diff --git a/References/Balkova_1994.pdf b/References/Balkova_1994.pdf new file mode 100644 index 0000000..40856d9 Binary files /dev/null and b/References/Balkova_1994.pdf differ diff --git a/References/Banerjee_2016.pdf b/References/Banerjee_2016.pdf new file mode 100644 index 0000000..5a99410 Binary files /dev/null and b/References/Banerjee_2016.pdf differ diff --git a/References/Casanova_2020.pdf b/References/Casanova_2020.pdf new file mode 100644 index 0000000..0a928ba Binary files /dev/null and b/References/Casanova_2020.pdf differ diff --git a/References/Eckert-Maksic_2006.pdf b/References/Eckert-Maksic_2006.pdf new file mode 100644 index 0000000..523df5e Binary files /dev/null and b/References/Eckert-Maksic_2006.pdf differ diff --git a/References/Fantuzzi_2016.pdf b/References/Fantuzzi_2016.pdf new file mode 100644 index 0000000..4abbcfa Binary files /dev/null and b/References/Fantuzzi_2016.pdf differ diff --git a/References/Karadakov_2008.pdf b/References/Karadakov_2008.pdf new file mode 100644 index 0000000..98bf7c0 Binary files /dev/null and b/References/Karadakov_2008.pdf differ diff --git a/References/Kostenko_2017.pdf b/References/Kostenko_2017.pdf new file mode 100644 index 0000000..6965d2e Binary files /dev/null and b/References/Kostenko_2017.pdf differ diff --git a/References/Lefrancois_2015.pdf b/References/Lefrancois_2015.pdf new file mode 100644 index 0000000..53b5b1d Binary files /dev/null and b/References/Lefrancois_2015.pdf differ diff --git a/References/Levchenko_2004.pdf b/References/Levchenko_2004.pdf new file mode 100644 index 0000000..62e845d Binary files /dev/null and b/References/Levchenko_2004.pdf differ diff --git a/References/Li_2009.pdf b/References/Li_2009.pdf new file mode 100644 index 0000000..5256399 Binary files /dev/null and b/References/Li_2009.pdf differ diff --git a/References/Lutz_2018.pdf b/References/Lutz_2018.pdf new file mode 100644 index 0000000..8b1e0ba Binary files /dev/null and b/References/Lutz_2018.pdf differ diff --git a/References/Lyakh_2011.pdf b/References/Lyakh_2011.pdf new file mode 100644 index 0000000..233a6da Binary files /dev/null and b/References/Lyakh_2011.pdf differ diff --git a/References/Mahapatra_2010.pdf b/References/Mahapatra_2010.pdf new file mode 100644 index 0000000..de9d638 Binary files /dev/null and b/References/Mahapatra_2010.pdf differ diff --git a/References/Manohar_2008(SI).txt b/References/Manohar_2008(SI).txt new file mode 100644 index 0000000..5259585 --- /dev/null +++ b/References/Manohar_2008(SI).txt @@ -0,0 +1,482 @@ +Methylene-Neon size-extensivity calculation +The UHF based calculations performed using the TZ2P basis set for CH2 +and the cc-pVTZ basis set for Neon + +Methylene-neon geometry: +Z-matrix input: +C +H 1 rCH +H 1 rCH 2 HCH +Ne 1 rINF 2 bisect 3 dih + +rCH = 1.0775 +HCH = 133.29 +rINF =100.00 +bisect = 66.645 +dih = 0.000 + +Nuclear Repulsion Energy = 6.5846523571 hartrees + +SF calculation using high-spin triplet reference +EHF = -167.469817210 +EMP2 = -167.870015899 +Correlation Energy = -0.421915723 +CCSD Total Energy = -167.891732933 + +EE calculation using singlet (closed-shell) reference +EHF = -167.406743221 +EMP2 = -167.824878993 +Correlation Energy = -0.446045007 +CCSD Total Energy = -167.852788228 +--------------------------- +Methylene (size-extensivity) calculations +Equilibrium geometry used: (FCI/TZ2P) +C +H 1 rCH +H 1 rCH 2 HCH + +rCH = 1.0775 +HCH = 133.29 + +Nuclear Repulsion Energy = 6.1608618178 hartrees + +SF calculation using high-spin triplet reference +EHF = -38.937955569 +EMP2 = -39.060862657 +Correlation Energy = -0.142963229 +CCSD Total Energy = -39.080918798 + +EE calculation using singlet (closed-shell) reference +EHF = -38.874881580 +EMP2 = -39.015725751 +Correlation Energy = -0.167092513 +CCSD Total Energy = -39.041974093 +--------------------------- + +--------------------------- +Methylene: Adiabatic excitation energies +FCI/TZ2P optimized geometries used. + +The TZ2P basis set and high-spin UHF reference +used for the single point calculations +---------------------- +The geometry for triplet (reference) state: 3B1 is same as in the +size-extensivity calculation +------- +a 1A1 state geometry: +C +H 1 rCH +H 1 rCH 2 HCH + +rCH = 1.1089 +HCH = 101.89 + +Nuclear Repulsion Energy = 6.0337753316 hartrees + +EHF = -38.919791792 +EMP2 = -39.043043599 +Correlation Energy = -0.143390973 +CCSD Total Energy = -39.063182765 +------- +b 1B1 state geometry: +C +H 1 rCH +H 1 rCH 2 HCH + +rCH = 1.0748 +HCH = 141.56 + +Nuclear Repulsion Energy = 6.1688997427 hartrees + +EHF = -38.936751546 +EMP2 = -39.059890913 +Correlation Energy = -0.143347464 +CCSD Total Energy = -39.080099010 +------- +c 1A1 state geometry: +C +H 1 rCH +H 1 rCH 2 HCH + +rCH = 1.0678 +HCH = 170.08 + +Nuclear Repulsion Energy = 6.1956449370 hartrees + +EHF = -38.927357576 +EMP2 = -39.051124228 +Correlation Energy = -0.144656239 +CCSD Total Energy = -39.072013815 +--------------------------- + +--------------------------- +Nitrenium: +The CISD/TZ2P(f,d) optimized geometries used + +The TZ2Pf basis set and high-spin UHF reference +used for the single point calculations +------- +3B1 (reference) state geometry: +N +H 1 rNH +H 1 rNH 2 HNH + +rNH = 1.0295 +HNH = 150.88 + +Nuclear Repulsion Energy = 7.4617278181 hartrees + +EHF = -55.236748697 +EMP2 = -55.383288172 +Correlation Energy = -0.166553276 +CCSD Total Energy = -55.403301973 +------- +a 1A1 state geometry: +N +H 1 rNH +H 1 rNH 2 HNH + +rNH = 1.0459 +HNH = 107.96 + +Nuclear Repulsion Energy = 7.3961310239 hartrees + +EHF = -55.211387188 +EMP2 = -55.359560032 +Correlation Energy = -0.167768985 +CCSD Total Energy = -55.379156174 +------- +b 1B1 state geometry: +N +H 1 rNH +H 1 rNH 2 HNH + +rNH = 1.0293 +HNH = 161.47 + +Nuclear Repulsion Energy = 7.4580461860 hartrees + +EHF = -55.236144178 +EMP2 = -55.382667311 +Correlation Energy = -0.166772828 +CCSD Total Energy = -55.402917006 +------- +c 1A1 state geometry: +N +H 1 rNH +H 1 rNH 2 HNH + +rNH = 1.0315 +HNH = 180.00 + +Nuclear Repulsion Energy = 7.4387489642 hartrees + +EHF = -55.235010510 +EMP2 = -55.381564553 +Correlation Energy = -0.167042120 +CCSD Total Energy = -55.402052630 +--------------------------- + +--------------------------- +Cyclobutadiene: +CCSD(T)/cc-pVTZ optimized +Singlet (X^1A_g) geometry; point group: D2h +Z matrix input: +C +C 1 ccs +C 2 ccd 1 ccc +C 3 ccs 2 ccc 1 dihh +H 1 hc 2 hccs 3 dihc +H 2 hc 3 hccd 4 dihc +H 3 hc 4 hccs 1 dihc +H 4 hc 1 hccd 2 dihc + +ccs 1.566000 +ccd 1.343000 +hc 1.074000 +ccc 90.000 +hccs 134.910 +hccd 135.090 +dihh 0.000 +dihc 180.000 + +Nuclear Repulsion Energy = 98.8821560064 hartrees + +Single point calculation using cc-pVTZ basis set: + +1. High spin ROHF reference (SF calculation) +EHF = -153.658702689 +EMP2 = -154.344410890 +Correlation Energy = -0.705879311 +CCSD Total Energy = -154.364582000 + + +2. RHF reference (EE calculation) +EHF = -153.695315728 +EMP2 = -154.388889871 +Correlation Energy = -0.721608906 +CCSD Total Energy = -154.416924635 +--------------------------- +Cyclobutadiene: +CCSD(T)/cc-pVTZ optimized +Triplet (^3A_2g) geometry; point group: D4h +Z matrix input: + C + C 1 cc + C 2 cc 1 ccc + C 3 cc 2 ccc 1 dihc + H 1 hc 2 hcc 3 dihh + H 2 hc 3 hcc 4 dihh + H 3 hc 4 hcc 1 dihh + H 4 hc 1 hcc 2 dihh + +cc 1.439000 +ccc 90.000 +ccc 90.000 +dihc 0.000 +hc 1.073000 +hcc 135.000 +dihh 180.000 + +Nuclear Repulsion Energy = 99.4931915115 hartrees + +Single point calculation using the cc-pVTZ basis set: +High spin ROHF reference +EHF = -153.697275181 +EMP2 = -154.378239017 +Correlation Energy = -0.702582178 +CCSD Total Energy = -154.399857359 +--------------------------- + +--------------------------- +Benzynes: All geometries optimized at the SF-TDDFT/6-31G* level +using 50/50 functional +--------------------------- +ortho-benzyne; SF calculation, singlet geometry + +Cartesian coordinates: + H 2.518466 .000000 -.131102 + C 1.443350 .000000 -.129071 + C .698800 .000000 1.050271 + H 1.218994 .000000 1.994214 + C -.698800 .000000 1.050271 + H -1.218994 .000000 1.994214 + C -1.443350 .000000 -.129071 + H -2.518466 .000000 -.131102 + C -.620604 .000000 -1.229469 + C .620604 .000000 -1.229469 + +Nuclear Repulsion Energy = 189.1020524482 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.435002175 +EMP2 = -230.305244473 +Correlation Energy = -0.900732418 +CCSD Total Energy = -230.335734593 +--------------------------- +ortho-benzyne; SF calculation at triplet geometry + +Cartesian coordinates: + H 2.476058 .000000 -.120773 + C 1.397826 .000000 -.115266 + C .690428 .000000 1.085671 + H 1.229929 .000000 2.017939 + C -.690428 .000000 1.085671 + H -1.229929 .000000 2.017939 + C -1.397826 .000000 -.115266 + H -2.476058 .000000 -.120773 + C -.692326 .000000 -1.284303 + C .692326 .000000 -1.284303 + +Nuclear Repulsion Energy = 186.7796773895 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.464419607 +EMP2 = -230.335995778 +Correlation Energy = -0.902451276 +CCSD Total Energy = -230.366870882 +--------------------------- + +--------------------------- +meta-benzyne singlet geometry + +Cartesian coordinates: + H -2.14490 .000000 -1.09181 + C -1.16532 .000000 -.64614 + C .00000 .000000 -1.40225 + H .00000 .000000 -2.48201 + C 1.16532 .000000 -.64614 + H 2.14490 .000000 -1.09181 + C 1.00834 .000000 .70681 + C -.00000 .000000 1.60963 + H .00000 .000000 2.68230 + C -1.00834 .000000 .70681 + +Nuclear Repulsion Energy = 188.8101975912 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.430389476 +EMP2 = -230.308022286 +Correlation Energy = -0.907594672 +CCSD Total Energy = -230.337984148 +--------------------------- +meta-benzyne triplet geometry + +Cartesian coordinates: + H -2.14689 .000000 1.16892 + C -1.21423 .000000 .63214 + C .00000 .000000 1.31213 + H .00000 .000000 2.39042 + C 1.21423 .000000 .63214 + H 2.14689 .000000 1.16892 + C 1.15425 .000000 -.73302 + C .00000 .000000 -1.47122 + H .00000 .000000 -2.54931 + C -1.15425 .000000 -.73302 + +Nuclear Repulsion Energy = 187.2036581675 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.468482368 +EMP2 = -230.341646471 +Correlation Energy = -0.904396023 +CCSD Total Energy = -230.372878391 +--------------------------- + +--------------------------- +para-benzyne, singlet geometry + +Cartesian coordinates: + H 2.145810 -1.225292 .000000 + C 1.201382 -.709285 .000000 + C 1.201382 .709285 .000000 + H 2.145810 1.225292 .000000 + C .000000 1.335664 .000000 + C -1.201382 .709285 .000000 + H -2.145810 1.225291 .000000 + C -1.201382 -.709285 .000000 + H -2.145810 -1.225291 .000000 + C .000000 -1.335664 .000000 + +Nuclear Repulsion Energy = 187.2138176166 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.323462213 +EMP2 = -230.271497449 +Correlation Energy = -0.944194859 +CCSD Total Energy = -230.267657072 +--------------------------- +para-benzyne, triplet geometry + +Cartesian coordinates: + H 2.144994 -1.255165 .000000 + C 1.222802 -.697850 .000000 + C 1.222802 .697850 .000000 + H 2.144994 1.255165 .000000 + C .000000 1.308815 .000000 + C -1.222802 .697850 .000000 + H -2.144994 1.255165 .000000 + C -1.222802 -.697850 .000000 + H -2.144994 -1.255165 .000000 + C .000000 -1.308815 .000000 + +Nuclear Repulsion Energy = 187.1095116544 hartrees +Single point calculation using the cc-pVTZ basis, ROHF reference +6 core and 5 virtuals frozen +EHF = -229.325640757 +EMP2 = -230.272834548 +Correlation Energy = -0.943582987 +CCSD Total Energy = -230.269223744 +--------------------------- + +--------------------------- +1,2,3 tri-dehydro benzene geometries optimised at the B3LYP/cc-pVTZ level +--------------------------- +123 tdb a1 state geometry + +Cartesian coordinates: +C 0.000000 0.000000 -1.793841 +C -0.849111 0.000000 -0.745315 +C -1.176517 0.000000 0.593267 +C 0.000000 0.000000 1.370669 +C 0.849111 0.000000 -0.745315 +C 1.176517 0.000000 0.593267 +H 0.000000 0.000000 2.458558 +H 2.186826 0.000000 0.980780 +H -2.186826 0.000000 0.980780 + +Nuclear Repulsion Energy = 181.0693398559 hartrees + +Calculation using 6-31g*; ROHF reference +EHF = -228.533195959 +EMP2 = -229.257492549 +Correlation Energy = -0.764758228 +CCSD Total Energy = -229.297954187 + +Calculation using cc-pVTZ; ROHF reference +EHF = -228.607890941 +EMP2 = -229.554938572 +Correlation Energy = -0.977392638 +CCSD Total Energy = -229.585283578 +--------------------------- +123 tdb b1 state geometry + +Cartesian coordinates: +C 0.00000000 0.00000000 -1.38834577 +C -1.17584707 0.00000000 -0.85624325 +C -1.23856822 0.00000000 0.53917710 +C 0.00000000 0.00000000 1.21273174 +C 1.17584707 0.00000000 -0.85624325 +C 1.23856821 0.00000000 0.53917710 +H 0.00000000 0.00000000 2.29726826 +H 2.16873946 0.00000000 1.09331604 +H -2.16873946 0.00000000 1.09331604 + +Nuclear Repulsion Energy = 179.5144623175 hartrees + +Calculation using 6-31g*; ROHF reference +EHF = -228.699091358 +EMP2 = -229.400285213 +Correlation Energy = -0.744456671 +CCSD Total Energy = -229.443548029 + +Calculation using cc-pVTZ; ROHF reference +EHF = -228.771218840 +EMP2 = -229.692524827 +Correlation Energy = -0.956465975 +CCSD Total Energy = -229.727684814 +--------------------------- + +--------------------------- +Ethane (C-C bond breaking) +--------------------------- +The methyl groups were frozen at the planar staggered configuration and +the C-C bond distance was varied from 1.05836 angstroms to 5.29180 +High-spin triplet UHF reference was employed during the calculations +and aug-cc-pVTZ basis was used. +The geometry for the first point is as follows: +C +C 1 CCX +H 1 CH 2 A90 +H 1 CH 2 A90 3 A120 +H 1 CH 2 A90 4 A120 +H 2 CH 1 A90 3 D180 +H 2 CH 1 A90 6 A120 +H 2 CH 1 A90 7 A120 + +CH=1.084819 +A90=90. +A120=120. +CCX=1.05836 (varied for other points) +D180=180. +$end + +The Nuclear repulsion energies and EHF and ECCSD for a few points is as follows +as follows + + CCX Nuc.Rep.Energy EHF ECCSD + 1.05836 52.5729405146 -78.417026801 -78.826832539 + 1.69338 42.1290049798 -78.935149354 -79.324076976 + 2.32839 36.5836838084 -79.108242600 -79.478051690 + 3.17508 32.2874705744 -79.149691223 -79.513147086 + 5.29180 27.2426484019 -79.155290323 -79.516941077 diff --git a/References/Manohar_2008.pdf b/References/Manohar_2008.pdf new file mode 100644 index 0000000..8153a67 Binary files /dev/null and b/References/Manohar_2008.pdf differ diff --git a/References/Qu_2015.pdf b/References/Qu_2015.pdf new file mode 100644 index 0000000..23e9787 Binary files /dev/null and b/References/Qu_2015.pdf differ diff --git a/References/Schoonmaker_2018.pdf b/References/Schoonmaker_2018.pdf new file mode 100644 index 0000000..8780ce2 Binary files /dev/null and b/References/Schoonmaker_2018.pdf differ diff --git a/References/Shen_2012.pdf b/References/Shen_2012.pdf new file mode 100644 index 0000000..03f1687 Binary files /dev/null and b/References/Shen_2012.pdf differ diff --git a/References/Stoneburner_2017.pdf b/References/Stoneburner_2017.pdf new file mode 100644 index 0000000..f64d6b1 Binary files /dev/null and b/References/Stoneburner_2017.pdf differ diff --git a/References/Varras_2018.pdf b/References/Varras_2018.pdf new file mode 100644 index 0000000..f2fdde9 Binary files /dev/null and b/References/Varras_2018.pdf differ diff --git a/References/Vitale_2020.pdf b/References/Vitale_2020.pdf new file mode 100644 index 0000000..013a062 Binary files /dev/null and b/References/Vitale_2020.pdf differ diff --git a/References/Xu_2015.pdf b/References/Xu_2015.pdf new file mode 100644 index 0000000..556e3f8 Binary files /dev/null and b/References/Xu_2015.pdf differ