clean up and some additional corrections
This commit is contained in:
parent
ad2a1faff9
commit
aae98d344d
@ -91,6 +91,11 @@ In this work, using a large panel of methods and basis sets, we provide an exten
|
||||
In particular, selected configuration interaction (SCI), multi-reference perturbation theory (CASSCF, CASPT2, and NEVPT2), and coupled-cluster (CCSD, CC3, CCSDT, CC4, and CCSDTQ) calculations are performed.
|
||||
The spin-flip formalism, which is known to provide a qualitatively correct description of these diradical states, is also tested within TD-DFT (combined with numerous exchange-correlation functionals) and the algebraic diagrammatic construction [ADC(2)-s, ADC(2)-x, and ADC(3)] schemes.
|
||||
A theoretical best estimate is defined for the automerization barrier and for each vertical transition energy.
|
||||
\bigskip
|
||||
\begin{center}
|
||||
\boxed{\includegraphics[width=0.4\linewidth]{TOC}}
|
||||
\end{center}
|
||||
\bigskip
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 255 KiB |
@ -182,8 +182,8 @@ Thus, whatever the orientation of the molecule, we will face the same problem fo
|
||||
Note that in the case of the SF formalism, these three singlet states should all be described correctly if one takes the $1 ^3A_{2g}$ state as a reference high spin state, whatever the orientation.
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=\textwidth]{MOs}
|
||||
\caption{Standard vs non-standard orientation}
|
||||
\includegraphics[width=\textwidth]{figs1}
|
||||
\caption{Standard vs non-standard orientations.}
|
||||
\label{fig:sym}
|
||||
\end{figure}
|
||||
|
||||
@ -193,7 +193,6 @@ Note that in the case of the SF formalism, these three singlet states should all
|
||||
Note that AB stands for the automerization barrier and is reported in \si{\kcalmol}.
|
||||
The numbers reported in parenthesis are the percentage of single excitations involved in the transition ($\%T_1$) calculated at the CC3/aug-cc-pVTZ level.
|
||||
The values between square brackets have been obtained by extrapolation via the procedure described in the corresponding footnote.}
|
||||
%\hl{On which geoms ? You give 2 pairs on previous page, but we are not sure which one are used here}}
|
||||
\label{tab:TBE}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lrrrrrrr}
|
||||
@ -247,8 +246,6 @@ Literature & $8.53$\fnm[3] & $1.573$\fnm[3] & $3.208$\fnm[3] & $4.247$\fnm[3] &
|
||||
|
||||
\end{ruledtabular}
|
||||
\fnt[1]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.}
|
||||
% \fnt[2]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.}
|
||||
% \fnt[3]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.}
|
||||
\fnt[2]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.}
|
||||
\fnt[3]{Value obtained from Ref.~\onlinecite{Lefrancois_2015} at the SF-ADC(2)-s/cc-pVTZ level with the geometry obtained at the CCSD(T)/cc-pVTZ level.}
|
||||
\fnt[4]{Value obtained from Ref.~\onlinecite{Lefrancois_2015} at the SF-ADC(2)-x/cc-pVTZ level with the geometry obtained at the CCSD(T)/cc-pVTZ level.}
|
||||
@ -266,11 +263,8 @@ Literature & $8.53$\fnm[3] & $1.573$\fnm[3] & $3.208$\fnm[3] & $4.247$\fnm[3] &
|
||||
%%% %%% %%% %%%
|
||||
\begin{table}
|
||||
\caption{Automerization energy (in \si{\kcalmol}) of CBD computed at various levels of theory.}
|
||||
% \label{}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lcr}
|
||||
% & \mc{4}{c}{Basis sets} \\
|
||||
% \cline{2-5}
|
||||
Level of theory & Automerization barrier & Reference \\
|
||||
& (\kcalmol) & \\
|
||||
\hline
|
||||
@ -296,7 +290,6 @@ Literature & $8.53$\fnm[3] & $1.573$\fnm[3] & $3.208$\fnm[3] & $4.247$\fnm[3] &
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{table}
|
||||
\caption{$\expval*{S^2}$ values for the different excited states computed at the SF-TD-DFT/aug-cc-pVTZ level for the {\Dtwo} and {\Dfour} structures.}
|
||||
%\hl{same comment as for Table I}
|
||||
% \label{tab:Ssquare}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lrrrrrr}
|
||||
@ -378,13 +371,19 @@ CASPT2(12,12) &6-31+G(d)& $1.508$ & $3.407$ & $4.099$ \\
|
||||
& aug-cc-pVDZ & $1.489$ & $3.256$ & $4.044$ \\
|
||||
& aug-cc-pVTZ & $1.480$ & $3.183$ & $4.043$ \\
|
||||
& aug-cc-pVQZ & $1.482$ & $3.163$ & $4.047$ \\[0.1cm]
|
||||
SC-NEVPT2(12,12) &6-31+G(d)& $1.522$ & $3.409$ & $4.130$ \\
|
||||
& aug-cc-pVDZ & $1.511$ & $3.266$ & $4.093$ \\
|
||||
& aug-cc-pVTZ & $1.501$ & $3.188$ & $4.086$ \\
|
||||
& aug-cc-pVQZ & $1.503$ & $3.167$ & $4.088$ \\[0.1cm]
|
||||
PC-NEVPT2(12,12) &6-31+G(d)& $1.487$ & $3.296$ & $4.103$ \\
|
||||
& aug-cc-pVDZ & $1.472$ & $3.141$ & $4.064$ \\
|
||||
& aug-cc-pVTZ & $1.462$ & $3.063$ & $4.056$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%%% TABLE V %%%
|
||||
\begin{squeezetable}
|
||||
\begin{table}
|
||||
\caption{
|
||||
Vertical excitation energies (with respect to the {\sBoneg} ground state) obtained with multireference methods for the {\Atwog}, {\Aoneg}, and {\Btwog} states of CBD at the {\Dfour} square-planar equilibrium geometry of the {\Atwog} state.
|
||||
@ -440,7 +439,6 @@ PC-NEVPT2(12,12) & 6-31+G(d) & $0.189$ & $1.579$ & $2.020$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
\end{squeezetable}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
\clearpage
|
||||
|
Loading…
Reference in New Issue
Block a user