCIQMC propagations faster than the analogous calculations
reported in Ref. 58, where the three-body component of Λ(P) was
neglected. For example, the CC(P;Q) energies of F2 at R = 2Re
using the aug-cc-pVTZ basis set obtained in this work after 10 000,
20 000, and 30 000 δτ = 0.0001 a.u. MC iterations of the underlying
FCIQMC propagation differ from the corresponding CCSDT energy
by 1.594, 0.382, and 0.138 millihartree, respectively (see Table II).
The analogous energy differences reported in Ref. 58, of 3.770, 1.661,
and 0.454 millihartree, respectively, are noticeably larger (see Table
II in the supplementary material of Ref. 58). In fact, by compar-
ing the FCIQMC-, CISDT-MC-, and CISDTQ-MC-based CC(P;Q)
energies shown in Tables I and II and Figs. 1–3, determined by treat-
ing the de-excitation operator Λ(P) in Eq. (9) fully, i.e., by defining
Λ(P) as Λ1 +Λ2 +Λ(MC)

3 , with their FCIQMC- and CCSDT-MC-based
counterparts obtained in Ref. 58, where Λ(P) was approximated by
Λ1 + Λ2, we can conclude that as long as Λ(MC)

3 is not neglected, one
can replace FCIQMC by CISDTQ-MC or, even, CISDT-MC and still
improve the rate of convergence of the CC(P;Q) energies toward
CCSDT in the early stages of the QMC propagations compared to
that reported in Ref. 58.

The above observations, combined with the superior perfor-
mance of the CC(P;Q)EN approach compared to its CC(P;Q)MP
counterpart, suggest that a complete treatment of correction δ(P;Q),
as dictated by Eqs. (8), (9), and (11), is more important, especially
when one is interested in accelerating convergence of the semi-
stochastic CC(P;Q) calculations for stretched or more multirefer-
ence molecules in the early stages of the QMC propagations, than
the actual type of the underlying CIQMC approach. It is interesting
to examine if the same remains true when other molecular examples,
including those discussed in Secs. III B and III C, are considered.

B. Automerization of cyclobutadiene
Our next example is the challenging and frequently stud-

ied61,116,117,124–141 automerization of cyclobutadiene (see Fig. 4). In
this case, in order to obtain reliable energetics using computa-
tional means, especially the activation energy, one has to provide
an accurate and well-balanced description of the nondegenerate
closed-shell reactant (or the equivalent product) species, in which
the many-electron correlation effects have a predominantly dynam-
ical character, and the quasi-degenerate, biradicaloid transition state

FIG. 4. The key molecular structures defining the automerization of cyclobu-
tadiene. The leftmost and rightmost structures represent the degenerate reac-
tant/product minima, whereas the structure in the center corresponds to the
transition state.

characterized by substantial non-dynamical correlations. Experi-
ment suggests that the activation energy for the automerization of
cyclobutadiene is somewhere between 1.6 and 10 kcal/mol.124,126 The
most accurate single- and multi-reference calculations performed
to date, reviewed, for example, in Refs. 61, 117, and 140, imply
that the purely electronic value of the energy barrier falls into the
6–10 kcal/mol range. In particular, as pointed out in Ref. 61 (see
also Ref. 116), one can obtain a reliable description of the acti-
vation energy using the full CCSDT approach. Given this infor-
mation and the methodological nature of the present study, in
which we had to perform a large number of semi-stochastic CC(P)
and CC(P;Q) calculations, exploring three different types of the
CIQMC method, including FCIQMC, CISDT-MC, and CISDTQ-
MC, and probing many values of the QMC propagation time τ,
in a discussion below, we focus on converging the CCSDT ener-
getics obtained using the spherical cc-pVDZ basis set. As shown
in Ref. 61 and Table III, the CCSDT/cc-pVDZ activation energy
characterizing the automerization of cyclobutadiene, assuming the
reactant/product and transition-state geometries obtained with the
multireference average-quadratic CC (MR-AQCC) approach142,143

in Ref. 134, which we adopt in the CC(P) and CC(P;Q) calcula-
tions reported in this work as well, is 7.627 kcal/mol, in reasonable
agreement with the most accurate ab initio results reported to date.
The results of our semi-stochastic CC(P) and CC(P;Q) calculations,
aimed at recovering the CCSDT/cc-pVDZ energetics of the reactant
and transition-state species and the corresponding activation energy
using the FCIQMC, CISDT-MC, and CISDTQ-MC propagations to
identify the leading triply excited determinants for constructing the
underlying P spaces, are summarized in Table III and Fig. 5.

As already mentioned, all of the noniterative triples correc-
tions to CCSD, including CCSD(T), Λ-CCSD(T), CCSD(2)T, and
CR-CC(2,3), perform very poorly in this case, producing activa-
tion barriers in a 16–17 kcal/mol range when the cc-pVDZ basis
set is considered,61,117 instead of ∼8 kcal/mol obtained with CCSDT
(it should be noted that the 16–17 kcal/mol values are also way
outside the experimentally derived and most accurate theoretically
determined ranges of 1.6–10 kcal/mol and 6–10 kcal/mol, respec-
tively). They improve the CCSD activation energy, which is even
worse [about 21 kcal/mol; see the τ = 0 CC(P) barrier in Table III],
but the improvements offered by the noniterative triples correc-
tions to CCSD are far from sufficient. This, in particular, applies to
the CCSD(2)T = CR-CC(2,3)A and CR-CC(2,3)D approaches, rep-
resented in Table III by the τ = 0 CC(P;Q)MP and CC(P;Q)EN data,
respectively, where errors in the resulting activation energies rela-
tive to CCSDT are 9.611 kcal/mol (126%) in the former case and
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TABLE III. Convergence of the CC(P), CC(P;Q)MP, and CC(P;Q)EN energies toward CCSDT, where the P spaces consisted of all singles and doubles and subsets of triples
identified during the i-FCIQMC, i-CISDTQ-MC, or i-CISDT-MC propagations with δτ = 0.0001 a.u. and where the corresponding Q spaces consisted of the triples not captured
by the corresponding QMC simulations, for the reactant (R) and transition-state (TS) structures defining the automerization of cyclobutadiene, as described by the cc-pVDZ
basis set, optimized in the MR-AQCC calculations reported in Ref. 134, and for the corresponding activation barrier. The i-FCIQMC, i-CISDTQ-MC, and i-CISDT-MC calculations
preceding the CC(P) and CC(P;Q) steps were initiated by placing 100 walkers on the RHF determinant and the na parameter of the initiator algorithm was set at 3. In all post-RHF
calculations, the lowest four core orbitals were kept frozen, and the spherical components of d orbitals were employed throughout.

% of triples CC(P)a CC(P;3)MP
a CC(P;3)EN

a

Species MC iterations FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd FCIb CIQc CITd

R 0 0 26.827e 4.764f 0.848g

10 000 0 0 0 25.758 25.985 25.484 4.437 4.535 4.324 0.696 0.763 0.625
20 000 2 2 1 22.532 22.513 22.462 3.684 3.621 3.612 0.496 0.418 0.433
30 000 6 5 5 17.369 17.857 18.880 2.599 2.676 2.889 0.230 0.228 0.279
40 000 16 15 12 11.845 12.034 13.834 1.635 1.649 2.007 0.092 0.080 0.164
50 000 31 30 24 6.895 7.176 9.202 0.877 0.913 1.235 0.022 0.023 0.057
60 000 52 51 41 3.273 3.524 5.205 0.386 0.417 0.645 0.001 0.000 0.010
70 000 72 70 59 1.321 1.498 2.594 0.146 0.170 0.302 −0.003 −0.002 −0.003
80 000 85 84 75 0.512 0.563 1.181 0.056 0.060 0.131 −0.001 −0.001 −0.002
∞ 100 −154.244 157h . . . . . .

TS 0 0 47.979e 20.080f 14.636g

10 000 0 0 0 45.875 46.427 45.777 18.899 19.135 18.037 13.680 13.842 12.665
20 000 1 2 1 39.577 37.689 39.655 14.220 12.522 13.774 9.452 7.793 8.863
30 000 5 5 5 30.836 28.405 33.111 9.660 7.404 10.798 5.785 3.648 6.651
40 000 15 13 13 18.976 19.811 23.797 4.046 4.313 6.457 1.556 1.661 3.367
50 000 31 27 26 9.795 9.727 12.495 1.634 1.488 2.238 0.309 0.243 0.602
60 000 52 47 42 3.936 4.136 6.217 0.501 0.525 0.886 0.026 0.025 0.105
70 000 70 67 60 1.491 1.488 2.841 0.173 0.168 0.363 0.003 0.001 0.018
80 000 84 82 74 0.525 0.591 1.260 0.058 0.065 0.148 0.000 0.000 0.001
∞ 100 −154.232 002h . . . . . .

Barrier 0 0/0 13.274e 9.611f 8.653g

10 000 0/0 0/0 0/0 12.624 12.828 12.734 9.075 9.162 8.605 8.148 8.208 7.555
20 000 2/1 2/2 1/1 10.696 9.523 10.789 6.612 5.586 6.377 5.620 4.628 5.290
30 000 6/5 5/5 5/5 8.450 6.619 8.931 4.431 2.967 4.963 3.487 2.146 3.999
40 000 16/15 15/13 12/13 4.475 4.881 6.252 1.513 1.672 2.793 0.919 0.992 2.011
50 000 31/31 30/27 24/26 1.820 1.601 2.067 0.475 0.361 0.629 0.181 0.138 0.343
60 000 52/52 51/47 41/42 0.416 0.384 0.635 0.073 0.068 0.151 0.016 0.016 0.060
70 000 72/70 70/67 59/60 0.107 −0.006 0.155 0.017 −0.001 0.038 0.003 0.002 0.013
80 000 85/84 84/82 75/74 0.008 0.018 0.050 0.001 0.003 0.011 0.001 0.001 0.002
∞ 100/100 7.627i . . . . . .

aUnless otherwise stated, all energies are reported as errors relative to CCSDT, in millihartree for the reactant and transition state and in kcal/mol for the activation barrier.
bFCI stands for i-FCIQMC.
cCIQ stands for i-CISDTQ-MC.
dCIT stands for i-CISDT-MC.
eEquivalent to CCSD.
fEquivalent to the CCSD energy corrected for the effects of T3 clusters using the CCSD(2)T approach of Ref. 88, which is equivalent to the approximate form of the completely
renormalized CR-CC(2,3) approach of Refs. 75 and 76, abbreviated sometimes as CR-CC(2,3),A or CR-CC(2,3)A .62,63,78,80,83

gEquivalent to the CCSD energy corrected for the effects of T3 clusters using the most complete variant of the completely renormalized CR-CC(2,3) approach of Refs. 75 and 76,
abbreviated sometimes as CR-CC(2,3),D or CR-CC(2,3)D .62,63,78,80,83

hTotal CCSDT energy in hartree.
iThe CCSDT activation barrier in kcal/mol.

8.653 kcal/mol (113%) in the case of the latter method. As explained
in Ref. 61, the poor performance of the noniterative triples cor-
rections to CCSD in describing the automerization of cyclobuta-
diene is a consequence of neglecting the coupling between the T3
clusters and their lower-order T1 and T2 counterparts, which is

accounted for in CCSDT but ignored in methods such as CCSD(T),
Λ-CCSD(T), CCSD(2)T, and CR-CC(2,3). This coupling is par-
ticularly large at the transition-state geometry, where the mag-
nitude of T3 contributions, defined as the absolute value of the
difference between the CCSDT and CCSD energies, is nearly 48
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FIG. 5. Convergence of the CC(P) (red filled circles and dashed lines) and CC(P;Q)EN (black open squares and solid lines) energies toward CCSDT for the reactant [panels
(a)–(c)] and transition-state [panels (d)–(f)] structures defining the automerization of cyclobutadiene, as described by the cc-pVDZ basis set. The relevant i-CIQMC runs (all
using δτ = 0.0001 a.u.) are depicted by the green lines representing the corresponding projected energies. Panels (a) and (d) correspond to the calculations in which the P
spaces employed in the CC(P) steps consisted of all singles and doubles and subsets of triples identified during the i-FCIQMC propagations; the Q spaces needed to define
the corresponding δ(P;Q) corrections consisted of the triples that were not captured by i-FCIQMC. Panels (b) and (e) correspond to the calculations in which the P spaces
employed in the CC(P) steps consisted of all singles and doubles and subsets of triples identified during the i-CISDTQ-MC propagations; in this case, the Q spaces needed
to define the δ(P;Q) corrections consisted of the triples that were not captured by i-CISDTQ-MC. Panels (c) and (f) correspond to the calculations in which the P spaces
employed in the CC(P) steps consisted of all singles and doubles and subsets of triples identified during the i-CISDT-MC propagations; in this case, the Q spaces needed
to define the δ(P;Q) corrections consisted of the triples that were not captured by i-CISDT-MC. All reported energies are errors relative to CCSDT in millihartree. The insets
show the percentages of triples captured during the relevant i-CIQMC propagations.

millihartree, when the cc-pVDZ basis set is employed, and where
errors in the CCSD(T), Λ-CCSD(T), CCSD(2)T, and CR-CC(2,3)
energies relative to CCSDT range from about 14 to 20 millihartree,
as opposed to ∼1 to 5 millihartree obtained for the reactant (see
Refs. 61 and 117 and Table III). In analogy to bond breaking in F2,
if we want to capture the coupling of the T1, T2, and T3 clusters
without having to solve full CCSDT equations while preserving the
idea of noniterative triples corrections to energies obtained in lower-
order CC calculations, we must solve for the T1 and T2 amplitudes,
which in the CCSD(T), Λ-CCSD(T), CCSD(2)T, and CR-CC(2,3)
approaches are obtained with CCSD, in the presence of the domi-
nant T3 components by incorporating some triples in the iterative
CC steps, and then correct the resulting energies for the remaining
T3 effects neglected in the CC iterations. Again, this can be done

deterministically by solving the active-space CCSDt equations, in
which the dominant T3 amplitudes are selected using active orbitals,
and correcting the CCSDt energies for the remaining T3 correla-
tions using the CC(P;Q) corrections δ(P;Q), as in the CC(t;3) cal-
culations reported in Ref. 61, or by turning to the semi-stochastic
form of the CC(P;Q) formalism pursued in this study, which elim-
inates the need for defining active orbitals, when identifying the
leading triples, by resorting to CIQMC propagations. Interestingly,
using the CCSD(T)-type correction to CCSDt, as in the aforemen-
tioned CCSD(T)-h approach, in the calculations for the automer-
ization of cyclobutadiene worsens the activation energies obtained
with CCSDt, moving them away from their parent CCSDT val-
ues.61 This underlines the significance of treating corrections δ(P;Q)
due to the correlation effects outside the underlying P spaces as
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completely as possible, following Eqs. (8), (9), and (11), avoiding
drastic approximations in these equations that lead to the triples
corrections of CCSD(T).

As shown in Table III and Fig. 5, the semi-stochastic CC(P;Q)
calculations using FCIQMC, CISDT-MC, and CISDTQ-MC are
remarkably efficient in capturing the desired T3 correlation effects.
Independent of the type of the CIQMC approach, they allow us
to converge the CCSDT values of the transition-state and activa-
tion energies, which are poorly described by the noniterative triples
corrections to CCSD, to within 1–2 millihartree or 1–2 kcal/mol
out of the early stages of the CIQMC propagations while further
improving an accurate description of the reactant by methods such
as CR-CC(2,3)D. Similar to F2, the performance of the CC(P;Q)EN
approach, which uses the Epstein–Nesbet form of the DK(P) denom-
inator in calculating the ℓK(P) amplitudes entering Eq. (8), is partic-
ularly impressive. With just 5%–6% of the triples in the stochastically
determined P spaces, captured by the FCIQMC, CISDT-MC, and
CISDTQ-MC propagations after 30 000 δτ = 0.0001 a.u. MC itera-
tions, i.e., almost instantaneously, the CC(P;Q)EN approach reduces
the initial 0.848 millihartree, 14.636 millihartree, and 8.653 kcal/mol
errors in the reactant, transition-state, and activation energies rel-
ative to CCSDT obtained in the τ = 0 CC(P;Q)EN or CR-CC(2,3)D
calculations by factors of 2–4, to 0.228–0.279 millihartree, 3.648–
6.651 millihartree, and 2.146–3.999 kcal/mol, respectively. After
the additional 10 000 MC time steps, which result in capturing
12%–16% of the triples in the underlying P spaces, errors in the
CC(P;Q)EN reactant, transition-state, and activation energies rela-
tive to their CCSDT values become 0.080–0.164 millihartree, 1.556–
3.367 millihartree, and 0.919–2.011 kcal/mol, respectively. These are
remarkable improvements compared to the initial CR-CC(2,3)D val-
ues, especially if we realize that the early stages of the FCIQMC,
CISDT-MC, and CISDTQ-MC calculations, such as 30 000–40 000
δτ = 0.0001 a.u. MC time steps, are all very fast, using, as shown in
Table S.3 of the supplementary material, tiny fractions of the total
walker populations at τ = 8.0 a.u., where we terminated our CIQMC
runs, and 5%–6% or 12%–16% are small fractions of the triples that
result in large speedups in the underlying CC(P) calculations and
significant reductions in the T3 amplitude storage requirements.
After 50 000 MC iterations, where, as shown in Fig. 5, the FCIQMC,
CISDT-MC, and CISDTQ-MC runs are still far from convergence,
capturing about 20%–30% of the triples, i.e., still relatively small
fractions of all triply excited determinants, the CC(P;Q)EN calcula-
tions recover the CCSDT values of the reactant, transition-state, and
activation energies to within 22–57 microhartree, 0.243–0.602 mil-
lihartree, and 0.138–0.343 kcal/mol, respectively, which is a massive
error reduction compared to CR-CC(2,3)D and other noniterative
triples corrections to CCSD. Again, as demonstrated in Table S.3
of the supplementary material, the total numbers of walkers used
by the underlying CIQMC calculations, which allowed the semi-
stochastic CC(P;Q)EN computations to converge the CCSDT ener-
getics so tightly, are not only small fractions of the corresponding
walker populations at τ = 8.0 a.u., where we stopped our CIQMC
propagations (about 5% in the case of FCIQMC, 8%–9% in the
CISDTQ-MC case, and 15%–16% when the CISDT-MC approach
was employed), but also small in absolute values. In the case of
the τ = 5.0 a.u. FCIQMC and CISDTQ-MC computations corre-
sponding to 50 000 δτ = 0.0001 a.u. MC time steps, they are about
2.3× 106 and 1.8× 106–2.0× 106, respectively. When one switches to

CISDT-MC, they go down to less than half a million. As in the
case of bond breaking in F2, the CC(P;Q)MP correction, which
uses the Møller–Plesset DK(P) denominator in Eq. (9) instead of
its more elaborate Epstein–Nesbet form given by Eq. (11), is less
accurate than its CC(P;Q)EN counterpart, but its ability to accel-
erate convergence of the underlying CC(P) energies and improv-
ing the results obtained with CR-CC(2,3) and other triples correc-
tions to CCSD is still quite impressive. For example, with about
20%–30% of the triples captured by the FCIQMC, CISDT-MC,
and CISDTQ-MC propagations after 50 000 MC iterations, the
differences between the CC(P;Q)MP reactant, transition-state, and
activation energies and their CCSDT counterparts, of 0.877–1.235
millihartree, 1.488–2.238 millihartree, and 0.361–0.629 kcal/mol,
are much smaller than the analogous errors relative to CCSDT
resulting from the corresponding CC(P) calculations, which are
6.895–9.202 millihartree, 9.727–12.495 millihartree, and 1.601–
2.067 kcal/mol, respectively, although they are not as small as
the aforementioned 22–57 microhartree, 0.243–0.602 millihartree,
and 0.138–0.343 kcal/mol errors obtained using the CC(P;Q)EN
correction.

In analogy to the fluorine molecule, the semi-stochastic
CC(P;Q) calculations aimed at converging the CCSDT results for
the automerization of cyclobutadiene are generally insensitive to the
type of the CIQMC approach used to identify the leading triples for
the inclusion in the underlying P spaces. It is sufficient to resort
to the least expensive forms of the CIQMC propagations capable
of capturing the triples, such as CISDT-MC or CISDTQ-MC, to
obtain the fast convergence of the CC(P;Q) reactant, transition-state,
and activation energies toward their CCSDT parents observed in
Table III and Fig. 5. Treating the CC(P;Q) correction δ(P;Q) fully,
following Eqs. (8), (9), and (11), is, however, important. We have
already discussed the benefits of using the Epstein–Nesbet form of
the DK(P) denominator, Eq. (11), in determining the ℓK(P) ampli-
tudes entering Eq. (8). A complete treatment of the de-excitation
operator Λ(P) in Eq. (9), which in the case of the triples correc-
tions to the CC(P) energies considered here means representing it as
Λ1 + Λ2 + Λ(MC)

3 , is important too. One can consider an approxima-
tion in which the three-body component Λ(MC)

3 is neglected, which
is what we did in Ref. 58, but it is generally better, especially in
the earlier stages of the CIQMC propagations, to keep all of the
relevant many-body components of Λ(P) in calculating the ℓK(P)
amplitudes that enter the CC(P;Q) correction δ(P;Q). This can be
illustrated by comparing the results of the FCIQMC-driven CC(P;Q)
computations shown in Table III, where we used a complete rep-
resentation of Λ(P), in which the three-body component Λ(MC)

3 was
included, with the analogous results reported in Ref. 58, where Λ(MC)

3
was neglected. For example, the differences between the CC(P;Q)EN
reactant, transition-state, and activation energies and their CCSDT
counterparts obtained in this work after 40 000 δτ = 0.0001 a.u. time
steps of the FCIQMC propagation are 92 microhartree, 1.556 milli-
hartree, and 0.919 kcal/mol, respectively. The analogous energy dif-
ferences reported in Ref. 58 are 0.489 millihartree, 3.235 millihartree,
and 1.7 kcal/mol, respectively, i.e., they are substantially larger. Ulti-
mately, when the propagation time τ becomes longer, different ways
of handling the Λ(P) operator or different ways of defining the DK(P)
denominator in Eq. (9) become less important, but if we are inter-
ested in accurately approximating the parent CC energetics in the
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early stages of the underlying CIQMC propagations, treating these
quantities fully is essential.

As shown in this subsection and Sec. III A, using complete
representations of the Λ(P) and H(P) operators and the Epstein–
Nesbet-type denominators DK(P) in determining corrections δ(P;Q)
benefits the semi-stochastic CC(P;Q) calculations aimed at converg-
ing the CCSDT energetics. In Sec. III C, which is the final part of our
discussion of the numerical results obtained in this work, we investi-
gate if similar applies to the CIQMC-driven CC(P;Q) computations
targeting CCSDTQ.

C. Double dissociation of H2O
Our last example, which illustrates the ability of the semi-

stochastic CC(P) and CC(P;Q) approaches to converge the CCSDTQ
energetics, is the C2v-symmetric cut of the ground-state potential
energy surface of the water molecule, in which both O–H bonds are
simultaneously stretched without changing the ∠(H–O–H) angle,
resulting in large T3 and T4 contributions. Following Ref. 118 and
consistent with our earlier deterministic CC(P;Q) study,63 where we
also obtained the reference CCSDTQ energies, we used the spheri-
cal cc-pVDZ basis set, correlated all electrons, and considered four
stretches of the O–H bonds, including RO–H = 1.5Re, 2Re, 2.5Re, and
3Re, in addition to the equilibrium geometry, RO–H = Re. We used
the same geometries, which the reader can find in Ref. 118, in the
semi-stochastic CC(P) and CC(P;Q) calculations for H2O carried
out in this work, summarized in Table IV and Fig. 6. The authors
of Ref. 118 obtained the CCSDTQ energies too, but we rely on our
own CCSDTQ data, published in Ref. 63 and recalculated in this
study, since Ref. 118 does not provide the CCSDTQ results for RO–H
= 2.5Re and 3Re and the CCSDTQ energies for RO–H = 1.5Re and
2Re reported in Ref. 118 are in slight disagreement with the correctly
converged values.

Up to twice the equilibrium O–H bond lengths, the CCSDT
approach provides an accurate description of the electronic ener-
gies of water, resulting in the 0.493, 1.423, and −1.405 millihartree
signed errors relative to FCI at RO–H = Re, 1.5Re, and 2Re, respec-
tively, when the cc-pVDZ basis set is employed, but when RO–H
> 2Re, CCSDT completely fails,63,118 and the CCSD(T), CCSD(2)T,
or CR-CC(2,3)A [in Table IV, τ = 0 CC(P;Q)MP], CR-CC(2,3)D
[in Table IV, τ = 0 CC(P;Q)EN], CCSDt, and CC(t;3) approxima-
tions to CCSDT, which were examined in Refs. 63, 75, 88, and 118,
fail with it [CCSD(T) fails already at RO–H = 2Re]. In particular,
the difference between the CCSDT and FCI energies obtained with
the cc-pVDZ basis set at RO–H = 2.5Re is −24.752 millihartree. At
RO–H = 3Re, the situation becomes even more dramatic, with the
CCSDT/cc-pVDZ energy falling 40.126 millihartree below its FCI
counterpart.63,118 One needs to incorporate T4 clusters to reduce
these massive errors in the RO–H > 2Re region, and in order to do it in
a reliable manner, one has to use full CCSDTQ or one of the robust
approximations to it, such as the CCSDtq, CC(t,q;3), and CC(t,q;3,4)
methods tested in Ref. 63. The conventional T3 plus T4 correc-
tions to CCSD, such as CCSD(TQf),144 or their CCSD(2)TQ

88,90 and
CR-CC(2,4)75,76,83 counterparts examined in Refs. 63 and 88 do not
suffice. The CCSDT(2)Q quadruples correction to CCSDT90 is not
robust enough either.88

When the cc-pVDZ basis set is employed, the differences
between the CCSDTQ and FCI energies at RO–H = Re, 1.5Re, 2Re,

2.5Re, and 3Re are 0.019, 0.121, 0.030, −2.361, and −4.733 milli-
hartree, respectively,63 which is a huge improvement over CCSDT.
One might argue the need for the inclusion of Tn clusters with n > 4
at RO–H = 2.5Re and 3Re or try to obtain further improvements in
describing the RO–H > 2Re region by replacing the RHF reference
determinants used throughout this work by their unrestricted coun-
terparts, but studies of this kind are outside the scope of this article.
The goal of the calculations for the water molecule discussed in this
subsection is to explore the potential offered by the semi-stochastic
CC(P) and CC(P;Q) approaches, especially the CC(P;Q) corrections
to the CC(P) energies calculated with the help of the FCIQMC and
CISDTQ-MC propagations, in converging the CCSDTQ energetics
obtained with the spin- and symmetry-adapted RHF references.

As demonstrated in Table IV and Fig. 6, which show the con-
vergence of the CC(P) and CC(P;Q) energies toward their CCS-
DTQ parents, and Table S.4 of the supplementary material, which
reports the total numbers of walkers characterizing the underlying
CIQMC runs as percentages of the walker populations at τ = 10.0
a.u., where our CIQMC propagations were terminated, the semi-
stochastic CC(P;Q) calculations using FCIQMC and CISDTQ-MC
are extremely efficient in capturing the combined effects of T3 and
T4 correlations. This remains true even in the most challenging
RO–H > 2Re region, where the T4 contributions, which have to over-
come the massive failures of the CCSDT approach, are very large
and difficult to balance with their T3 counterparts. The FCIQMC-
and CISDTQ-MC-driven CC(P;Q) computations accurately repro-
duce the parent CCSDTQ energetics already in the early stages of
the underlying CIQMC propagations, when the stochastically deter-
mined P spaces contain small fractions of triples and even smaller
fractions of quadruples and when the total numbers of walkers used
in the CIQMC runs are much smaller than those required to con-
verge these runs. The FCIQMC- and CISDTQ-MC-based CC(P;Q)
approaches greatly accelerate convergence of the corresponding
CC(P) calculations, despite that in our current implementation of
the semi-stochastic CC(P;Q) routines aimed at CCSDTQ the nonit-
erative correction δ(P;Q) corrects the energy obtained by solving the
CC(P) equations in the space of all singles and doubles and subsets
of triples and quadruples captured by FCIQMC or CISDTQ-MC for
the triples outside the stochastically determined P space, but not for
the quadruples missed by CIQMC.

Similar to the previously discussed CC(P;Q) calculations aimed
at CCSDT, the CC(P;Q) approach targeting CCSDTQ that adopts
the CC(P;Q)EN correction is generally most effective, although
the results of the CC(P;Q)MP calculations, in which the Epstein–
Nesbet denominator DK(P) in Eq. (9) is replaced by its Møller–
Plesset form, are as accurate as their CC(P;Q)EN counterparts in the
quasi-degenerate RO–H > 2Re region. Indeed, when we look at the
results in Table IV corresponding to RO–H = 2.5Re and 3Re, where
the T4 effects, estimated by forming the differences of the CCS-
DTQ and CCSDT energies, exceed 22 and 35 millihartree, respec-
tively,63 and where the differences between the CCSDT and CCSD
energies, which measure the magnitude of T3 contributions, are
about −45 and −51 millihartree, respectively,63,118 the FCIQMC-
and CISDTQ-MC-based CC(P;Q)EN computations reduce the large
−20.739 (RO–H = 2.5Re) and −35.823 (RO–H = 3Re) millihartree
errors relative to CCSDTQ obtained in the initial CR-CC(2,3)D
[τ = 0 CC(P;Q)EN] calculations to fractions of a millihartree after
only 20 000 δτ = 0.0001 a.u. MC iterations, i.e., after the FCIQMC
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TABLE IV. Convergence of the CC(P), CC(P;Q)MP, and CC(P;Q)EN energies toward CCSDTQ, where the P spaces consisted of all singles and doubles and subsets of triples
and quadruples identified during the i-FCIQMC or i-CISDTQ-MC propagations with δτ = 0.0001 a.u. and where the corresponding Q spaces consisted of the triples not captured
by the corresponding QMC simulations, for the equilibrium and four displaced geometries of the H2O molecule, as described by the cc-pVDZ basis set, taken from Ref. 118. The
i-FCIQMC and i-CISDTQ-MC calculations preceding the CC(P) and CC(P;Q) steps were initiated by placing 100 walkers on the RHF determinant, and the na parameter of the
initiator algorithm was set at 3. All electrons were correlated, and the spherical components of d orbitals were employed throughout.

% of triples/quadruples CC(P)b CC(P;Q)MP
b CC(P;Q)EN

b

RO–H/Re
a MC iterations FCIc CIQd FCIc CIQd FCIc CIQd FCIc CIQd

1.0 0 0/0 3.725e 0.887f 0.325g

10 000 2/0 2/0 3.291 3.291 0.718 0.718 0.220 0.220
20 000 4/1 4/1 2.874 2.874 0.633 0.629 0.205 0.185
30 000 6/1 5/1 2.637 2.637 0.544 0.600 0.143 0.184
40 000 11/2 9/2 2.052 2.052 0.441 0.471 0.142 0.129
50 000 13/2 14/3 1.910 1.910 0.390 0.358 0.105 0.095
60 000 17/3 18/4 1.481 1.481 0.304 0.323 0.087 0.106
70 000 22/5 22/5 1.238 1.238 0.245 0.249 0.065 0.076
80 000 27/6 27/6 0.956 0.956 0.207 0.216 0.073 0.082

100 000 36/10 35/10 0.586 0.586 0.127 0.143 0.048 0.065
∞ 100 −76.241 841h . . . . . .

1.5 0 0/0 9.922e 2.704f 1.021g

10 000 3/1 3/1 6.612 6.545 1.393 1.501 0.290 0.434
20 000 8/1 7/1 4.068 4.168 0.898 0.799 0.236 0.138
30 000 11/2 11/2 3.000 3.032 0.613 0.698 0.144 0.248
40 000 16/3 17/3 1.878 2.207 0.481 0.503 0.231 0.189
50 000 22/4 22/4 1.465 1.507 0.377 0.366 0.185 0.166
60 000 26/6 27/6 0.993 0.959 0.254 0.270 0.133 0.152
70 000 31/8 33/9 0.786 0.706 0.229 0.206 0.133 0.122
80 000 36/10 38/11 0.552 0.548 0.186 0.156 0.130 0.091

100 000 46/17 48/18 0.259 0.263 0.086 0.086 0.061 0.060
∞ 100 −76.072 227h . . . . . .

2.0 0 0/0 22.002e 3.775f −0.581g

10 000 2/0 2/0 11.766 11.803 1.966 2.189 −0.044 0.200
20 000 7/1 6/1 4.172 4.937 1.129 1.295 0.567 0.626
30 000 10/2 9/1 3.132 3.788 0.708 0.683 0.323 0.160
40 000 14/3 13/2 1.728 1.966 0.603 0.668 0.436 0.483
50 000 19/4 19/4 1.123 1.120 0.421 0.509 0.324 0.437
60 000 25/6 24/6 0.794 0.719 0.305 0.221 0.246 0.156
70 000 30/8 30/8 0.429 0.427 0.129 0.144 0.094 0.110
80 000 36/11 35/11 0.327 0.293 0.106 0.103 0.079 0.082

100 000 47/18 47/18 0.107 0.102 0.036 0.026 0.029 0.021
∞ 100 −75.951 635h . . . . . .

2.5 0 0/0 22.668e −13.469f −20.739g

10 000 3/0 3/0 18.305 −3.327 −1.136 −18.549 −4.962 −21.357
20 000 6/1 6/1 5.254 7.207 0.010 0.448 −0.821 −0.588
30 000 10/2 9/2 2.278 2.109 0.513 0.988 0.298 0.872
40 000 15/3 13/3 1.021 1.170 0.304 0.542 0.220 0.490
50 000 22/5 17/4 0.459 0.585 0.264 0.287 0.254 0.264
60 000 27/8 23/6 0.340 0.424 0.105 0.222 0.096 0.212
70 000 34/12 29/9 0.133 0.411 0.059 0.020 0.054 −0.033
80 000 42/16 36/13 0.088 0.155 0.014 0.052 0.011 0.045

100 000 55/28 49/22 0.020 0.027 0.013 0.020 0.012 0.020
∞ 100 −75.920 352h . . . . . .
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TABLE IV. (Continued.)

% of triples/quadruples CC(P)b CC(P;Q)MP
b CC(P;Q)EN

b

RO–H/Re
a MC iterations FCIc CIQd FCIc CIQd FCIc CIQd FCIc CIQd

3.0 0 0/0 15.582e −28.302f −35.823g

10 000 3/1 3/1 10.165 12.515 −2.390 −1.199 −3.945 −2.697
20 000 5/1 5/1 4.282 2.721 −0.084 −0.690 −0.403 −0.875
30 000 9/2 8/2 1.616 3.019 0.544 0.357 0.414 0.007
40 000 13/3 11/3 0.969 0.830 0.267 0.378 0.199 0.334
50 000 18/5 17/5 0.523 0.400 0.251 0.196 0.231 0.184
60 000 24/8 22/7 0.185 0.237 0.097 0.093 0.090 0.087
70 000 30/12 28/10 0.082 0.128 0.039 0.076 0.036 0.075
80 000 36/16 34/14 0.030 0.050 0.022 0.030 0.021 0.029

100 000 51/28 48/24 0.005 0.012 0.005 0.008 0.005 0.008
∞ 100 −75.916 679h . . . . . .

aThe equilibrium geometry, RO–H = Re , and the geometries that represent a simultaneous stretching of both O–H bonds by factors of 1.5, 2.0, 2.5, and 3.0 without changing the
∠(H–O–H) angle were taken from Ref. 118.
bUnless otherwise stated, all energies are reported as errors relative to CCSDTQ in millihartree.
cFCI stands for i-FCIQMC.
dCIQ stands for i-CISDTQ-MC.
eEquivalent to CCSD.
fEquivalent to the CCSD energy corrected for the effects of T3 clusters using the CCSD(2)T approach of Ref. 88, which is equivalent to the approximate form of the completely
renormalized CR-CC(2,3) approach of Refs. 75 and 76, abbreviated sometimes as CR-CC(2,3),A or CR-CC(2,3)A .62,63,78,80,83

gEquivalent to the CCSD energy corrected for the effects of T3 clusters using the most complete variant of the completely renormalized CR-CC(2,3) approach of Refs. 75 and 76,
abbreviated sometimes as CR-CC(2,3),D or CR-CC(2,3)D .62,63,78,80,83

hTotal CCSDTQ energy in hartree.

and CISDTQ-MC propagations capture as little as 5%–6% of the
triples and 1% of the quadruples in the corresponding P spaces.
The FCIQMC- and CISDTQ-MC-driven CC(P;Q)MP calculations
using the same QMC propagation time τ are similarly effective
though. They reduce the large −13.469 and −28.302 millihartree
errors relative to CCSDTQ resulting from the initial CCSD(2)T or
CR-CC(2,3)A [τ = 0 CC(P;Q)MP] computations to a submillihartree
level too.

The situation changes in the RO–H = Re − 2Re region, where
the T4 effects are much smaller than those originating from the
T3 clusters. In this case, the convergence of the energies obtained
in the semi-stochastic CC(P;Q)MP calculations toward CCSDTQ
is slower than that obtained with the CC(P;Q)EN approach, i.e.,
our earlier conclusion, drawn from the calculations discussed in
Secs. III A and III B and Ref. 58, that the use of the CC(P;Q)EN
corrections to the semi-stochastic CC(P) energies is generally most
effective still stands. This becomes particularly clear when we
compare the results of the FCIQMC- and CISDTQ-MC-driven
CC(P;Q)MP and CC(P;Q)EN calculations at RO–H = Re and 1.5Re. For
example, it takes only 40 000 δτ = 0.0001 a.u. MC time steps, or about
10% of the triples and 2% of the quadruples captured in the P space,
for the CC(P;Q)EN approach to reach a 0.1 millihartree accuracy
level relative to CCSDTQ at RO–H = Re. The CC(P;Q)MP calcula-
tions reach the same accuracy level after 100 000 MC time steps that
capture about 35% of the triples and 10% of the quadruples. When
the RO–H = 1.5Re geometry is considered, the CC(P;Q)EN calcula-
tions reach a 0.1 millihartree accuracy level relative to CCSDTQ after
60 000–70 000 MC iterations that capture about 30% of the triples

and 6%–9% of the quadruples, i.e., in the relatively early stages of
the FCIQMC and CISDTQ-MC propagations. The CC(P;Q)MP cal-
culations reach a similar accuracy level 20 000–30 000 MC iterations
later, after capturing about 40% of the triples and more than 10%
of the quadruples. It is certainly reassuring that the CC(P;Q)EN cal-
culations using FCIQMC and CISDTQ-MC to identify the leading
triply and quadruply excited determinants for the inclusion in the
underlying P spaces are capable of reproducing the CCSDTQ ener-
gies of the water molecule over a wide range of geometries along
the C2v-symmetric cut of the ground-state potential energy surface
considered in Table IV and Fig. 6 to within ∼0.1 millihartree out of
the early stages of the CIQMC propagations, after capturing about
10% (RO–H = Re) or 30% (RO–H > Re) of the triples and 2% (RO–H
= Re) or about 10% (RO–H > Re) of the quadruples. Having said this,
it is interesting to observe that both types of the CC(P;Q) correc-
tions tested in this study, abbreviated as CC(P;Q)MP and CC(P;Q)EN,
perform equally well when RO–H > 2Re, i.e., when the T3 and
T4 effects are both very large. We observed a similar behavior in
Ref. 63, when examining the relative performance of the CC(P;Q)-
based CC(t,q;3)A and CC(t,q;3)D corrections to CCSDtq using the
double dissociation of water as one of the examples. This should not
be surprising since the CC(t,q;3)A and CC(t,q;3)D methods inves-
tigated in Ref. 63 can be regarded as the deterministic counter-
parts of the semi-stochastic CC(P;Q)MP and CC(P;Q)EN approaches
targeting the CCSDTQ energetics implemented in this work.

As in the case of the CC(P;Q) calculations targeting CCSDT,
discussed in Secs. III A and III B, the observed fast convergence
of the semi-stochastic CC(P;Q) calculations aimed at recovering the
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FIG. 6. Convergence of the CC(P) (red filled circles and dashed lines) and CC(P;Q)EN (black open squares and solid lines) energies toward CCSDTQ for the water molecule,
as described by the cc-pVDZ basis set. The relevant i-CIQMC runs (all using δτ = 0.0001 a.u.) are depicted by the green lines representing the corresponding projected
energies. Panels (a) and (b) correspond to the calculations in which the P spaces employed in the CC(P) steps consisted of all singles and doubles and subsets of triples and
quadruples identified during the i-FCIQMC propagations; the Q spaces needed to define the corresponding δ(P;Q) corrections consisted of the triples that were not captured
by i-FCIQMC. Panels (c) and (d) correspond to the calculations in which the P spaces employed in the CC(P) steps consisted of all singles and doubles and subsets of triples
and quadruples identified during the i-CISDTQ-MC propagations; in this case, the Q spaces needed to define the corresponding δ(P;Q) corrections consisted of the triples
that were not captured by i-CISDTQ-MC. Panels (a) and (c) correspond to the equilibrium geometry. Panels (b) and (d) correspond to the geometry in which both O–H bonds
in water are simultaneously stretched by a factor of 3 without changing the∠(H–O–H) angle. All reported energies are errors relative to CCSDTQ in millihartree. The insets
show the percentages of triples (blue line) and quadruples (purple line) captured during the relevant i-CIQMC propagations.

CCSDTQ energetics does not seem to be affected by the type of the
CIQMC approach used to identify the leading triply and quadruply
excited determinants. This should facilitate future applications of the
semi-stochastic CC(P;Q) methodology, including cases of stronger
electronic quasi-degeneracies characterized by large T3 and T4 con-
tributions, helping us to converge the CCSDTQ-level energetics at
the small fraction of the deterministic CCSDTQ effort by taking
advantage of the least expensive forms CIQMC capable of capturing
triples and quadruples, represented in this study by CISDTQ-MC.

IV. CONCLUSIONS
We have recently started exploring a novel way of obtaining

accurate electronic energetics equivalent to high-level CC calcu-
lations at the small fraction of the computational effort and pre-
serving the black-box character of conventional single-reference
computations by merging the deterministic CC(P;Q) formalism,

originally proposed in Refs. 57 and 61, along with the underlying
CC(P)/EOMCC(P) framework, with the stochastic CIQMC64–67 and
CCMC68–71 approaches.58–60 When combined with the FCIQMC
and CCSDT-MC wave function sampling, used to identify the lead-
ing triply excited determinants or cluster/excitation amplitudes, and
correcting the CC(P)58 and EOMCC(P)59 energies for the remaining
triples not captured by FCIQMC or CCSDT-MC, the resulting semi-
stochastic CC(P;Q) methodology58 and its excited-state extension60

turned out to be very promising, allowing us to converge the CCSDT
and EOMCCSDT energetics out of the early stages of the underlying
QMC propagations.

This study can be regarded as the next key step in the develop-
ment and exploration of the semi-stochastic CC(P;Q) approaches,
in which we have extended our initial work,58 focusing on recov-
ering the CCSDT energetics and relying on FCIQMC and CCSDT-
MC, to more efficient ways of identifying the leading higher-than-
doubly excited determinants for the inclusion in the underlying
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P spaces. We have accomplished this goal by replacing FCIQMC
by its less expensive CISDT-MC and CISDTQ-MC counterparts.
We have also developed and tested the initial variant of the semi-
stochastic CC(P;Q) method aimed at converging the CCSDTQ ener-
getics, in which the results of CC(P) calculations in the subspaces
spanned by singles, doubles, and subsets of triples and quadru-
ples identified by FCIQMC or CISDTQ-MC are corrected for the
remaining triples outside the stochastically determined P spaces.
By comparing the FCIQMC-driven CC(P;Q) calculations targeting
CCSDT, carried out in this work, in which the noniterative cor-
rections δ(P;Q) to the CC(P) energies have been treated fully, as
required by Eqs. (8), (9), and (11), with the analogous computations
reported in Ref. 58, where the same corrections were treated in a
somewhat simplified manner by neglecting the three-body compo-
nent of the de-excitation operator Λ(P) used to construct amplitudes
ℓK(P) entering Eq. (8), we have examined the significance of the
full vs approximate treatment of these corrections for the accuracy
of the resulting CC(P;Q) energies. Other important issues, such as
the benefits of using the Epstein–Nesbet form of the denominators
DK(P) that enter the definition of corrections δ(P;Q), resulting in
the CC(P;Q)EN variant of CC(P;Q), as compared to their Møller–
Plesset counterparts defining the CC(P;Q)MP corrections, have been
investigated as well.

The ability of the semi-stochastic CC(P;Q) approaches to con-
verge the CCSDT and CCSDTQ energies based on the truncated
CISDT-MC and CISDTQ-MC propagations and their FCIQMC
counterparts, in which the noniterative corrections δ(P;Q) have been
treated fully, has been illustrated using a few molecular examples,
for which the deterministic CCSDT and CCSDTQ calculations that
provide the reference data are feasible and which require a high-
level CC treatment to obtain a reliable description. Thus, we have
reported the results of the semi-stochastic CC(P;Q) calculations
using CISDT-MC, CISDTQ-MC, and FCIQMC aimed at converg-
ing the CCSDT energetics for the F–F bond breaking in F2 and
the automerization of cyclobutadiene, which require an accurate
treatment of T3 clusters accounting for the relaxation of T1 and
T2 amplitudes in the presence of large T3 contributions, and the
CISDTQ-MC- and FCIQMC-driven CC(P;Q) computations for the
C2v-symmetric stretching of the O–H bonds in the water molecule
targeting CCSDTQ, where the T3 and T4 clusters become large and
difficult to balance.

The numerical results reported in this article clearly show
that the semi-stochastic CC(P;Q) calculations are capable of accu-
rately reproducing the parent CCSDT and CCSDTQ energetics,
even when electronic quasi-degeneracies and higher-than-two-body
components of the cluster operator become large, out of the early
stages of the corresponding CIQMC propagations, accelerating con-
vergence of the underlying CC(P) computations at the same time.
The convergence of the CC(P;Q) energies toward their CCSDT and
CCSDTQ parents does not seem to be affected by the type of the
CIQMC approach used to identify the leading triply or triply and
quadruply excited determinants. In the case of the CC(P;Q) calcu-
lations targeting the CCSDT energetics, one can use FCIQMC or
one of its less expensive truncated forms, such as CISDTQ-MC, or
even the crude CISDT-MC approach, with virtually no impact on
the systematic convergence pattern toward CCSDT as the propa-
gation time τ approaches ∞. Similarly, one can replace FCIQMC
by CISDTQ-MC without any significant effect on the convergence

of the semi-stochastic CC(P;Q) calculations toward CCSDTQ. Our
calculations also suggest that a complete treatment of the CC(P;Q)
corrections δ(P;Q), as defined by Eqs. (8), (9), and (11), including
the use of the CC(P;Q)EN approach, as opposed to its more approx-
imate CC(P;Q)MP version, is more important than the actual type
of the CIQMC approach used to determine the relevant P spaces,
especially when one is interested in accelerating convergence of the
semi-stochastic CC(P;Q) calculations in the early stages of the QMC
propagations. We have demonstrated that independent of the type
of the CIQMC approach used to identify the leading triply or triply
and quadruply excited determinants for the inclusion in the relevant
P spaces and independent of the magnitude of T3 and T4 effects,
the semi-stochastic CC(P;Q) calculations allow us to reach submilli-
hartree accuracy levels relative to the parent CCSDT and CCSDTQ
energetics with small fractions of higher-than-doubly excited deter-
minants captured in the early stages of the corresponding CIQMC
runs and with small walker populations that are far less than the total
numbers of walkers required to converge these runs.

By relaxing T1 and T2 clusters in the presence of their T3 or
T3 and T4 counterparts defined using the excitation lists provided
by full or truncated CIQMC, the semi-stochastic CC(P;Q) computa-
tions are capable of considerably improving accuracy of the more
established noniterative corrections to CCSD without making the
calculations a lot more expensive. In this sense, the semi-stochastic
CC(P;Q) methodology using CIQMC is very similar to the deter-
ministic CC(t;3), CC(t,q;3), and CC(t,q;3,4) hierarchy developed and
tested in Refs. 57, 61–63, 82, and 100, which uses the CC(P;Q) cor-
rections to correct the results of the active-space CCSDt or CCSDtq
calculations for the remaining T3 or T3 and T4 correlations that were
not captured via active orbitals. There is, however, one major advan-
tage of the semi-stochastic CC(P;Q) framework over the CC(t;3),
CC(t,q;3), and CC(t,q;3,4) approaches, namely, the use of FCIQMC
or truncated CIQMC propagations, which can efficiently iden-
tify the leading higher-than-doubly excited determinants for the
inclusion in the relevant P spaces, combined with the δ(P;Q) cor-
rections to capture the remaining correlations of interest, offers
an automated way of performing accurate CC(P;Q) computations
without any reference to the user- and system-dependent active
orbitals. The analogies between the active-space CCSDt (for excited
states, EOMCCSDt26,27,145) and semi-stochastic CC(P)/EOMCC(P)
approaches, on which the deterministic CC(t;3) (in the case of
CCSDt/EOMCCSDt) and CIQMC-driven [in the case of semi-
stochastic CC(P)/EOMCC(P)] CC(P;Q) approaches are based, have
been investigated in Ref. 60.

The findings presented in this article are encouraging from the
point of view of future applications of the semi-stochastic CC(P;Q)
methodology using CIQMC, including challenging cases of stronger
electronic quasi-degeneracies characterized by large T3 or T3 and
T4 contributions that other approximations to CCSDT or CCS-
DTQ may struggle with, but the story is not over yet. We certainly
need to improve the efficiency of our CC(P;Q) codes, especially the
underlying CC(P) routines, to obtain full benefits offered by the
semi-stochastic CC(P;Q) approaches, discussed in Sec. II B. This is
especially true in the case of our current CC(P;Q) codes aimed at
converging the CCSDTQ energetics, which have a largely pilot char-
acter. In this case, we also need to examine if one can further improve
the convergence of the FCIQMC- or CISDTQ-MC-driven CC(P;Q)
calculations aimed at CCSDTQ by correcting the underlying CC(P)
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energies for both the missing triples and quadruples not captured
by CIQMC at a given time τ, not just for the missing triples, as
has been done in this work. It would also be useful to examine if
one can extend the semi-stochastic CC(P) and CC(P;Q) approaches
to the higher CC theory levels, beyond CCSDTQ examined in this
work and beyond EOMCCSDT explored in Refs. 59 and 60, and
investigate if our observations regarding the utility of the trun-
cated CIQMC methods, such as CISDT-MC and CISDTQ-MC,
remain true in the excited-state and open-shell CC(P;Q) calcula-
tions. In this study, we have adopted the original form of the i-
CIQMC algorithm proposed in Ref. 65, but it would be interest-
ing to examine if one could obtain additional benefits by interfac-
ing our semi-stochastic CC(P;Q) methods with the improved ways
of converging CIQMC, such as the adaptive-shift approach devel-
oped in Refs. 67 and 114. All of the above ideas are presently pur-
sued in our group, and the results will be reported as soon as they
become available. Last but not least, we have recently interfaced our
CC(P) and CC(P;Q) routines with some of the modern versions of
the selected CI approaches, which date back to the late 1960s and
early 1970s146–149 and which have recently regained significant atten-
tion.150–160 Our initial numerical results, which we hope to report
in a separate publication,161 indicate that selected CI methods can
be as effective in generating meaningful P spaces for the CC(P) cal-
culations, which precede the determination of the δ(P;Q) moment
corrections, as the stochastic CIQMC propagations advocated in this
and our earlier58–60 studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for the information about the
total numbers of walkers characterizing the FCIQMC, CISDT-MC,
and CISDTQ-MC propagations for the F–F bond breaking in F2
and the automerization of cyclobutadiene and the FCIQMC and
CISDTQ-MC propagations for the double dissociation of the water
molecule carried out in the present study.
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