CBD Manuscript

This commit is contained in:
EnzoMonino 2021-04-12 09:18:02 +02:00
parent 2c26e82e1a
commit e90a525ea9

View File

@ -254,7 +254,7 @@ Despite the fact that excited states are involved in ubiquitious processes such
\section{Computational Details}
\label{sec:compdet}
The system under investigation in this work is the cyclobutadiene (CBD) molecule, rectangular ($D_{2h}$) and square ($D_{4h}$) geometries are considered. The ($D_{2h}$) geometry is obtained at the CC3 level without frozen core using the aug-cc-pVTZ and the ($D_{4h}$) geometry is obtained at the RO-CCSD(T) level using aug-cc-pVTZ again without frozen core. In both structures the CBD has a singlet ground state, for the spin-flip calculations we consider the lowest triplet state as reference. Spin-flip techniques are broadly accessible and here, among them, we explore equation-of-motion coupled-cluster singles and doubles (EOM-CCSD), configuration interaction singles (CIS), algebraic-diagrammatic construction (ADC) scheme and TD-DFT. We use the unrestricted formalism for all calculations and throughout this work.
The system under investigation in this work is the cyclobutadiene (CBD) molecule, rectangular ($D_{2h}$) and square ($D_{4h}$) geometries are considered. The ($D_{2h}$) geometry is obtained at the CC3 level without frozen core using the aug-cc-pVTZ and the ($D_{4h}$) geometry is obtained at the RO-CCSD(T) level using aug-cc-pVTZ again without frozen core. In both structures the CBD has a singlet ground state, for the spin-flip calculations we consider the lowest triplet state as reference. Spin-flip techniques are broadly accessible and here, among them, we explore equation-of-motion coupled-cluster singles and doubles (EOM-CCSD), configuration interaction singles (CIS), algebraic-diagrammatic construction (ADC) scheme and TD-DFT. The standard and extended spin-flip ADC(2) (SF-ADC(2)-s and SF-ADC(2)-x respectively) and SF-ADC(3) are performed using Q-CHEM 5.2.1. Spin-flip TD-DFT calculations are also performed using Q-CHEM 5.2.1. The BLYP, B3LYP, PBE0 and BH\&HLYP functionals are considered, they contain 0\%, 20\%, 25$\%$, 50\% of exact exchange and are labeled, respectively, as SF-BLYP, SF-B3LYP, SF-PBE0, SF-BH\&HLYP. We also have done spin-flip TD-DFT calculations using RSH functionals as: CAM-B3LYP, LC-$\omega$PBE08 and $\omega$B97X-V. The main difference here between these RSHs functionals is the amount of exact-exchange at long-range: 75$\%$ for CAM-B3LYP and 100$\%$ for LC-$\omega$PBE08 and $\omega$B97X-V. To complete the use of spin-flip TD-DFT we also considered GH meta-GGA functional M06-2X, RSH meta-GGA functional M11 and DH functionals B2PLYP and B2GPPLYP. EOM-SF-CCSD and EOM-SF-CC(2,3) are also performed with Q-CHEM 5.2.1. Throughout all this work, spin-flip and spin-conserved calculations are performed with a UHF reference.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%