From 7320cacad9000a01eed33723643668fce4feb220 Mon Sep 17 00:00:00 2001 From: EnzoMonino Date: Mon, 21 Mar 2022 09:23:18 +0100 Subject: [PATCH] Manuscript update --- Manuscript/AB_AVTZ.pdf | Bin 70213 -> 71790 bytes Manuscript/CBD.tex | 494 +++++++++++++++++++++-------------------- Manuscript/D2h.pdf | Bin 103884 -> 105571 bytes Manuscript/D4h.pdf | Bin 107000 -> 108672 bytes 4 files changed, 256 insertions(+), 238 deletions(-) diff --git a/Manuscript/AB_AVTZ.pdf b/Manuscript/AB_AVTZ.pdf index 6b74b2ac7c041e0e1e69bfe2f6173a3fd73f4fc9..13ae9fa5a6c4d2805465944d2b0b59bf099d737c 100644 GIT binary patch delta 34194 zcmV)LK)Jugqy+A;1h8gnXkC&l$8~MNzD5zvs>aO{#h=tIvzo!3ftx)Gd*(6!?%V4F zklWoe^VDrc0In@j6bOR&EEK_B+$#U4?FfYgK<@`8Q=$T98hER2P`fyp4tYDC*PQ(b z$7XFoA7tpqlgu3es93M8lVIDR>Vjs-MEF!+mZ6)H|Hm{yd%mka30Uy!2+I(_TYU{6>; z*fwTU{@ZlQ0#{k}q|ZP|9LgXe?sL&QY9regd32}!zVNa4yQeeKgw(E)9Dkxcsjng1 z?lO4(Z2!OA-OC*1gfI^$Zg>r+X}f>~czQ|#c4KKKqo`2iR+mzyqqtBcSuOnQdE=(< z@&nBx4AUChbrTPDHKa>~GP`Ef%YP+DO@pG@Ho+0+T({JRJ1kVn(mLJu1{|gsUuvmA+Bab% zs-$msr#0sg>g8-Hh`?Z6{f`MEs9KS!_7$8%=J|HxRW@hB04)9)!QfAZP=3t$eB-D& zZJl=Hn!{l*K7ZLXn}L^BBO`Mfx8`ch{F+t48w?dIE9nv4Y1c0T2Qzuy^^v{}x}NV( z1!AQNKcW{l6O!)zl8rv4#7_UDDZW+%NO`UP8r^BxQ2SC66Z0tWVUw+GB7dRXM(q;k zFe{Kk=}f#`pP9D}x}=r}&gp6=;}3A2xswJq-0i+VIg%@}Mq;$rd$E`%~Sn7*_43@gQt6hg-r!;O@;k{kc17j zC}~nt$X&5Sahn3O0CS*88?15N!TrW1{Vykeaere*(AX()!ePf& zB_z*Fb%~#gbt0k66JHDzh+~Kb#-y5)Em~+^-AdfznNZ*5NQMSB?zby$fdtS`9Ra%dGr(|u`W=Gt-+_2| zvdt`@(&*s6Z+Z%RY+zHDsqo#cEIVWXM5!#JJEpa5vroJ@M}O{Y?1MGdPKPu%mqTqF z8ps>XG*xZD%9L}=6f8C!Q{q8vr|ckyuak7R>=tJl_d0LkgM943z#-Ir6g#jv+YWr5 zhIID^to$Ka-7P!0(Rt_{IB4y_Y*}ZHgu1jI9G7k0N>ie@oe3DXGOKtK80vl+5r?j zz!p6txiL8bA~Fq1dOHh0mVukeNM_Y@xMfA|ql7BvdEQmLrdM(rXke53i=?ZHJR)}^^ zB|D)Y?L|o)_hT%&Tc7@M8myX#5j@1{E5(hgzke~A3CtP7#mhtp&SoMYU*Wv}jy@Q= zbMz!G>5px>?{vT@hC@M~AaZV>eD1}N&I96SPoM2=Ak6KG;z+sZ?!9<>N_XyoF|9x| zPJe6fK9UkI^+_@S&#j!Z*TB!yjvVM2Ug1e}7Dq)BM&L1YVq?vjge@{R~k0EyZ zk)n{ClJ080*svRTc4OOBCcOGw)YTU2QuTXsltUqf#~$6tR1qW=G?&|al`@ZX!x3q3 zbIb8dPru9MI4)1QXtg($LqTmbiMW3xLw^f_%PTH{l2?|697k2{p+~WK`TL7NTG3FH z5ea8o-s;_ynI~OfJJeYWI&!hl)&1zyoe zSK&!N)_hm*N6ikwf{`lTw2w)I?Jt&I$=CP@-J=*k3?6-y%gHZX_qP8p*6XBp>wj0| z4u$?>9Y{Y?KO#qlhO;$|>5rvi^9pBH>kgr%1^KB4rJ=_$20AxZN)MMns1?6OsG9e0 zwz(xPh9Nh%1UpX&Kfz82b_8l~jLC1gxg`)7es@a{h45@|Zi##t2OvyRMs=<46cY+g z+Oy5xu3Nzp(CfUY92P{2OIbTAqJL@i-ssysA{VDC!OKnxhGnOs6+)J4UT6-yn88)j zbUo7sF#}C;<2e0<9ae-ARN}yp?_Vvf4nwp zxNL6$*VVQSgsqxu9J+3SzA{p2EzaWuVq*&CB*)nZct&(Q>#4^?9udl!`xTdark%wh7w2Bkr1Rgs~^_jRHDYuL9HS%oX?yEs3DeVbh!i2evA ztQDtEngjY$FcYDVcKU=`hj9Yi$(lJuMB#7)BMQmqq8_6J1_KJ^WkvA*rvkW$aWr_) zii<`R^k~KS|9MIKt2+y>yr`aO)C$PA;`T4C%BBKC=z_}DY-Kpoem>elX?9XF@b*$z ztr)h9b*OmA47iJFjKEf$)63p<59gWQqsmK3s~g!gc1F8YL}<=yT$h1wP#*hQVo76M zldE+mf3NpAS*oe47Z`$YY=#NMlcq!S{7H_4NenN^cKEZo&kYHPq{RWOeJZ#)dCF82)aOR&n@c8D{Az98=OOON!FMcytxi34}?x&+7L{;i~!u zJRyK_UCJGSh_vtk6Vrin6{Tm@FoBS1Az_G1n#W*NRWNs`262U zfA`f3adCOVeua<+f>!lkJmKSwBalD{1k-Re)Wa->b_X}D#(I0fCg99L87t%Mb(>oy z#e{TcLS2H~PObKu(>7x4;ym2%NEZbqajU$gzS?0C5#)hB{qieYR_V#R#&OE3hB zzMX|?jz)$}J|*#z`30J;o2%QoK*=l)f3Z%=;pxCQaRR}h-6Do1lP3^!J~vJ?P9T28 zb!QI8K?t@>b{{sD>6o($R>5KD`$F7Gq#gnTC&|I1$+2I58~APA6Z&wG2=wlcL{yii zg*giRB7tbXB!`*_xq;wuNgUAVE_BOrla;#3M6`b!F2ya`Q@|f_Z?|)5_^4 zRs8dh_ihv#CcB-t^5^jf?spQ z8E{LnL6hQf7pKNlEG_5BSI5*hMsTSZqp@bM{uaFEWMI&X@ayle2(Qbrc;Wm1*$pKAQ1Gg@=){BV6UruDq@iX*l)qKJ&#9a(So@B))+jB{Vl)BxVUV|@= zUEb|j8T1Xq8g4ApJ}+O#c7-boZUJ%dD0{kvSq*h{dEDiCazkg{0EI3Y-5%=2e_@<} z6F%3>T|%6Ux&3**x%6E;IR!}YM<13^UZpYX)3SOA5x>?$U9sZ743lorb;av&!V06P zcz@PB-12V3Q6y+hG0XjLx3Y_KBW}^JMZ(FZvubjN*Od$A5d3KRuCo~~K(M4R3-l9l zJ~vLK+{qX(nhop`VZVdsp2Wv?fBizxbhKBDRKV>_P9Ka5Qjz3zOi2tOp+J_oc8%Xb zXG*LA0GIS?k-dk|9_U>l_Sz#zj3S>8zbk1gIf}3t;cO7l$s*TWilZof>oz&~+D)E= z_~4cK0~DrjazkMn0xKGFLO__*JB+{u4@9SCS@>0YSShL!w^rfojK`l*le2p$Sa=D2 zGDh>jQi1@!((SOayf3GtWp--7B6?I)uQY~muCVLYGq=w+Wp?GOnbvnCKu=r|T4HL2 zVlq$mC>+s281qdXK5l*bu9b&ZrSHmJ;rt@{l3za>zmqb2dVg~qvB!@ThvZxgiclBf z-H0V185Dp=ld|$jh|8zNX=>vj?M*6A$q3b$JJg*+0b|A&!r{h<@;NrTxCTEtUCwXZ zv^E#?R?dezo88WMp!f0Gu2{wLgFc^IQN~ehP5%BalvX*}=a7lR?NVwBqKy|13$)(Z zJrT2ZRo5C{ihrF^rU;e7YD#U_3Rj+7v0RuV$&a;i^8znzgm$fQxcGaxNS~p2DdITI zn1+mw+JHRImT&M83g|#0f^zXVy~asUsG>M`LHS9k<9al`NHwUYHpkMFU3reFZcKkH zT^m2SFs zb>~Enp!7q4_3nqb3`e*7A=cA4gsF<{I*gu_Ggzy0B)O`g9$s!^^wzn$Q&Sd=oDuAI<>K<3%IFTx5+9mMr&jXws24IC(79S zT*B1UC?<}{d~RuPwCvZN+!xc#jCXcI^#1c-D{ljxqs|ykD0|#nu6Piq=T-eWy5`*Z={9Y>7L#*GRL@zm0%@2N`CMH_2> zF?0;iN0wWv3Ny_fFD0D@U65MAX+5B)pOgvt;U8D_Qc6@rsYX^1Bh`$mC>XRpXMa^? zFBrw~Dy$R8AyYaor*J`3C3wSyx~-|vXK-@Cpd1td-lS{(qN!y!;{%w`=3)cFc|W98 zs9K!Z0*-{)PMPN7`0G>_9+xqf*lADUw$h`%_xtL{zTRE2Tbj$=n$0}cH{oHR;a;!n zznAOwl5q-lf8EWy3E&-&pbEE>j(_*vO~!DHXK`=qLX3v1N>SB*8A|$gX>Z>4jBo#) zW-89Pq(ugyImcH9KdsPWZLj%aoKcvBl@yZrNP6NReT-wppKKv9Cap5emBbCQyWnzJFZWyEtLV zgdoy)B-w@!7qp6dTT>o4XK_f{{aqMTXj6JlY*DSU~faZV`D`hfuNRj-+MEy7Y*v?_{sx+}z+oUZu)7smG7 z+qJ!T7bdfs^SPEkj?KLXXJ!ywUb*I+fJ^xEP`#Kk?o6hovro6RS8*@2HYZJ-gA9md z-n2*M+{e*+-$v{2D~NKa06buWbi>7$R}Od4U?bj2gG3i`W+ z*=@TDK5>=zVn&Fi``j+?#iTXYtYIN@QisaVSl=7-4uaTJ2Wbxp z_@{SD&X zLFkszmpPK5fw5*|yM!O>RvE~8`_m=9YlfJWa%>;Vto>slD}9WAq?NM0KIg5@wENJ{H;DZ5&@2 zZ?q3g$x*>g&g~@TeIpvAi|^!j=>o%_Iu+5lo~n-05$*YFBeiXFwx&A}$Id3;>#@<( zwY@v1(r8^YlW<}O#%r9pp9;N}b*GFn?-WE{i9-u(6K3;6WN;BHyu^9pQAA6n zym)CUv}qT2a|M85y=h;MW|6eCqH4bX(03&OYyIvehg4Q&X&V)99dSFCK9q#Nz$B^PgwWZSs!`#8MbNPIVAV)Q?AW6rk;wVwucwqZ{Z{Gs&pI?iUPB*mXq4#}8Qi#@_5L}VmMc8CS zR`G|H3_`%hW)_@EwUrxh`u$^zBEw=&T}1xobia-084?dxE3Z5lu~C6$D{o zN3XJfP20cP?(GV-P=bis40?pa%beAZ#S!dcY{}5NB&gEbbe9d@p2F{h_s&;2t|t4F z`W)FV?T#GS9>JeG@`F1o55Umus#=P|G%p!<+(;3o>v0mo=`1BDbd+a%(Ve9`yUuFT z56xX_8Ty%Z4I;XKGtiP|73irHBq)}tpv^s|9I%SzJ#MIq&%ttBbNI=-V@X3Fl*sC8 z4y*53&#v!BzZDmnYCjo3ZO%#Z=d$C!s(O?ecUFn4Gji=rZ9Dxhl|Y*TSXl#orR8? zE-p;_g)OK6pi3ndg{zf6q#CR>>5ru-qm z$mUqEAZj7ac1LW8p`hKJjXJRbd{R)=xPRnyLl=yYl_iL!LVp8;pcJ zbN8JC^QpIXi_67P7Z$y%>EkOSn*@BkahL=81I>rvJTTdrI!7Xw--e@Ycbw=RcL{1f z8$9YP%wB`HRw_#b&G_IPu{I+waTC*~Dq5~gW2ZXnpU8B2t>IbhWe zZ+fsweP%^07Qs{8L`e-4{ArG4=#7O#ye^r-81~EP?XL(l=M2?oL$>Cz8qY3g+C}&O zL^~LqpA*3Mkj1!UqgC@Yo^levl=QoqLSs%c?QeQul)>2dJQUz%{J?Ays=8$FHpuA|a(s-#nY&Or#F z4U*5eZXK$ZI>2ED0?eGUZ6j5!XBS=FpEx;}T5afwO1*%?88b~SZd#v{D2s-Fjs8WC zcZEkZ&*)g8!U@P%Ft)2$z%XmqI{c z!mbc7`MW~6t~9yK0g%V85Q;k2r9v>hDTKVj3ZYDkgcSk=^@~D4*7>dwP`R`z1f+Al zD+HuHy(xstuJBL@rZA|6~d*Z7Yd;~;iI;HLMXytT?(P7 zJ60-$avQa5t#bvg-xNZweJF%5-3>>aC%;pwdpr4^iY28@bIM)1PJXCIeLwl3Twp)> zA#Hj;`I+8Me&TE=KNNfKCqE?Dyr2Bep?V)rk`bNP$uA+E^PFeScJey~>baf#&gyN( zC%?0*cV?da&Kfu-aq>HV6~ahucgnfCXu_87CqGqU=E<)V>hnDLl`Fi+aq=?`N1pu3 z5C(Rf{6z03KXcZ4yJTSnz2-Aden<`3PkyMI-cNpKHKfk(AH;{7jNnvQ$J!}V;8dqG zAi{Mk@sG&}6p)~Mga^e@VhG|G>!!|$zS+Q*beCrZm~G9d%nECN-qR(xRoN0d>k1r( zyzyn1!FO6M@2~VAP<)TKOPIZ!bX9ix6CIcrr@DPTRL#WSd9BULPG@28pNmC zR&OfK+g`b;$R{VI=_JWn>ofOBOssdXU>LWB$g#>Ak!=xo>>>R9k&Ds{>krjmUugpe zr%+9O@>dLbo5NvrenvG^Z=lI0oXfAPtNDsO-_Pi9N}g`xCLc@+SE{Pm-nEf3#aNFNlJMT z4N(m30iG)T;@RrHea@fjnfu{*jVlh&;>5w77T9?T5y5Bfb=#mbYals>YSSH*2gL(+ zU=eh8Rf~ZHXPwfCT;Fz&iZBlBBI?YtF_2eI$aFmF_YYc*+v!lv7&OA*>76T4$wBaQ zG%Q}F29>&ho($lED@-qL4#-=gr}e&_J#>3xn?^3kyrx^VC+iB=|L6`jua$pfhtM79 z2U9tRHpnqZLKE3j7q0<1qa#_M)4hcjV0GF(bE{+@FMH$lnLE`jMgsv$@VB>$akGEx(%c57tuEM z^|Se`R8`J?m2O9j87_D7SqX_7PT9Io*Tf5%*7PApdHcJ%5$>GJK2Vkmf%Y9#=1uyr zi0JF+5(zLDbo?mAN&`!gXWe~W%i>_hk&`N8?Ywcg+NLx0{()vn?8h66dE-gn$~5YTEeSKTf=4?wEXAbto{_x!RgS19um=f5{-SR@-%^}?@`cs%H?+#c z)q*oG8N_n^fmB^~-<+Q8<2bssC})=GE{f5AQV$|nH8N)VxLAF=f-&`^Po?zlPdQ!S ztgy}T}F80HLi{#51|;~qDoG=V8`I27TQ1K0>Y-#9oj$qKoRx`C6ZG=$RJE}^!6 z`7}ocvj>wtiGBC6I71z9aZ{D{J8czhdB$@jLz?w>>&eJ(czrTwl zRiGg!fJ*-Oa99k~EmweQr9l&2^)W1eqPRiCgra}x!x8&Lb@wE@bIDqui~t3Oxnj-E zZE#K%#8U%mZE!yx0;_h=fGKQv+ehht0ibJCD1UvGO~ZH1#?tUTYdS*1Gx}9_4ew05 zrQy5I3Ht@EyxcgKE?+9XUot;(SjDl?(C}hx3cf30XjAZiorj}M z!6OJc+BSuv*9tddQ}DfpC724HIWui3_%3LTRPg;aj?3@wVzepv_Iy?F=4?}ste#!L zztifreLwd;^{u@r_(evU^cMvW&YOZ4V<~vkn}Xl2P}0=-MZs@Rv4Tfra98k=%@qnB zLECo)k2L2m3f>)!Q^B|LuHa37F9jbLgo2Mz_-i8xQ~Hk$V16*Q#3GpwN%dl9?L>kS844i>kfL2y1Kt#f1g!UD4zyaIf-zb`A50lh zD$u$_or3!%^aWKwuC3I6E<-q=ktvN1OJmFQL2w>-@BnjLDRD72G*=S3ZHv_5zZK92vIB0#KL4& z_f8M(cV-++#5pHveFk+M!6OJ!OVpskUvz~shN?a>Ze{uy*A`RC;^GlFy_j?Yg`3l_ zsczY5x-#aX*NlpzFNx=Zq0|}y)~xS(Wirrr5qb$JUZ^RJL%Bf7s7?jyY?&z#a*P5m zc&c+ZQh_+@We8P&U#UQNWtPq(QLvPH!&f6u^4aWU4di`iCzow{!qF)nP9Q@3wMw5bZ|06Af zW_?cp`OmstveAzcAe0Q0BQaD*~5R-4J^Wr?U49O8TEWf^;#-U+#0l1 z{zw~Pnp<^$GSIrFWHQkA-*F8NwMilFIk$qM!j#~EHp)9py;P|9a`$aLB_M%IK=!H0 z0BilSWfuK787MjR;%enHE~UIM87P;r+qU2*w`!El>4gZLAO{ujaT*L#e5VuQ0`jgCGkbzhU&!GRI&tc!qMr5B@MFgig z5CXAM3K617BnR7kEt*Mx0MS7 z4*T&|!8Jh$)yumId7_tLv8#@lc6O7V+ZA3fRajPwJ|h=sEvbh`HST&%xHf~9!RlPE zQ%hPgK+4hTao!YcOPT@3(b3Urt@7#e`QJZ(tbD2i!&4CWO6s5)qFi;Wpt*Y@|K;u* zeH)k39Hni*;^sDO_;oJTDfp5SjS?`;LO1Xgmz#dT-n)*CzLi_DGo-DJh=ODYiq|RY z3t#m157?YEhW)wJK@oZfXdEb%mNVaI0lX~^Ac+qRyDMV>I=i#I&YiTTf+!<-1#oD8 z6tSPh7P1dmPybK)&C4;vJjy6MLgP4OLo-Mqe>7zk6pvR=G#Dh~WN$2Dr$=YT=eiQ>n zipp8mD-nUb?~_l&p!?0z5^JCT*Uu=^F}ag~m=`%3NHt>Q8f?>-**?IjYR2`x$}`Ci zVESX5wjRgaJTAtMib3X1HOyS!MnnJDIG5Yi?40wtby(D3lhBwJe;k`wyzM3E7ak|9 zP0r#5k*QD4OCp&xJ4+l(y__`;3ZX5|mZwCD9ck$#k}Qgdkp0||Lt7(~)3 zKG_ZTQ!k8^~M{ULqzy2rF#UD-R0hhvaLkOV@GB=2%V#HZRY}HVFq1pJxymof3_D6wzE{f|V(b%B& zBOD6Nc`&os8x$NQH)$;ji|8?874^ha#|*X_kc}n;ptCJ<*xQ?oCIhA@f03OfXemru z@JBFYG_|^}uyKMr;8VcnXK^kPT6&xuzX~NJwH8%fqAlZ)q`G@Fvgsb|n8Id>M37LV zOrE&nc;FEDfAklxnxk92g?Mu6J!u(JL~DvGoX6@r_y~B`OwrH^)=h-d5T{1a^8V3% z6fc4wTuACte#)s`*cMsj+VHgNfjyU9W<>H~Twommn6UEnms#rMy{tUpQ4mfj9Z@>01EKA8#xiVRpKNFNpE_>ELa+JcSU{f>u|B z-k&wDe;NJ7!$b+rGEwlGnXWud!BnHcHAgqkGdYR3L1R*(nWN2>-B_j^S2ot!>>N3p zRW6*{6WjFh1PygLPw)2+aqlDYDe4iKmmu+D|2{j7XAJum zVnYLs2vcroVyq3#^tPdGS5WIG9UIzuhWE2Ee|cz${cNZQPwr>4I5L#`*|?Q^z3pet zHOUQabVkB*Lo>Z?Xn93!XfcfV+UPuCyD+}L>eq5Zn}tEc+|U4Zq(rgYzGlGjEzT8w z+t|}{f-zKOksI1jGS=GA%vc**ToD`EP$%!)&;Z-z zTP&(?5=kjFN={e%Aw{b&C}w$788FnG$PBSTLtL0qI3^0El2fEHZnY6Y{>n=!cX@7@ zdZK~XQ?O?vK-#FktA0W-SuG9h!|d^Jt*8SAq1QDsUymm9zkhg@le(NYe+QN-u#dDP zvcvo|tb1yJcTUw%%Ki5w1LtoVzE>Y@7k!PfG(0N1pSEjw#OU-1BXEvHZ(2UD2rVDOh%ern zJ9;h-OYc(2HzPUQT_}BOp+!vi6F^=<=Tbja`H^5#6T_#<{O)eD zO2nElC+A4S8bv+0Ox#hSy8?4{SV-GHu86|{5o_A9jt_{Fc!F-j|=V} zwo6sSC9j(xL3VCG8t#1>Hywfk^HV>>z|nCV*)Sx`j}#T9_w@a7aG=uZGEh}$tj5&T=olxaDA{FrcSwr%3x8>GU3RcSzRps#DfZ`F8_McRL-jp9f zEPhZX<2lQws{s=8c4Bsg%A~ZLPjUp70}#EU)s5_E(%AdD-20?;aKeG?R_+espB%)a zU$Dgx7;v$I@q_}@cbDrKG}|j6hwPaf-NM`w=U~PZQxQ@MltBfW>1!}@x|EPRkeKsH zju3}BcGg1-gxG;v1s7@3nOK*992I%2oAL`_^*xAWwktFeK+|sJC_OB&?44<;VB9QS z-WWKLer`7{!o>Q*AkCHA(p69F_W5?jJ6+XFGoJDhtha$QTD$vLn-oA(!3t>Bzk`O6 z1qO@4w-;^#-}j8D##r!0JKYTbVa}1ceY}Cw<9I^N8|Ig6tmfUnBo=pn(T98BnFOO! z<~j>}7u}3pyEs+auRRtZy*%hKuVbI&CZyonRC@xNrTL%{HS9{04_aHyXn6%UzK!L5 z4jQsO$yp;gQ`u9!dJ$`XP$LOoO3tN~G1PmfFT=9z9OUaSx+>4lw|tu*TU0RG?==dj zuR7jnhc3jCN@Tbo?_kX?oV(U(?Bm}*Y!mz5fgG>1*xch!&DnO|q8`J^^=)9>SHOYKhwA5%IMbcqgv=1M6&Rt_))kkt`C|M+Q4?r3$2mj;eRl1yeF*< zNKK>S3e{l|$K*OTI-`rp5x^;TId@!RN?KnaK+m>aA31Puu3ZUWI<2U-pACd?@J>3) z^cSZAnn0W0=_~~ti9@4{{78}UpF=K@OEot+g`?(?UuRman z-M6$|5dhj+U*}&-otwc(@_!F>cS6;D%X-Z9Qw^)V*3ZR(ZYKP7DXQEaH>4|shg>GS z8Jh`j&St{LkK%;M%-m<$@ObPO8y@b0bL=+!JLeJ(7!!`dK+fBS4S$sg*~TSBP>^|x zB3!_H2&5$~Q4U0$P{SN<$;5$pp(1R9^};?I#`c(?DH?yKL4-VP^@Ee^R_{c zFjMl2oWwC-cM$6IdPa4Bw>6OJwpVMgK<=N%KK-~WcCmb4XQsyVpP9QFvnGa&wAZ2T z*nV@W6C>_=<-VH5)?5id@M zZsO^SkzTu?^%DZFY*#S#D9BR=*#3}HkVRF6TjMkilL`}P(@r7y47o458hjE)>C^}H zagX_4v(YL5{(l+L(D*$s`Ts?Jq%|FX4>`+0SjsSYLR4FvktaL%R|`YsENU?KXm9CC zk671ooAze5&1Wq*FQKxsofv+nB8tFS6d}XB0@hMV0z4#`MdUln9 z->wJ2*^&uoEp^qD0RxsJU^2)qqkiHR!r7UOZSd=L6ID!jamUW!k|&QX31eao+(4d1f6 zg#6ag@XxQs2|zT88k(jPzUK#}`_2rL3t~|2XzKLgaU2BV1%er3o@W>Yq$A5M!x&I&Nmm#-@N3LC=&Z(498y;-z zb*JaGi8IZ9f%!V*%uwf^TY%n+m=uyFWF&=}pDQ6{+K69Pz;y;6-w}@};fh z9q~#fk4Vck-wrJ>f5+Ule480qw3cttL^HKKVJ7-^Xu$%=|7Yn%axR~ptl<$uMEO27 ze2~Yk;qwY>c(#^#mWF3j(EhIBQzm_4p*dXTm;FOsOVuR=&>i~b8np$pn{I0Fp>(Np zq@rOGR^{!XWw}NWgekV^odyhleyT8k^AnfcS~L9#q+PWz>yN+D9WBi|+JyJK;`I>-ETs|*26ls<(SmDn z)Y1$zPo~q-!^1ca8PU_Mv-!_V&gUCPJT0=hH`Io+RK%nnRGQP$ogI2^A+GWeXX6b+t5GAAYqo`z}CGH^J?KZ2hW5=`6HTJ#a44s5- z?TCavMSXuKSa=Hte{!qAt2zCabB3h`h2;Inl0+`Z2WOcFV0GIbWCYMDHQ8er@}7V; zk2;31Co=*lPmzrq!I4M(SK>wS3sr@~+SX#e)SVTf=8L<8+FqYRAH+xKYEJD7 zn{EWGE7U**^dsHHWdLCvN{+tW&Y|n@-ET#IZ$KjzhH~|&=*36s`%xY|`zCivVk@@< zt5XL_@`jwKw{ooGuU;<56KI=i#3^wpMxoI%)BkS9{4FZ9W0xQ`KzG$|=+3U*lU$*f zWpHxw2$X}2%L<#T975-QJl|J7x0tAakSzU?UTMkrBtz(+PLcSTR#lGilkyUoq&v-j z;|iW}imvekH#8x0L$R<{SvNN%}hj0NX&$y%F#?kUi3;q9<(HZxxCW>jBo1&_|6)(7g|&L2MA zZK-8s5OEndxk(Zq4Yb-TL;Nh(IA2QAVk1SS@gu>fHv|W}^V;a*b{ysi4496_TgkW( z1)l7H>N`{!;)<1f)wt*(T{@~xRZryhhhC7Xe0?pHsY3`J+u6xj^()+Wef%_k?JZ%J zW4oj!Rx6J&k1&DpOlOcks!GH-dH8-@tA`3Qe1xEx;~GbS;5?dQeI?Hwf^F1$&3nR6 zGybo~o^jo(|H@;};{0&z8C6- z(s}H`7}!&N2;OqA>h@0h^$WLuR5R!JHHx74apckeFI(rLPM$eN36GWf&<_Ipjif(b zH}V#zV@^;y;tZ$kkn>t!___R)lD<)HTMttiU>{_0pj{}H!&zieFudqXXPm`oIO2eG zz(6+VaCRIExp~IHC|Hd)lpi;)=n|l$K+Ikk^E~t5C+Z8EmoNcTPIR1qaTcAkm>jt! zL0?2=?kXV9Z`kiVHl1wW#Wr&)u>@s8rP2QYk3}cg_7Tt2!^VOFrWe6VO zyDS+py~&U`mZ7fpjr_lJMJz*2P$4Npa8R{-$&l%gA(Nj;=|Gb*1kP*0qzqx}tV@Kj zbN1^^gis*R+L92s&-@dA(YKE@i=%|HB}ABs}mZk&mm}`=;vGVR%c>__m9lH0M7y zjv%=QA!cvwe3jCxNO#a5+9KB9s~au2!gSHMY5-6`ufO0wHkLyE6oM+(HjbsZp;pA1 zy6B{HFg`YDW(?3|%C;MX1aePayg-pGRwn(ZNZcx*u*>Mh2klDq_mb=Wz>9&{LUuyYtbo=Lxc z(bePAoY(Bo>8>O^f7&`p=jsR!+6BBs2sjSVdN6Wf^02QAl&%?i$YW40n>`!Hrcd|D zz?oT~aSkG|7Y<5%Y?G&zZVfOv^jnDxpoM;Q%kl{t9fzBLzziN`<&p00z)8!e`*`s5 zuzWfp6qW3TO}hu2+AT{56RLK7x4pXq<)Y|DXd#Y#Y#fxZ;2Atkz;TP|lbEw5f8SyZr)c8LsGVfk z;&ZOmu%{gFz-3yD;OBS5FD^cga7?^Jkz|Kb#!w@tpg*`?6;mD0*1C?4~aUQ7&Rn0O->7Jx}PzOm$oBynltJ7Zm zU=0I@a14{#Kl5~{e;34&O&1yW;D%-q#utECB|Y3FcX2BHAM2r~?4aS`kQx4H(&@S27=)x5aOk;O z;;}%4;c9tfywSF1lXIq6(mZYYhL9+sgBtI^tEK5UjI$Udh`#a0NFly{pF!!<5=Ms% z?J&(Pw@xZclR33BN-rbkf=eXr6{<5%=wh6 zD8Z1 zh%(Rb&vTO}wj+PW7e5+8ZsJX!x~*Fkdg_fBwZVB>#e2Ef#R`s{HaKdhj>+2weY^e3 zQdAX9Kh_=U^!Dm!-~ih8aftD`hFa-PJIvDCOpboN?es1$48ov4wn>Y~%QA@LN4;lD zI9aOkWu~wn7b87~8|OrL8Vrq9!Q*w$YP{7HXTXZhX`_ETIP!xrP3t*=!<#z641$rG zrdD;Dv4WGEqCFc;n4e8oAp|$tuFmRU1Z2_vEE`>y%B=4Ds5IidsM$7%$Kce@J=WuB zGDSC4-53cuJcq-95(J<8_M+iU&Gp}$uemseqV+5*)pUIs$+z(4^GgxhVj~w0?)R1W z?>>u1O{{-6r$usp@LEh3Th`6pK8eoVw&=_}RYnle8PIeOIXYu{kIt-19Gzj!T3gYX zr~h@XV9jd+kz_II7Mx*uQdt3-q%*vb90zJ{yOAPL^Eh^qks3aQKUu+=jbpFHV}ES~ zY|t{XM!d!YD|ZBJJdhe$@c5Fq5#l0VlXS#u#5jL4V1q{SK9|sIaSPggi`T%la6Kzt z^F(2U-*GVRnhgHrkyF{6d0vbRJ6w}wOs5z}Mr%M{HDfjTMYmYZcj0-7XEM|Ko)VR@ znv^KVYVzie)hvn1Sj~FAV>KaB5v#F8tx!!!REBCoULsr*^a?g4$6=e0s0iDnL`B?Y z$QC&is(%UP(*K%&ge}_RD^Frq#}9~BDJD7AyN^& z36Y9uO^TFbHJeD86EdXWO;98Ecm+pT|NI=V2DK7Oq^($@g6{eA!fb<;O*syQN zmd>$_$8fT^$ywiM*n^}m(RO7dr$?X0@wD{s$Jhi)9UKU2bvgx-!zs+CZlaF|j&py} zyMan`@z!BbFuaoDGs0usCZS!%5qj;hIl>UHU%qDbz3p@xt(Y~ zhrgHTdpm);RP&0L*kiPXAOq0iL7tPuxifz~1`hgEEdXdXsXW#1cG2#4yBH|#)Jtmi zg@}&VV2`(GcZ)F)w5q7x?Ia?UV1l^eB1M6Sge6ed?8MpDJ~j{6R{rJvxyVI97CZl;OpetP0`~#=1(>jmsSSOTLAw(r zXE*>EU>blSSra@pXhq42;|H?}cO7vc#1B9Rj6mo77WMb>Ta$UaQ#EVoJX_}#IS!l? zG0do}IUCFHrVTcHf`=QJB^I9ma+UPu077zr(*OmbXC4WFfEkAWD`I3uN!p1h&nBvWR$f`E!2 zaBbW=(bFP_Kvl(5s>Fd#Cz1NLH{BtH0R(Oa#R;3#mOh3q9HCLP6ok2 z0D-joO!39s$|9!s=P9Rk;H3TD?Y86`jmyC+S#4e9pmYznyXlS}U@w_-9?AM#!;2qP z61Ap7sqKh0| zsj7N${2;YiSJ$vb`?G9xT^chGJrqA!7uhz*$4u|CF^ zE&tQugXHw*FVA2X&KQeS^UFwP9{TOpmja~tM&21d_`VLgRZnNao^+sUs~+khbak%? zmCp(FVZvut-B*Vj_3I-UMUw`Y)CQe zsk(>Wt7%M=f4?_deo3B;o|?4wxN&b6)NBHzV?JpOYreTt*sbZ7&@-b3KI^mUu;o<$ z>#T8_eV*VPzm}wSraUjY7<~jHE+ZJi{OBAi2CkiLxf^o!&vYdUI-SRud;dP#K4QL; z5x_7BuSs*}%S-<_50gs3aDPZnx4~PZMWgEbFsnuS6}F&!;Y;pWA4-D$*yioBbDT5V zo@4vb>D)9`nXhkig(D+4U4Z|e8;1ZC2N_&TNWi(*J^LLi9@t{HD%tSGKR1pJej3{K z)FWBE>$NsZ{PtGnkPl9{|LHP#2u9Pa(!;&c{C_eV{b&lsQTdzt zPp*s9S8P3HFu^E?fi%S$HxYot6KL7-azmvWe)(Sk@sQJ#kPkbj)|jwUk@9={GW-zW z)a_%c*kRFu(*IiP-xedb^_=T7{JZheT@A7RiI#&cC(gNw`xQa!8N>EtCw{$Yy^IXb zq4yL^b?8d70)6Quz<=pb1-e$$>HH+Erc<}>T16_YXNqMmG=Lw-+lnJ?mCdfM(z#&Y zImUNmaZ{=RB)pAHE!bNAc;oc>M$#nF9W`Heqvc}@1DXFsL-4j=$i6=KE_5{kN^R(E zi>k4`;m^}O9RVdUhiev_4&>8_ghwzSheLtcxI*28l>GRRzJF?z*m2Dv75G+tzgDFi zu@UGB2JL9BzI|hvV1)xz}Emf8F%$egU;yM}j5c~7|;iw)%*ujmzk&vq-3wtnp1jpwVoYY5Tf=;?8=D73! z`Z9{k`>(UODs6qlB_2X-5XckdzEc#LND1@uZ~I&I$Ji3`^K;4Fx@9Yi zEc}KaX6U7$KW0~Bb$%<@GtgVDCjG&$cg?z8VZTXx)L=Lnz^BjwE;$$D%{#3d=urI+ z?`5s_7}!k?ozO5$mKdR6n0$H3NgoQPsf5Hz=14}GB7e!*ERpz;K}va3uG=Uutcurf z20&B0j7{gfbGp*P5X49g(k{k9mffL>!cFC%4Dq_(XncWnN27S;Lvd^XUho&j8(rUj zp%&0T(i~K6hDQr!Y{s;^jJX2{8NYOp+Kj59?#ISy${YOTkMx*EaD{0HENPr6*j3zr zzx~i=M1PKMYw&cx)Z5#Fl2QZ57#vmtRh7Kt;;M7||1Ir)Y^;aj%q0XT7EG=^oN45g z9nP*d=aU@em7wwvlQ*`^SSwr6cQ{>>Grcf;Q%(ON9pg^2c7qQ$OSS{C!g?{Rvw!`RO^dIASn+RT_0~{_T&vtY#;OqJ z?sC<)7xo4eB8dtKXXs*Wn^rncZdtnGQ7qIo6@;?9uWd`qkJ%q5b)H%{QYDwmNJDc{ zu~wzaFZvEAYjT`tgqvPRzCGyXUbvp)t_m_0(l*j6uy(WoFuTS~Gz83aAxm8Hxp8>- zvVSGc&!E#7hmk2n%dlH3IxOC*WbxcTtDV?M4;Rtw916u^%w>t6<85|qW>=wvr9IhH zjJ?Ly0y=A5!aR<=L+It)^_#->jQD#~H@x-t7VYu$cX;P!^<0?v|2r2i;V;N+oqyNs zi1uwR%6}{v1#zIczpNQC*o#Ml^=HxX*COBR`f~|qtp1KpM0ef(ZifH<2pNbo;s5_n zCIZPR_b4xQ^lc*kW2qnxG3}P*s#Y2ogTDB;8T;*g1Ho zjYI&*H!BZKypMcZ8FY8QlgCcWS)2?xZGRx~Ff_JfB1*X#MLB{~rfjgHPJaVs=)hAh zcL+#Ew7o1YbuDT~coZSCkba%Ti<(1{990jb_xr_oJr|G1$0(Jq{UQ_eDvbs$ug0e> zjT4uIk4K@JPieSz_54IEKn0qole--8P@)wvbWtiZ8II5dG z@W9UY+IfMX%JP1m>?+H%xPPBmsoahW>>E6++ew11gjA-*NN4Ob*fk#A(C`0+RK~hV zPS>UK-F3kmX{2!9{$po&0C2w_+Yp_k1sYmaj%^RK7_KK@?-Igjy#1xTW=;+^K{;tL zd5RV!<7WOsF*GQ?+UVWZ(e^HRMPSk)QsX;(|@o%QTb)L;9E|$ zgzy}_3@zrXK_cPvnX;-%Ra%5H984V_zaHgLoAJ5PSdB09Q+^iH@!U#h$lz(-3y-4g0d*JwgsvH9y@3?4nc7G@a4lV#8a&agr~nkD>`UlBU>v`D#XX zieI>n{`CNyGk=rpN^|*G965dPbEqsWqn8rkE_ym3@%!5{!^#6x(rcswzWsyk?kZv^ zi@hk(0Ee9TO3=%X>Hv~-)6I{?u|lUup#U(JGthZpn#Per<6GWka=iSEP zR!7jyM~q|u<`?_Ryf{v5PuQLK;G)Fn4{%VCLr%w$f`6_Al00GflNI-PDT1NSziT}m zxIfJV(HIOpjY;eLR8FfNfOz3v_!4*%g%q(1!tYs7c83pF{pRv!6oHxs$$5g~CjYLb z1oCw|OmQu`nOZuQhXPrmRQ06i%^xAD?!4|~Xfr#|c$N#GGJ&AT+kh9pZySs7Ver`7 z?pOtwsDDT1)vam01)lg4yO`=qG5&+ehWi&!gl$li=nN8xvPpKgq&MTh3&2dwpG&A3 z!&Z_SFRHTzU640HV#xaFol`ZL2dWix^H%)YMGqiWY*}PXRWdZvql5=QiIzouj5%|% z6vlbnBE6B6$z)fcgHzv6Z4WoWVFg^FzfiE~yp+uO-=?vz82XY%Idc zD1U^4hOkvXzdC}rF;q4OZE?z3be(f;=ky+3!^-6#jZj)B8$3aBwirASoqQ5T2m{BP zJ4pNLi_-n$1-A!o4BatG^lU#Ama??4A0QY==!!>3Mk&c(q!xlKtEC`A{jwy(Oa(&` z{UZD*Fm$wH#&?-rJ;n-i^A9q(DS41nfPWH6P6o5qv`lJ9{+zqe!{ewPhIfeWzC{%u z52(>4!T~2?MFXV^$$!`H zn`PR6SI!vjKba?QdPZmPWT@5lrHW&IYUJM(9ub24h)v}Pj*nnvRJWg>iZwWOost6XZdhOy)2|NKgZ_`}-+l4!v37mpmCiomlij|KZ3N?xG>@i)=kAM;LA)Omw&`SJDu1~D=ZLK7sTjwB zJX8;xE#;(qFzPAE7hPP`d#N297@f`Om~^k1Vyn4S_@|_Ck*#j~!H9Gc&5mc`Vn+qP z^C6Q+pE<&1u@wVQWwe;{p`Jl0HpQuBxs{LNhMXxk8$%!dlD7UEvP!Bxc21K?^@Y^! zJHzvv;EEAqgCVu>z&Xg68U7Fjht{FIo1zXoLF)8b+WPyY@)6R{lX`pzVv1_~>pFj} z{mZ{bUfDpz5*iQZOytYaZ=j)**v=&ZW|RKT7Jp*gAHO;yX{8gV7!Fd1K5qqRm7DYG zUP5&K43dv_P$d?XuI~Wj`xH5QzC-&Z|bVMA#gED5-z z64jCG-~xnOsT*DS_xJAsJQjL<3efOw28~V601rzVJCc0Tpr9qDA`GJTvz`CG4tHk6 z>3^RC-i+3k7ly2987@xo7)xf)*#-9&A1`{mIplJNW0Kfsn0V0f~m`9-@ zS|{yv#Y-Wkd_i^vaW;x@TS{|SOOUW2yMNCA^a{1AtVp?avEW*foJ&WvGxy4_r{6l% zQ3qDG1a@48epmMhUOKQjjt!;a@$rDFV;Dzw(>p;!6s>E9{bdE`>YPF~1l?)=uIX3_ zdh&hfmg%yyn{mNm=p8BM4gURW!DQM}Or)=UXv`-|T_oaewQ@ zAXH);{%VQCpU9|&PKH)<5u#Po2bL~(NgxRp^{+4; z9yS6VGOS>_GTyLUaOij-mm2Kg%7Q95^De!YY6*&F%x`|kq;P%%_MnVb7x!(5rBmf6 zPx5lobVNJw?wl%{EGX={Da3UI^?$KGivG&(efTAx2Ho4XFV!*wbwux)=?}E z^|9grZvp#l?9Gkoho8wpxsEZYx zo1QX5x{4=uoVmx`v=^fJO%doOQio{m3no9(gDJ-0gbXq@+Y?q!7R*&&RK^-oW07kb>wf{$NHpv(dF_D3)d z3>Tdrx6b>)Ky)bN6{!-`MNq^doXE>^U3~ujDJf%ejm1_^ZiY>SO_AlOhikDU~5(| z)#VqAU-^|H|+5tGy{EY!`vBzlX2<%g~HBwB!4wgke7jOl2HU{6eh!I zABhd$Gmxos1Y&I8z&~(m0O_%P1m1t2gUH0qS=t$=hQP*=?{tulZ0nDW-ttd23JIN4 z9hvj#Vyx}|xm}p+;Xh2Q_NzUQHX^;bs3Ye-{+u%(muq4X+Pre!5o4}>P5aYTZtqz~ z+v_VQ-BhOhnSag+LM*+EjbaVv`89|U4_mkhN4@4;jqHm0 zoIp5M?hYh}=1!1B$U4g!1ODQA78VPAS9}&Ip=ZfqxPPy;^V{l+8}{V`rQSX5kkLu# zlzA4RIIGBG55}e1geuitZ>;Uf{QH0-bn#mMfJ4jB1?VORROPY!R#FT$*q5AWML91S-C~|W|O=6wUJ#UjB1e`Hv>_GZV@Z|NZqXUhkz01Yp277?epW z2~fxQ9#Eia$^;S#!$}kbtAY|#<|0wdM)#AT5-#dg{hz86{tuDTbCu23|59E{VUKFL zXoXsWiZFRaih9qSJlN@s3Xt)gX0z>Sw*|_&zY?~;lJ=4{#W;=pLTvgI8F;UkM@Jv} zdu$YUBn=_!>ODl$pZN+y{WCuE4QFg)&6$lcd&7e@6P@umLKbg}g+!JP@s3+xRV{pY9AUMI-v@8fFJ8 zx-b(Q$>?X~edraP_2Ih9_^W~>@k@Ch`e_s`M_9T*2NZqjPTEv3;P7x6A9$a5p5~M< zuYK|l!*7UZ_3%B-Q{7(_A2;TM58{NP1I0!3p)jueHLk*_?yK$^A4J1ge@fvDybtfqo|sMzh#9J1jglaJbj?Ur2Q-@$Em7ajXHT zphW}xWHb&2D;rPqc0|=w2dIs#GoC($(9ZZgf6byF*#tx9vnx-(Lz(RO<_}d2l3(r; z44lM}nbaBYl*UA8o|OaDe<>!@t*4!rk!06|h{0GAJuP!Yw3T0EYG(3-xHV+XN6_&> z4rWW#kyHAeyfwrAAjmxcGDZA-Cl6)^soPw9kzm9CZddik2Z3S7@$ocs3*`uMFTb-o zen7>XS`mzcGar${FPH4&sy)0OgR+8BeY=)L1vj(ni)#MiCRY1Ne?(J@^0kMum@k(} zHT(4Swn*DVQZxLa&OIcDKFcXzfqG4DjLzM{43Ja4H-5&Xhr0p<1A0^fvKarTt!qiI zT;;WWkK!LeeKs$fVcaq7&S|9P-@RTB36fMRk?d^)79gZ0i4Z}Zh?)#55v6HRyRn+4cOvfR$_7N1p%fW|OKZa?k2Im#}ebG+1 z)P0$ikKlN~zjzCA%{kzJWcHo|{wTL+4EUppCdV3ZbJqAiERMX<9g>jPf1O2l;*?|%eO@oh^S}dj zb$O6K!pX#ES35R2@V8+`_=`A-`lOg0Yv$qfij~1Lbvn^qkW4_n=Cy0@ZkJVw#p?+Q zhaem%o}P@D*K<0Zrsp+m9p#C2DW@K6`0!r@SsgF`-|xu@z2j{5`f?HZ`@dj70O@#0 zhH9P^pNKuce+9Cfmf2m@h+r)i98V^sJn83fKSRUv+&Xn83@ zXOy>5iL6sNG?O2;hMQ4b9|Er$h+`VFNf`lx;ohqSU2zf^`=~Uth2LU5unih z#Yq=JsufVF40PJDug9fpjmRmHfiZS;mjiS{Q2$U1Tg$2YIgFLL zdKf%Me-j3OXkaMAt4x;D9*ShBGTVV5Z+6T_PK|7z8Y(Za9RI3z2LrL0(pu zKZ~Q1;G>f0dCqV!a5~D}pi~`Oyc?9Fe4!Q#rjZ!ew*8v3R)75B z9NYF=s?k4I994oKx8I~=KL~~wrmw}2zQyOUf6kLoY)njlFAW$idZgcQT}(O@ElTT+6(jXY zf5uQ27X4B!+FSdN=2HxBR z8A9*6EfYX2=?m-n?L;}Msvr`pjRCTG!|9T_zPSv?!c_xplwk{T)ST+9Fh;xyn?Soq zQ+%vQhVCi7V%{*U-nJaE(+{X>WhRFsK$3AgW$zs+2A&wfOE%1A@lf&ZYZ6j{JUjhLe-tkZ zuQ6`ePM4Gp!E6r|ZzC;fFt$lPVcIK0m)f!)jr!%De*Z1ZQFDyOZ>Lw@(z zWknv|W_f#y9e}&+xD<}$#(i%*e-{YnrPnr#d{a%E*)X2Y+pNj8%?2a3StOcTyKHy$ zvfO1+YkAvcyVDkUmo>TVvcd5#ierMiW}CR7z}S3!wC(%r3{yD*OsU}v0N!*OA0#oL?m!6EjP9Ce>mg2NoD-D ziQ%J)3aP2H*2JwHajMwKl@_PZV#LdD!Sj#Y5bx8Ode!<{3Gt(ELFOzmAEWqG(zgRfgRurb7}3C?5bkI`pMIo1a=W}nc0bB( z#Ms}`?{hSNkWZBB2z}&sf8m{V!%iZ)jPo*vKNx!d!E!o2IC}V}DoIBBXRL4Poyj%) zVjMaC!HMC21ObTgeWWX{;eV9fFt6j}-Vc9(pttciV-48jogjLw3aY8VJ@Uh?0Ylj9 zwZ!!YiArH}msc~E0{6^6Y0>-Q@B7j}ANfo?TBdTaNGsxu(UiUce|;Y+m+u&IMR9>BK>AxH&g+z z{I*+AlI?AtbqeA?z7{8pO<-KlcDfj8jglqgR)B<07g{&B)5U+k*HZYykXoVhgn%9A zFDo8;OClhQr2_p?f6j|l0(owv%?P#Rn0~NxEI+E#S8iWMxw;|cll$)MN>Jsj*`Q-T zM$im$4JbrtBJ80k_W(Vjk|hOcoAJfA7~BE|S}O1iddG5-jQe)zgX&9iQ&OeJ7I-nJ zoJrm^AAA-=i4*YfelI=CW%t(io==?hbbSb9s|l>5!5+k zehv~P9X?3{ZTsA=&zJibp2aAU62a0KH(EhEvDxtrtZ_^g{8$RfoUtN+fid+8*<3-B zx_5V+DJn@`XXjTNAi)&e_+))4>|@sub| z$Rc}r!*FD`e}68KK{zaN>B$(%JTg^I3|bGAZ+r(Xj`Bzq=0V_xq1Rz52nAY+he-#5 zXk=yc;dunkE((Y$rGtVLSZbBVjLT&<2?`PV^2cEOb9^`@rLE^Qt>>*hAygg|9bHxc zP>k4>#uMa`8c%R?(@lmJT0U<1!SK4FNzF}{4YHMhe`|Qsv5DXT(qC0wcCv7@wuH*` zH=Djw35ZPF>@QLV;oL!z5ih@r65qxa!g8o-#RkQ;Q3R8UJtP>Hpd4SpIPx1Y3?h?s z)Jui4uJBl)Ig07=bs>i?K`@i;OQagz)~8w6iK;ov&B!V0^ZLZdznm z33ilqe}jrYI&uR|XE;Qx_}N+ErjM`1iA{y|Y0Kupz~@Sf6(nJ{^k0Nv9^0PsOIRVm z81A{*zH4zPPQIlW#O3$kc-cz6hm(CAdruza0n8b2DQ)*+6orq(oIohF94WMnC7pA^ zj5Q~M;W<%Up~Q0nC*r#<%UHd9yiBn)opSyN(!M!{@dfDGb?f~>vTybKS^52pMOZ`ImC*b5`Kr8J6oDkGSWsaV3tFbF!#|YS z3lD|=JB(uN*4v-Bs@Q)0GAKXyNCu5!@k=*oYwJH64+*R)N#q^(?NBg^leko*A$Fwc zf4dUa>iBR~Ua6He_zsh3I)PK`=f$B76{loUO5B6priLANxYiV|KXfP$LoREX4vwP} zMhqo0goXy{QN{pZ%wBy(6G|jTr;bP|P`mom9q$Rh6(}D36(v}!a~*1p`^4KyQCW2L zXD~ZDV^`SSGn@x6sj$%!X{l=&aZCtlf1g5Ogvi!Y8+4GDE2f0N!<2Jxp8I6T^QAAS zLpk&dkSf>i(A3)eg3ECQm4&wI&UkE#Y|hFFPB%aTsw}f`QOnI3VINc^f(%A$ z{Sqt)TUT5ZH0F~!PCw&NJ*g0kWzK{_jYKpg!$Wk#*KO#YEK-UJaFv}n31l#Uaz*i z3InJ1l&UXT>5SHK?JMcrFcGjxc#bWqM|Gtv?`ycFON){o2U2>Rn%g|LtKE4OHoJ3j zA5(wMP@q_O-rtisRGRza%u31#e~KnPjxM?IzM`o5qCi>G>!6bisVK0T)^yvVwf3pV zt&a9K&n4Y3WHeLtA+*LOMW-T40W6Gep#aj5hx+tQIAF}9>srrht}lSMtGI<~w_t3C zyay2GB#V*4$q-5iKbOapZK^I3bE%&7C*Mch*d|rEZF|X_w>vv-@H3 z1fK$^ZH~v0#5jN*L8h)Lda0VGt&I)EJBO||lwqE0_2I@?6P2bJe{}9H$OW@thCfMQ zChIq4ljT|3e#1Ai{#knLC+T=Qpw_Ib5~}8{;zZGWe~jo{kejM`EALOJnnRk9R6E$p z-!Efb(^Tr3rtN`^Us|1n8T}bc*+jQ`&8rt>*vh7<^uPu~%BFv*7VWM5NAn?nFf5il zl|lXSxT3Ho;)g+1Ix$zOKQAwAO)EYq-5BEgr8bxgomiYa(!($jfzxm z&$6ByjE7g7Sp-M;p2(Izg7mswX&LVtk>V6CTeM&BlUPJtut!kx^pJe zwl!TwF`Y^I{p3u-^QTe-!C6!p@RzPV2;61-9T_=ue~h3=GMq{O{hnKxZ`K7H9bxZu zbCQ9^qx37q&bdyYYjbG@)q8K3vMY9ld3=(g{Q$om`~r)<>75ka9Jt2%g+VY@K+h7R zC@JUHVhC$Y($0#vOCYN@LJ2Pz&plIv{9?~eIsbT4Y30n5*}FruqFU6xzac4DU3&hz z02H6of8vG~;sw>Z;j}GRujXfa59I`3NHxd%rfby+J>8gBq=zydWE#hlp=61zI0vqm zkJ6>_<@$jJoooF-2bfZiNru_IN8o0qS&0vSDMc91%gK|^?(hFL2Atv`iH=dB#FiPm zjM-^QLB+hm?^KB~bR7Z?;7Ag;J5y?0XO(Pke_5iA2w(WbW!jcHf7_(QV|q2H=Ot&` zhwnB3R@YBy4_4!&W454t{?&QR4wUYb3s}YiFrI5u=h}NbyhplRf04}vGIEbjI^=-E=|A{n04Tu9J?6kWi0sBA5O4a8F#}W(c0s* zVAe7kqWOCI4nQ(rkCY6P8(=7ING&57UI`c-n1G?yTqPj@Lue7B&O$8=dd>J5e+HgY z4Y-&8tRZFKy>w8tr~FyQ!JkwQmBjNs81eEhUwi_F@cXBikhq=^auD^PQYAGb-DhT` z`>b`NF617=+ndH-r=8Z*U8L(nU`M&nTE89k9PYE$8Q8I=H!Av#n%*;Bm+cW6DjzU& zwK@3wUbp3@kHBGYz3DwXRrnbOe}_q`Lt%~n9&7Q45eStSj9xa>H@@GTiOaypbtYq- zAwoWv5AB!8LX1)P@tYXK3L`v<#drvd6k=5pL5xTH zlQ@JRQiw$_8793%cqkS>MD%^LaX=Q~@x=0>>*;-`2#@LFEGfcB#j6AjmSI>B#u8y% zuW7#G17=+!jOX{Zi7*UAn+OA+IMWFX(x!TguzO1ZKC-);01pL&rTmT(t}@E6GtBx( zXSw`_EBYm?kl%YmXq=34e_+r?pYOS&9efP{Qnlx6oQ-(7nuD|C|CZjiG3q`;Kzg61 z3pnYV5N50i5e!d=J0QK95O;C-tWS?fLo{Em=pI1O^)p!d+0}!%QA--;@jA?h4#XAKoWxif0f)PtveDt$TAnS zEpzcp+1^0Sve=7#|a0arE7%h=)B=1DFB^k)JWC+=Yhtp=`^#pBMKsNRKT1ZB8 zeO`fVLr-)76SA$L_(NI9w)ULPr%usNQpmO-jcfy{I?fbHJWKI*foyBeZX;w{egv69 z(N1eoGL_;Ro(t-RF{PWux-z0!=Z0)+^NNEIkGJ#MaNnQ|e^WNHjpB1{$gLL9!Gfk? z9C?)0ZqXt#IFN1aVa~;4-Jss&&m}VJ@E!~y+d$IO)>ERmhXu3^k0Zdqhn&aI&zj?O zRZAXQS=oLiJ{7bL<5l{Cwt?0*2KzL+&*j{k=J(O~=Kyh1wtW%Dr0hQyab&Pc8WfWO zTd6U*pl!ife`|O!yvoh-Z4HP0a%|8xH0awJ9(1nZ)3rUN)=Z|bj1?JC$M>$(Ol45s zu5V;NOW1?7fG5K*?@0eP?@g(hGeQlp=**1I#moyT)fzLFUL!^-Hh8>)nYx>EE>&F3 znQgA?H6T<_Y&vnlyJ7>*cs6KTKUEMuG#lPfQq|xSfAZ*m@cDg%4dDG-{TG zJIowoe?yTZBMd{hpCNl;7{c=)36f4w1QN?Klw??jg0U<^$&nqU*XGo=`rP$WMTQgy zST}3>8ak|%HBls;$$Qf<)Jr$0M0TN|Q#6aBf)hl7-@jkJD6f!jWH@CrmMCZC@QpoSvQWKJk1KIslSV<3mZ(v7rSc6Q*no=*yj0 zrA(Ltl9e+uVG3HnWkCs3&_d&(*@Ih04kt|MfMz`$afOY8lgjbf13zK z=q$Z$YVsE!uw`)alsj^p@D$umoxf%!W-8Ny&G1COGxfG^B7E!@8HAMA*d2%SQNq$h zI&6t@+w_qJ32rB&eMdg@p_MAH+nk1EmoJ5cow9nwIOu3*pi=LOQD=pWw#eJ52$P`# zrw4vMo|xr*ToE>1nHv$885mS!e{<@Jso>caglFvu+|ovO|M(O-92;eq+JSRU;hX$D zy@GWWmP7V=)zRxVsbWP&Hn(oKsB&;8Ib9k$7)XA>WPhhpNK|FR!#JZcCO`a60H4Km zd}-i6F0L^_V)Lz9LxQ7oT1Q2v8n`0Th7~-FSf@)RI6mZXiM*7qZ|HYUe*jWRMO<|d%>!}~3=U3}r@QE_l)(|y zM?%VC_P(r4$VD-gknr0DZ;Lv=!uPpLqE;5G+YvjRWF!MfhFk<7={!~JD9F}&W~t#^ z_3&EndgtZn0aOR0FJmc{f1n`s=M#+d!S>;B^pmP7`fE^8XD&hvpej!L`YFVM>VKFN z;Nj8peM4g=Yka<`;AOS$TkF-KZWmc&Mt~G3F)#*P|CQA)NshBe5R4>Fe|J?S3&T~l?I5Ix zpX(B|PrcbY`>*a}>3yy&i%f)NM~TeIlo6^z4u(oPQp3Vp+??V*=&HnP2%2HVT5x8r zemnvFd<|ZWipWxi5DoOcIvAEnB#V>f9eZsj+9tJyxBED(m61mTqKWcE(Wi^g*SC5s`vqf5=Q6P@}W~z;J@YU~TG1!>npDJlzI4RdFt8q+#LHhbleU8ikiD z+kmZAXkJ_9EA(Z|@Co(^jqQfsxbNIoX))y36fS(q1#Dmz>>yBGklC-NEw~GKWeSaD zxZ{!617#>LPLL{g{#mrY%k#M64lc82v_)0lZIqX<)=1yLe;GAf1a?g+N-)5TlmUv$ zPq9D>Y1Fho+u|idO#(TVsDR{dAEGkO+og6XDg(*E?mTP0b8|lz;P$phJd9Hr)GaFG zWZlhOROaJSY7!Nijh+;hAVXA4TT}*vsz-_nUcNy>KWv^4Z@PX5Ea05%DoxKJD(?Fd z6^>20QdIE!e{NhEQf{APPhr5ZxbGz^2YP??vSew76P~hSGG!&`_%JR)R9UW@eH$q% z@iNh9$yCx1$O_u&OgfSkFeru;f`h{HOE4fTu&K(tuC->sl0Ms7(s0Mzm$Y#SskrD9 z^JiPqz-ix>v|q2mtAUSQNb>j9%qYA;$ww)B042zFe`ktEliQIcZa|GGW^v7W?WR+fFjn zfCDcaLO80CV03AX(FrYo*+r9=&%9k~0vtAX!>9h#dc;8o5jHoEb!~oI-8ULOBJ!orUpT$rd1D@A&y}|2P z2`85yG;d2Uff1x$qwsU#%eXyZkD)`j$ZMara}n(p-}#~sr0)&uVR_Of8oV`WnT-DB z47=ce&-eeoEy1wnfpE-fHzNmg`il8^ z@Uk6A>7RLvtJYjg_V?snFSdKUc%5NXxc0PkXssFdPjlNn3l`6NyxW6U%#z7=I%+&UwFp9Q$_U~S>zvk}F$BCd<4E`EFAX7QFYzc}x5E(t!u#bT9kE&@1qS@9@b z|g(W(<^aF!+ZCYqyO}NP+ITm@L_}g9Cr^6`-_1c8bY@g3q1)aT>eom z=KW5$gDHJ=?{8Oh+ZF$qc%EzV)l5ej10KFQ%az<53zk&x+$8F{ZAbl*jG*3r#a|I` z19Bvze;ze2Z3_KK(9kl7+M6H^@*ee~erkQG&@}rjCjhV4?gI(5<|Gzaq&R|wnxFzwYTxidhPir>a zJrPvA=&r$I7Sp+WdKs>V0!x~c>+hz#k?cMmv5J$Oaa-Fi1usW;v4{Hq9&OCcS-1S; zH`9IUuMT~FCZ}N(V6%%mw=@3#nX{&KPo5q6>$4>L@{Jwmb1b&8u1tA#O@vKfiJ^I6 z<4><&4+R@VUSDKf{v=FJu5e4U=N8|`d*@b7esM5Jc|uPxOUSv7zs$Za%LFFD8SWfEdP#YX`gVq^-G_SKZ@ZDaL7{$LpVX@*e%H4ZIC|C{ zD_p;_=ZM>ylc#P6Htsq*-pJ_4UW7A z&u-`5F`>}BUq4B6-|f)}JjI9=s*m=sUOc@(Q=--S@Sc!lW63Da z1+lhkY+kl9e>wcr@}*|?>8Ke^iutqce+jm0ak(y^>yz4YY>HIsF>%Rn3**g; zJ}s10H#Rafur#nRHH*^ZQczIP_svgnNi0cK&@eJEGBSY6PR|lxtkyL*Ft;>RFaQCC zJOwT=!_3&i#0W#o%+hkYkRYQa|36syWD?Xa)ksEYTffZfI;|G5wt&qc@Map^1Spm#V6(zZ(|-w*YVY delta 32596 zcmV)OK(@c`umr`V1h8gnXiah~$$53bxve6GRfC&lGIeIt0%`|$2M#<09z6CxedlXP z>9~7l{&hzYq}#DZq9}^Z$0FE^Tjl?>9ifl_=>5QCN>sp118>z0Y8NNdA#ca?nzJ9_ z*sLw+gAAU7e1YDaZ;(HUH})Yp)0 zcNsi?w*TMm?q!a0LYRjWH@t?^v|T^~JUt}=yRkHrQB){$t4k@NtHKa>~GP`Ef%YP+DO@pG@Ho+0+T({K39TqBOX`SwS0}fM+FSXPl?VGR> zRnoV+)0%S#^>VfpL|`zk{>KCnRISKV`wEUB^L)GUDw{K502cp@VDKkHC_mK7ZLXn}L^BBO`Mfx8`ch{F+t48@wu3R?;K7)2?3x4m0w)>mz*|bUojn z3dBkkenc;9CM4baB^!N8iJksQQ+%xkkn&pnHM-NXq4uRDCgxFKVw0_HB7axAjoKy7 zVOAi8(wTU>J~M9{bV)4{oYU1##vkA~b0-aKxZ8b!@=dP98i}{P9=E4m-*al%R$UIILFtfp7GA5uFB`d)J~9al3$O)~AaI~X|NL5Q>?w&xD$nBN=+Jalc)03nYMk^7wRs zXvi-d!vjp$wQ>c)H@D@@VJ66pEppy2 zR|u={9=B!U7);c9xqnpO=fL}NQk;4R{gGOHlsN~RQggv;&H%&t>338D)A*;#YWcH$ z$r&z1e=Bll7y|s6R?Dzu7weLtKAsy5Q3!3yZeJxvSipz`usgmo-e@0|l2epne+S~> z$u_fqN~44OzUe9Ov4Krprowl(vh0un5T&w=?wHoL%|7ws9Dlj9u@BZ*I~~&8Tn@Ey zXdrJi(^RzqD^t!fQ?S@{Oo<1vow9=*W+&-z*)7gA?seY62l?26fkUYMD0X0TwjKC9 z4e9O;SouS;x?6T~qw~-^aM0R;*|N?Y33X{bI4;|~m8L{*I} z#<3;dBb$r?E`N5_yEnQ~?R*4BkdR!Q=#(}LPB+%(!MwVfhZy$?(?eu|vELg359}sT z%3&CCbj<+w>{O|*x{}_?1-MT+{Y?7=Eeyf9#O(C0RM&@6Y3?~g-HeIR#7G=%%3`IE_TCIQHk@Nhjyd~Y`@wF4-6 zfGv7Pa$|A=L}VJ2^mZ10ECV-_k<6;+aLbC^M+sHT^TrRyk+ig)WH_#n3xaroW24tt zCZ~r}!p&i(5?j}tlXY=b2;rq{m&R9U-jmXCB7dAY^{MJ*eU@oWy24t56{4L( z$xbLpdr?xy{TPex*3>^vgH;nTf`>SLrMPkR_ZgF!z?>mmyiA1PY$gKo70&zb=!2m< zM^ECC{@9lLP6v!)I27awBIowW=UxoyJRpAd^x579!rZPXj+Be;-ix=Vbmtxz(+V`> zw14*QBPsDxpCkkD+{!t7z4&?Bkt4qaLEq?4a2K^sB@9u(`NO1^G*ge`?+K{rcZl77 zq$nh(q`R6QHtYtT-Pm@O39mjEb+yI1RQ;YD2J9l$K@#(t@fsJD5z~F5%-T|Xn!GadBr7A^2)N1}On(ylUsL>%v_A!aD{l(HN`57Ofdlch`!J|pJoczLdZ~OmZy-sSket$*o zQ0PC_f%GHwBXVSDI9t=0{#YtDuW)9y?hsm9ke_N$8hRY>KERLxwc@V`Rr5Y) zn_J>y7;UI^RM+}WF`?k3 zJ=^T(1=HPHv}3K{^Q{^;!oA(UBA~=@b+I6^9ikYPHCFMM zgXK;IQoRcXInyypj(Sni!v;j7TQOTiHwoEuT}j*jKA+@#ZX6y4!eKof+JB|{$7{2O z%k~yw{A^b`WQ<-=jzyeRy}pc*8n_$Pt_904zI3u0kOQd<~=O(7?Ebxa@oKAD#o&z&vC z`bN);GX&?+J^*p$$r15kJ%6Otp!8B&Rb*)KeO+k(8uo2PR^bZ!F3t~O-)2__qCY|j zYsKl4=77Ew%tYv;oj#$~VVuBrvSv;ZQ8?Vdh(hwYsK+RQ!GJ<}SrNSdsQ@lw91R|{ z;-V1+Jz6pTe_qo5>dt~IFREu6wF2_3xcy73vZ=rjx}dT(TN#eDpFXxwnw^vkyuB1w zD~2s&9V#9&1MXrPBd`_c^s;x|!*QnfsPaP9w=ozX585t{RQugkzUD35(Dv83@{ zldE+mf1md_S*oe47Z`$YY=#NMlcq!S{7JqElNer-?eJ%Fp%pmF253T)0Ympx56eXt z!2~7)YpB=t$m-T*jSXLVFg$OPR&hA9472nUjw$JtB}HjrJh}?%1j3};XZ8D}a8=C# zPY7UKmvToSA}u_?#B|_TMd?{JOdw=hNEqVef1+X9!QALGej(1`cylF#>EBpIFICje zmGq~i8gNt@twSjnl7qv{N@^vN0H27ndjOR|t6^XjT8k6F%NJ0ttjbFb!9)dYHw~?%<}?SZ^=b1e`f2V`aR3ZgZ=o z7?AEvs7sLBsnuR%+D5#)I1l$b(nUc@+$wLWSvxEuf;`Yfev(6^7{ zVU7a7NFdrT33@1$s!(xrC@(ml+uE;z5l9x(kS=<7I4fN=v=xSnfK8^QubCNOf6ga0 zwgxPIbQuiA_q>WiDSE7TA1(WQwQE727$cA@Zk?5HO&TYnylv1Wv_o=ENtEuOxGxOL zd=g6aN;$|)MV2_g_2 zLI^Wj+jb6Ox&;4e?3~xh85U~aQ~AXSh`{ep!z-MEa5*32HEfK@urCE-3g!V;Pb;UJ zSkZcH!h=xQS0@!4Rzl@q+!q7F?X+}z=rCj~^eXBO$sskY|3u(7N4*TA?B&dqVe>L) zlb?7Se}9u`aj@RDI)Nl)q^O-PMdT7t%W3mUAhKrYuAIfZL=M7Aqx7MrMEkW=r+L## z;nZBJJ@{NKL|C8Zu`db*m)kVMNA3`Z$8uvjd`>;Mx;M2A1%v@e{4;Q;nZ=Mr*E}AFgl4u%35bam2Pp6p@j;9O8@?*2REJCdnpi z#~Uwbwpj5-itb73J(v3^1LC7@bX0=u9Gsba2Zw4~&8_z=VRppUYtFXyp4#Bo&P%)q z2qw2)fywmTcSUK}WvLcv$uJ#@y83c8e;n?0OPdN|sdONf&(wm*+Im%fW9rvM55Xkr=VRT{IVmeos$__ZGDiWUE5m~@M-D?Wz7UqRg*Kku3RvO;78NE&Stm(!IHu(&`-qq z+&GnTCu6*5G_Xg6{SKOY5+B?3e+xm=(Oxl90k<^+3`K<@&v*B(J)6#0BOucWQyD8gcdvq3;7i(F$Vj-vFf+vMP9H+c?X z!YlI!C`{kvhQc%iRy5>H&QdA{wt-{e6kEcW(!Vw*WG2YbSGO8jgz2IMRD$e@{>}>^=NvLYEVsWj-@BN@*Gp$nEqJ0 zHm;y9jyqUYE6m%QM$XE-SD%-x?D3Xd&(-~A9QT<)9G;c`Xl z&WRpD>4yO8-4AgYj&Aoutf%o6rYg4UFnUssV6D!PaosVM7 zR-6djf1FzmPP|K#ZfnI^A2|$&%mH$TPGPpMQyY7_fSamyo2>F;v_`gI3-<(nqKv)I zB}`3?V&a(0=a%+H%YNNCe*4%ynqjtf*6I8Ja8#RqrvHUXvI*Tc43PT7c@LW`!}V2F zPTU|$cij74_AvrzJ-(Nwc$M~FXM9GbdyO+bf0upjF|v4-rr7c7=+3?;DYs+Io z?5QsSdp2*8JtFp1c4EA+eIi9zd%?}N0CyqkZpK{l5Q^WT^v=Ye}d)=yuOtnSh%MO4yP-88;5GTy0>}YRN33Q z`&gk&3Knly*E!P%8Eit~3-r<|go~fV8{CxTK3%|f#}T8maiao5Jhk-cd#aLj(Z!@E!br2nOG&3e7o=8jS`X;yCuKr@_{WvKloAzDs*x4MNHwD>3I?s|f2^wP z1*14#g>?csWJ<^76fTIW1aG)dw>35T3{EZ>l!GF`n{>@zG_~wzd;kO5Tx>u%?}xMs zRf`i_z>zT9DbrjWf1S$0<1*$FJMAglR(jO;eqa6A*SjlrOLMtfvzf>GCOix@-0OAy z_j27{GETwnue*6S0lWheRN;2gfAPM%$rz6DEbeVxh|zFWDXQ8pLrLE*?akYsG56nT zrsAAST4WHKb9`lRYK0biyR>(4@v>D!v9eWC&7PLI?`N2qVY<(LN z>#pM9>|&J2a!Jl*nUXRlw)mXeEt|_0DKgB~HtUlt_7x~HLP0m*1d4Fcf0s*p7bh&4 z5JdWpB-`-ef>v>FYs%y1C=N-x=Y>I))&+AD3<>7+JgByJ=QuP&%;ugPehU5c?myC6 z6zt46Is@ck=*d%?5DObl;Y%cqb3%F64+MCxdd<9R5thQDRZ+atT_N7&bjAO_Ft+F3 zuIcx<8XEH6FeY&l^ihH58IcVY>WI!bI zradYjXB?n=R7d8!^(eA@Rt*3(nlY`nKZ((>54~W74&xt zv)gtReBvta#fT6~_qko(i$QCyS;Io+pbnLvvA#FP9Sqg?=G>g8t9f(&-Z=HqgS3YP z{L?!_km7gQqy(JPX2w@qWszNb-g*a4fAt~` zg3v9anK_c77h}!Fb_plzRvF0p`qL%8YlN7Ua%_`j);?LtN+07NX{Bth>AcmMd|k3= zK7=(Rb$=6cwz<0fp`NTu6{K*vfoA#K?cA|0Hys}nfnHeYy=O7sA8JRAG)o(+XG7PV zS>pTschm#|^)3pxsr&ROq!V56bNnG|yW>-=|aP7pFKeG;VP_!8e|If48(iv;zlc z?ZAW!FW0^U6Nj8H-wa+}bN9vnwe!+zbcax5L`h34s-`?I3G9FEfEc+;0Of)zr3%E%Ou^NK38UiJW22u) z$=NuM^o3^0gV%@3Aw0Z44>{L;cXf?&`2T2HYe`T}O_Q&L6%395BWshpUK~n-)-aRM zgf@Tr#fX$T+}VkaA;pPmOQ#QBYd&?+qeSAXIESJpQ+;Ci@h0THmnWDo*2HnZSVs;%5;-24TP2Hs>UHy6pI`svczqxw;kOmJI$k0t?^4*nd1w z!AXMESiw_&pt`WqcteAMDNJ4F;bQZ{ zR#68_XQ88}iwo0!VGAk%=u(MA;cDd%sRnCJ`eP}|xFR$uB3$>ebS;9V&#+b@a8Ff| zD9f_=O0wH8*RkGFGbfF&s!8YiLw{Fbbyp!EYryU8W%RMuvP(|H9j6lqbgaikHM`*s9!L5!(HI#{NCRcHhb*SP{15{1jn( zPIn=dm*x*SowPbhH#Em%Z`7{96ku!El|h{)OatC}#;S-*kn4ffjdWeaF+X005{}1> z;9))K*DsJ3So4b4@UyIavfVrWP1>CmJ~qx!zN6{1u?U{xCQ53c;Hf#1p)VE=@w#LRW7r>~ zufHPDoFi1D4cQvUYCO9fX&2r96YXGdPA7oxAt8%#$wsT@YsN7--o%`3uAsaRGq_lg zR8llm(OMB5MlkS`6pBFs9+OszNdZTbpo$v-hm*XD9a4YB?W$>EPknBj5$SR8&0iXD zsO;OxVjDe;_pYPTbE>3Mf6kW>LK`HXaosvpFLi*!3s=ur?deS+Ty}+rLNL84gt#I%(5mo3(nTc-n?gXz z?5+?lExk|(;$q#AM`^nGrcJdQvJNcp5dq4Rhx#s=kcMjG2c#w?f zyiR@z@to&8bGDP;DNxVtyyj{ZV<)o{!)1T!E5cW_VQjI>ch!?-3dzXx1P;)wX(5ao+aHO+`LAC`~6xj#{6&Phw!bg9XF5Ekur0 z)`)D2xFhE-)Rjt7XH=liDA=7+-t&pF)b0P>c;@Elf2D}8HC=$L+G>zfc@IT_zUeBw z#~$_RUStp9?~h!RW>|ly{`yKAI5>rB>XW}>$lDygM&~rDp(59z{_ddKyc3f-)@jj; z6BQ?EW+fc^50rcSx$Zgbz)JG%iFXuqlc9to1TD4;lBB*Wkrsfxqx9r_uHED$IK~lf z7KB?+f2K_h<#u@wI=XPE&XJ^)2hkA4&>rBS(l4H^?%U`5xt_Tnj@Ns|0a~0mxYGhV zPaz`s%)M?KbY=}C$53s$gYuwwzz!^e?yhR_BEeawbRyTc-J>Fm1G|Vivuq6Hl>;&z zkNW+Cmg9ChR5J#RFnD_BN>p+X{2UF7SE)gzf37D3xZn!Yi<<-Tmgs4{Z)XqP-q@y* z3o@_iR_)2U!u3D8gUxH@AK4*v2l~NO&Y=x*ydxaG ze{M!=7ye{>6fxwtP8i*WQTK;v8~ZwKJ}Xs~vtOm#5o3nSoqSe8;)YYU?$b5#LZ&r+ zh*94Du5N@o=dur!5tU4W=MDUDULCch%nkTokT5)tqKF%G<%HZ0Mj#)cfZOJ z^#t}HfyiIR`y$YAzh(kHR+J{D)F11@f=(tf9{qAkyOj$}yF zQo8dJbsQh+q>4R-amsl*N9p%>k)#SVzuG(;L6L5!)%vO@h*u=6)*Zt#ru*?#mA3A z!THTn1$LET?kXO67WLj${2PZl!UcB!L=%ek}pb%GKT>ESi zAMvq{FZIb7ap+()pdP;>rg{a|wNFSjm1mrxs_I*O#yT=tD9lUH0 z>PYMc9R{nCeo#}L)f?`@JM)Oc5}n(2cnBT5BYm#9;4zl1)4ydJpfx2NQA5Nm|pOt|NE^A!>;lRQQXoP{vTz zC*E6`KE}1hkg~XV1Wqpooj~E{^lPeHHkz)Cx#%^b;%FxETriYcBfy$9uU94meHWpZ zkm7@y(m0e0l#J?Bpw5<=0wKp+-~&%}?nWvQN4*T8f9fk02%pT-d1UG`7YL8Wn6%s0 z4c-rdT_v_iR0R|NC=Z1URAaWsfvN6__{!q!$(y(k^qo_c9fOfFeSBq*wmfefWW)YQ zv+;P3T%ddtvHUrD+o4{%Tjh_m5r(-{enQ;VTmrIBO$J!&mo2mC$H_p+sTWr(pK&SWg~>pD`H)urmiB&{!ngbyaE2R)2nnZH2&DWx-^+oEvS^OV=kGD{hA<&Qh zs$?Ln1+~qtj7{V=QiV3T=;Fh8axQhlfAAC4)Bs*HYL}U$rb~hv7ZhRf=%j?{=E{+~Z9%YyaAebW6)O1_9K;W<+ZxvhA79u^-_gp zwdgZ)f!30GcvR!A*Mw^`Xc?@|^*Xhr6$7Lktsdu1!M3CsU>qGCt=1}^E}#GXf5XbB zIxsv1fv=w%56n)=&^-B(DGte~lvcvzR=Xd?CkwULX|hjfC!_1$c^9D1@9#Fc$-b z4rDaJ=}7z*EilH#DXc2_iRMcYUbOftln&b5pkzs?>VL%v;2(sLDM&-$P)&n1tUE75 z$3e;9D}tlVkk}yRq#<*u0NT5!;D!+C*|yjV=Zt-;e`8RqR|W=h+ty8we~nSnC=Sj^ zEta<^+Q9M|Or%+FaRg`E=nXKrS!G5lUmvTbwuZx<9=O+kTaU3whp^tUyJ*iA-p};W zpc~L*(pKWZsh6a4@Q-9|qaQzt7ery6FixzVeCY@EyOYIe@~+&V1kWeW?y)=i5`);nP$#jzp1aS9!mov5FDH?erz zOVBSoPFS0q#SJ1;pPZLOGHG^}IF@=jYaA3pTbwOVv7$9K8>vi0e{+PJ)QB##F1k4) z>nUp8x73^feK)n}GW^f=ZGb#_N_@N_knS}+rnezP51twWMu-6Bll3cZ+uTm1Zqr!= zu(#;bGxPh0<%l&3iM*BkAjjI0+S9(?ko-V+`5XH96}`_two5uQ@qeTrrK{9j8o@w9 z9v23Ybc#=Q!~N7tf2jM*)yUfwETT=iE8}K=NMF6~F>F^?_De;l3orS3_?#wuP=E`m?Q;sVe z>uh$8f1J%K7tZa0ZJInmLtW0(`~8C)ZF?H>7G~YHG&Akyd(&dPL?WNc`C6 zXQ%OuVc$Y*XrK{c$_-77wV|2bHni;uYW<{RLtD@Ael{i#EwP^s_29|(EjP4T7&Occ4Nyl)6wB>v z1{~kwT;aEk4GnNdTCK66%}ZTgW5aqqh(6{Z1FkI?Lsb^Jp$#QttqskLwV}lov7rrh z^3DwnuwBlg`X-T-QlsQ_wI5Qn3NOVhk17L(niH8JHfV?oGYa2{LaF2wX^dNKgpj}T zE>g-}o*Sl~=*8yqq_G zUo2H%A8AQshxut(_tXIIoT^tT_urEYoWE)KUVXG(^fkuP@Tly5+OFY|ThjZc;Ss^= zV|%O9a7C%%&Dk`(A?Y>^-yOVPBUHWDcnGT_>AAwq*)%)@iTzE(_vZcAAV#W?PYn+k z2D(jt{~$)YhHq*Qv8i}-w!v>I>-rmiS{W+sy!PR5LWuv7W=s3WbzPz4!FW5hh_RHs z=}pORS5Ols9ZG(CNKbqfoHIkqyMQ{iyg_|8Ex*dlQ_CZ=M4cTVMyF30fpa8!)AD&m zX!&@JnDN%!(Q|QFdY4MRsT47lywXkHlssaM4y6W1HFTSjZ_~Y0Q^_kQXDRuACZvcY zdxYA8Q5`C>l5a}OSxVlFrR3v^Q1VTsFsbBQ&rGWCLg`ZrEn>o-0P+$#m-?y7j|7{V z7(P|zcXyLjBG!aCIY%PaDC)sw;*JX46_~5TLfZauMH~)@SksPmd_bJU19TfE=W_bN zbovKF`j^nf{1pzSRRh+f%ZYk_xW;S`ztxbRI?hRT7!om$QkA`Hj&;^@KZ-oEnEqJj zwY#hiyl#R7*}45_xc6z?bO;K}PyG-BN5}2Wh9N25IfT@a;QT#p*XYL^ z3u^U8dI)j{mQKD&az5i_4`!bz4{m)=)9TLeRj^=s18GdQ2yvhw!EnB%wA300nNqyoM_>y`Z6ZMiiImDTc%s&aU6K=B)s z_n%aMzLb+77AKU+c+RrvYJkMNofuuAGAZrmlN^EN07S27bt5~PH1@tO_daPIoNyq! zmAixZCtu>xFW6!T47gaqctQbc-sO4*&Grh&A$#UVw=lQFIhZlURD_fQWl(`;`WlR! zE+ym+B<6gQBgCPOo%Ij{A$Fiv!9|*MCe|f?M@1g%rknw+z6X)ac7;X)XxgnDrH2KU zy)!KpjGLv)8v_T@&+Vo~m{?yJq`7iiy6TDDKHsi*r>lBt##26m_4Xo-*6#kUO$wl? zU%;>ptZ$} zmRE4&+gRS`pds6nob@JWDtoF|FJkQvY9s+n$+@&LUiIGT%djjv2l@JouFCWCE#C&n z78Q*4d%XqJR~>J(Ll@#mB{E!)cd%wI&Ry#?_VMo@wuyc3K#td0Z0_-==4`uawOj3H zS^z)x|Kue@%lijf54l6l)VTQUjYX`AF7{6;!Jmb6EZ{4R$zoy zTUT7p?qlYYzE#zNW)VUdqB!B-vcPCWcx2(rpKh?0>YyDh&(anUvE=85w z0OSe3ClVzXLlu;!+#`e8~^xCye{r(`b6(wWr5s3kA3)YSL|Z>z0ORH;XgBX zHAYPg8ELOW-Ld`VR3}E<^M01#>wnEZHpbKx^^Pa*E)qB8RW1lZY zlaqsa4)c+25OH$nIMvWI7xozm@u5v#_oOf;ZOoliE@w?Yhn2;t4&#gVylk{B-&9Cv zKnbmjl<>SB^DuvCX}QxqQ)r%_gd*ngTCtytB% z=S-pVcWG~QjbQq>rHJ+EX6I~1c5!`<1#|<>^5h|h2fP2@&`J=yd_ay%R5|%0&4-+k zm@tZgl!zCnLpSmC#YnGR(E14hSGFsddKBa-18jfDDafL#!mV){he?GAv}vahe1_Z? zT@5}7qjYLQecWTd*KD*3fPa66G&IiVCI7$3kF=)a?;&UT5|%Oyo)Fa*XXMGw{nf%y zIg1+1J=$Bk(j%A(<~0_a+knWBDs?iu-3&U6X>bavE+}VCOOrPt=%K##i{VHGT!xpD zzZkznIMJVWDKVrsH^Yl70+^_=0su~QC72DLS%3c^l9bb7c%EhyoPQ4AETYl^*L=|` zXk;4Jx%LDmFDW}>oQfwQzX|zEcsfVvR!A3)4S^F)chu=!aNz3-fkyfc2R|99b9{ZHzV;h`Z!!9`jMlkrUd@)8U zjrhQ9FXW2kr$s+k?0+G`Rq_>fy%8d*Yb!IV(o_%$?sKdTfL-FPh6*n)qnBce*g49d zp}G7zZJ5jM67pL|!#}?kCjikXYG|5H_?{~`r#aUhwDO5^gYyO9F>&qX7T=~sn`zD^zb*(L4E$e#S!y{ife1ErF$^HL8zYMuOJaX*{ zbxx&>+VEgwuRA@jO`Os0pbvGl^8^dDr$^Lp1XPhY%QnGHFoK`k=cCkY9NYLzooR9e zMQ{4d9G|##iIdQp(;Ar{S4+CCII2+1*ftFSb$LJgCPw>yhP0yh{mh(g=!cqB{|$Wz zlIDFsLt@oF{C_(=l*@I!?`NY4-!b@@69XuETj1s_1y59^H~sEDHmTpckPcJ7qnB$eoNofO zD|mMQYP*6rXB+(Hs_dU>H}_I1d0ryyuOI25Jg#++r-BFPuA71vV<~vkn}Xl2IIoQi z1;0H+3Ld~i7`0IFO&DgW;M;#N+I}kd#sbJU1>e*jHx+zSc7JMk)0>KqD^kbDd&Gn< zz>DN`G zS;HfSi1K}E_#ls6!{-&&@N6yfEDg`5p#5FLr%d|9LUXvvFZ+kOmZ~KQpgZ)yPK?j+SN}ZNhtA@tOnzOQ{5d zf!&~IwBTACwKN0Glj*ed@G#CpM)Wl6Z2mKo^ZCY6Pcyv9>2Aq9yWgEajMFX6_}J4G z9*VBrN^-{l(bPpp=tl#@Jlmw*(##COqry14t81Cm(yVh3rVw;xwxX|pdeO<9X>bJX zRo$0hjGh2gjh<#0^XVfpPZDq>%^}EDD3hSqfQl24vV{zOx>}m8iC-E~IKm*)ORwW0NX>b3WfV-YY_?hBlv&Dmc&UCR9CoS)@=6f+nU6A=3}B<)ric zl|nVt@hGJV!v$Y$@WAw5k#MVhbVTq-9{C5?07c1 z#=e)Fp_9<99g)zdsPFFt3va>TPi{4MHK*Tl&al*=kh~vRlE?-5;3)F|tZv(bi~u^N zCVLD+-V@N~QO6MWWJUnxDY9`RIP$3fN_;4Op{j6L+gi+*y0aqGd~ugh+v`*4gP4S_ z=G4AGp0>;Qc8jim%ryGgIGs@i&>VlBuqaJkCTE}S*N&$$kG%&T_0G}Z`f>jU6lFZx zN|+Jxi?nt`1XYAt0QK?5Bw7RG@ z(BT3YhNd-R(~W?2g&L@Uex$p&3?QsS$p7I4QQmoP_7;oz4%CdKgxq= z-{ek7Y~_|=L8~=&t$= z-PzT9k}LGG3{EZ{fpU;>Sz&XPL+IR(=lja%784Z^lBGY=D=itHWC$J9DH1=^s>(5b zQeGmHbfjTg znbCfvqBgKpB*d88O(+UN ztoCP-H84?vVJC)ueeihJ>h{1H$t|~xvEY0zS!>gOJq7wLydAd9X2#3ijOwec;L%ys z`as>=`NOBXEwzjcA}-@5H%a27fmVBEh@Zt8=SxXiY^2CEekAzxhTvd#UK?H9j>8;* z0n^cVD;XD}z>^(NeTOPTT(NSm8W%mJOGnkI>WSR`&Y;)RlMpm>T;nJZoJT{fS@PH+ z*hanAyeIrL;{ST=8P~1)uRQiF&JV|)QI%!Q@=#i>;8gEBI`#~t22#a8JobR@E}4ZX zYg!&p9edU#oyQ)$1AD3u!CMYi-QG#Re&LpXYUUijMiCT0jy(GRW$Rqj$uq|&;jvO5 z`axj7k@UywM&9Cd%n3?IoZ*xma$f5TKbN0U(l^R&>tQMb?1L=6XctQ5a28n<3@`f9 z8D}vXjyND4Fp$kToE^tPZk}=Q7OX}a%8wgYbO}&WAVx2Yd7gRj6ZM77OPByECpyl5 zIE&6vOpe@=pf92_cNLK59QHd8Ip4+QC6LL4B-2Vw8KUMZyA0VulQ(A>!`Nh~MYr7b zeD!5Y8G=XnE=z_?Z!#o~WvHutBmeJQ5z9~$R7lDY98~RIGGsbr$mC~II?$vHf%950 zDMQ#g>k=XCoc($eAruI-wj>1ZGygXK&5Vsc-9TJ-J8 zf}I2LCr#^9_RhHM`vp)pVN%JNa$7h0<_9yU<+oPC&$!&b?!|Ey`MA2hZ>oMBhPMQb zxn1<6IsdV71j#)JF?(z0tCU_vx`Y1E7P0a*`S#PNsI9{3Xn{Hd8(rW`?wV7VzIDRWqo6CCSBBR%qO<-#F*H&&53Pm zqRA86_QW|G?M~k4B&EA$}xJ zkJE=UR^iuGQUF_{@IIlq5ffqZ%PN%;{U*NA&5|P}t3USJ65|B5l^dbMCpepDa*9-Y z2P8G)udDsOg@L=%U}g0N0?tcfCz}=qB0$;NXjx~60bZNf3@fr&UpvC&x*a@zghLtoDJ^^Okiq+_oQ(I6%Q=q3+Sx4C^8KW>-8RpDYy?QAISBzd8fRFsDwcM$plzDu^i@nDveIst;+3JQ~kmn^Iuo-#4cFAUV%3y~x|$ ziO0)rI>q2sQXA+pLEB2a+QZ+`ldTM1inS{h$?WEz+yv^lt`RAdFo-Myq%}50t?*lf z9qRoleztUJX|tG9m@=lzZ2u|n`OK4y;_pKP9FIDIZ*p04NL4+N7sC)$fVht7-1l&D zIu}JX&^RgunI7nWc5W{VwqzJz-|lD2+F(=d@?U)ynJ(TZM4I|#?bU0G__J6}+woI! zfRtj&Uu6WS(MdQKXYwND^pfmBmX0BSW!^= zKB3XI2Bmm-gJfXz%wrPxucR@xyO0C<9&Rdlgx_Tx&Kh?;^Doo-4Fqj5`LPFY3}y+s z>$cE6EaI@(1l>19KD*RMVG;7#J1r^_CAA>EdAz3;m(gYVRq-vJUM|h_f;U}WlMNqx zFUkH`GfwTcxVv0gQM|tECk4Ej5;TQ(G6Zq^E&BWpPAbM{V+;9c#XaTO;HK_hFgnr4 z;x~A%8rD^ChN)W3<^;6|0flfEnsR~Mo#hylq`2kQHX5aP^xSQ^UgrbQ4iY6#vXg^vt{{i_nqs< zI|c8L^#ZngbvzMqOW_59gOlh}0p7-M&TgR`w)PU1xt}X-fgH8q;)z3Lx=x{oGUm`$ ziPJZtE`()mmy(gfQ~RqDk~S}xpJvduoUvWlaUacSbs`gk__z2y+HF9ieVpa{m1`lNtf|Hzvq=#q5SUE_?iF^4`R3 zbvKj3lzWJqRR{8|0SX$zNN}R5MgH|kgfHRhd0i8OE<;g7G9nfH35`v} zsj+1E%Nx}58KSabg+08F^X6$x6 ze)Ekhv=9+^y1#~yZwnV<3F{ni1Z7#TUZnKuVwY!~xLjce{8U>~IS;E*@3*XfRn3HVj?5`BZ)B4U;1 z9BklY*KHiG<&rsz)D-B|D--a3`s1seYsQ=Qp5pmv=+)Y>=4=`HFXZ)K&>_%p#%7&uIX*xE3Fa*Lm`eRp4b9;6A+lFG(uYqm3hprr9{R*!kxr^K1A*7JA zdm>3gZS0^AWZzS@X0W_JMR)2w>k=K?mnL~lY9!@zIOM#7K>}L^n~Yllc^VRz4%BG* zP#A+qIJ5}j6bu35T*f7FmysEDXd6jE2EdH$8Yo%jy1Se28>z0GwEzm=Gy=N`3swjb zE+;q)-8?JZRAzkx8D~dHU4!}5ekf_k>v1ocV**eZbN$k^zG`})LBE+I0!AMUcO(_l zduNh}@^CVhX6JxgJbT7Q5$(5^4ZKLwVD@sz@tpa=Zw&767*>~~WD4QOokf&p67d)_ zl7@D{Pxa0h2Z+vl(#~_r+2N0~xeD2EN6K&LrE31Ja@o_u#fZ-1^b`zfn9q{O+Eii2 zQItlCHrQ+{z9we5T-G{)kk;*smuV>*Zsdx;wH09mubr6^oR29A(Er9RdDM?u)5USZ z0zR~cIg6|?=70T^&LFI$hPr~hLu59>QzOWP(g0?H8;jopA?)JJlIF&)UjC7uwK|Al zUa%jZZ?%$qI@C1Im%M&Y)87d=DGvVQtWN#W4&}11Ge#hGFiO>y2S1=Yod6F$04oJY z5S`&i2LlHJzO-gDImT`Db{;BlK0J$^(NJ4@c_oBB&&I?OWu(;LO_Le?l7O8ypsFvV zY9}ZA{8~4eIc`Vx4aOqJxq9uttGA==Fa4f{SVG#_392$mTgr}!w2itV!b2#noDMlB z)(K*H6()2Vd%~qj(o>fTKctPp0C4EXImiQ_+Z28a+W#a@;*JxO=r znp}BzTMXQs!Hk{1L8C4+(m}$#g48LHvo}R47DKP#M91}ifEhP@e=j8EXaY#gx!cYF zA(dt8dHtE~S7DEnvcZ&$puii+0cpc<5I-tPAlkx788T4J;#bY7ZQaH1%%PDI*vT{3 zREJccFvP%NTq}q!pr&T$!u??Nq@K1;$n@!==fq@up?x2ARqiNTszGq&d?>CWlF@6X zw8lN^<%q|Wpi>>{@I~aC2dG|@u|8R{MCmO3p9X*GHmJCax2x+MIr6aD5_1S;+2?MS`Xv_SR)$9 zr+nvxXQ+>FQ)PIGr*+P!c)XT@%AT{IMhqQ@)aaNqb^ZzbzOtH8k75{z4|9 zC=~*EL3KC{YZqm*0W-W#T6Eca>N+S6#TP_(-lz*;#-)Dd4 z@8j`fl)04mGH_#ggA>=2WDb6v<536b@vXaX9i03+mBn=9jbnNKM=29D=}f}tWrqJH z<9ak9^~H^xB;V@<%F1>KYT3e$skk1f!amhn4ZI6tYP0-F1OG2&XqlLHjl5}bZ`x4?p2B$%0ZB32$cdhk#;?v}>8*S5C^C{#3u@QV&!40XrX1yuZL@jFB z379kY(HKHnM{+ojgN0GgHtg?*%5wa@?Sa@M3!^3@@ldR0F)AfLeCA}!hI2aO%%Jno zcFTL{S$=C73bz*+c>{bo__}F{Re=f)jV1zIYxevkX1#~&K2{?P9d$^6L9Qo!L#jmW z^HsuzyzovSZuNi~EO%ZZnab0}>JH5W+4BsO3`C?I*t_3*(z@o2m6dMaR)56aZfb8N z+knA4nyMlGP8HhX{@IIaC7q%1*wE1{mE{HsY*N<|3mM5-h3(;Zu6(xk^KKYi!qQoJ!h3wFipu zWmYo%(slzz4ioX=!h8p}!qk$}C>C%%;#QaLezd)5lA#d23|y2R;&BsmS4@7xen@;C zRxi{4ThHj61MmqK5CFYs#*tm@3~x)1Y9xjT;0gxryCN!{0a-<;H!)l{UO`jQdv~Ab z4BvP_-Y3}X)tR!oB+e0rWSnpZ5iZ-bk@7{sUau`5m2akY@UO3J2M(JJDH7PzyJ2{5 zG$(O?mb7zRp?zSyE0>CdxP4Zt*0G+lnxv3IlfZouh;|ZPS++VC+5?c6zHaoFZQ=qp z4`$(!2FxPR5JJb&(y|}&jWT7WtIT4}if9x65mV43Nbri1xenW7AO;26)#&N`IPOywT`CFZH`P7RgrVe#F(&1-EtRJzfTN zfrm&Ji1y>PYp<82Oeg84)_7tfx+_5EGhExQ&%3a`?-xz0Axc#oxZqh^Dbg)hxV=hj z@0uyZ-bXtvoR8MRZf+p1m~Lo@l!&fL>Oe2Ya)Mc`q(_AMXM8h@kQ3xWMlt*i8stIZ zjk)Du4Y9)Wu$2fK(oJE=eYb4J;5*$V&&(0a*N$#uxOMG}iJiKjORj68&WfyG@oDy- z)=6WI174$g^ZfWYy4k+I_8A0$ZM2q-)UYwfb%MSoR(M{%KCbuY^Iv)lzBtP}k01M2 z?$3L^2)|~&-fHiArVS5QKwq_>{V(3H>#xu4k+0|NufC4F4@J}5pDI8Xwj05}9kXV? zd!o=lLQ4wvADe)$F8&JN=^j|%r(dOKyeZn?mk|R(65Q3>q@(HF*Frsw+L-aV{#5u6 zB3T?m5Et-sD=eUL@7iK;JF9)Sx~Ih|uC!->kE?Q|fADL&-V+`qVsQ@YG>~d?G*$UD z?V|~Yocb`G3Qz0uWY-2^6M-1-x@v^doQBV?PsH6;F0Ub|oi5MH=lQ6u?!dj{R?GVMQ{ z!y5A3!{d|oRJsNkC?$b_H|-m!;ye&qD)8|et|2stT!eoI zVi?!JUz#wRo7V^R3oh8yVv6e|()@s!%k*$n2T7IKon%^qsxr`mFdpws@&pk?BAPu@ zl$?Il8XB?0C_|B<qpry2@>6;{|j28nWESDS+a zSHW<7+*i}U9|d}kNEyFu?d|RxXwRWIk(D;riFO+n4AQ?YBzSx8i67VI8ryAG@9y~K z35>zKS_fSKdcZcWN1h@T=OK`)=|+AVHsaP$3tgl4TlszzcUmALbBgd-vv@{gQ|w!O zin6fNSlBSta)6N5F;Wau5&aI;<>2DxCT2~# z@hQ*+f6-P}s25An4D>DD-kz%vH{<;xh*^4J6*{zJA)2Xn3kBpJb={tCSTQ;>|GEHf(yB z=mmthYJx81^PQ)oL|c+RV&v_m+D~xr6-znAHUWItx_q$vY>&_74`QsziT;yLYrg&0 z!sneUV0mn`v9MIl(z-IC%i?1sgxc(SOQnIwG9J{e4giLV0=lJhOj+rKo*i+&?R`o) z%hz(uVI{pja{rusf-S+`J!0<9UvwkFBYfXnhWMU%qCa@13O;q9iq4nG4eOrNa zng+=?&`%wjIv+gr&Ez*UMH|TacbuI14_-S?0O(PaWoo&wZZ1jeerTbIeZP>1fZ;wE zWDsEzs(_T9SKt!D9zn<<4uR;^juk!*u*R1{h;j5v8^h83gF+Lnrm|v~*u)#?AZS7X z$=tJQcr^4p_!PVuf$~i@`V$Nmi|4?NkQQ_zOFD)TT3XdQB8LWW|I|M}?ftN(3Ll=B zT}W@5Ryu4t0}sc!3d!hAqbUm4NA;TtY~YjEdrX_iQh~C;rx<~c&HCGsiaxq>$voJ6 zVqtTtO^jd`p}Lfm%cUf$y6Lq!Hf!OLcguhyYz`rk&;m~4x6O&YJFrvVvRRM7tPF~q ztkfOwM&!Sx^k7*`G5HG{g!Igm3%8y}GlxfkZk}}EAmcb3fa0H#E|jLs5n4^bVW4h_ z*iPygI2ivp#}{V9ilR<`a#YQ|E`dU-Y4_a>puzf3A_b4)kIoqNhU zw<`vceA;@i`#Ys<93eZGdc1hcZUuUQJ+Y7pophl$iPr|7A1H_|4*NJ(A8>9{$GvtJ z;Ax{-Dx-3428m1fw<{Cegwa4fC{rrtc^XZAn@QNuw2|92MRjGl1$B9G$8x}y~A?l{EcXlok zZ`<7C5tn{)N@#Sa?`K>%vkY4(_%CeWg|0Q zO~{wcL`$7^n-N);GReJ{9`#F%S=1Wxz|LxytUXHT+_rOR&-x`L*9)iFqu<#LhPF-W zrx~+v-fm;-+B<~ozUCsIXN8fcIv<8FkFxcO{V^MBFOin`+Ld9kHhHQ z&m^zA5=%E2rBEGv!wT*rb>LUYO*ra-lpURvlP?r~qxWOhMNO>IFcFmx^TAynQ4k}B z1ivx?v27Be@95yu4+s2vW4$1svqFBJ@09A8nuMA_wJLv@3YmVr}@W5RTLsz>iG=paMgzZ~orf$HbiaYLRbqbgmP zIHXj?HgMu^*{-UQKLZS>8or+PUXtZvmT#_JUW9rQ$#@|CI)Rpq=DSMsoZ?Bynxzc# zJP_5no+Y=CYbgd`BV-+Ewo-X0PS{sti-c}^e}8-=vxIF`-N@xeliZzq8nvsV0AQAn z-rBR2KJMy;{CWVsXXj+=rzqk*k)bm+Wq8oi>MU5A$tf(R-QVz`gPaS+s4+7Km}1>& z7>O6>debzTzCh_kl81d}ANrr&`8%2_wxaw>G6wbFJJ8xC{z=U0FVlJE0>sxfjt`0z zsCK5xEg+!R`(-r_!D`)5JzUoV>Bdp8uqDR3t$Zy_~SEt!4>cx3)fEWC@C) zIMUOsJ5+-V4Gr|m*0^8|YNnJ}zw5KaDCt%l{JL8M3kYlD%T;{&K|Ok3n7G0)i}A3? z_hwlwk*U44>{*qMo0&Ijf#uWyIHc)XexoF_Pp-T96oht4fln0IKNO4bc_c=aP{Px1 zUXKN-Y~F->pPws2%Q;kT-j))#7n)7WMIeR&lF|J_`cA1q!dE(0^d@@tl(YM);4}nR z-$&nk!`nNWj+YxAD0Z&ArJxd)L+bv7LWG{CQ{ythFOG zfsYAurMf#j;hL>X`ZG-lE}8W8&!u3mOUTb%a$c5Nk%h1b_2(ACEFIU#QdjWFUpxwu z%RE^II{kaF{dY_rA3w2oIpve+_=mrhDC)hP;1)0CZP!aOt9AJg#0>DQMd(Wj=Q|L= zy5$7=ug}k~V8n<5g3wl;TtUMnmi}RsF+?(g*2=T!YG^Pj?|-I2hGBecdv2hWCfFAz z*o`5V!#`)Fu#`mSPS3-=-qxmZx*x(WJuljX>l{&w=OQYIKMLa+`U#D0$8s8IK&Q1E7$$8RZtt_un^p$$t%Lrm0n<-1 zeprNqp7CILom>SbXtmEG;9}8 z7u>FKZPrZU_gUn#3Ps3sYdG?LMX+ko1Bg9>=Q!9)a{jF{oIgOwN}>4nUX+A~_;<`F zc~Bdv#)a9xKP5J9W*(&M*`KvY{kdrZ>M*P((y~j^gtP9=rB+|aJF?0s3-8K6gBf>; zwwf^=Caf)U{?alL^U`Gga=CGa*WQpmKv9H(mX{#B-AT!n*jEPC=2enD?wfXDjUeFR z(S%RAQ-Z0{z%*!nxy|g_Lr<3_EvvjU#QZYq%%M9S@IZ0|LoSlbtIt-|Kx+u;?aT;y};yaodLL^RJ(jx(rZgnp6dpVs#w!xGr=mEP-UmYrOa_P+ewjac3?t`#8DV zY6?)Il1d6=_2N)0>+S24jsP888`9PU`W3_{SwlK`oCi3d7-II*<;W)Fkl-(-;ridd z8hJ!mddLC`KKqF=^3hIg367?5v!msXnJ_(ufuQn;z)pZ$QZ%`AAv2!hyR_X)Zh(A_ zBk3?F>}P-)q;#A;y64wV067Mil(l8HH#BFgZ)uRPnJ&ogAr;i1B7Ks5Hkz%3V`~33 zbJ?%g^EohR16sSc0?wyJ@w!~>&+yzix4~fNPtlJMu^g?f)CuVyJ`uY&b#=SUDwvP| z0-X|)4$e=k(kvS>H9XWK%?trbt}z|-xbbb>B13JFP&NzKZ_FIF3h#1pvup-g-^0b% zWdm!XC(NP9F!GDqP;mLp&8P%&7DJ^9CUq4TO7Hub&Mr+Du;Db#MuY_H! zuAsgLS2b3#>@d|>8rRSM7_tmN_f91Y1-}&{Hb(M4 z8R=Chl&Nk$rsCaF=k9HNclz5M3vp6lVCBAhVH#OM_>7iwoS|zZD-zSw-%tJ>p4)i; zS?~~3Ri>>RxbVI=<44I63j*!J>31#*?aZ>efwzx=Yj`pAq+kXiJ(*W!&O1D;(JM%( z_3w6y_@_i*7Zk)v&Q_$+Ms92<64+ERp<}@gt=-M|QERw&_S`CMC$TLtfc7ZY>M`j~ ziy2Gk*uG*bKE98e;2%E6OuobP+w*I=(M912hI*cpF|@rDkzuTmFwjLaChgXyBTR%A zbCez_lq{S5X$3GU^)@uRNGi*Y+0n2I=HHXc^diz>VMt>R`6Yu)KWsiHL9A;e zGUEMSG;-)Ia)H9LCJ9CXpd_^Ozfu@)8Sv&2U!QMSwb!aJ5X?ISfN_cxs4`Pu6dGj? zbBKuGT?&Li4H0-c*901i!gm>EcpUeNPo*XJuQ2J;w()<(1KQf+I;m#8CQ(KaiS$l# zi7rb;;tMxP=+PI&#y?L@>k#IfhVbi#GCpIOCfSmHWSk!nfXsX~+w0nSLiL<6$( zvyaFUp?i$bH%s3moaxnBRNaA~6sO@R%hfHrcLAVrF!i9|LV$3D3H%>9GPOgKB2)|Y zU)2i|%RN2QNkz*Fpsj}iV@P#=M6U=3FH)VZ-?zHbLYsJck&+J!9FxeJZpKvHiE}ff z@3Yjr=L7C(w_4CLduexq4+}Ipv2|_%$TV;BIZfq8y}K*szB@m6Sg;6ZS8!Z@{VnW# zUcp|x^bzgnByhHJQ08XYCq<6*XVeiVk!{ers zQ;eerc27t|532Wh!JpBc?gsLf>@}!BQ@$a3(X_O{e)OpuJbK(b8cKVxKW+*oUWo_4 zsSo=;uK#3}F%Whc#3)#)WVN`~&8lJ}MuLGXh8tYNLpc@7ah_rKtL=$8qM`n4>>91cd?%EMsUy}p*N^Rh7kRu?wW)Q0WdxppK-%MPG_MlznZc>5emH%-I<3Wz z?w4*`lI||uJZ>6_vBe#PjsUEwbdhXG7@SQ#-2*3ju!Y&2#HgY#C0(sVO1=uQV*`om zyjTUx#^|2V>`sy8&(iId1X9**npm?iByE3XSBaOcqr`A@g8pH&2Kh&_CBn^<#iP?R z+hEFa&^P{B%!etrJ=Xg(YqKIB3tt@zmE~0sE%C`o#bbZ zk1E;>BKZ%E8kk@v$nmzY0BE~`xjr!%}6mStGI!(zqm+HBJgVWSwKUKG9$~S*%yyZco=pa<6b`9U8rSz*h1s+JBe4y=hnz`fBc)cn-6EqyVmQ1vRGR2-hVmF zF0b}95ktJNhlm@59xK4Ch$>eY771XT;#Q3u4x%Tk^iB>R2LPeXF`dF=U%%=(C+WKx zYWpG;M^#oJts%VG=6hG#cNgaz$46p#kbFj~5Kc1?@SvwI0426l1@mDm`>Mzg-tACb zH$$@Ile8K{QtVk{l44SzO45#hYE~EDOn;R|S3e=O-GL?%#dhC+uLo^(c@G4Yf8>)$FLc0}+FiI=iqpHZR6=8*; zM&Sa&y1?|~LnnF|i2XMHQ{zTIZWk8fCS3KE22zZRM!BW#%@dVnEXkQC^JeDyJ4E63 zpM%fo>XhPBm)_Drevf5RS4)ol@Ei@Vh+M+5YPZXz(%cr9`ITLR3`S1Pr1fEZE>BYl ziSo+h;k&}iCaWBfhlw$P=woSr3>K)$))a}AYuQYi_jZH;t#ga}mOKz~a5yqhd7ibo zUU8{1I%etMcRh?00sR?ZuH*Vn&DQe6N=OhThehD2?MoXtAycykuL5yCmV<`5z}|!g z<8>g3o4o;-l;0H?*HODFeOA2o+t}JD$V%=(GTF^87;6HgFq2cun*XSCFuRC%caSgg zT$35(Tf!--EVwf)m>%u>0R+si!rp=cIyydDGI6@t@ER#_)8gT~;CH(dAK__!`lT{yzh#D@Z4Ii$p%4_QmeNR}OMwV{9{T1Y^ z*FzC17j63UoA9XNGk)!vsyT5j9ld?DRy>P=lv6yYeV}U0Og+-reD^dHv1owaHK0m@ zqc65KU%uvixUt`ft&q~g)EBv35I^nGaUAy27>=~WEeFhga-=+b=c!w5EW-K2ZSa?Y z<+e@t)j#!B@W(X=fqN5bAp?@|dCU{NuL*-;hS$X5;JM{$#^+xH)%r>D*PXF}ua3#5 zjSO7SyG9l{MEcWX_pnhXEB2BHfo|#}^0oul;qcI*O`V*EPH+IMj}eO~CvH7sPd`*5 z_K)mQLp(bzLW`7egDn4-sTT{=A+uV{n7iyf&KUw45Trfg&GKLweJkh+{0I*ofgY=;j z-E`fn7^|i>69IqJCs>6T)7TqxLblIVl;l?WOR7y}hsK2X)|(g_lRoT-ws`i{vzZpe z|1nCC-HHV&UF|iPW`4+nB@)b=)ua(FHIpwN-Xx~skEuvO*t#)~u?)ifCq<239UWh0 zlPIBUhaGS~ovo>YVkR#27R2vSQzlVf^NSufgbim~phYMLlVDY%6D~7piiRf5FtbFG zKCnOtCs@WN1k|>7h0O)qy8K{?VTK0PNtmmN1WpSSpRdv(mAn&PGD0A4-T!&~_090m zV?dES;xc1B6+PPbeX_~Uo>o6)r|Zez1lmB_ShWp2%bC`9pAT2cuUHTmn7*VIcBfVA zq@K?cEgyRxBJvd|T08@fUTQuqu|4@h74)6xaJ%Te0VBwaB5%gSlQSsVwHO@K{xlh4 zk$pFCA`P9`%Ts?NrG*kE3#y$y-U=LlIFH!=>#47>b2J~~Y1+ga@oJ?kc{q(7>nWmccJHx>6wKZ44?FjXXsn&vSc&cx`u z$;Q1~^O7YE(1!RS?mB)4MwJ7?FySYm`*c+0b+Gwv+Fq69_;0_EX;;yr0lK~}w|-tu z8$}BV=s0uJLetHXJ+Bzy$cBBa z5j{ib0N@I8C~u)OdscxY{&ss&%JlIvd4Vv~ep5}FLb>wwNXMZ+$;G?K@ZvpcggyjL zWI(lw{U(`ri~<7#vK1R~p94M5l&uWO$`F`$OwL$XUx&WI<*-Dmeg4bk;+szwI;y;D z>&Oh+>^<%f?&tNy?qz=8H%S49VX`lK5m={7^CA(&y=kQ-)5k#TUTyQ?kYu-D1oPWN z0ZM84*?qDinqrDDVmeE^U+d*ViHB-`XzJm?-|Q~dm`xH}Apf{|Fhho5)(h&NDo3lMj#xL?9Loa7w7SUH zj}rNDeQ6}>X4{z1_zw~M>#=`@`!}*q9N%YFBIH5$pG6UDwX2GP8KHti}OPzUF`Z$n1*BQOg5e0+A%WXOi-vi@+ss#*OW% ztDB@^T}(|B$IhK7wce*iCT+74w4A$m+NKSMQ?@kPrn44;FL;mlC1F1N)k6q6rsoLP z6b3yzsDsh?W|9EcUd;2l(^QwA50VOW8^>NfAICCbkOFvjc|pN+v^czFuwKAj(c{fB z5epn|zC(~gJR%YBYtkv7E6+PN_nVs^&Pl9Gev+?b>nxY*)3sSJVpk3tcb@9(h)FQy zN1Btckr5SRRv0#5*e?uWZHHZ_!l9!x>U;>vcHqM_9k)D)N-RB* zy3NiqXUEGA{%z|w*tZK_A%Avs9%Xhc|BbN;4X-1NDhwt~`GOg{E=m>&iSA)2@3Jrk zB)fEAn($#HfywT%*!rfNS{x4Jj@WQVkEbra|I1-+d98bA32YgUp{>4`w`Lt&wl<+=Z|BJ*#7E>JKK@>YqjBy+XrEcamyL z9K^2Q4@>L^*KEzXpdvvAOSSk@JK4}|g_q+>rIN<-rLrvxOEr3r>o@NNp_S=|8P+vv1S=X?D{BHaozvWWPOtEaokaeWm)~s}qSM{0>pzL>ha>qp6CzNsuS(5E zKZ2igC_CliQA$ewya!(i$okwN3HXCzxxW$t*9*V4T>(!h3v|Fac)-$A8z0 z@`La{)RBhL{&_^XgQsh!ghuoidNDUK?)0R{{V5=D$95#}Tm{4B58Z;gl=M!;l@QL^ zj_R{AOL(#oHtsDfZq;@Be(PAY_c;}-?}B|t6BIjgda0qlru=hpR%9fajolrz_@gO6 zi0WOyv9&gyaWdQkF$n&*pTdkTkCEoa_A{AVgajm(!KMSOfUE`zE91!+sy}%ym*x%l z7PZ;3p3v3A330n|nbRMM9b=Dc6|kl}t-TJzKqTOv%-zBE`}MDw05#h}{W$oT+IiT> z=})+uT|T&ml`^nF+;&cISSKn_1hy7r`-^w!JU&6%DDV!y`wqr#u&e1;Zo(&knI6}1|25krNCNQn8eEnJ_=%Ow2Yo8a^1B(HZqjzq=|+i2pjtEx(`Ac zd=V7&ql8X|ymOZtQ=5AE=}4!Utpm5iaYJj%UHSB>Gp3r*X$36 z0A#vJc#(6k&2R{Pmx#cW8U|C*&WT~DreJO+76;-JbNQDgoXI*oWpj`3P35@p#io;4 z&b`abC8?LQ%K2)W(&tPJ*%He0$!M7H@Z3(5ACn-|yJ zt^G>{U@cHdXd$QQT%j-Ft~NmZMgC>=t^6V`d(-IO*=})2P5OGu$v45dN8^ySSy^F7 zP5T_Z!uJ=Wfl(l&7{@@d`&5$6!+z(gPY3*4b^G~Zw3!j30d~GgVgqX_}*+5w7tJ-Og*theoAsb{s>BJ5q#G&opl32r=e<9Jzq<>f0cTb&TNMv;}S zh=fyAdbA5(`;Oest7cIQgmW^Z#FIt#9>OpolS zcTMDJ=~e@1s;iWur*K6T3cWZ&Im6$z;xKgvO3)plZ!q4vPY zKKJ{N{OjT>_tLdLrPACFq2&NP_?3x)RTGK+N0Y$}<7~*J$Y8|z1SisKTZ#T%70xpn z^qMq05ru2-_-&CeME1qEWQNk0=t=xZ0!h%|t=Q+B>v}LI{7NO-*daP>Ti~z{2l-%R za3Nrcaki2#M>~>3GVxdky8UsKBKF@KYGmw<5-jHY?Kq%9xf@evARJW%Vj?GVHo}Dr z>{}HrIEOi!!dW9PYB2t!+ZjCC<|SppMBYCnQqFfWx>={kME*GLzxud$<^JRqO$TL4 z3-q+C7R1tY$1Qa(h5O|7a;4w_IHV4+5pcMwmiTcEZgf7hr;Mk4e=BqUwlbUwnqDIG z9Qk3zqp*ux&)d>nzNg0k#?%=I?w7!JA!aZYl;GI2`)8|(&`4#%KYFM%X7pv?0gf6-;FDH1d`@ev(QZ^IK!y_G^JzH6Y%PKfKO2 z9qQ6#C(Kp)X9C4(KeK*%sp5`7&ohO3TaMS-l9h<@p+s34L$W4ioByw$Y~{Wn$N+ej zV&7nj2*CutA(ncsaT$^kBUmE)SYBrWCF;A3Rvj^-g?e%WMg-sD15)SpD?rqN8I>~#f7BNkw|ci#oG<>lsX8wo2T0^Yd`RF-u0v93r<@7EQvdc z*iW*7KM=S1hyHTO5Ox>egOQ%MJrf8@6HvRPLIK@#-=`Z9Eyoyfn*R;Ivg=hjRkdly zNY%&lK{IIDv>({$PA0`WAp7Xw2zJSztHoWoEkJ$P9%Nl3T7uJv7TgCT zH^`bHSYyUIpYl8TooMoKF+zw8xaFXlrmtOGQx??#k0h>ZjpzmaAely&iK ze5o`WrQ+l^$!1M>;C(itXSHR5uUI_(iY{CPWof`WO!$oMz!gDkn+*$GWHukZ6x#Lz z`ld;dpNd@zD@I?TTFKf?T{8|O2^BYX2je0glK}6RO<54u`$DyU#b}~C{2jVZFMWV_ znhNNDXL|cJhILX8iZatX7UIoBCftRefA;$$!p-CnZ|=i{MdGp@6wN{c$26vbJ@p|a z+JB&s61X7qsy~puP)$Dcxd|$3Q-yOpjJ9HOVIt18UTvn}7j@-qcM6FS-K*$mNUF#b=mm#jWpsYqKzTQYRe$^) zQb_?cxWY68)r$D)bQSDMJPIvUn$DrcV*!vRf6Sw-!y&j7zm!|iz-BLi^8~j}(ON+A zfZ`lUAC);3F{;feu&v%&6g4DAew8|njs3xm%ez7y6tNQbEmncPPrxYHcz7YnWioeK zFvP^Hb1>zV1lY!v7LV|ije|855*+>dugI9aNQD%8MV7G355{CYu{ zANM~#NrkGWmvoYy!Sf6r2q~qmZ08=2Fa(Z_Fs&zV!SVz(!eI$uB5MZ(L^eHMGX=w6 zR_<%pK#2Q&(Sml}S)U0D#XV9fY?sb;L{=~%@HXx{>XXn3a-?9tv=8)*x`URiO#=Q> zRXZO>u4c~1C(D90Flz{ZV~a*uCP)c7#syE&zAq>@S(a+dxCPEKBcYl8Q|XSya+vCteU0^*qbV#}D0W=BZ=9SL&$75fF52WyRyRQ^H? z#mdag**Ni%Pejea%EH3I%*M{GLyJI4O3I|*XeMs#W==}O%FN2j{QqXtlCZ&j7&&=Z zS=dRL|K}ogAVv7UH=L}joE-nbSXf!p_;A1}K&;F>-2Z!)n}>t#e`BodTs;39<7Q)H z`7g%tp9r`)Isd!%U#$Pu^8A0H^05B*Av|m>{|SbNi-RQ%2Nzrpz{$hS%85WpDWN2Z G@P7cI&lREo diff --git a/Manuscript/CBD.tex b/Manuscript/CBD.tex index 47ffea9..6c7f78e 100644 --- a/Manuscript/CBD.tex +++ b/Manuscript/CBD.tex @@ -190,6 +190,24 @@ \newcommand{\spc}{\text{sc}} \newcommand{\spf}{\text{sf}} +%geometries +\newcommand{\Dtwo}{$D_{2h}$ } +\newcommand{\Dfour}{$D_{4h}$ } + +\sisetup{range-phrase=--} +\sisetup{range-units=single} + +%states +\newcommand{\Ag}{${}^1A_g$ } +\newcommand{\Aoneg}{$2{}^1A_{1g}$ } +\newcommand{\Btwog}{$1{}^1B_{2g}$ } +\newcommand{\Atwog}{$1{}^3A_{2g}$ } +\newcommand{\tBoneg}{$1{}^3B_{1g}$ } +\newcommand{\sBoneg}{${}^1B_{1g}$ } + + + + \begin{document} % addresses @@ -212,7 +230,7 @@ \affiliation{\LCPQ} \begin{abstract} -The cyclobutadiene molecule represents a playground for ground state and excited states methods. Indeed, due to the high symmetry of the molecule, especially at the square geometry ($D_{4h}$) but also at the rectangular structure ($D_{2h}$), the ground state and the excited states of cyclobutadiene exhibit multiconfigurational character where single reference methods such as adiabatic time-dependent density functional theory (TD-DFT) or equation-of-motion coupled cluster (EOM-CC) show difficulty to describe them. In this work we provide an extensive study of the autoisomerization barrier, where the rectangular ($D_{2h}$) and the square geometry ($D_{4h}$) are needed, and of the vertical excitations energies of cyclobutadiene using a large range of methods and basis sets. In order to tackle the problem of multiconfigurational character presents in the autoisomerization barrier and in the vertical excitation energies selected configuration interaction and multireference (CASSCF, CASPT2, and NEVPT2) calculations are performed. Moreover coupled cluster calculations such as CCSD, CC3, CCSDT, CC4 and CCSDTQ are added to the set of methods. To complete the study we provide spin-flip results, which are known to give correct description of multiconfigurational character states, in the TD-DFT framework where numerous exchange-correlation functionals are considered, we also add algebraic diagrammatic construction (ADC) calculations in the spin-flip formalism where we use the ADC(2)-s, ADC(2)-x and ADC(3) schemes. A theoretical best estimate is defined for the autoisomerization barrier and for each vertical energies. +The cyclobutadiene molecule represents a playground for ground state and excited states methods. Indeed, due to the high symmetry of the molecule, especially at the square geometry (\Dfour) but also at the rectangular structure (\Dtwo), the ground state and the excited states of cyclobutadiene exhibit multiconfigurational character where single reference methods such as adiabatic time-dependent density functional theory (TD-DFT) or equation-of-motion coupled cluster (EOM-CC) show difficulty to describe them. In this work we provide an extensive study of the autoisomerization barrier, where the rectangular (\Dtwo) and the square geometry (\Dfour) are needed, and of the vertical excitations energies of cyclobutadiene using a large range of methods and basis sets. In order to tackle the problem of multiconfigurational character presents in the autoisomerization barrier and in the vertical excitation energies selected configuration interaction and multireference (CASSCF, CASPT2, and NEVPT2) calculations are performed. Moreover coupled cluster calculations such as CCSD, CC3, CCSDT, CC4 and CCSDTQ are added to the set of methods. To complete the study we provide spin-flip results, which are known to give correct description of multiconfigurational character states, in the TD-DFT framework where numerous exchange-correlation functionals are considered, we also add algebraic diagrammatic construction (ADC) calculations in the spin-flip formalism where we use the ADC(2)-s, ADC(2)-x and ADC(3) schemes. A theoretical best estimate is defined for the autoisomerization barrier and for each vertical energies. \end{abstract} \maketitle @@ -222,22 +240,22 @@ The cyclobutadiene molecule represents a playground for ground state and excited \label{sec:intro} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Despite the fact that excited states are involved in ubiquitous processes such as photochemistry, catalysis or in solar cell technology, none of the many methods existing is the reference in providing accurate excitation energies. Indeed, each method has its own flaws and there are so many chemical scenario that can occur, so it is still one of the biggest challenge in theoretical chemistry. Speaking of difficult task, cyclobutadiene (CBD) molecule has been a real challenge for experimental and theoretical chemists for many decades \cite{bally_1980}. Due to his antiaromaticity \cite{minkin_1994} and his large angular strain \cite{baeyer_1885} the CBD molecule presents a high reactivity which made the synthesis of this molecule a particularly difficult exercise. H\"uckel molecular orbital theory gives a triplet state with square ($D_{4h}$) geometry for the ground state of the CBD, with the two singly occupied frontier orbitals that are degenerated by symmetry. This degeneracy is lifted by the Jahn-Teller effect, meaning by distortion of the molecule (lowering symmetry), and gives a singlet state with rectangular ($D_{2h}$) geometry for the ground state. -Indeed, synthetic work from Pettis and co-workers \cite{reeves_1969} gives a rectangular geometry to the singlet ground state of CBD and then was confirmed by experimental works \cite{irngartinger_1983,ermer_1983,kreile_1986}. +Despite the fact that excited states are involved in ubiquitous processes such as photochemistry, catalysis or in solar cell technology, none of the many methods existing is the reference in providing accurate excitation energies. Indeed, each method has its own flaws and there are so many chemical scenario that can occur, so it is still one of the biggest challenge in theoretical chemistry. Speaking of difficult task, cyclobutadiene (CBD) molecule has been a real challenge for experimental and theoretical chemists for many decades. \cite{bally_1980} Due to his antiaromaticity \cite{minkin_1994} and his large angular strain \cite{baeyer_1885} the CBD molecule presents a high reactivity which made the synthesis of this molecule a particularly difficult exercise. H\"uckel molecular orbital theory gives a triplet state with square (\Dfour) geometry for the ground state of the CBD, with the two singly occupied frontier orbitals that are degenerated by symmetry. This degeneracy is lifted by the Jahn-Teller effect, meaning by distortion of the molecule (lowering symmetry), and gives a singlet state with rectangular (\Dtwo) geometry for the ground state. +Indeed, synthetic work from Pettis and co-workers \cite{reeves_1969} gives a rectangular geometry to the singlet ground state of CBD and then was confirmed by experimental works. \cite{irngartinger_1983,ermer_1983,kreile_1986} -At the ground state structrure ($D_{2h}$), the ${}^1A_g$ state has a weak multi-configurational character because of the well separated frontier orbitals and can be described by single-reference methods. But at the square ($D_{4h}$) geometry, the singlet state ${}^1B_{1g}$ has two singly occupied frontier orbitals that are degenerated so has a two-configurational character and single-reference methods are unreliable to describe it. The singlet ($D_{4h}$) is a transition state in the automerization reaction between the two rectangular structures (see Fig.\ref{fig:CBD}). The autoisomerization barrier (AB) for the CBD molecule is defined as the energy difference between the singlet ground state of the square ($D_{4h}$) structure and the singlet ground state of the rectangular ($D_{2h}$) geometry. The energy of this barrier was predicted, experimentally, in the range of 1.6-10 kcal.mol$^{-1}$ \cite{whitman_1982} and multi-reference calculations gave an energy barrier in the range of 6-7 kcal.mol$^{-1}$ \cite{eckert-maksic_2006}. All the specificities of the CBD molecule make it a real playground for excited-states methods. +At the ground state structrure (\Dtwo), the \Ag state has a weak multi-configurational character because of the well separated frontier orbitals and can be described by single-reference methods. But at the square (\Dfour) geometry, the singlet state \sBoneg has two singly occupied frontier orbitals that are degenerated so has a two-configurational character and single-reference methods are unreliable to describe it. The singlet (\Dfour) is a transition state in the automerization reaction between the two rectangular structures (see Fig.\ref{fig:CBD}). The autoisomerization barrier (AB) for the CBD molecule is defined as the energy difference between the singlet ground state of the square (\Dfour) structure and the singlet ground state of the rectangular (\Dtwo) geometry. The energy of this barrier was predicted, experimentally, in the range of 1.6-10 \kcalmol \cite{whitman_1982} and multi-reference calculations gave an energy barrier in the range of 6-7 \kcalmol. \cite{eckert-maksic_2006}All the specificities of the CBD molecule make it a real playground for excited-states methods. -Excited states of the CBD molecule in both geometries are represented in Fig.\ref{fig:CBD}. Are represented ${}^1A_g$ and $1{}^3B_{1g}$ states for the rectangular geometry and ${}^1B_{1g}$and $1{}^3A_{2g}$ for the square one. Due to energy scaling doubly excited state $1{}^1B_{1g}$ and $2{}^1A_{1g}$ for the $D_{2h}$ and $D_{4h}$ structures, respectively, are not drawn. Doubly excited states are known to be challenging to represent for adiabatic time-dependent density functional theory \cite{casida_1995} (TD-DFT) and even for state-of-the-art methods like the approximate third-order coupled-cluster (CC3) \cite{christiansen_1995,koch_1997} or equation-of-motion coupled-cluster with singles, doubles and triples (EOM-CCSDT) \cite{kucharski_1991,kallay_2004,hirata_2000,hirata_2004}. +Excited states of the CBD molecule in both geometries are represented in Fig.\ref{fig:CBD}. Are represented \Ag and \tBoneg ~states for the rectangular geometry and \sBoneg and \Atwog for the square one. Due to energy scaling doubly excited state $1$\sBoneg and \Aoneg for the \Dtwo and \Dfour structures, respectively, are not drawn. Doubly excited states are known to be challenging to represent for adiabatic time-dependent density functional theory \cite{casida_1995} (TD-DFT) and even for state-of-the-art methods like the approximate third-order coupled-cluster (CC3) \cite{christiansen_1995,koch_1997} or equation-of-motion coupled-cluster with singles, doubles and triples (EOM-CCSDT).\cite{kucharski_1991,kallay_2004,hirata_2000,hirata_2004} -In order to tackle the problems of multi-configurational character and double excitations several ways are explored. The most evident way that one can think about to describe multiconfigurational and double excitations are multiconfigurational methods. Among these methods, one can find complete active space self-consistent field (CASSCF) \cite{roos_1996}, the second perturbation-corrected variant (CASPT2) \cite{andersson_1990} and the second-order $n$-electron valence state perturbation theory (NEVPT2) \cite{angeli_2001,angeli_2001a,angeli_2002}. The exponential scaling of these methods with the size of the active space is the limitation to the application of these ones to big molecules. +In order to tackle the problems of multi-configurational character and double excitations several ways are explored. The most evident way that one can think about to describe multiconfigurational and double excitations are multiconfigurational methods. Among these methods, one can find complete active space self-consistent field (CASSCF) \cite{roos_1996}, the second perturbation-corrected variant (CASPT2) \cite{andersson_1990} and the second-order $n$-electron valence state perturbation theory (NEVPT2). \cite{angeli_2001,angeli_2001a,angeli_2002}The exponential scaling of these methods with the size of the active space is the limitation to the application of these ones to big molecules. Another way to deal with double excitations is to use high level truncation of the equation-of-motion (EOM) formalism of coupled-cluster (CC) theory. However, to provide a correct description of doubly excited states one have to take into account contributions from the triple excitations in the CC expansion. Again, due to the scaling of CC methods with the number of basis functions the applicability of these methods is limited to small molecules. An alternative to multiconfigurational and CC methods is the use of selected CI (SCI) methods for the computation of transition energies for singly and doubly excited states that are known to reach near full CI energies for small molecules. These methods allow to avoid an exponential increase of the size of the CI expansion by retaining the most energetically relevant determinants only, using a second-order energetic criterion to select perturbatively determinants in the FCI space. -Finally, to describe doubly excited states, one can think of spin-flip formalism established by Krylov in 2001 \cite{casanova_2020}. To briefly introduce the spin-flip idea we can present it like: instead of taking the singlet ground state as reference, the reference configuration is taken as the lowest triplet state. So one can access the singlet ground state and the singlet doubly-excited state via a spin-flip deexcitation and excitation (respectively), the difference of these two excitation energies providing an estimate of the double excitation. Obviously spin-flip methods have their own flaws, especially the spin contamination \cite{casanova_2020} (i.e., an artificial mixing of electronic states of different spin multiplicities) due to spin incompleteness of the spin-flip expansion and by spin contamination of the reference configuration. One can address part of this problem by expansion of the excitation order but with an increase of the computational cost or by complementing the spin-incomplete configuration set with the missing configurations. +Finally, to describe doubly excited states, one can think of spin-flip formalism established by Krylov in 2001.\cite{casanova_2020} To briefly introduce the spin-flip idea we can present it like: instead of taking the singlet ground state as reference, the reference configuration is taken as the lowest triplet state. So one can access the singlet ground state and the singlet doubly-excited state via a spin-flip deexcitation and excitation (respectively), the difference of these two excitation energies providing an estimate of the double excitation. Obviously spin-flip methods have their own flaws, especially the spin contamination \cite{casanova_2020} (i.e., an artificial mixing of electronic states of different spin multiplicities) due to spin incompleteness of the spin-flip expansion and by spin contamination of the reference configuration. One can address part of this problem by expansion of the excitation order but with an increase of the computational cost or by complementing the spin-incomplete configuration set with the missing configurations. -In the present work we investigate ${}^1A_g$, $1{}^3B_{1g}$, $1{}^1B_{1g}$, $2{}^1A_{g}$ and ${}^1B_{1g}$, $1{}^3A_{2g}$, $2{}^1A_{1g}$,$1{}^1B_{2g}$ excited states for the $D_{2h}$ and $D_{4h}$ geometries, respectively. Computational details are reported in Section \ref{sec:compmet} for SCI (Subsection \ref{sec:SCI}), EOM-CC (Subsection \ref{sec:CC}), multiconfigurational (Subsection \ref{sec:Multi}) and spin-flip (Subsection \ref{sec:sf}) methods. Section \ref{sec:res} is devoted to the discussion of our results, first we consider the ground state property studied which is the AB (Subsection \ref{sec:auto}) and then we study the excited states (Subsection \ref{sec:states}) of the CBD molecule for both geometries. +In the present work we investigate \Ag, \tBoneg, $1{}^1B_{1g}$, $2{}^1A_{g}$ and \sBoneg, \Atwog, \Aoneg,\Btwog excited states for the \Dtwo and \Dfour geometries, respectively. Computational details are reported in Section \ref{sec:compmet} for SCI (Subsection \ref{sec:SCI}), EOM-CC (Subsection \ref{sec:CC}), multiconfigurational (Subsection \ref{sec:Multi}) and spin-flip (Subsection \ref{sec:sf}) methods. Section \ref{sec:res} is devoted to the discussion of our results, first we consider the ground state property studied which is the AB (Subsection \ref{sec:auto}) and then we study the excited states (Subsection \ref{sec:states}) of the CBD molecule for both geometries. \begin{figure} \includegraphics[width=0.6\linewidth]{figure2.png} @@ -248,7 +266,7 @@ In the present work we investigate ${}^1A_g$, $1{}^3B_{1g}$, $1{}^1B_{1g}$, $2{} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Computational details} \label{sec:compmet} -%The system under investigation in this work is the cyclobutadiene (CBD) molecule, rectangular ($D_{2h}$) and square ($D_{4h}$) geometries are considered. The ($D_{2h}$) geometry is obtained at the CC3 level without frozen core using the aug-cc-pVTZ and the ($D_{4h}$) geometry is obtained at the RO-CCSD(T) level using aug-cc-pVTZ again without frozen core. All the calculations are performed using four basis set, the 6-31+G(d) basis and the aug-cc-pVXZ with X$=$D, T, Q. In the following we will use the notation AVXZ for the aug-cc-pVXZ basis, again with X$=$D, T, Q. The $\%T_1$ metric that gives the percentage of single excitation calculated at the CC3 level in \textcolor{red}{DALTON} allows to characterize the various states.Throughout all this work, spin-flip and spin-conserved calculations are performed with a UHF reference. +%The system under investigation in this work is the cyclobutadiene (CBD) molecule, rectangular (\Dtwo) and square (\Dfour) geometries are considered. The (\Dtwo) geometry is obtained at the CC3 level without frozen core using the aug-cc-pVTZ and the (\Dfour) geometry is obtained at the RO-CCSD(T) level using aug-cc-pVTZ again without frozen core. All the calculations are performed using four basis set, the 6-31+G(d) basis and the aug-cc-pVXZ with X$=$D, T, Q. In the following we will use the notation AVXZ for the aug-cc-pVXZ basis, again with X$=$D, T, Q. The $\%T_1$ metric that gives the percentage of single excitation calculated at the CC3 level in \textcolor{red}{DALTON} allows to characterize the various states.Throughout all this work, spin-flip and spin-conserved calculations are performed with a UHF reference. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -260,45 +278,45 @@ States energies and excitations energies calculations in the SCI framework are p %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Coupled-Cluster calculations} \label{sec:CC} -Different flavours of coupled-cluster (CC) calculations are performed using different codes. Indeed, CC theory provides a hierarchy of methods that provide increasingly accurate energies via the increase of the maximum excitation degree of the cluster operator. Without any truncation of the cluster operator one has the full CC (FCC) that is equivalent to the full configuration interaction (FCI) giving the exact energy and wave function of the system for a fixed atomic basis set. However, due to the computational exponential scaling with system size we have to use truncated CC methods. The CC with singles and doubles (CCSD), CC with singles, doubles and triples (CCSDT) calculations are achieved with \textcolor{red}{CFOUR}. The calculations in the context of CC response theory or ``approximate'' series (CC3,CC4) are performed with \textcolor{red}{DALTON} \cite{aidas_2014}. The CC with singles, doubles, triples and quadruples (CCSDTQ) are done with the \textcolor{red}{CFOUR} code. The CC2 \cite{christiansen_1995a,hattig_2000}, CC3 \cite{christiansen_1995b,koch_1995} and CC4 \cite{kallay_2005,matthews_2020} methods can be seen as cheaper approximations of CCSD \cite{purvis_1982}, CCSDT \cite{noga_1987} and CCSDTQ \cite{kucharski_1991a} by skipping the most expensive terms and avoiding the storage of higher-excitations amplitudes. +Different flavours of coupled-cluster (CC) calculations are performed using different codes. Indeed, CC theory provides a hierarchy of methods that provide increasingly accurate energies via the increase of the maximum excitation degree of the cluster operator. Without any truncation of the cluster operator one has the full CC (FCC) that is equivalent to the full configuration interaction (FCI) giving the exact energy and wave function of the system for a fixed atomic basis set. However, due to the computational exponential scaling with system size we have to use truncated CC methods. The CC with singles and doubles (CCSD), CC with singles, doubles and triples (CCSDT) calculations are achieved with \textcolor{red}{CFOUR}. The calculations in the context of CC response theory or ``approximate'' series (CC3,CC4) are performed with \textcolor{red}{DALTON}.\cite{aidas_2014} The CC with singles, doubles, triples and quadruples (CCSDTQ) are done with the \textcolor{red}{CFOUR} code. The CC2, \cite{christiansen_1995a,hattig_2000} CC3 \cite{christiansen_1995b,koch_1995} and CC4 \cite{kallay_2005,matthews_2020} methods can be seen as cheaper approximations of CCSD,\cite{purvis_1982} CCSDT \cite{noga_1987} and CCSDTQ \cite{kucharski_1991a} by skipping the most expensive terms and avoiding the storage of higher-excitations amplitudes. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Multiconfigurational calculations} \label{sec:Multi} -State-averaged complete-active-space self-consistent field (SA-CASSCF) calculations are performed with \textcolor{red}{MOLPRO} \cite{werner_2012}. On top of those, NEVPT2 calculations, both partially contracted (PC) and strongly contracted (SC) scheme are considered. The PC-NEVPT2 is theoretically more accurate to the strongly contracted version due to the larger number of perturbers and greater flexibility. CASPT2 is performed and extended multistate (XMS) CASPT2 for strong mixing between states with same spin and spatial symmetries is also performed. +State-averaged complete-active-space self-consistent field (SA-CASSCF) calculations are performed with \textcolor{red}{MOLPRO}.\cite{werner_2012} On top of those, NEVPT2 calculations, both partially contracted (PC) and strongly contracted (SC) scheme are considered. The PC-NEVPT2 is theoretically more accurate to the strongly contracted version due to the larger number of perturbers and greater flexibility. CASPT2 is performed and extended multistate (XMS) CASPT2 for strong mixing between states with same spin and spatial symmetries is also performed. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Spin-flip calculations} \label{sec:sf} -In both structures the CBD has a singlet ground state, for the spin-flip calculations we consider the lowest triplet state as reference. Spin-flip techniques are broadly accessible and here, among them, we explore algebraic-diagrammatic construction \cite{schirmer_1982} (ADC) using standard ADC(2)-s \cite{trofimov_1997,dreuw_2015} and extended ADC(2)-x \cite{dreuw_2015} schemes as well as the ADC(3) \cite{dreuw_2015,trofimov_2002,harbach_2014} scheme. We also use spin-flip within the TD-DFT \cite{casida_1995} framework. The standard and extended spin-flip ADC(2) (SF-ADC(2)-s and SF-ADC(2)-x respectively) and SF-ADC(3) are performed using Q-CHEM 5.2.1 \cite{shao_2015}. Spin-flip TD-DFT calculations are also performed using Q-CHEM 5.2.1. The B3LYP \cite{becke_1988b,lee_1988a,becke_1993b}, PBE0 \cite{adamo_1999a,ernzerhof_1999} and BH\&HLYP hybrid GGA functionals are considered, they contain 20\%, 25\%, 50\% of exact exchange and are labeled, respectively, as SF-BLYP, SF-B3LYP, SF-PBE0, SF-BH\&HLYP. We also have done spin-flip TD-DFT calculations using range-separated hybrid (RSH) functionals as: CAM-B3LYP \cite{yanai_2004a}, LC-$\omega$PBE08 \cite{weintraub_2009a} and $\omega$B97X-V \cite{mardirossian_2014}. The main difference here between these RSH functionals is the amount of exact-exchange at long-range: 75$\%$ for CAM-B3LYP and 100$\%$ for LC-$\omega$PBE08 and $\omega$B97X-V. To complete the use of spin-flip TD-DFT we also considered the hybrid meta-GGA functional M06-2X \cite{zhao_2008} and the RSH meta-GGA functional M11 \cite{peverati_2011}. Note that all SF-TD-DFT calculations are done within the TDA approximation. +In both structures the CBD has a singlet ground state, for the spin-flip calculations we consider the lowest triplet state as reference. Spin-flip techniques are broadly accessible and here, among them, we explore algebraic-diagrammatic construction \cite{schirmer_1982} (ADC) using standard ADC(2)-s \cite{trofimov_1997,dreuw_2015} and extended ADC(2)-x \cite{dreuw_2015} schemes as well as the ADC(3) \cite{dreuw_2015,trofimov_2002,harbach_2014} scheme. We also use spin-flip within the TD-DFT \cite{casida_1995} framework. The standard and extended spin-flip ADC(2) (SF-ADC(2)-s and SF-ADC(2)-x respectively) and SF-ADC(3) are performed using Q-CHEM 5.2.1. \cite{shao_2015} Spin-flip TD-DFT calculations are also performed using Q-CHEM 5.2.1. The B3LYP,\cite{becke_1988b,lee_1988a,becke_1993b} PBE0 \cite{adamo_1999a,ernzerhof_1999} and BH\&HLYP hybrid GGA functionals are considered, they contain 20\%, 25\%, 50\% of exact exchange and are labeled, respectively, as SF-BLYP, SF-B3LYP, SF-PBE0, SF-BH\&HLYP. We also have done spin-flip TD-DFT calculations using range-separated hybrid (RSH) functionals as: CAM-B3LYP,\cite{yanai_2004a} LC-$\omega$PBE08 \cite{weintraub_2009a} and $\omega$B97X-V. \cite{mardirossian_2014}The main difference here between these RSH functionals is the amount of exact-exchange at long-range: 75$\%$ for CAM-B3LYP and 100$\%$ for LC-$\omega$PBE08 and $\omega$B97X-V. To complete the use of spin-flip TD-DFT we also considered the hybrid meta-GGA functional M06-2X \cite{zhao_2008} and the RSH meta-GGA functional M11.\cite{peverati_2011} Note that all SF-TD-DFT calculations are done within the TDA approximation. %EOM-SF-CCSD and EOM-SF-CC(2,3) are also performed with Q-CHEM 5.2.1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Theoretical best estimates} -All the calculations are performed using four basis set, the 6-31+G(d) basis and the aug-cc-pVXZ with X $=$ D, T, Q \cite{dunning_1989}. In the following we will use the notation AVXZ for the aug-cc-pVXZ basis, again with X $=$ D, T, Q. For each studied quantity, i.e., the autoisomerisation barrier and the vertical excitations, we provide a theoretical best estimate (TBE). These TBEs are provided using extrapolated CCSDTQ/AVTZ values when possible and using NEVPT2(12,12) otherwise. The extrapolation of the CCSDTQ/AVTZ values is done using two schemes. The first one uses CC4 values for the extrapolation and proceed as follows +All the calculations are performed using four basis set, the 6-31+G(d) basis and the aug-cc-pVXZ with X $=$ D, T, Q.\cite{dunning_1989} For each studied quantity, i.e., the autoisomerisation barrier and the vertical excitations, we provide a theoretical best estimate (TBE). These TBEs are provided using extrapolated CCSDTQ/aug-cc-pVTZ values when possible and using NEVPT2(12,12) otherwise. The extrapolation of the CCSDTQ/aug-cc-pVTZ values is done using two schemes. The first one uses CC4 values for the extrapolation and proceed as follows \begin{equation} -\label{eq:AVTZ} -\Delta E^{\text{CCSDTQ}}_{\text{AVTZ}} = \Delta E^{\text{CCSDTQ}}_{\text{AVDZ}} + \left[ \Delta E^{\text{CC4}}_{\text{AVTZ}} - \Delta E^{\text{CC4}}_{\text{AVDZ}} \right] +\label{eq:aug-cc-pVTZ} +\Delta E^{\text{CCSDTQ}}_{\text{aug-cc-pVTZ}} = \Delta E^{\text{CCSDTQ}}_{\text{aug-cc-pVDZ}} + \left[ \Delta E^{\text{CC4}}_{\text{aug-cc-pVTZ}} - \Delta E^{\text{CC4}}_{\text{aug-cc-pVDZ}} \right] \end{equation} -and we evaluate the CCSDTQ/AVDZ values as +and we evaluate the CCSDTQ/aug-cc-pVDZ values as \begin{equation} -\label{eq:AVDZ} -\Delta E^{\text{CCSDTQ}}_{\text{AVDZ}} = \Delta E^{\text{CCSDTQ}}_{6-31\text{G}+\text{(d)}} + \left[ \Delta E^{\text{CC4}}_{\text{AVDZ}} - \Delta E^{\text{CC4}}_{6-31\text{G}+\text{(d)}} \right] +\label{eq:aug-cc-pVDZ} +\Delta E^{\text{CCSDTQ}}_{\text{aug-cc-pVDZ}} = \Delta E^{\text{CCSDTQ}}_{6-31\text{G}+\text{(d)}} + \left[ \Delta E^{\text{CC4}}_{\text{aug-cc-pVDZ}} - \Delta E^{\text{CC4}}_{6-31\text{G}+\text{(d)}} \right] \end{equation} -when CC4/AVTZ values have been obtained. If it is not the case we extrapolate CC4/AVTZ values using the CCSDT ones as follows +when CC4/aug-cc-pVTZ values have been obtained. If it is not the case we extrapolate CC4/aug-cc-pVTZ values using the CCSDT ones as follows \begin{equation} -\label{eq:CC4_AVTZ} -\Delta E^{\text{CC4}}_{\text{AVTZ}} = \Delta E^{\text{CC4}}_{\text{AVDZ}} + \left[ \Delta E^{\text{CCSDT}}_{\text{AVTZ}} - \Delta E^{\text{CCSDT}}_{\text{AVDZ}} \right] +\label{eq:CC4_aug-cc-pVTZ} +\Delta E^{\text{CC4}}_{\text{aug-cc-pVTZ}} = \Delta E^{\text{CC4}}_{\text{aug-cc-pVDZ}} + \left[ \Delta E^{\text{CCSDT}}_{\text{aug-cc-pVTZ}} - \Delta E^{\text{CCSDT}}_{\text{aug-cc-pVDZ}} \right] \end{equation} -Then if the CC4 values have not been obtained then we use the second scheme which is the same as the first one but instead of the CC4 values we use CCSDT to extrapolate CCSDTQ. If none of the two schemes is possible then we use the NEVPT2(12,12) values. Note that a NEVPT2(12,12) value is used only once for one vertical excitation of the $D_{4h}$ structure. +Then if the CC4 values have not been obtained then we use the second scheme which is the same as the first one but instead of the CC4 values we use CCSDT to extrapolate CCSDTQ. If none of the two schemes is possible then we use the NEVPT2(12,12) values. Note that a NEVPT2(12,12) value is used only once for one vertical excitation of the \Dfour structure. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -311,7 +329,7 @@ Then if the CC4 values have not been obtained then we use the second scheme whic %================================================ \subsection{Geometries} \label{sec:geometries} -Two different sets of geometries obtained with different level of theory are considered for the ground state property and for the excited states of the CBD molecule. First, for the autoisomerization barrier because we consider an energy difference between two geometries it is needed to obtain these geometries at the same level of theory. Due to the fact that the square CBD is an open-shell molecule it is difficult to optimize the geometry so the most accurate method that we can use for both structures is the CASPT2(12,12) with the AVTZ basis without frozen core. Then, for the excited states because we look at vertical energy transitions in one particular geometry we can use different methods for the different structures and use the most accurate method for each geometry. So in the case of the excited states of the CBD molecule we use CC3 without frozen core with the AVTZ basis for the rectangular ($D_{2h}$) geometry and we use RO-CCSD(T) with the AVTZ basis again without frozen core for the square ($D_{4h}$) geometry. Table \ref{tab:geometries} shows the results on the geometry parameters obtained with the different methods. +Two different sets of geometries obtained with different level of theory are considered for the ground state property and for the excited states of the CBD molecule. First, for the autoisomerization barrier because we consider an energy difference between two geometries it is needed to obtain these geometries at the same level of theory. Due to the fact that the square CBD is an open-shell molecule it is difficult to optimize the geometry so the most accurate method that we can use for both structures is the CASPT2(12,12) with the aug-cc-pVTZ basis without frozen core. Then, for the excited states because we look at vertical energy transitions in one particular geometry we can use different methods for the different structures and use the most accurate method for each geometry. So in the case of the excited states of the CBD molecule we use CC3 without frozen core with the aug-cc-pVTZ basis for the rectangular (\Dtwo) geometry and we use RO-CCSD(T) with the aug-cc-pVTZ basis again without frozen core for the square (\Dfour) geometry. Table \ref{tab:geometries} shows the results on the geometry parameters obtained with the different methods. %%% TABLE I %%% \begin{squeezetable} @@ -323,20 +341,20 @@ Two different sets of geometries obtained with different level of theory are con \begin{tabular}{llrrr} Method & \ce{C=C} & \ce{C-C} & \ce{C-H} & \ce{H-C=C}\fnm[1] \\ \hline - $D_{2h}$\\ + \Dtwo\\ \hline - CASPT2(12,12)/AVTZ & 1.355 & 1.566 & 1.077 & 134.99 \\ - CC3/AVTZ & 1.344 & 1.565 & 1.076 & 135.08 \\ + CASPT2(12,12)/aug-cc-pVTZ & 1.355 & 1.566 & 1.077 & 134.99 \\ + CC3/aug-cc-pVTZ & 1.344 & 1.565 & 1.076 & 135.08 \\ CCSD(T)/cc-pVTZ & 1.343 & 1.566 & 1.074 & 135.09 \fnm[2]\\ \hline - $D_{4h} ({}^1 B_{1g})$ \\ + \Dfour $({}^1 B_{1g})$ \\ \hline - CASPT2(12,12)/AVTZ & 1.449 & 1.449 & 1.076 & 135.00 \\ + CASPT2(12,12)/aug-cc-pVTZ & 1.449 & 1.449 & 1.076 & 135.00 \\ \hline - $D_{4h} ({}^3 A_{2g})$ \\ + \Dfour $({}^3 A_{2g})$ \\ \hline - CASPT2(12,12)/AVTZ & 1.445 & 1.445 & 1.076 & 135.00 \\ - RO-CCSD(T)/AVTZ & 1.439 & 1.439 & 1.075 & 135.00 + CASPT2(12,12)/aug-cc-pVTZ & 1.445 & 1.445 & 1.076 & 135.00 \\ + RO-CCSD(T)/aug-cc-pVTZ & 1.439 & 1.439 & 1.075 & 135.00 \end{tabular} \end{ruledtabular} \fnt[1]{Angle between the \ce{C-H} bond and the \ce{C=C} bond.} @@ -352,7 +370,7 @@ Two different sets of geometries obtained with different level of theory are con \subsection{Autoisomerization barrier} \label{sec:auto} The results for the calculation of the automerization barrier energy with and without spin-flip methods are shown in Table \ref{tab:auto_standard}. Two types of methods are used with spin-flip, SF-TD-DFT with several functionals and SF-ADC with the variants SF-ADC(2)-s, SF-ADC(2)-x and SF-ADC(3). First, one can see that there is large variations of the energy between the different functionals. Indeed if we look at the hybrid functionals B3LYP and BH\&HLYP we can see that there is a difference of around 7 \kcalmol through all the bases, the difference in energy between the B3LYP and PBE0 functionals is much smaller with around 1.5 \kcalmol through all the bases. We find a similar behavior regarding the RSH functionals, we find a difference of about 8-9 \kcalmol between the M06-2X and the CAM-B3LYP functionals for all bases. The results between the CAM-B3LYP and the $\omega$B97X-V are very close in energy with a difference of around 0.1-0.2 \kcalmol . The energy difference between the M11 and the M06-2X functionals is larger with 0.6-0.9 \kcalmol for the AVXZ bases and with 1.7 \kcalmol for the 6-31+G(d) basis. For the SF-ADC methods the energy differences are smaller with 1.7-2.0 \kcalmol between the ADC(2)-s and the ADC(2)-x schemes, 0.9-1.6 \kcalmol between the ADC(2)-s and the ADC(3) schemes and 0.4-0.8 \kcalmol between the ADC(2)-x and the ADC(3) schemes. -Then we compare results for multireference methods, we can see a difference of about 2.91-3.22 \kcalmol through all the bases between the CASSCF(12,12) and the CASPT2(12,12) methods. These differences can be explained by the well known lack of dynamical correlation for the CASSCF method that is typically important for close-shell molecules which is the case for the ground states of the rectangular and square geometries of the CBD molecule. The results between the CASPT2(12,12) and the NEVPT2(12,12) are much closer with an energy difference of around 0.12-0.23 \kcalmol for all the bases. Finally the last results shown in Table \ref{tab:auto_standard} are the CC ones, for the autoisomerization barrier energy we consider the CCSD, CCSDT, CCSDTQ methods and the approximations of CCDT and of CCSDTQ, the CC3 and the CC4 methods, respectively. We can see that the CCSD values are higher than the other CC methods with an energy difference of around 1.05-1.24 \kcalmol between the CCSD and the CCSDT methods. The CCSDT and CCSDTQ autoisomerization barrier energies are closer with 0.25 \kcalmol of energy difference. The energy difference between the CCSDT and its approximation CC3 is about 0.67-0.8 \kcalmol for all the bases whereas the energy difference between the CCSDTQ and its approximate version CC4 is 0.11 \kcalmol. +Then we compare results for multireference methods, we can see a difference of about 2.91-3.22 \kcalmol through all the bases between the CASSCF(12,12) and the CASPT2(12,12) methods. These differences can be explained by the well known lack of dynamical correlation for the CASSCF method that is typically important for close-shell molecules which is the case for the ground states of the rectangular and square geometries of the CBD molecule. The results between CASPT2(12,12) and NEVPT2(12,12) are much closer with an energy difference of around 0.12-0.23 \kcalmol for all the bases. Finally the last results shown in Table \ref{tab:auto_standard} are the CC ones, for the autoisomerization barrier energy we consider the CCSD, CCSDT, CCSDTQ methods and the approximations of CCDT and of CCSDTQ, the CC3 and the CC4 methods, respectively. We can see that the CCSD values are higher than the other CC methods with an energy difference of around 1.05-1.24 \kcalmol between the CCSD and the CCSDT methods. The CCSDT and CCSDTQ autoisomerization barrier energies are closer with 0.25 \kcalmol of energy difference. The energy difference between the CCSDT and its approximation CC3 is about 0.67-0.8 \kcalmol for all the bases whereas the energy difference between the CCSDTQ and its approximate version CC4 is 0.11 \kcalmol. %%% TABLE I %%% \begin{squeezetable} @@ -362,7 +380,7 @@ Then we compare results for multireference methods, we can see a difference of a \label{tab:auto_standard} \begin{ruledtabular} \begin{tabular}{llrrrr} - Method & 6-31+G(d) & AVDZ & AVTZ & AVQZ\\ + Method & 6-31+G(d) & aug-cc-pVDZ & aug-cc-pVTZ & aug-cc-pVQZ\\ \hline %SF-CIS & $2.64$ & $2.82$ & $3.43$ & $3.43$ \\ %SF-TD-BLYP & $23.57$ & $23.62$ & $24.23$ & $24.22$ \\ @@ -388,12 +406,12 @@ CCSDTQ & $7.51$ & $\left[ 7.89\right]$\fnm[4]& $\left[ 8.93\right]$\fnm[5]& $\le CIPSI & $7.91\pm 0.21$ & $8.58\pm 0.14$ & & \\ \end{tabular} \end{ruledtabular} - \fnt[1]{Value obtained using CCSDT/AVTZ corrected by the difference between CC3/AVQZ and CC3/AVTZ.} - \fnt[2]{Value obtained using CC4/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} - \fnt[3]{Value obtained using CC4/AVTZ corrected by the difference between CCSDT/AVQZ and CCSDT/AVTZ.} - \fnt[4]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/AVDZ basis and CC4/6-31+G(d).} - \fnt[5]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} - \fnt[6]{Value obtained using CCSDTQ/AVTZ corrected by the difference between CC4/AVQZ and CC4/AVTZ.} + \fnt[1]{Value obtained using CCSDT/aug-cc-pVTZ corrected by the difference between CC3/aug-cc-pVQZ and CC3/aug-cc-pVTZ.} + \fnt[2]{Value obtained using CC4/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} + \fnt[3]{Value obtained using CC4/aug-cc-pVTZ corrected by the difference between CCSDT/aug-cc-pVQZ and CCSDT/aug-cc-pVTZ.} + \fnt[4]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/aug-cc-pVDZ basis and CC4/6-31+G(d).} + \fnt[5]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} + \fnt[6]{Value obtained using CCSDTQ/aug-cc-pVTZ corrected by the difference between CC4/aug-cc-pVQZ and CC4/aug-cc-pVTZ.} \end{table*} \end{squeezetable} %%% %%% %%% %%% @@ -402,7 +420,7 @@ CIPSI & $7.91\pm 0.21$ & $8.58\pm 0.14$ & & \\ \begin{figure*} \includegraphics[scale=0.5]{AB_AVTZ.pdf} -\caption{Autoisomerization barrier (AB) energies for the CBD molecule using the AVTZ basis. Purple histograms are for the SF-TD-DFT functionals, orange histograms are for the SF-ADC schemes, green histograms are for the multireference methods, blue histograms are for the CC methods and the black one is for the TBE.} +\caption{Autoisomerization barrier (AB) energies for the CBD molecule using the aug-cc-pVTZ basis. Purple histograms are for the SF-TD-DFT functionals, orange histograms are for the SF-ADC schemes, green histograms are for the multireference methods, blue histograms are for the CC methods and the black one is for the TBE.} \label{fig:AB} \end{figure*} @@ -418,19 +436,19 @@ Figure \ref{fig:AB} shows the autoisomerization barrier (AB) energies for the CB \label{sec:states} %All the calculations are performed using four basis set, the 6-31+G(d) basis and the aug-cc-pVXZ with X$=$D, T, Q. In the following we will use the notation AVXZ for the aug-cc-pVXZ basis, again with X$=$D, T, Q. -\subsubsection{$D_{2h}$ geometry} -Table \ref{tab:sf_tddft_D2h} shows the results obtained for the vertical transition energies using spin-flip methods and Table \ref{tab:D2h} shows the results obtained with the standard methods. We discuss first the SF-TD-DFT values with hybrid functionals. For the B3LYP functional we can see that the energy differences for each state and throughout all bases are small with the largest one for the $1\,{}^3B_{1g}$ state with 0.012 eV. The same observation can be done for the PBE0 and BH\&HLYP functionals, we can also observe that adding exact exchange to the functional (20\% of exact exchange for B3LYP, 25\% for PBE0 and 50\% for BH\&HLYP increase the energy difference between the $1\,{}^1B_{1g}$ and the $1\,{}^3B_{1g}$ states. Put another way, increasing the amount of exact exchange in the functional reduces the energy difference between the $1\,{}^3B_{1g}$ and the $\text{X}\,{}^1A_{g}$ states. We can also notice that the vertical energies of the different states do not vary in the same way when adding exact exchange, for instance the energy variation for the $1\,{}^3B_{1g}$ state from PBE0 to BH\&HLYP is around 0.1 eV whereas for the $1\,{}^1B_{1g}$ and the $2\,{}^1A_{1g}$ states this energy variation is about 0.4-0.5 eV and 0.34 eV respectively. For the RSH functionals we can not make the same observation, indeed we can see that for the CAM-B3LYP functional we have that the energy difference between the $1\,{}^1B_{1g}$ and the $1\,{}^3B_{1g}$ states is larger than for the $\omega$B97X-V and LC-$\omega $PBE08 functionals despite the fact that the latter ones have a bigger amount of exact exchange. However we can observe that we have a small energy difference for each state throughout the bases and for each RSH functional. The M06-2X functional is an Hybrid meta-GGA functional and contains 54\% of Hartree-Fock exchange, we can compare the energies with the BH\&HLYP functional and we can see that the energy differences are small with around 0.03-0.08 eV. We can notice that the upper bound of 0.08 eV in the energy differences is due to the $1\,{}^3B_{1g}$ state. The M11 vertical energies are close to the BH\&HLYP ones for the triplet and the first singlet excited states with 0.01-0.02 eV and 0.08-0.10 eV of energy difference, respectively. For the $2\,{}^1A_{1g}$ state the M11 energies are closer to the $\omega$B97X-V ones with 0.05-0.09 eV of energy difference. +\subsubsection{\Dtwo~ geometry} +Table \ref{tab:sf_tddft_D2h} shows the results obtained for the vertical transition energies using spin-flip methods and Table \ref{tab:D2h} shows the results obtained with the standard methods. We discuss first the SF-TD-DFT values with hybrid functionals. For the B3LYP functional we can see that the energy differences for each state and throughout all bases are small with the largest one for the $1\,{}^3B_{1g}$ state with \SI{0.012}{\eV}. The same observation can be done for the PBE0 and BH\&HLYP functionals, we can also observe that adding exact exchange to the functional (20\% of exact exchange for B3LYP, 25\% for PBE0 and 50\% for BH\&HLYP increase the energy difference between the $1\,{}^1B_{1g}$ and the $1\,{}^3B_{1g}$ states. Put another way, increasing the amount of exact exchange in the functional reduces the energy difference between the $1\,{}^3B_{1g}$ and the $\text{X}\,{}^1A_{g}$ states. We can also notice that the vertical energies of the different states do not vary in the same way when adding exact exchange, for instance the energy variation for the $1\,{}^3B_{1g}$ state from PBE0 to BH\&HLYP is around \SI{0.1}{\eV} whereas for the $1\,{}^1B_{1g}$ and the $2\,{}^1A_{1g}$ states this energy variation is about \SIrange{0.4}{0.5}{\eV} and \SI{0.34}{eV} respectively. For the RSH functionals we can not make the same observation, indeed we can see that for the CAM-B3LYP functional we have that the energy difference between the $1\,{}^1B_{1g}$ and the $1\,{}^3B_{1g}$ states is larger than for the $\omega$B97X-V and LC-$\omega $PBE08 functionals despite the fact that the latter ones have a bigger amount of exact exchange. However we can observe that we have a small energy difference for each state throughout the bases and for each RSH functional. The M06-2X functional is an Hybrid meta-GGA functional and contains 54\% of Hartree-Fock exchange, we can compare the energies with the BH\&HLYP functional and we can see that the energy differences are small with around \SIrange{0.03}{0.08}{\eV}. We can notice that the upper bound of \SI{0.08}{\eV} in the energy differences is due to the $1\,{}^3B_{1g}$ state. The M11 vertical energies are close to the BH\&HLYP ones for the triplet and the first singlet excited states with \SIrange{0.01}{0.02}{\eV} and \SIrange{0.08}{0.10}{\eV} of energy difference, respectively. For the $2\,{}^1A_{1g}$ state the M11 energies are closer to the $\omega$B97X-V ones with \SIrange{0.05}{0.09}{\eV} of energy difference. -Then we discuss the various ADC scheme (ADC(2)-s, ADC(2)-x and ADC(3)) results. For ADC(2) we have vertical energy differences of about 0.03 eV for the $1\,{}^3B_{1g}$ state and around 0.06 eV for $2\,{}^1A_{1g}$ state throughout all bases. However for the $1\,{}^1B_{1g}$ state we have an energy difference of about 0.2 eV. For the ADC(2)-x and ADC(3) schemes the calculations with the AVQZ basis are not feasible with our resources. With ADC(2)-x we have similar vertical energies for the triplet and the $1\,{}^1B_{1g}$ states but for the $2\,{}^1A_{1g}$ state the energy difference between the ADC(2) and ADC(2)-x schemes is about 0.4-0.5 eV. The ADC(3) values are closer from the ADC(2) than the ADC(2)-x except for the triplet state for which we have a energy difference of about 0.09-0.14 eV. Now, we look at Table \ref{tab:D2h} to discuss the results of standard methods. First we discuss the CC values, we have computed the vertical energies at the CCSDT and CCSDTQ level as well as their approximation the CC3 and CC4 methods, respectively. We can notice that for the $1\,{}^3B_{1g}$ and the $1\,{}^1B_{1g}$ states the CCSDT and the CC3 values are close with an energy difference of 0.009-0.02 eV for all bases. The energy difference is larger for the $2\,{}^1A_{1g}$ state with around 0.35-0.38 eV. The same observation can be done for CCSDTQ and CC4 with similar vertical energies for all bases. Note that the $1\,{}^3B_{1g}$ state can not be described with these methods. +Then we discuss the various ADC scheme (ADC(2)-s, ADC(2)-x and ADC(3)) results. For ADC(2) we have vertical energy differences of about 0.03 eV for the $1\,{}^3B_{1g}$ state and around 0.06 eV for $2\,{}^1A_{1g}$ state throughout all bases. However for the $1\,{}^1B_{1g}$ state we have an energy difference of about 0.2 eV. For the ADC(2)-x and ADC(3) schemes the calculations with the aug-cc-pVQZ basis are not feasible with our resources. With ADC(2)-x we have similar vertical energies for the triplet and the $1\,{}^1B_{1g}$ states but for the $2\,{}^1A_{1g}$ state the energy difference between the ADC(2) and ADC(2)-x schemes is about \SIrange{0.4}{0.5}{\eV}. The ADC(3) values are closer from the ADC(2) than the ADC(2)-x except for the triplet state for which we have a energy difference of about \SIrange{0.09}{0.14}{\eV}. Now, we look at Table \ref{tab:D2h} to discuss the results of standard methods. First we discuss the CC values, we have computed the vertical energies at the CCSDT and CCSDTQ level as well as their approximation the CC3 and CC4 methods, respectively. We can notice that for the $1\,{}^3B_{1g}$ and the $1\,{}^1B_{1g}$ states the CCSDT and the CC3 values are close with an energy difference of \SIrange{0.01}{0.02}{\eV} for all bases. The energy difference is larger for the $2\,{}^1A_{1g}$ state with around \SIrange{0.35}{0.38}{\eV}. The same observation can be done for CCSDTQ and CC4 with similar vertical energies for all bases. Note that the $1\,{}^3B_{1g}$ state can not be described with these methods. -Then we review the vertical energies obtained with multireference methods. The smallest active space considered is four electrons in four orbitals, for CASSCF(4,4) we have small energy variations throughout bases for the $1\,{}^3B_{1g}$ and the $2\,{}^1A_{1g}$ states but a larger variation for the $1\,{}^1B_{1g}$ state with around 0.1 eV. We can observe that we have the inversion of the states compared to all methods discussed so far between the $2\,{}^1A_{1g}$ and $1\,{}^1B_{1g}$ states with $1\,{}^1B_{1g}$ higher than $2\,{}^1A_{1g}$ due to the lack of dynamical correlation in the CASSCF methods. The $1\,{}^1B_{1g}$ state values in CASSCF(4,4) is much higher than for any of the other methods discussed so far. With CASPT2(4,4) we retrieve the right ordering between the states and we see large energy differences with the CASSCF values. Indeed, we have approximatively 0.22-0.25 eV of energy difference for the triplet state for all bases and 0.32-0.36 eV for the $2\,{}^1A_{1g}$ state, the largest energy difference is for the $1\,{}^1B_{1g}$ state with 1.5-1.6 eV. -For the XMS-CASPT2(4,4) only the $2\,{}^1A_{1g}$ state is described with values similar than for the CAPST2(4,4) method. For the NEVPT2(4,4) methods (SC-NEVPT2 and PC-NEVPT2) the vertical energies are similar for the $1\,{}^1B_{1g}$ and the $2\,{}^1A_{1g}$ states with approximatively 0.002-0.003 eV and 0.02-0.03 eV of energy difference for all bases, respectively. The energy difference for the $1\,{}^1B_{1g}$ state is slightly larger with \SI{0.05}{\eV} for all bases. Note that for this state the vertical energy varies of 0.23 eV from the 6-31+G(d) basis to the AVDZ one. Then we use a larger active space with twelve electrons in twelve orbitals, the CASSF(12,12) values are close to the CASSCF(4,4) value for the triplet state with 0.01-0.02 eV of energy differences. For the $2\,{}^1A_{1g}$ state we have an energy difference of about 0.2 eV between the CASSCF(4,4) and the CASSCF(12,12) values. We can notice that increasing the size of the active space gives the right ordering for the states and we have an energy difference of around 0.7 eV for the $1\,{}^1B_{1g}$ state between CASSCF(4,4) and the CASSCF(12,12) values. The CASPT2(12,12) method decreases the energy of all states compared to the CASSCF(12,12) method, again the decrease is not the same for all states. We have a diminution from CASSCF to CASPT2 of about 0.17 to 0.2 eV for the $1\,{}^3B_{1g}$ and the $2\,{}^1A_{1g}$ states and for the different bases. Again, the energy difference for the $2\,{}^1A_{1g}$ state is larger with 0.5-0.7 eV depending on the basis. In a similar way than with XMS-CASPT2(4,4), the XMS-CASPT(12,12) only describes the $2\,{}^1A_{1g}$ state and the vertical energies for this state are close to the CASPT(12,12) values. For the NEVPT2(12,12) schemes we see that for the triplet and the $2\,{}^1A_{1g}$ states the energies are similar with an energy difference between the SC-NEVPT2(12,12) and the PC-NEVPT2(12,12) values of about 0.03-0.04 eV and 0.02-0.03 eV respectively. +Then we review the vertical energies obtained with multireference methods. The smallest active space considered is four electrons in four orbitals, for CASSCF(4,4) we have small energy variations throughout bases for the $1\,{}^3B_{1g}$ and the $2\,{}^1A_{1g}$ states but a larger variation for the $1\,{}^1B_{1g}$ state with around \SI{0.1}{\eV}. We can observe that we have the inversion of the states compared to all methods discussed so far between the $2\,{}^1A_{1g}$ and $1\,{}^1B_{1g}$ states with $1\,{}^1B_{1g}$ higher than $2\,{}^1A_{1g}$ due to the lack of dynamical correlation in the CASSCF methods. The $1\,{}^1B_{1g}$ state values in CASSCF(4,4) is much higher than for any of the other methods discussed so far. With CASPT2(4,4) we retrieve the right ordering between the states and we see large energy differences with the CASSCF values. Indeed, we have approximatively \SIrange{0.22}{0.25}{\eV} of energy difference for the triplet state for all bases and \SIrange{0.32}{0.36}{\eV} for the $2\,{}^1A_{1g}$ state, the largest energy difference is for the $1\,{}^1B_{1g}$ state with \SIrange{1.5}{1.6}{\eV}. +For the XMS-CASPT2(4,4) only the $2\,{}^1A_{1g}$ state is described with values similar than for the CAPST2(4,4) method. For the NEVPT2(4,4) methods (SC-NEVPT2 and PC-NEVPT2) the vertical energies are similar for the $1\,{}^1B_{1g}$ and the $2\,{}^1A_{1g}$ states with approximatively \SIrange{0.002}{0.003}{\eV} and \SIrange{0.02}{0.03}{\eV} of energy difference for all bases, respectively. The energy difference for the $1\,{}^1B_{1g}$ state is slightly larger with \SI{0.05}{\eV} for all bases. Note that for this state the vertical energy varies of \SI{0.23}{eV} from the 6-31+G(d) basis to the aug-cc-pVDZ one. Then we use a larger active space with twelve electrons in twelve orbitals, the CASSF(12,12) values are close to the CASSCF(4,4) value for the triplet state with 0.01-0.02 eV of energy differences. For the $2\,{}^1A_{1g}$ state we have an energy difference of about \SI{0.2}{eV} between the CASSCF(4,4) and the CASSCF(12,12) values. We can notice that increasing the size of the active space gives the right ordering for the states and we have an energy difference of around \SI{0.7}{\eV} for the $1\,{}^1B_{1g}$ state between CASSCF(4,4) and the CASSCF(12,12) values. The CASPT2(12,12) method decreases the energy of all states compared to the CASSCF(12,12) method, again the decrease is not the same for all states. We have a diminution from CASSCF to CASPT2 of about \SIrange{0.17}{0.2}{\eV} for the $1\,{}^3B_{1g}$ and the $2\,{}^1A_{1g}$ states and for the different bases. Again, the energy difference for the $2\,{}^1A_{1g}$ state is larger with \SIrange{0.5}{0.7}{\eV} depending on the basis. In a similar way than with XMS-CASPT2(4,4), XMS-CASPT(12,12) only describes the $2\,{}^1A_{1g}$ state and the vertical energies for this state are close to the CASPT(12,12) values. For the NEVPT2(12,12) schemes we see that for the triplet and the $2\,{}^1A_{1g}$ states the energies are similar with an energy difference between the SC-NEVPT2(12,12) and the PC-NEVPT2(12,12) values of about \SIrange{0.03}{0.04}{\eV} and \SIrange{0.02}{0.03}{\eV} respectively. %%% TABLE II %%% \begin{squeezetable} \begin{table} \caption{ - Spin-flip TD-DFT vertical excitation energies (with respect to the singlet $\text{X}\,{}^1A_{g}$ ground state) of the $1\,{}^3B_{1g}$, $1\,{}^1B_{1g}$, and $2\,{}^1A_{g}$ states of CBD at the $D_{2h}$ rectangular equilibrium geometry of the $\text{X}\,{}^1 A_{g}$ ground state. + Spin-flip TD-DFT vertical excitation energies (with respect to the singlet $\text{X}\,{}^1A_{g}$ ground state) of the $1\,{}^3B_{1g}$, $1\,{}^1B_{1g}$, and $2\,{}^1A_{g}$ states of CBD at the \Dtwo rectangular equilibrium geometry of the $\text{X}\,{}^1 A_{g}$ ground state. \label{tab:sf_tddft_D2h}} \begin{ruledtabular} \begin{tabular}{llrrr} @@ -439,60 +457,60 @@ For the XMS-CASPT2(4,4) only the $2\,{}^1A_{1g}$ state is described with values Method & Basis & $1\,{}^3B_{1g}$ & $1\,{}^1B_{1g}$ & $2\,{}^1A_{g}$ \\ \hline % SF-TD-BLYP & 6-31+G(d) & $1.829$ & $1.926$ & $3.755$ \\ -% & AVDZ & $1.828$ & $1.927$ & $3.586$ \\ -% & AVTZ & $1.825$ & $1.927$ & $3.546$ \\ -% & AVQZ & $1.825$ & $1.927$ & $3.528$ \\[0.1cm] +% & aug-cc-pVDZ & $1.828$ & $1.927$ & $3.586$ \\ +% & aug-cc-pVTZ & $1.825$ & $1.927$ & $3.546$ \\ +% & aug-cc-pVQZ & $1.825$ & $1.927$ & $3.528$ \\[0.1cm] SF-TD-B3LYP & 6-31+G(d) & $1.706$ & $2.211$ & $3.993$ \\ - & AVDZ & $1.706$ & $2.204$ & $3.992$ \\ - & AVTZ & $1.703$ & $2.199$ & $3.988$ \\ - & AVQZ & $1.703$ & $2.199$ & $3.989$\\[0.1cm] + & aug-cc-pVDZ & $1.706$ & $2.204$ & $3.992$ \\ + & aug-cc-pVTZ & $1.703$ & $2.199$ & $3.988$ \\ + & aug-cc-pVQZ & $1.703$ & $2.199$ & $3.989$\\[0.1cm] SF-TD-PBE0 & 6-31+G(d) & $1.687$ & $2.314$ & $4.089$ \\ - & AVDZ & $1.684$ & $2.301$ & $4.085$ \\ - & AVTZ & $1.682$ & $2.296$ & $4.081$ \\ - & AVQZ & $1.682$ & $2.296$ & $4.079$\\[0.1cm] + & aug-cc-pVDZ & $1.684$ & $2.301$ & $4.085$ \\ + & aug-cc-pVTZ & $1.682$ & $2.296$ & $4.081$ \\ + & aug-cc-pVQZ & $1.682$ & $2.296$ & $4.079$\\[0.1cm] SF-TD-BH\&HLYP & 6-31+G(d) & $1.552$ & $2.779$ & $4.428$ \\ - & AVDZ & $1.546$ & $2.744$ & $4.422$ \\ - & AVTZ & $1.540$ & $2.732$ & $4.492$ \\ - & AVQZ & $1.540$ & $2.732$ & $4.415$ \\[0.1cm] + & aug-cc-pVDZ & $1.546$ & $2.744$ & $4.422$ \\ + & aug-cc-pVTZ & $1.540$ & $2.732$ & $4.492$ \\ + & aug-cc-pVQZ & $1.540$ & $2.732$ & $4.415$ \\[0.1cm] SF-TD-M06-2X & 6-31+G(d) & $1.477$ & $2.835$ & $4.378$ \\ - & AVDZ & $1.467$ & $2.785$ & $4.360$ \\ - & AVTZ & $1.462$ & $2.771$ & $4.357$ \\ - & AVQZ & $1.458$ & $2.771$ & $4.352$ \\[0.1cm] + & aug-cc-pVDZ & $1.467$ & $2.785$ & $4.360$ \\ + & aug-cc-pVTZ & $1.462$ & $2.771$ & $4.357$ \\ + & aug-cc-pVQZ & $1.458$ & $2.771$ & $4.352$ \\[0.1cm] SF-TD-CAM-B3LYP & 6-31+G(d) & $1.750$ & $2.337$ & $4.140$ \\ - & AVDZ & $1.745$ & $2.323$ & $4.140$ \\ - & AVTZ & $1.742$ & $2.318$ & $4.138$ \\ - & AVQZ & $1.743$ & $2.319$ & $4.138$ \\[0.1cm] + & aug-cc-pVDZ & $1.745$ & $2.323$ & $4.140$ \\ + & aug-cc-pVTZ & $1.742$ & $2.318$ & $4.138$ \\ + & aug-cc-pVQZ & $1.743$ & $2.319$ & $4.138$ \\[0.1cm] SF-TD-$\omega$B97X-V & 6-31+G(d) & $1.810$ & $2.377$ & $4.220$ \\ - & AVDZ & $1.800$ & $2.356$ & $4.217$ \\ - & AVTZ & $1.797$ & $2.351$ & $4.213$ \\ - & AVQZ & $1.797$ & $2.351$ & $4.213$ \\[0.1cm] + & aug-cc-pVDZ & $1.800$ & $2.356$ & $4.217$ \\ + & aug-cc-pVTZ & $1.797$ & $2.351$ & $4.213$ \\ + & aug-cc-pVQZ & $1.797$ & $2.351$ & $4.213$ \\[0.1cm] SF-TD-LC-$\omega $PBE08 & 6-31+G(d) & $1.917$ & $2.445$ & $4.353$ \\ - & AVDZ & $1.897$ & $2.415$ & $4.346$ \\ - & AVTZ & $1.897$ & $2.415$ & $4.348$ \\ - & AVQZ & $1.897$ & $2.415$ & $4.348$ \\[0.1cm] + & aug-cc-pVDZ & $1.897$ & $2.415$ & $4.346$ \\ + & aug-cc-pVTZ & $1.897$ & $2.415$ & $4.348$ \\ + & aug-cc-pVQZ & $1.897$ & $2.415$ & $4.348$ \\[0.1cm] SF-TD-M11 & 6-31+G(d) & $1.566$ & $2.687$ & $4.292$ \\ - & AVDZ & $1.546$ & $2.640$ & $4.267$ \\ - & AVTZ & $1.559$ & $2.651$ & $4.300$ \\ - & AVQZ & $1.557$ & $2.650$ & $4.299$ \\[0.1cm] + & aug-cc-pVDZ & $1.546$ & $2.640$ & $4.267$ \\ + & aug-cc-pVTZ & $1.559$ & $2.651$ & $4.300$ \\ + & aug-cc-pVQZ & $1.557$ & $2.650$ & $4.299$ \\[0.1cm] %SF-CIS & 6-31+G(d) & $1.514$ & $3.854$ & $5.379$ \\ -%& AVDZ & $1.487$ & $3.721$ & $5.348$ \\ -%& AVTZ & $1.472$ & $3.701$ & $5.342$ \\ -%& AVQZ & $1.471$ & $3.702$ & $5.342$ \\[0.1cm] +%& aug-cc-pVDZ & $1.487$ & $3.721$ & $5.348$ \\ +%& aug-cc-pVTZ & $1.472$ & $3.701$ & $5.342$ \\ +%& aug-cc-pVQZ & $1.471$ & $3.702$ & $5.342$ \\[0.1cm] SF-ADC(2)-s & 6-31+G(d) & $1.577$ & $3.303$ & $4.196$ \\ - & AVDZ & $1.513$ & $3.116$ & $4.114$ \\ - & AVTZ & $1.531$ & $3.099$ & $4.131$ \\ - & AVQZ & $1.544$ & $3.101$ & $4.140$ \\[0.1cm] + & aug-cc-pVDZ & $1.513$ & $3.116$ & $4.114$ \\ + & aug-cc-pVTZ & $1.531$ & $3.099$ & $4.131$ \\ + & aug-cc-pVQZ & $1.544$ & $3.101$ & $4.140$ \\[0.1cm] SF-ADC(2)-x & 6-31+G(d) & $1.557$ & $3.232$ & $3.728$ \\ - & AVDZ & $1.524$ & $3.039$ & $3.681$ \\ - & AVTZ & $1.539$ & $3.031$ & $3.703$ \\[0.1cm] + & aug-cc-pVDZ & $1.524$ & $3.039$ & $3.681$ \\ + & aug-cc-pVTZ & $1.539$ & $3.031$ & $3.703$ \\[0.1cm] SF-ADC(3) & 6-31+G(d) & $1.435$ & $3.352$ & $4.242$ \\ - & AVDZ & $1.422$ & $3.180$ & $4.208$ \\ - & AVTZ & $1.419$ & $3.162$ & $4.224$ \\ + & aug-cc-pVDZ & $1.422$ & $3.180$ & $4.208$ \\ + & aug-cc-pVTZ & $1.419$ & $3.162$ & $4.224$ \\ % SF-EOM-CCSD & 6-31+G(d) & $1.663$ & $3.515$ & $4.275$ \\ -% & AVDZ & $1.611$ & $3.315$ & $3.856$ \\ -% & AVTZ & $1.609$ & $3.293$ & $4.245$ \\[0.1cm] +% & aug-cc-pVDZ & $1.611$ & $3.315$ & $3.856$ \\ +% & aug-cc-pVTZ & $1.609$ & $3.293$ & $4.245$ \\[0.1cm] %SF-EOM-CC(2,3) & 6-31+G(d) & $1.490$ & $3.333$ & $4.061$ \\ -%& AVDZ & $1.464$ & $3.156$ & $4.027$ \\ +%& aug-cc-pVDZ & $1.464$ & $3.156$ & $4.027$ \\ \end{tabular} \end{ruledtabular} \end{table} @@ -505,7 +523,7 @@ SF-ADC(3) & 6-31+G(d) & $1.435$ & $3.352$ & $4.242$ \\ \begin{squeezetable} \begin{table*} \caption{ - Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1A_{g}$ ground state) of the $1\,{}^3B_{1g}$, $1\,{}^1B_{1g}$, and $2\,{}^1A_{g}$ states of CBD at the $D_{2h}$ rectangular equilibrium geometry of the $\text{X}\,{}^1 A_{g}$ ground state. + Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1A_{g}$ ground state) of the $1\,{}^3B_{1g}$, $1\,{}^1B_{1g}$, and $2\,{}^1A_{g}$ states of CBD at the \Dtwo rectangular equilibrium geometry of the $\text{X}\,{}^1 A_{g}$ ground state. \label{tab:D2h}} \begin{ruledtabular} \begin{tabular}{llrrr} @@ -514,71 +532,71 @@ SF-ADC(3) & 6-31+G(d) & $1.435$ & $3.352$ & $4.242$ \\ Method & Basis & $1\,{}^3B_{1g}$ & $1\,{}^1B_{1g}$ & $2\,{}^1A_{g}$ \\ \hline CC3 &6-31+G(d)& $1.420$ & $3.341$ & $4.658$ \\ - & AVDZ & $1.396$ & $3.158$ & $4.711$ \\ - & AVTZ & $1.402$ & $3.119$ & $4.777$ \\ - & AVQZ & $1.409$ & $3.113$ & $4.774$ \\[0.1cm] + & aug-cc-pVDZ & $1.396$ & $3.158$ & $4.711$ \\ + & aug-cc-pVTZ & $1.402$ & $3.119$ & $4.777$ \\ + & aug-cc-pVQZ & $1.409$ & $3.113$ & $4.774$ \\[0.1cm] CCSDT &6-31+G(d)& $1.442$ & $3.357$ & $4.311$ \\ - & AVDZ & $1.411$ & $3.175$ & $4.327$ \\ - & AVTZ & $1.411$ & $3.139$ & $4.429$ \\[0.1cm] + & aug-cc-pVDZ & $1.411$ & $3.175$ & $4.327$ \\ + & aug-cc-pVTZ & $1.411$ & $3.139$ & $4.429$ \\[0.1cm] CC4 &6-31+G(d)& & $3.343$ & $4.067$ \\ - & AVDZ & & $3.164$ & $4.041$ \\ - & AVTZ & & $\left[3.128\right]$\fnm[1] & $\left[4.143\right]$\fnm[1]\\[0.1cm] + & aug-cc-pVDZ & & $3.164$ & $4.041$ \\ + & aug-cc-pVTZ & & $\left[3.128\right]$\fnm[1] & $\left[4.143\right]$\fnm[1]\\[0.1cm] CCSDTQ &6-31+G(d)& & $3.340$ & $4.073$ \\ -& AVDZ & & $\left[3.161\right]$\fnm[2]& $\left[4.047\right]$\fnm[2] \\ -& AVTZ & & $\left[3.125\right]$\fnm[3]& $\left[4.149\right]$\fnm[3]\\[0.1cm] +& aug-cc-pVDZ & & $\left[3.161\right]$\fnm[2]& $\left[4.047\right]$\fnm[2] \\ +& aug-cc-pVTZ & & $\left[3.125\right]$\fnm[3]& $\left[4.149\right]$\fnm[3]\\[0.1cm] SA2-CASSCF(4,4) &6-31+G(d)& $1.662$ & $4.657$ & $4.439$ \\ - & AVDZ & $1.672$ & $4.563$ & $4.448$ \\ - & AVTZ & $1.670$ & $4.546$ & $4.441$ \\ - & AVQZ & $1.671$ & $4.549$ & $4.440$ \\[0.1cm] + & aug-cc-pVDZ & $1.672$ & $4.563$ & $4.448$ \\ + & aug-cc-pVTZ & $1.670$ & $4.546$ & $4.441$ \\ + & aug-cc-pVQZ & $1.671$ & $4.549$ & $4.440$ \\[0.1cm] CASPT2(4,4) &6-31+G(d)& $1.440$ & $3.162$ & $4.115$ \\ - & AVDZ & $1.414$ & $2.971$ & $4.068$ \\ - & AVTZ & $1.412$ & $2.923$ & $4.072$ \\ -& AVQZ & $1.417$ & $2.911$ & $4.081$ \\[0.1cm] + & aug-cc-pVDZ & $1.414$ & $2.971$ & $4.068$ \\ + & aug-cc-pVTZ & $1.412$ & $2.923$ & $4.072$ \\ +& aug-cc-pVQZ & $1.417$ & $2.911$ & $4.081$ \\[0.1cm] XMS-CASPT2(4,4) &6-31+G(d)& & & $4.151$ \\ -& AVDZ & & & $4.105$ \\ -& AVTZ & & & $4.114$ \\ -& AVQZ && & $4.125$ \\[0.1cm] +& aug-cc-pVDZ & & & $4.105$ \\ +& aug-cc-pVTZ & & & $4.114$ \\ +& aug-cc-pVQZ && & $4.125$ \\[0.1cm] SC-NEVPT2(4,4) &6-31+G(d)& $1.407$ & $2.707$ & $4.145$ \\ -& AVDZ & $1.381$ & $2.479$ & $4.109$ \\ -& AVTZ & $1.379$ & $2.422$ & $4.108$ \\ -& AVQZ & $1.384$ & $2.408$ & $4.125$ \\[0.1cm] +& aug-cc-pVDZ & $1.381$ & $2.479$ & $4.109$ \\ +& aug-cc-pVTZ & $1.379$ & $2.422$ & $4.108$ \\ +& aug-cc-pVQZ & $1.384$ & $2.408$ & $4.125$ \\[0.1cm] PC-NEVPT2(4,4) &6-31+G(d)& $1.409$ & $2.652$ & $4.120$ \\ -& AVDZ & $1.384$ & $2.424$ & $4.084$ \\ -& AVTZ & $1.382$ & $2.368$ & $4.083$ \\ -& AVQZ & $1.387$ & $2.353$ & $4.091$ \\[0.1cm] +& aug-cc-pVDZ & $1.384$ & $2.424$ & $4.084$ \\ +& aug-cc-pVTZ & $1.382$ & $2.368$ & $4.083$ \\ +& aug-cc-pVQZ & $1.387$ & $2.353$ & $4.091$ \\[0.1cm] MRCI(4,4) &6-31+G(d)& $1.564$ & $3.802$ & $4.265$ \\ -& AVDZ & $1.558$ & $3.670$ & $4.254$ \\ -& AVTZ & $1.568$ & $3.678$ & $4.270$ \\ -& AVQZ & $1.574$ & $3.681$ & $4.280$ \\[0.1cm] +& aug-cc-pVDZ & $1.558$ & $3.670$ & $4.254$ \\ +& aug-cc-pVTZ & $1.568$ & $3.678$ & $4.270$ \\ +& aug-cc-pVQZ & $1.574$ & $3.681$ & $4.280$ \\[0.1cm] SA2-CASSCF(12,12) &6-31+G(d)& $1.675$ & $3.924$ & $4.220$ \\ -& AVDZ & $1.685$ & $3.856$ & $4.221$ \\ -& AVTZ & $1.686$ & $3.844$ & $4.217$ \\ -& AVQZ & $1.687$ & $3.846$ & $4.216$ \\[0.1cm] +& aug-cc-pVDZ & $1.685$ & $3.856$ & $4.221$ \\ +& aug-cc-pVTZ & $1.686$ & $3.844$ & $4.217$ \\ +& aug-cc-pVQZ & $1.687$ & $3.846$ & $4.216$ \\[0.1cm] CASPT2(12,12) &6-31+G(d)& $1.508$ & $3.407$ & $4.099$ \\ -& AVDZ & $1.489$ & $3.256$ & $4.044$ \\ -& AVTZ & $1.480$ & $3.183$ & $4.043$ \\ -& AVQZ & $1.482$ & $3.163$ & $4.047$ \\[0.1cm] +& aug-cc-pVDZ & $1.489$ & $3.256$ & $4.044$ \\ +& aug-cc-pVTZ & $1.480$ & $3.183$ & $4.043$ \\ +& aug-cc-pVQZ & $1.482$ & $3.163$ & $4.047$ \\[0.1cm] XMS-CASPT2(12,12) &6-31+G(d)& && $4.111$ \\ -& AVDZ & & & $4.056$ \\ -& AVTZ & & & $4.059$ \\ -& AVQZ & & & $4.065$ \\[0.1cm] +& aug-cc-pVDZ & & & $4.056$ \\ +& aug-cc-pVTZ & & & $4.059$ \\ +& aug-cc-pVQZ & & & $4.065$ \\[0.1cm] SC-NEVPT2(12,12) &6-31+G(d)& $1.522$ & $3.409$ & $4.130$ \\ -& AVDZ & $1.511$ & $3.266$ & $4.093$ \\ -& AVTZ & $1.501$ & $3.188$ & $4.086$ \\ -& AVQZ & $1.503$ & $3.167$ & $4.088$ \\[0.1cm] +& aug-cc-pVDZ & $1.511$ & $3.266$ & $4.093$ \\ +& aug-cc-pVTZ & $1.501$ & $3.188$ & $4.086$ \\ +& aug-cc-pVQZ & $1.503$ & $3.167$ & $4.088$ \\[0.1cm] PC-NEVPT2(12,12) &6-31+G(d)& $1.487$ & $3.296$ & $4.103$ \\ -& AVDZ & $1.472$ & $3.141$ & $4.064$ \\ -& AVTZ & $1.462$ & $3.063$ & $4.056$ \\ -& AVQZ & $1.464$ & $3.043$ & $4.059$ \\[0.1cm] +& aug-cc-pVDZ & $1.472$ & $3.141$ & $4.064$ \\ +& aug-cc-pVTZ & $1.462$ & $3.063$ & $4.056$ \\ +& aug-cc-pVQZ & $1.464$ & $3.043$ & $4.059$ \\[0.1cm] MRCI(12,12) &6-31+G(d)& & & $4.125$ \\[0.1cm] CIPSI &6-31+G(d)& $1.486\pm 0.005$ & $3.348\pm 0.024$ & $4.084\pm 0.012$ \\ -& AVDZ & $1.458\pm 0.009$ & $3.187\pm 0.035$ & $4.04\pm 0.04$ \\ -& AVTZ & $1.461\pm 0.030$ & $3.142\pm 0.035$ & $4.03\pm 0.09$ \\ +& aug-cc-pVDZ & $1.458\pm 0.009$ & $3.187\pm 0.035$ & $4.04\pm 0.04$ \\ +& aug-cc-pVTZ & $1.461\pm 0.030$ & $3.142\pm 0.035$ & $4.03\pm 0.09$ \\ \end{tabular} \end{ruledtabular} - \fnt[1]{Value obtained using CC4/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} - \fnt[2]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/AVDZ and CC4/6-31+G(d).} - \fnt[3]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} + \fnt[1]{Value obtained using CC4/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} + \fnt[2]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/aug-cc-pVDZ and CC4/6-31+G(d).} + \fnt[3]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} \end{table*} \end{squeezetable} %%% %%% %%% %%% @@ -589,25 +607,25 @@ Figure \ref{fig:D2h} shows the vertical energies of the studied excited states d \begin{figure*} %width=0.8\linewidth \includegraphics[scale=0.5]{D2h.pdf} - \caption{Vertical energies of the $1\,{}^3B_{1g} $, $1\,{}^1B_{1g}$ and $2\,{}^1A_{g}$ states for the $D_{2h}$ geometry using the AVTZ basis. Purple lines are for the SF-TD-DFT functionals, orange lines are for the SF-ADC schemes, green lines are for the multireference methods, blue lines are for the CC methods and the black ones are for the TBE.} + \caption{Vertical energies of the $1\,{}^3B_{1g} $, $1\,{}^1B_{1g}$ and $2\,{}^1A_{g}$ states for the \Dtwo geometry using the aug-cc-pVTZ basis. Purple lines are for the SF-TD-DFT functionals, orange lines are for the SF-ADC schemes, green lines are for the multireference methods, blue lines are for the CC methods and the black ones are for the TBE.} \label{fig:D2h} \end{figure*} %%% %%% %%% %%% -\subsubsection{$D_{4h}$ geometry} +\subsubsection{\Dfour ~geometry} \label{sec:D4h} -Table \ref{tab:sf_D4h} shows vertical energies obtained with spin-flip methods and Table \ref{tab:D4h} vertical energies obtained with standard methods. As for the previous geometry we start with the SF-TD-DFT results with hybrid functionals. We can first notice that for the B3LYP and the PBE0 functionals we have a wrong ordering of the first triplet state $1\,{}^3A_{2g}$ and the ground state $\text{X}\,{}^1B_{1g}$. We retrieve the good ordering with the BH\&HLYP functional, so adding exact exchange to the functional allows us to have the right ordering between these two states. For the B3LYP and the PBE0 functionals we have that the energy differences for each states and for all bases are small with 0.004-0.007 eV for the triplet state $1\,{}^3A_{2g}$. We have 0.015-0.021 eV of energy difference for the $2\,{}^1A_{1g}$ state through all bases, we can notice that this state is around 0.13 eV (considering all bases) higher with the PBE0 functional. We can make the same observation for the $1\,{}^1B_{2g}$ state for the B3LYP and the PBE0 functionals, indeed we have small energy differences for all bases and the state is around 0.14-0.15 eV for the PBE0 functional. For the BH\&HLYP functional the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states are higher in energy than for the two other hybrid functionals with about 0.65-0.69 eV higher for the $2\,{}^1A_{1g}$ state and 0.75-0.77 eV for the $1\,{}^1B_{2g}$ state compared to the PBE0 functional. Then, we have the RSH functionals CAM-B3LYP, $\omega$B97X-V and LC-$\omega$PBE08. For these functionals the vertical energies are similar for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states with a maximum energy difference of 0.01-0.02 eV for the $2\,{}^1A_{1g}$ state and 0.005-0.009 eV for the $1\,{}^1B_{2g}$ state considering all bases. The maximum energy difference for the triplet state is larger with 0.047-0.057 eV for all bases. Note that the vertical energies obtained with the RSH functionals are close to the PBE0 ones except that we have the right ordering between the triplet state $1\,{}^3A_{2g}$ and the ground state $\text{X}\,{}^1B_{1g}$. The M06-2X results are closer to the BH\&HLYP ones but the M06-2X vertical energies are always higher than the BH\&HLYP ones. We can notice that the M06-2X energies for the $2\,{}^1A_{1g}$ state are close to the BH\&HLYP energies for the $1\,{}^1B_{2g}$ state. For these two states, when we compared the results obtained with the M06-2X and the BH\&HLYP functionals, we have an energy difference of 0.16-0.17 eV for the $2\,{}^1A_{1g}$ state and 0.17-0.18 eV for the $1\,{}^1B_{2g}$ state considering all bases. For the triplet state $1\,{}^3A_{2g}$ the energy differences are smaller with 0.03-0.04 eV for all bases. The M11 vertical energies are very close to the M06-2X ones for the triplet state with a maximum energy difference of 0.003 eV considering all bases, and are closer to the BH\&HLYP results for the two other states with 0.06-0.07 eV and 0.07-0.08 eV of energy difference for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, respectively. Then we discuss the various ADC scheme results, note that we were not able to obtain the vertical energies with the AVQZ basis due to computational resources. For the ADC(2)-s scheme we can see that the energy difference for the triplet state are smaller than for the two other states, indeed we have an energy difference of 0.09 eV for the triplet state whereas we have 0.15 eV and 0.25 eV for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, again when considering all bases. The energy difference for each state and through the bases are similar for the two other ADC schemes. We can notice a large variation of the vertical energies for the $2\,{}^1A_{1g}$ state between ADC(2)-s and ADC(2)-x with around 0.52-0.58 eV through all bases. The ADC(3) vertical energies are very similar to the ADC(2) ones for the $1\,{}^1B_{2g}$ state with an energy difference of 0.01-0.02 eV for all bases, whereas we have an energy difference of 0.04-0.11 eV and 0.17-0.22 eV for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, respectively. +Table \ref{tab:sf_D4h} shows vertical energies obtained with spin-flip methods and Table \ref{tab:D4h} vertical energies obtained with standard methods. As for the previous geometry we start with the SF-TD-DFT results with hybrid functionals. We can first notice that for the B3LYP and the PBE0 functionals we have a wrong ordering of the first triplet state $1\,{}^3A_{2g}$ and the ground state $\text{X}\,{}^1B_{1g}$. We retrieve the good ordering with the BH\&HLYP functional, so adding exact exchange to the functional allows us to have the right ordering between these two states. For the B3LYP and the PBE0 functionals we have that the energy differences for each states and for all bases are small with \SIrange{0.004}{0.007}{\eV} for the triplet state $1\,{}^3A_{2g}$. We have \SIrange{0.015}{0.021}{\eV} of energy difference for the $2\,{}^1A_{1g}$ state through all bases, we can notice that this state is around \SI{0.13}{\eV} (considering all bases) higher with the PBE0 functional. We can make the same observation for the $1\,{}^1B_{2g}$ state for the B3LYP and the PBE0 functionals, indeed we have small energy differences for all bases and the state is around \SIrange{0.14}{0.15}{\eV} for the PBE0 functional. For the BH\&HLYP functional the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states are higher in energy than for the two other hybrid functionals with about \SIrange{0.65}{0.69}{\eV} higher for the $2\,{}^1A_{1g}$ state and \SIrange{0.75}{0.77}{\eV} for the $1\,{}^1B_{2g}$ state compared to the PBE0 functional. Then, we have the RSH functionals CAM-B3LYP, $\omega$B97X-V and LC-$\omega$PBE08. For these functionals the vertical energies are similar for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states with a maximum energy difference of \SIrange{0.01}{0.02}{\eV} for the $2\,{}^1A_{1g}$ state and \SIrange{0.005}{0.009}{\eV} for the $1\,{}^1B_{2g}$ state considering all bases. The maximum energy difference for the triplet state is larger with \SIrange{0.047}{0.057}{\eV} for all bases. Note that the vertical energies obtained with the RSH functionals are close to the PBE0 ones except that we have the right ordering between the triplet state $1\,{}^3A_{2g}$ and the ground state $\text{X}\,{}^1B_{1g}$. The M06-2X results are closer to the BH\&HLYP ones but the M06-2X vertical energies are always higher than the BH\&HLYP ones. We can notice that the M06-2X energies for the $2\,{}^1A_{1g}$ state are close to the BH\&HLYP energies for the $1\,{}^1B_{2g}$ state. For these two states, when we compared the results obtained with the M06-2X and the BH\&HLYP functionals, we have an energy difference of \SIrange{0.16}{0.17}{\eV} for the $2\,{}^1A_{1g}$ state and \SIrange{0.17}{0.18}{\eV} for the $1\,{}^1B_{2g}$ state considering all bases. For the triplet state $1\,{}^3A_{2g}$ the energy differences are smaller with \SIrange{0.03}{0.04}{\eV} for all bases. The M11 vertical energies are very close to the M06-2X ones for the triplet state with a maximum energy difference of \SI{0.003}{\eV} considering all bases, and are closer to the BH\&HLYP results for the two other states with \SIrange{0.06}{0.07}{\eV} and \SIrange{0.07}{0.08}{\eV} of energy difference for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, respectively. Then we discuss the various ADC scheme results, note that we were not able to obtain the vertical energies with the aug-cc-pVQZ basis due to computational resources. For the ADC(2)-s scheme we can see that the energy difference for the triplet state are smaller than for the two other states, indeed we have an energy difference of \SI{0.09}{\eV} for the triplet state whereas we have \SI{0.15}{\eV} and \SI{0.25}{eV} for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, again when considering all bases. The energy difference for each state and through the bases are similar for the two other ADC schemes. We can notice a large variation of the vertical energies for the $2\,{}^1A_{1g}$ state between ADC(2)-s and ADC(2)-x with around \SIrange{0.52}{0.58}{\eV} through all bases. The ADC(3) vertical energies are very similar to the ADC(2) ones for the $1\,{}^1B_{2g}$ state with an energy difference of \SIrange{0.01}{0.02}{\eV} for all bases, whereas we have an energy difference of \SIrange{0.04}{0.11}{\eV} and \SIrange{0.17}{0.22}{\eV} for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, respectively. -Now we look at Table \ref{tab:D4h} for vertical energies obtained with standard methods, we have first the various CC methods, for all the CC methods we were only able to reach the AVTZ basis. +Now we look at Table \ref{tab:D4h} for vertical energies obtained with standard methods, we have first the various CC methods, for all the CC methods we were only able to reach the aug-cc-pVTZ basis. %For the CCSD method we cannot obtain the vertical energy for the $1\,{}^1B_{2g}$ state, we can notice a small energy variation through the bases for the triplet state with around 0.06 eV. The energy variation is larger for the $2\,{}^1A_{1g}$ state with 0.20 eV. -Again, we have computed the vertical energies at the CCSDT and CCSDTQ level as well as their approximation the CC3 and CC4 methods, respectively. Note that for CC we started from a restricted Hartree-Fock (RHF) reference and in that case the ground state is the $2\,{}^1A_{1g}$ state, then the $X\,{}^1B_{1g}$ state is the single deexcitation and the $1\,{}^1B_{2g}$ state is the double excitation from our ground state. For the CC3 method we do not have the vertical energies for the triplet state $1\,{}^3A_{2g}$. Considering all bases for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states we have an energy difference of about 0.15 eV and 0.12 eV, respectively. The CCSDT energies are close to the CC3 ones for the $2\,{}^1A_{1g}$ state with an energy difference of around 0.03-0.06 eV considering all bases. For the $1\,{}^1B_{2g}$ state the energy difference between the CC3 and the CCSDT values is larger with 0.18-0.27 eV. We can make a similar observation between the CC4 and the CCSDTQ values, for the $2\,{}^1A_{1g}$ state we have an energy difference of about 0.01 eV and this time we have smaller energy difference for the $1\,{}^1B_{2g}$ with 0.01 eV. Then we discuss the multireference results and this time we were able to reach the AVQZ basis. Again we consider two different active spaces, four electrons in four orbitals and twelve electrons in twelve orbitals. If we compare the CASSCF(4,4) and CASPT2(4,4) values we can see large energy differences for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, for the $2\,{}^1A_{1g}$ state we have an energy difference of about 0.67-0.74 eV and 1.65-1.81 eV for the $1\,{}^1B_{2g}$ state. The energy difference is smaller for the triplet state with 0.27-0.31 eV, we can notice that all the CASSCF(4,4) vertical energies are higher than the CASPT2(4,4) ones. Then we have the NEVPT2(4,4) methods (SC-NEVPT2(4,4) and PC-NEVPT2(4,4)) for which the vertical energies are quite similar, however we can notice that we have a different ordering of the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states with $1\,{}^1B_{2g}$ higher in energy than $2\,{}^1A_{1g}$ for the two NEVPT2(4,4) methods. Then we have the results for the same methods but with a larger active space. For the CASSCF(12,12) we have similar values for the triplet state with energy difference of about 0.06 eV for all bases but larger energy difference for the $2\,{}^1A_{1g}$ state with around 0.28-0.29 eV and 0.79-0.81 eV for the $1\,{}^1B_{2g}$ state. Note that from CASSCF(4,4) to CASSCF(12,12) every vertical energy is smaller. We can make the contrary observation for the CASPT2 method where from CASPT2(4,4) to CASPT2(12,12) every vertical energy is larger. For the CASPT2(12,12) method we have similar values for the triplet state and for the $2\,{}^1A_{1g}$ state, considering all bases, with an energy difference of around 0.05-0.06 eV and 0.02-0.05 eV respectively. The energy difference is larger for the $1\,{}^1B_{2g}$ state with about 0.27-0.29 eV. Next we have the NEVPT2 methods, the first observation that we can make is that by increasing the size of the active space we retrieve the right ordering of the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states. Again, every vertical energy is higher in the NEVPT2(12,12) case than for the NEVPT2(4,4) one. +Again, we have computed the vertical energies at the CCSDT and CCSDTQ level as well as their approximation the CC3 and CC4 methods, respectively. Note that for CC we started from a restricted Hartree-Fock (RHF) reference and in that case the ground state is the $2\,{}^1A_{1g}$ state, then the $X\,{}^1B_{1g}$ state is the single deexcitation and the $1\,{}^1B_{2g}$ state is the double excitation from our ground state. For the CC3 method we do not have the vertical energies for the triplet state $1\,{}^3A_{2g}$. Considering all bases for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states we have an energy difference of about \SI{0.15}{\eV} and \SI{0.12}{\eV}, respectively. The CCSDT energies are close to the CC3 ones for the $2\,{}^1A_{1g}$ state with an energy difference of around \SIrange{0.03}{0.06}{\eV} considering all bases. For the $1\,{}^1B_{2g}$ state the energy difference between the CC3 and the CCSDT values is larger with \SIrange{0.18}{0.27}{\eV}. We can make a similar observation between the CC4 and the CCSDTQ values, for the $2\,{}^1A_{1g}$ state we have an energy difference of about \SI{0.01}{\eV} and this time we have smaller energy difference for the $1\,{}^1B_{2g}$ with \SI{0.01}{\eV}. Then we discuss the multireference results and this time we were able to reach the aug-cc-pVQZ basis. Again we consider two different active spaces, four electrons in four orbitals and twelve electrons in twelve orbitals. If we compare the CASSCF(4,4) and CASPT2(4,4) values we can see large energy differences for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states, for the $2\,{}^1A_{1g}$ state we have an energy difference of about \SIrange{0.67}{0.74}{\eV} and \SIrange{1.65}{1.81}{\eV} for the $1\,{}^1B_{2g}$ state. The energy difference is smaller for the triplet state with \SIrange{0.27}{0.31}{\eV}, we can notice that all the CASSCF(4,4) vertical energies are higher than the CASPT2(4,4) ones. Then we have the NEVPT2(4,4) methods (SC-NEVPT2(4,4) and PC-NEVPT2(4,4)) for which the vertical energies are quite similar, however we can notice that we have a different ordering of the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states with $1\,{}^1B_{2g}$ higher in energy than $2\,{}^1A_{1g}$ for the two NEVPT2(4,4) methods. Then we have the results for the same methods but with a larger active space. For the CASSCF(12,12) we have similar values for the triplet state with energy difference of about \SI{0.06}{\eV} for all bases but larger energy difference for the $2\,{}^1A_{1g}$ state with around \SIrange{0.28}{0.29}{\eV} and \SIrange{0.79}{0.81}{\eV} for the $1\,{}^1B_{2g}$ state. Note that from CASSCF(4,4) to CASSCF(12,12) every vertical energy is smaller. We can make the contrary observation for the CASPT2 method where from CASPT2(4,4) to CASPT2(12,12) every vertical energy is larger. For the CASPT2(12,12) method we have similar values for the triplet state and for the $2\,{}^1A_{1g}$ state, considering all bases, with an energy difference of around \SIrange{0.05}{0.06}{\eV} and \SIrange{0.02}{0.05}{\eV} respectively. The energy difference is larger for the $1\,{}^1B_{2g}$ state with about \SIrange{0.27}{0.29}{\eV}. Next we have the NEVPT2 methods, the first observation that we can make is that by increasing the size of the active space we retrieve the right ordering of the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states. Again, every vertical energy is higher in the NEVPT2(12,12) case than for the NEVPT2(4,4) one. %%% TABLE VI %%% \begin{squeezetable} \begin{table} \caption{ - Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1B_{1g}$ ground state) of the $1\,{}^3A_{2g}$, $2\,{}^1A_{1g}$, and $1\,{}^1B_{2g}$ states of CBD at the $D_{4h}$ square-planar equilibrium geometry of the $1\,{}^3A_{2g}$ state. + Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1B_{1g}$ ground state) of the $1\,{}^3A_{2g}$, $2\,{}^1A_{1g}$, and $1\,{}^1B_{2g}$ states of CBD at the \Dfour square-planar equilibrium geometry of the $1\,{}^3A_{2g}$ state. \label{tab:sf_D4h}} \begin{ruledtabular} \begin{tabular}{llrrr} @@ -616,50 +634,50 @@ Again, we have computed the vertical energies at the CCSDT and CCSDTQ level as w Method & Basis & $1\,{}^3A_{2g}$ & $2\,{}^1A_{1g}$ & $1\,{}^1B_{2g}$ \\ \hline %SF-CIS & 6-31+G(d) & $0.355$ & $2.742$ & $3.101$ \\ - %& AVDZ & $0.318$ & $2.593$ & $3.052$ \\ - %& AVTZ & $0.305$ & $2.576$ & $3.053$ \\ - %& AVQZ & $0.306$ & $2.577$ & $3.056$ \\[0.1cm] + %& aug-cc-pVDZ & $0.318$ & $2.593$ & $3.052$ \\ + %& aug-cc-pVTZ & $0.305$ & $2.576$ & $3.053$ \\ + %& aug-cc-pVQZ & $0.306$ & $2.577$ & $3.056$ \\[0.1cm] SF-TD-B3LYP & 6-31+G(d) & $-0.016$ & $0.487$ & $0.542$ \\ - & AVDZ & $-0.019$ & $0.477$ & $0.536$ \\ - & AVTZ & $-0.020$ & $0.472$ & $0.533$ \\ - & AVQZ & $-0.020$ & $0.473$ & $0.533$ \\[0.1cm] + & aug-cc-pVDZ & $-0.019$ & $0.477$ & $0.536$ \\ + & aug-cc-pVTZ & $-0.020$ & $0.472$ & $0.533$ \\ + & aug-cc-pVQZ & $-0.020$ & $0.473$ & $0.533$ \\[0.1cm] SF-TD-PBE0 & 6-31+G(d) & $-0.012$ & $0.618$ & $0.689$ \\ - & AVDZ & $-0.016$ & $0.602$ & $0.680$ \\ - & AVTZ & $-0.019$ & $0.597$ & $0.677$ \\ - & AVQZ & $-0.018$ & $0.597$ & $0.677$ \\[0.1cm] + & aug-cc-pVDZ & $-0.016$ & $0.602$ & $0.680$ \\ + & aug-cc-pVTZ & $-0.019$ & $0.597$ & $0.677$ \\ + & aug-cc-pVQZ & $-0.018$ & $0.597$ & $0.677$ \\[0.1cm] SF-TD-BH\&HLYP & 6-31+G(d) & $0.064$ & $1.305$ & $1.458$ \\ - & AVDZ & $0.051$ & $1.260$ & $1.437$ \\ - & AVTZ & $0.045$ & $1.249$ & $1.431$ \\ - & AVQZ & $0.046$ & $1.250$ & $1.432$ \\[0.1cm] + & aug-cc-pVDZ & $0.051$ & $1.260$ & $1.437$ \\ + & aug-cc-pVTZ & $0.045$ & $1.249$ & $1.431$ \\ + & aug-cc-pVQZ & $0.046$ & $1.250$ & $1.432$ \\[0.1cm] SF-TD-M06-2X & 6-31+G(d) & $0.102$ & $1.476$ & $1.640$ \\ - & AVDZ & $0.086$ & $1.419$ & $1.611$ \\ - & AVTZ & $0.078$ & $1.403$ & $1.602$ \\ - & AVQZ & $0.079$ & $1.408$ & $1.607$ \\[0.1cm] + & aug-cc-pVDZ & $0.086$ & $1.419$ & $1.611$ \\ + & aug-cc-pVTZ & $0.078$ & $1.403$ & $1.602$ \\ + & aug-cc-pVQZ & $0.079$ & $1.408$ & $1.607$ \\[0.1cm] SF-TD-CAM-B3LYP & 6-31+G(d) & $0.021$ & $0.603$ & $0.672$ \\ - & AVDZ & $0.012$ & $0.585$ & $0.666$ \\ - & AVTZ & $0.010$ & $0.580$ & $0.664$ \\ - & AVQZ & $0.010$ & $0.580$ & $0.664$ \\[0.1cm] + & aug-cc-pVDZ & $0.012$ & $0.585$ & $0.666$ \\ + & aug-cc-pVTZ & $0.010$ & $0.580$ & $0.664$ \\ + & aug-cc-pVQZ & $0.010$ & $0.580$ & $0.664$ \\[0.1cm] SF-TD-$\omega $B97X-V & 6-31+G(d) & $0.040$ & $0.600$ & $0.670$ \\ - & AVDZ & $0.029$ & $0.576$ & $0.664$ \\ - & AVTZ & $0.026$ & $0.572$ & $0.662$ \\ - & AVQZ & $0.026$ & $0.572$ & $0.662$ \\[0.1cm] + & aug-cc-pVDZ & $0.029$ & $0.576$ & $0.664$ \\ + & aug-cc-pVTZ & $0.026$ & $0.572$ & $0.662$ \\ + & aug-cc-pVQZ & $0.026$ & $0.572$ & $0.662$ \\[0.1cm] SF-TD-LC-$\omega $PBE08 & 6-31+G(d) & $0.078$ & $0.593$ & $0.663$ \\ - & AVDZ & $0.060$ & $0.563$ & $0.659$ \\ - & AVTZ & $0.058$ & $0.561$ & $0.658$ \\ - & AVQZ & $0.058$ & $0.561$ & $0.659$ \\[0.1cm] + & aug-cc-pVDZ & $0.060$ & $0.563$ & $0.659$ \\ + & aug-cc-pVTZ & $0.058$ & $0.561$ & $0.658$ \\ + & aug-cc-pVQZ & $0.058$ & $0.561$ & $0.659$ \\[0.1cm] SF-TD-M11 & 6-31+G(d) & $0.102$ & $1.236$ & $1.374$ \\ - & AVDZ & $0.087$ & $1.196$ & $1.362$ \\ - & AVTZ & $0.081$ & $1.188$ & $1.359$ \\ - & AVQZ & $0.080$ & $1.185$ & $1.357$ \\[0.1cm] + & aug-cc-pVDZ & $0.087$ & $1.196$ & $1.362$ \\ + & aug-cc-pVTZ & $0.081$ & $1.188$ & $1.359$ \\ + & aug-cc-pVQZ & $0.080$ & $1.185$ & $1.357$ \\[0.1cm] SF-ADC(2)-s & 6-31+G(d) & $0.345$ & $1.760$ & $2.096$ \\ - & AVDZ & $0.269$ & $1.656$ & $1.894$ \\ - & AVTZ & $0.256$ & $1.612$ & $1.844$ \\[0.1cm] + & aug-cc-pVDZ & $0.269$ & $1.656$ & $1.894$ \\ + & aug-cc-pVTZ & $0.256$ & $1.612$ & $1.844$ \\[0.1cm] SF-ADC(2)-x & 6-31+G(d) & $0.264$ & $1.181$ & $1.972$ \\ - & AVDZ & $0.216$ & $1.107$ & $1.760$ \\ - & AVTZ & $0.212$ & $1.091$ & $1.731$ \\[0.1cm] + & aug-cc-pVDZ & $0.216$ & $1.107$ & $1.760$ \\ + & aug-cc-pVTZ & $0.212$ & $1.091$ & $1.731$ \\[0.1cm] SF-ADC(3) & 6-31+G(d) & $0.123$ & $1.650$ & $2.078$ \\ - & AVDZ & $0.088$ & $1.571$ & $1.878$ \\ - & AVTZ & $0.079$ & $1.575$ & $1.853$ \\ + & aug-cc-pVDZ & $0.088$ & $1.571$ & $1.878$ \\ + & aug-cc-pVTZ & $0.079$ & $1.575$ & $1.853$ \\ \end{tabular} \end{ruledtabular} @@ -672,7 +690,7 @@ SF-ADC(3) & 6-31+G(d) & $0.123$ & $1.650$ & $2.078$ \\ \begin{squeezetable} \begin{table*} \caption{ - Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1B_{1g}$ ground state) of the $1\,{}^3A_{2g}$, $2\,{}^1A_{1g}$, and $1\,{}^1B_{2g}$ states of CBD at the $D_{4h}$ square-planar equilibrium geometry of the $1\,{}^3A_{2g}$ state. + Standard vertical excitation energies (with respect to the singlet $\text{X}\,{}^1B_{1g}$ ground state) of the $1\,{}^3A_{2g}$, $2\,{}^1A_{1g}$, and $1\,{}^1B_{2g}$ states of CBD at the \Dfour square-planar equilibrium geometry of the $1\,{}^3A_{2g}$ state. \label{tab:D4h}} \begin{ruledtabular} \begin{tabular}{llrrr} @@ -681,94 +699,94 @@ SF-ADC(3) & 6-31+G(d) & $0.123$ & $1.650$ & $2.078$ \\ Method & Basis & $1\,{}^3A_{2g}$ & $2\,{}^1A_{1g}$ & $1\,{}^1B_{2g}$ \\ \hline CCSD & 6-31+G(d) & $0.148$ & $1.788$ & \\ - & AVDZ & $0.100$ & $1.650$ & \\ - & AVTZ & $0.085$ & $1.600$ & \\ - & AVQZ & $0.084$ & $1.588$ & \\[0.1cm] + & aug-cc-pVDZ & $0.100$ & $1.650$ & \\ + & aug-cc-pVTZ & $0.085$ & $1.600$ & \\ + & aug-cc-pVQZ & $0.084$ & $1.588$ & \\[0.1cm] CC3 & 6-31+G(d) & & $1.809$ & $2.836$ \\ - & AVDZ & & $1.695$ & $2.646$ \\ - & AVTZ & & $1.662$ & $2.720$ \\[0.1cm] + & aug-cc-pVDZ & & $1.695$ & $2.646$ \\ + & aug-cc-pVTZ & & $1.662$ & $2.720$ \\[0.1cm] CCSDT & 6-31+G(d) & $0.210$ & $1.751$ & $2.565$ \\ - & AVDZ & $0.165$ & $1.659$ & $2.450$ \\ - & AVTZ & $0.149$ & $1.631$ & $2.537$ \\[0.1cm] + & aug-cc-pVDZ & $0.165$ & $1.659$ & $2.450$ \\ + & aug-cc-pVTZ & $0.149$ & $1.631$ & $2.537$ \\[0.1cm] CC4 & 6-31+G(d) & & $1.604$ & $2.121$ \\ - & AVDZ & & $1.539$ & $1.934$ \\ - & AVTZ & & $\left[1.511 \right]$\fnm[1] &$\left[2.021 \right]$\fnm[1] \\[0.1cm] + & aug-cc-pVDZ & & $1.539$ & $1.934$ \\ + & aug-cc-pVTZ & & $\left[1.511 \right]$\fnm[1] &$\left[2.021 \right]$\fnm[1] \\[0.1cm] CCSDTQ & 6-31+G(d) & $0.205$ & $1.593$ & $2.134$ \\ -& AVDZ & $\left[0.160\right]$\fnm[2] & $\left[1.528 \right]$\fnm[4]&$\left[1.947\right]$\fnm[4] \\ -& AVTZ & $\left[0.144\right]$\fnm[3] & $\left[1.500 \right]$\fnm[5]&$\left[2.034\right]$\fnm[5] \\ [0.1cm] +& aug-cc-pVDZ & $\left[0.160\right]$\fnm[2] & $\left[1.528 \right]$\fnm[4]&$\left[1.947\right]$\fnm[4] \\ +& aug-cc-pVTZ & $\left[0.144\right]$\fnm[3] & $\left[1.500 \right]$\fnm[5]&$\left[2.034\right]$\fnm[5] \\ [0.1cm] SA2-CASSCF(4,4) & 6-31+G(d) & $0.447$ & $2.257$ & $3.549$ \\ - & AVDZ & $0.438$ & $2.240$ & $3.443$ \\ - & AVTZ & $0.434$ & $2.234$ & $3.424$ \\ - & AVQZ & $0.435$ & $2.235$ & $3.427$ \\[0.1cm] + & aug-cc-pVDZ & $0.438$ & $2.240$ & $3.443$ \\ + & aug-cc-pVTZ & $0.434$ & $2.234$ & $3.424$ \\ + & aug-cc-pVQZ & $0.435$ & $2.235$ & $3.427$ \\[0.1cm] CASPT2(4,4) & 6-31+G(d) & $0.176$ & $1.588$ & $1.899$ \\ - & AVDZ & $0.137$ & $1.540$ & $1.708$ \\ - & AVTZ & $0.128$ & $1.506$ & $1.635$ \\ - & AVQZ & $0.128$ & $1.498$ & $1.612$ \\[0.1cm] + & aug-cc-pVDZ & $0.137$ & $1.540$ & $1.708$ \\ + & aug-cc-pVTZ & $0.128$ & $1.506$ & $1.635$ \\ + & aug-cc-pVQZ & $0.128$ & $1.498$ & $1.612$ \\[0.1cm] SC-NEVPT2(4,4) & 6-31+G(d) & $0.083$ & $1.520$ & $1.380$ \\ - & AVDZ & $0.037$ & $1.465$ & $1.140$ \\ - & AVTZ & $0.024$ & $1.428$ & $1.055$ \\ - & AVQZ & $0.024$ & $1.420$ & $1.030$ \\[0.1cm] + & aug-cc-pVDZ & $0.037$ & $1.465$ & $1.140$ \\ + & aug-cc-pVTZ & $0.024$ & $1.428$ & $1.055$ \\ + & aug-cc-pVQZ & $0.024$ & $1.420$ & $1.030$ \\[0.1cm] PC-NEVPT2(4,4) & 6-31+G(d) & $0.085$ & $1.496$ & $1.329$ \\ - & AVDZ & $0.039$ & $1.440$ & $1.088$ \\ - & AVTZ & $0.026$ & $1.403$ & $1.003$ \\ - & AVQZ & $0.026$ & $1.395$ & $0.977$ \\[0.1cm] + & aug-cc-pVDZ & $0.039$ & $1.440$ & $1.088$ \\ + & aug-cc-pVTZ & $0.026$ & $1.403$ & $1.003$ \\ + & aug-cc-pVQZ & $0.026$ & $1.395$ & $0.977$ \\[0.1cm] MRCI(4,4) & 6-31+G(d) & $0.297$ & $1.861$ & $2.571$ \\ - & AVDZ & $0.273$ & $1.823$ & $2.419$ \\ - & AVTZ & $0.271$ & $1.824$ & $2.415$ \\ - & AVQZ & $0.273$ & $1.825$ & $2.413$ \\[0.1cm] + & aug-cc-pVDZ & $0.273$ & $1.823$ & $2.419$ \\ + & aug-cc-pVTZ & $0.271$ & $1.824$ & $2.415$ \\ + & aug-cc-pVQZ & $0.273$ & $1.825$ & $2.413$ \\[0.1cm] SA2-CASSCF(12,12) & 6-31+G(d) & $0.386$ & $1.974$ & $2.736$ \\ - & AVDZ & $0.374$ & $1.947$ & $2.649$ \\ - & AVTZ & $0.370$ & $1.943$ & $2.634$ \\ - & AVQZ & $0.371$ & $1.945$ & $2.637$ \\[0.1cm] + & aug-cc-pVDZ & $0.374$ & $1.947$ & $2.649$ \\ + & aug-cc-pVTZ & $0.370$ & $1.943$ & $2.634$ \\ + & aug-cc-pVQZ & $0.371$ & $1.945$ & $2.637$ \\[0.1cm] CASPT2(12,12) & 6-31+G(d) & $0.235$ & $1.635$ & $2.170$ \\ - & AVDZ & $0.203$ & $1.588$ & $2.015$ \\ - & AVTZ & $0.183$ & $1.538$ & $1.926$ \\ - & AVQZ & $0.179$ & $1.522$ & $1.898$ \\[0.1cm] + & aug-cc-pVDZ & $0.203$ & $1.588$ & $2.015$ \\ + & aug-cc-pVTZ & $0.183$ & $1.538$ & $1.926$ \\ + & aug-cc-pVQZ & $0.179$ & $1.522$ & $1.898$ \\[0.1cm] SC-NEVPT2(12,12) & 6-31+G(d) & $0.218$ & $1.644$ & $2.143$ \\ - & AVDZ & $0.189$ & $1.600$ & $1.991$ \\ - & AVTZ & $0.165$ & $1.546$ & $1.892$ \\ - & AVQZ & $0.160$ & $1.529$ & $1.862$ \\[0.1cm] + & aug-cc-pVDZ & $0.189$ & $1.600$ & $1.991$ \\ + & aug-cc-pVTZ & $0.165$ & $1.546$ & $1.892$ \\ + & aug-cc-pVQZ & $0.160$ & $1.529$ & $1.862$ \\[0.1cm] PC-NEVPT2(12,12) & 6-31+G(d) & $0.189$ & $1.579$ & $2.020$ \\ - & AVDZ & $0.156$ & $1.530$ & $1.854$ \\ - & AVTZ & $0.131$ & $1.476$ & $1.756$ \\ - & AVQZ & $0.126$ & $1.460$ & $1.727$ \\[0.1cm] + & aug-cc-pVDZ & $0.156$ & $1.530$ & $1.854$ \\ + & aug-cc-pVTZ & $0.131$ & $1.476$ & $1.756$ \\ + & aug-cc-pVQZ & $0.126$ & $1.460$ & $1.727$ \\[0.1cm] CIPSI & 6-31+G(d) & $0.2010\pm 0.0030$ & $1.602\pm 0.007$ & $2.13\pm 0.04$ \\ - & AVDZ & $0.1570\pm 0.0030$ & $1.587\pm 0.005$ & $2.102\pm 0.027$ \\ - & AVTZ & $0.169\pm 0.029$ & $1.63\pm 0.05$ & \\ + & aug-cc-pVDZ & $0.1570\pm 0.0030$ & $1.587\pm 0.005$ & $2.102\pm 0.027$ \\ + & aug-cc-pVTZ & $0.169\pm 0.029$ & $1.63\pm 0.05$ & \\ \end{tabular} \end{ruledtabular} - \fnt[1]{Value obtained using CC4/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} - \fnt[2]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CCSDT/AVDZ and CCSDT/6-31+G(d).} - \fnt[3]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} - \fnt[4]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/AVDZ and CC4/6-31+G(d).} - \fnt[5]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} + \fnt[1]{Value obtained using CC4/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} + \fnt[2]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CCSDT/aug-cc-pVDZ and CCSDT/6-31+G(d).} + \fnt[3]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} + \fnt[4]{Value obtained using CCSDTQ/6-31+G(d) corrected by the difference between CC4/aug-cc-pVDZ and CC4/6-31+G(d).} + \fnt[5]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} \end{table*} \end{squeezetable} %%% %%% %%% %%% -Figure \ref{fig:D4h} shows the vertical energies of the studied excited states described in Tables \ref{tab:sf_D4h} and \ref{tab:D4h}. We see that all methods exhibit larger variations of the vertical energies due to the high symmetry of the $D_{4h}$ structure. For the triplet state most of the methods used are able to give a vertical energy close to the TBE one, we can although see that CASSCF, with the two different active spaces, show larger energy error than most of the DFT functionals used. Then for the, strongly multiconfigurational character, $2\,{}^1A_{1g}$ state we have a good description by the CC and multireference methods with the largest active space, except for CASSCF. The SF-ADC(2) and SF-ADC(3) schemes are also able to provide a good description of the $2\,{}^1A_{1g}$ state and even for the $1\,{}^1B_{2g} $ we see that SF-ADC(2)-x give a worst result than SF-ADC(2). Multiconfigurational methods with the smallest active space do not demonstrate a good description of the two singlet excited states especially for the CASSCF method and for the the NEVPT2 methods that give the vertical energy of the $1\,{}^1B_{2g} $ state below the $2\,{}^1A_{1g}$ one. Note that CASPT2 improve a lot the description of all the states compared to CASSCF. The various TD-DFT functionals are not able to describe correctly the two singlet excited states. +Figure \ref{fig:D4h} shows the vertical energies of the studied excited states described in Tables \ref{tab:sf_D4h} and \ref{tab:D4h}. We see that all methods exhibit larger variations of the vertical energies due to the high symmetry of the \Dfour structure. For the triplet state most of the methods used are able to give a vertical energy close to the TBE one, we can although see that CASSCF, with the two different active spaces, show larger energy error than most of the DFT functionals used. Then for the, strongly multiconfigurational character, $2\,{}^1A_{1g}$ state we have a good description by the CC and multireference methods with the largest active space, except for CASSCF. The SF-ADC(2) and SF-ADC(3) schemes are also able to provide a good description of the $2\,{}^1A_{1g}$ state and even for the $1\,{}^1B_{2g} $ we see that SF-ADC(2)-x give a worst result than SF-ADC(2). Multiconfigurational methods with the smallest active space do not demonstrate a good description of the two singlet excited states especially for the CASSCF method and for the the NEVPT2 methods that give the vertical energy of the $1\,{}^1B_{2g} $ state below the $2\,{}^1A_{1g}$ one. Note that CASPT2 improve a lot the description of all the states compared to CASSCF. The various TD-DFT functionals are not able to describe correctly the two singlet excited states. %%% FIGURE IV %%% \begin{figure*} %width=0.8\linewidth \includegraphics[scale=0.5]{D4h.pdf} - \caption{Vertical energies of the $1\,{}^3A_{2g} $, $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g} $ states for the $D_{4h}$ geometry using the AVTZ basis. Purple lines are for the SF-TD-DFT functionals, orange lines are for the SF-ADC schemes, green lines are for the multireference methods, blue lines are for the CC methods and the black ones are for the TBE.} + \caption{Vertical energies of the $1\,{}^3A_{2g} $, $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g} $ states for the \Dfour geometry using the aug-cc-pVTZ basis. Purple lines are for the SF-TD-DFT functionals, orange lines are for the SF-ADC schemes, green lines are for the multireference methods, blue lines are for the CC methods and the black ones are for the TBE.} \label{fig:D4h} \end{figure*} %%% %%% %%% %%% \subsubsection{Theoretical Best Estimates} \label{sec:TBE} -Table \ref{tab:TBE} shows the energy differences, for the autoisomerization barrier (AB) and the different states considered, between the various methods treated and the Theoretical Best Estimate (TBE) at the AVTZ level for the AB and the states. The percentage \% T1 shown in parentheses for the excited states of the $D_{2h}$ geometry is a metric that gives the percentage of single excitation calculated at the CC3/AVTZ level and it allows us to characterize the transition. First, we look at the AB energy difference. SF-TD-DFT shows large variations of the energy with errors of 1.42-10.81 \kcalmol compared to the TBE value. SF-ADC schemes provide smaller errors with 0.30-1.44 \kcalmol where we have that the SF-ADC(2)-x gives a worse error than the SF-ADC(2)-s method. CC methods also give small energy differences with 0.11-1.05 \kcalmol and where the CC4 provides an energy very close to the TBE one. +Table \ref{tab:TBE} shows the energy differences, for the autoisomerization barrier (AB) and the different states considered, between the various methods treated and the Theoretical Best Estimate (TBE) at the aug-cc-pVTZ level for the AB and the states. The percentage \% T1 shown in parentheses for the excited states of the \Dtwo geometry is a metric that gives the percentage of single excitation calculated at the CC3/aug-cc-pVTZ level and it allows us to characterize the transition. First, we look at the AB energy difference. SF-TD-DFT shows large variations of the energy with errors of \SIrange{1.42}{10.81}{\kcalmol} compared to the TBE value. SF-ADC schemes provide smaller errors with \SIrange{0.30}{1.44}{\kcalmol} where we have that the SF-ADC(2)-x gives a worse error than the SF-ADC(2)-s method. CC methods also give small energy differences with \SIrange{0.11}{1.05}{\kcalmol} and where the CC4 provides an energy very close to the TBE one. -Then we look at the vertical energy errors for the $(D_{2h})$ structure. First we consider the $1\,{}^3B_{1g} $ state and we look at the SF-TD-DFT results. We see that increasing the amount of exact exchange in the functional give closer results to the TBE, indeed we have 0.24 and 0.22 eV of errors for the B3LYP and the PBE0 functionals, respectively whereas we have an error of 0.08 eV for the BH\&HLYP functional. For the other functionals we have errors of 0.10-0.43 eV, note that for this state the M06-2X functional gives the same result than the TBE. We can also notice that all the functionals considered overestimate the vertical energies. The ADC schemes give closer energies with errors of 0.04-0.08 eV, note that ADC(2)-x does not improve the result compared to ADC(2)-s and that ADC(3) understimate the vertical energy whereas ADC(2)-s and ADC(2)-x overestimate the vertical energy. The CC3 and CCSDT results provide energy errors of 0.05-0.06 eV respectively. Then we go through the multireference methods with the two different active spaces, four electrons in four orbitals and twelve electrons in twelve orbitals. For the smaller active space we have errors of 0.05-0.21 eV, the largest error comes from CASSCF(4,4) which is improved by CASPT2(4,4) that gives the smaller error. Then for the largest active space multireference methods provide energy errors of 0.02-0.22 eV with again the largest error coming from CASSCF(12,12) which is again improved by CASPT2(12,12) gives the smaller error. +Then we look at the vertical energy errors for the \Dtwo structure. First we consider the $1\,{}^3B_{1g} $ state and we look at the SF-TD-DFT results. We see that increasing the amount of exact exchange in the functional give closer results to the TBE, indeed we have \SI{0.24}{\eV} and \SI{0.22}{\eV} of errors for the B3LYP and the PBE0 functionals, respectively whereas we have an error of \SI{0.08}{\eV} for the BH\&HLYP functional. For the other functionals we have errors of \SIrange{0.10}{0.43}{\eV}, note that for this state the M06-2X functional gives the same result than the TBE. We can also notice that all the functionals considered overestimate the vertical energies. The ADC schemes give closer energies with errors of \SIrange{0.04}{0.08}{\eV}, note that ADC(2)-x does not improve the result compared to ADC(2)-s and that ADC(3) understimate the vertical energy whereas ADC(2)-s and ADC(2)-x overestimate the vertical energy. The CC3 and CCSDT results provide energy errors of \SIrange{0.05}{0.06}{\eV} respectively. Then we go through the multireference methods with the two different active spaces, four electrons in four orbitals and twelve electrons in twelve orbitals. For the smaller active space we have errors of \SIrange{0.05}{0.21}{\eV}, the largest error comes from CASSCF(4,4) which is improved by CASPT2(4,4) that gives the smaller error. Then for the largest active space multireference methods provide energy errors of \SIrange{0.02}{0.22}{\eV} with again the largest error coming from CASSCF(12,12) which is again improved by CASPT2(12,12) gives the smaller error. -For the $1\,{}^1B_{1g} $ state of the $(D_{2h})$ structure we see that all the xc-functional underestimate the vertical excitation energy with energy differences of about 0.35-0.93 eV. The ADC values are much closer to the TBE with energy differences around 0.03-0.09 eV. Obviously, the CC vertical energies are close to the TBE one with around or less than 0.01 eV of energy difference. For the CASSCF(4,4) vertical energy we have a large difference of around 1.42 eV compared to the TBE value due to the lack of dynamical correlation in the CASSCF method. As previously seen the CAPT2(4,4) method correct this and we obtain a value of 0.20 eV. The others multireference methods in this active space give energy differences of around 0.55-0.76 eV compared the the TBE reference. For the largest active space with twelve electrons in twelve orbitals we have an improvement of the vertical energies with 0.72 eV of energy difference for the CASSCF(12,12) method and around 0.06 eV for the others multiconfigurational methods. +For the $1\,{}^1B_{1g} $ state of the \Dtwo structure we see that all the xc-functional underestimate the vertical excitation energy with energy differences of about \SIrange{0.35}{0.93}{\eV}. The ADC values are much closer to the TBE with energy differences around \SIrange{0.03}{0.09}{\eV}. Obviously, the CC vertical energies are close to the TBE one with around or less than \SI{0.01}{\eV} of energy difference. For the CASSCF(4,4) vertical energy we have a large difference of around \SI{1.42}{\eV} compared to the TBE value due to the lack of dynamical correlation in the CASSCF method. As previously seen the CAPT2(4,4) method correct this and we obtain a value of \SI{0.20}{\eV}. The others multireference methods in this active space give energy differences of around \SIrange{0.55}{0.76}{\eV} compared the the TBE reference. For the largest active space with twelve electrons in twelve orbitals we have an improvement of the vertical energies with \SI{0.72}{eV} of energy difference for the CASSCF(12,12) method and around 0.06 eV for the others multiconfigurational methods. -Then, for the $2\,{}^1A_{g} $ state we obtain closer results of the SF-TD-DFT methods to the TBE than in the case of the $1\,{}^1B_{1g} $ state. Indeed, we have an energy difference of about 0.01-0.34 eV for the $2\,{}^1A_{g} $ state whereas we have 0.35-0.93 eV for the $1\,{}^1B_{1g} $ state. The ADC schemes give the same error to the TBE value than for the other singlet state with 0.02 eV for the ADC(2) scheme and 0.07 eV for the ADC(3) one. The ADC(2)-x scheme provides a larger error with 0.45 eV of energy difference. Here, the CC methods manifest more variations with 0.63 eV for the CC3 value and 0.28 eV for the CCSDT compared to the TBE values. The CC4 method provides a small error with less than 0.01 eV of energy difference. The multiconfigurational methods globally give smaller error than for the other singlet state with, for the two active spaces, 0.03-0.12 eV compared to the TBE value. We can notice that CC3 and CCSDT provide larger energy errors for the $2\,{}^1A_{g} $ state than for the $1\,{}^1B_{1g} $ state, this is due to the strong multiconfigurational character of the $2\,{}^1A_{g} $ state whereas the $1\,{}^1B_{1g} $ state has a very weak multiconfigurational character. It is interesting to see that SF-TD-DFT and SF-ADC methods give better results compared to the TBE than CC3 and even CCSDT meaning that spin-flip methods are able to describe double excited states. Note that multireference methods obviously give better results too for the $2\,{}^1A_{g} $ state. +Then, for the $2\,{}^1A_{g} $ state we obtain closer results of the SF-TD-DFT methods to the TBE than in the case of the $1\,{}^1B_{1g} $ state. Indeed, we have an energy difference of about \SIrange{0.01}{0.34}{\eV} for the $2\,{}^1A_{g} $ state whereas we have \SIrange{0.35}{0.93}{\eV} for the $1\,{}^1B_{1g} $ state. The ADC schemes give the same error to the TBE value than for the other singlet state with \SI{0.02}{\eV} for the ADC(2) scheme and \SI{0.07}{\eV} for the ADC(3) one. The ADC(2)-x scheme provides a larger error with \SI{0.45}{\eV} of energy difference. Here, the CC methods manifest more variations with \SI{0.63}{\eV} for the CC3 value and \SI{0.28}{\eV} for the CCSDT compared to the TBE values. The CC4 method provides a small error with less than 0.01 eV of energy difference. The multiconfigurational methods globally give smaller error than for the other singlet state with, for the two active spaces, \SIrange{0.03}{0.12}{\eV} compared to the TBE value. We can notice that CC3 and CCSDT provide larger energy errors for the $2\,{}^1A_{g} $ state than for the $1\,{}^1B_{1g} $ state, this is due to the strong multiconfigurational character of the $2\,{}^1A_{g} $ state whereas the $1\,{}^1B_{1g} $ state has a very weak multiconfigurational character. It is interesting to see that SF-TD-DFT and SF-ADC methods give better results compared to the TBE than CC3 and even CCSDT meaning that spin-flip methods are able to describe double excited states. Note that multireference methods obviously give better results too for the $2\,{}^1A_{g} $ state. -Finally we look at the vertical energy errors for the $D_{4h}$ structure. First, we consider the $1\,{}^3A_{2g} $ state, the SF-TD-DFT methods give errors of about 0.07-1.6 eV where the largest energy differences are provided by the hybrid functionals. The ADC schemes give similar error with around 0.06-1.1 eV of energy difference. For the CC methods we have an energy error of 0.06 eV for CCSD and less than 0.01 eV for CCSDT. Then for the multireference methods with the four by four active space we have for CASSCF(4,4) 0.29 eV of error and 0.02 eV for CASPT2(4,4), again CASPT2 demonstrates its improvement compared to CASSCF. The other methods provide energy differences of about 0.12-0.13 eV. A larger active space shows again an improvement with 0.23 eV of error for CASSCF(12,12) and around 0.01-0.04 eV for the other multireference methods. CIPSI provides similar error with 0.02 eV. Then, we look at the $2\,{}^1A_{1g}$ state where the SF-TD-DFT shows large variations of error depending on the functionals, the energy error is about 0.10-1.03 eV. The ADC schemes give better errors with around 0.07-0.41 eV and where again the ADC(2)-x does not improve the ADC(2)-s energy but also gives worse results. For the CC methods we have energy errors of about 0.10-0.16 eV and CC4 provides really close energy to the TBE one with 0.01 eV of error. For the multireference methods we globally have an improvement of the energies from the four by four to the twelve by twelve active space with errors of 0.01-0.73 eV and 0.02-0.44 eV respectively with the largest errors coming from the CASSCF method. Lastly, we look at the $1\,{}^1B_{2g}$ state where we have globally larger errors. The SF-TD-DFT exhibits errors of 0.43-1.50 eV whereas ADC schemes give errors of 0.18-0.30 eV. CC3 and CCSDT provide energy differences of 0.50-0.69 eV and the CC4 shows again close energy to the CCSDTQ TBE energy with 0.01 eV of error. The multireference methods give energy differences of 0.38-1.39 eV and 0.11-0.60 eV for the four by four and twelve by twelve active spaces respectively. We can notice that we have larger variations for the vertical energies of the square CBD than for the rectangular one. This can be explained by the fact that because of the degeneracy in the $D_{4h}$ structure it leads to strong multiconfigurational character states where single reference methods are unreliable. We can also see that for the CC methods we have a better description of the $2\,{}^1A_{1g}$ state than the $1\,{}^1B_{2g}$ state, this can be related, as previously said in Subsubsection \ref{sec:D4h}, to the fact that $1\,{}^1B_{2g}$ corresponds to a double excitation from the reference state. To obtain an improved description of the $1\,{}^1B_{2g}$ state we have to include quadruples. At the end of Table \ref{tab:TBE} we show some literature results obtain from Ref.~\onlinecite{lefrancois_2015,manohar_2008} where the cc-pVTZ basis is used. The SF-ADC(2)-s, SF-ADC(2)-x and SF-ADC(3)results are presented and are consistent with our results with the exact same schemes but with the AVTZ basis. +Finally we look at the vertical energy errors for the \Dfour structure. First, we consider the $1\,{}^3A_{2g} $ state, the SF-TD-DFT methods give errors of about \SIrange{0.07}{1.6}{\eV} where the largest energy differences are provided by the hybrid functionals. The ADC schemes give similar error with around \SIrange{0.06}{1.1}{\eV} of energy difference. For the CC methods we have an energy error of \SI{0.06}{\eV} for CCSD and less than \SI{0.01}{\eV} for CCSDT. Then for the multireference methods with the four by four active space we have for CASSCF(4,4) \SI{0.29}{\eV} of error and \SI{0.02}{\eV} for CASPT2(4,4), again CASPT2 demonstrates its improvement compared to CASSCF. The other methods provide energy differences of about \SIrange{0.12}{0.13}{\eV}. A larger active space shows again an improvement with \SI{0.23}{\eV} of error for CASSCF(12,12) and around \SIrange{0.01}{0.04}{\eV} for the other multireference methods. CIPSI provides similar error with \SI{0.02}{\eV}. Then, we look at the $2\,{}^1A_{1g}$ state where the SF-TD-DFT shows large variations of error depending on the functionals, the energy error is about \SIrange{0.10}{1.03}{\eV}. The ADC schemes give better errors with around \SIrange{0.07}{0.41}{\eV} and where again the ADC(2)-x does not improve the ADC(2)-s energy but also gives worse results. For the CC methods we have energy errors of about \SIrange{0.10}{0.16}{\eV} and CC4 provides really close energy to the TBE one with \SI{0.01}{\eV} of error. For the multireference methods we globally have an improvement of the energies from the four by four to the twelve by twelve active space with errors of \SIrange{0.01}{0.73}{\eV} and \SIrange{0.02}{0.44}{\eV} respectively with the largest errors coming from the CASSCF method. Lastly, we look at the $1\,{}^1B_{2g}$ state where we have globally larger errors. The SF-TD-DFT exhibits errors of \SIrange{0.43}{1.50}{\eV} whereas ADC schemes give errors of \SIrange{0.18}{0.30}{\eV}. CC3 and CCSDT provide energy differences of \SIrange{0.50}{0.69}{\eV} and the CC4 shows again close energy to the CCSDTQ TBE energy with \SI{0.01}{\eV} of error. The multireference methods give energy differences of \SIrange{0.38}{1.39}{\eV} and \SIrange{0.11}{0.60}{\eV} for the four by four and twelve by twelve active spaces respectively. We can notice that we have larger variations for the vertical energies of the square CBD than for the rectangular one. This can be explained by the fact that because of the degeneracy in the \Dfour structure it leads to strong multiconfigurational character states where single reference methods are unreliable. We can also see that for the CC methods we have a better description of the $2\,{}^1A_{1g}$ state than the $1\,{}^1B_{2g}$ state, this can be related, as previously said in Subsubsection \ref{sec:D4h}, to the fact that $1\,{}^1B_{2g}$ corresponds to a double excitation from the reference state. To obtain an improved description of the $1\,{}^1B_{2g}$ state we have to include quadruples. At the end of Table \ref{tab:TBE} we show some literature results obtain from Ref.~\onlinecite{lefrancois_2015,manohar_2008} where the cc-pVTZ basis is used. The SF-ADC(2)-s, SF-ADC(2)-x and SF-ADC(3)results are presented and are consistent with our results with the exact same schemes but with the aug-cc-pVTZ basis. %Here again we can make the same comment for the $2\,{}^1A_{1g}$ and $1\,{}^1B_{2g}$ states of the square CBD than the $1\,{}^1B_{1g}$ and $2\,{}^1A_{g}$ states of the rectangular CBD. The first state ($2\,{}^1A_{1g}$) has a strong multiconfigurational character @@ -779,13 +797,13 @@ Finally we look at the vertical energy errors for the $D_{4h}$ structure. First, %%% TABLE I %%% %\begin{squeezetable} %\begin{table*} -% \caption{Energy differences between the various methods and the TBE considered. Note that AB stands for the autoisomerization barrier and that the energies are in \kcalmol while the vertical energies are given in eV. The number in parenthesis is the percentage T1 calculated at the CC3/AVTZ level.} +% \caption{Energy differences between the various methods and the TBE considered. Note that AB stands for the autoisomerization barrier and that the energies are in \kcalmol while the vertical energies are given in eV. The number in parenthesis is the percentage T1 calculated at the CC3/aug-cc-pVTZ level.} % % \label{tab:TBE} % \begin{ruledtabular} % \begin{tabular}{lrrrrrrr} %%\begin{tabular}{*{1}{*{8}{l}}} -%&\mc{3}{r}{$D_{2h}$ excitation energies (eV)} & \mc{3}{r}{$D_{4h}$ excitation energies (eV)} \\ +%&\mc{3}{r}{\Dtwo excitation energies (eV)} & \mc{3}{r}{\Dfour excitation energies (eV)} \\ % \cline{3-5} \cline{6-8} %Method & AB & $1\,{}^3B_{1g} $~(98.7 \%) & $1\,{}^1B_{1g} $ (95.0 \%)& $2\,{}^1A_{g} $(0.84 \%) & $1\,{}^3A_{2g} $ & $2\,{}^1A_{1g} $ & $1\,{}^1B_{2g} $ \\ % \hline @@ -821,10 +839,10 @@ Finally we look at the vertical energy errors for the $D_{4h}$ structure. First, %\end{tabular} % % \end{ruledtabular} -% \fnt[1]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} +% \fnt[1]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} % \fnt[2]{Value obtained using the NEVPT2(12,12) one.} -% \fnt[3]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} -% \fnt[4]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} +% \fnt[3]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} +% \fnt[4]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} % %\end{table*} %\end{squeezetable} @@ -832,13 +850,13 @@ Finally we look at the vertical energy errors for the $D_{4h}$ structure. First, \begin{squeezetable} \begin{table*} - \caption{Energy differences between the various methods and the TBE considered. Note that AB stands for the autoisomerization barrier and that the energies are in \kcalmol while the vertical energies are given in eV. The number in parenthesis is the percentage T1 calculated at the CC3/AVTZ level.} + \caption{Energy differences between the various methods and the TBE considered. Note that AB stands for the autoisomerization barrier and that the energies are in \kcalmol while the vertical energies are given in eV. The number in parenthesis is the percentage T1 calculated at the CC3/aug-cc-pVTZ level.} \label{tab:TBE} \begin{ruledtabular} \begin{tabular}{lrrrrrrr} %\begin{tabular}{*{1}{*{8}{l}}} -&&\mc{3}{c}{$D_{2h}$ excitation energies (eV)} & \mc{3}{c}{$D_{4h}$ excitation energies (eV)} \\ +&&\mc{3}{c}{\Dtwo excitation energies (eV)} & \mc{3}{c}{\Dfour excitation energies (eV)} \\ \cline{3-5} \cline{6-8} Method & AB & $1\,{}^3B_{1g} $~(99\%) & $1\,{}^1B_{1g} $ (95\%)& $2\,{}^1A_{g} $(1\%) & $1\,{}^3A_{2g} $ & $2\,{}^1A_{1g} $ & $1\,{}^1B_{2g} $ \\ \hline @@ -878,10 +896,10 @@ Literature & $8.53$\fnm[5] & $1.573$\fnm[5] & $3.208$\fnm[5] & $4.247$\fnm[5] & \end{tabular} \end{ruledtabular} - \fnt[1]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} + \fnt[1]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} \fnt[2]{Value obtained using the NEVPT2(12,12) one.} - \fnt[3]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CC4/AVTZ and CC4/AVDZ.} - \fnt[4]{Value obtained using CCSDTQ/AVDZ corrected by the difference between CCSDT/AVTZ and CCSDT/AVDZ.} + \fnt[3]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ.} + \fnt[4]{Value obtained using CCSDTQ/aug-cc-pVDZ corrected by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ.} \fnt[5]{Value obtained from Ref.~\onlinecite{lefrancois_2015} at the SF-ADC(2)-s/cc-pVTZ level with the geometry obtained at the CCSD(T)/cc-pVTZ level.} \fnt[6]{Value obtained from Ref.~\onlinecite{lefrancois_2015} at the SF-ADC(2)-x/cc-pVTZ level with the geometry obtained at the CCSD(T)/cc-pVTZ level.} \fnt[7]{Value obtained from Ref.~\onlinecite{lefrancois_2015} at the SF-ADC(3)/cc-pVTZ level with the geometry obtained at the CCSD(T)/cc-pVTZ level.} @@ -899,13 +917,13 @@ Literature & $8.53$\fnm[5] & $1.573$\fnm[5] & $3.208$\fnm[5] & $4.247$\fnm[5] & \label{sec:conclusion} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -We have considered the automerization barrier (AB) energy and the vertical energies of the cyclobutadiene (CBD) molecule in the square ($D_{4h}$) and rectangular ($D_{2h}$) geometries. For the AB and vertical energies we have defined theoretical best estimates (TBEs) by using the CCSDTQ/AVTZ values when we were able to obtain them. Otherwise we got the CCSDTQ/AVTZ values by correcting the CCSDTQ/AVDZ values by the difference between CC4/AVTZ and CC4/AVDZ (Eq.~\eqref{eq:AVTZ}) and we obtain the CCSDTQ/AVDZ values by correcting the CCSDTQ/6-31G+(d) values by the difference between CC4/AVDZ and CC4/6-31G+(d) (Eq.~\eqref{eq:AVDZ}). When the CC4/AVTZ values were not obtained we corrected the CC4/AVDZ values by the difference between CCSDT/AVTZ and CCSDT/AVDZ to obtain them (Eq.~\eqref{eq:CC4_AVTZ}). If the CC4 values have not been obtained then we used the same scheme that we just described but by using the CCSDT values. If neither the CC4 and CCSDTQ values were not available then we used the NEVPT2(12,12)/AVTZ values. +We have considered the automerization barrier (AB) energy and the vertical energies of the cyclobutadiene (CBD) molecule in the square (\Dfour) and rectangular (\Dtwo) geometries. For the AB and vertical energies we have defined theoretical best estimates (TBEs) by using the CCSDTQ/aug-cc-pVTZ values when we were able to obtain them. Otherwise we got the CCSDTQ/aug-cc-pVTZ values by correcting the CCSDTQ/aug-cc-pVDZ values by the difference between CC4/aug-cc-pVTZ and CC4/aug-cc-pVDZ (Eq.~\eqref{eq:aug-cc-pVTZ}) and we obtain the CCSDTQ/aug-cc-pVDZ values by correcting the CCSDTQ/6-31G+(d) values by the difference between CC4/aug-cc-pVDZ and CC4/6-31G+(d) (Eq.~\eqref{eq:aug-cc-pVDZ}). When the CC4/aug-cc-pVTZ values were not obtained we corrected the CC4/aug-cc-pVDZ values by the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ to obtain them (Eq.~\eqref{eq:CC4_aug-cc-pVTZ}). If the CC4 values have not been obtained then we used the same scheme that we just described but by using the CCSDT values. If neither the CC4 and CCSDTQ values were not available then we used the NEVPT2(12,12)/aug-cc-pVTZ values. In order to provide a benchmark of the AB and vertical energies we used coupled-cluster (CC) methods with doubles (CCSD), with triples (CCSDT and CC3) and with quadruples (CCSTQ and CC4). Due to the presence of multiconfigurational states we used multireference methods (CASSCF, CASPT2 and NEVPT2) with two active spaces ((4,4) and (12,12)). We also used spin-flip (SF-) within two frameworks, in TD-DFT with various global and range-separated hybrids functionals, and in ADC with the ADC(2)-s, ADC(2)-x and ADC(3) schemes. The CC methods provide good results for the AB and vertical energies, however in the case of multiconfigurational states CC with only triples is not sufficient and we have to include the quadruples to correctly describe these states. Multiconfigurational methods also provide very solid results for the largest active space with second order correction (CASPT2 and NEVPT2). With SF-TD-DFT the quality of the results are, of course, dependent on the functional but for the doubly excited states we have solid results. In SF-ADC we have very good results compared to the TBEs even for the doubly excited states, nevertheless the ADC(2)-x scheme give almost systematically worse results than the ADC(2)-s ones and using the ADC(3) scheme does not always provide better values. -The description of the excited states of the $D_{2h}$ structure give rise to good agreement between the single reference and multiconfigurational methods due to the large T1 percentage of the first two excited states. When this percentage is much smaller as in the case of the doubly excited state $2\,{}^1A_{g}$ the spin-flip methods show very good results within the ADC framework but even at the TD-DFT level spin-flip display good results compared to the TBE value. As said in the discussion, for the $D_{4h}$ geometry, the description of excited states is harder because of the strong multiconfigurational character where SF-TD-DFT can present more than 1 eV of error compared to the TBE. However, SF-ADC can show error of around 0.1-0.2 eV which can be better than the multiconfigurational methods results. +The description of the excited states of the \Dtwo structure give rise to good agreement between the single reference and multiconfigurational methods due to the large T1 percentage of the first two excited states. When this percentage is much smaller as in the case of the doubly excited state $2\,{}^1A_{g}$ the spin-flip methods show very good results within the ADC framework but even at the TD-DFT level spin-flip display good results compared to the TBE value. As said in the discussion, for the \Dfour geometry, the description of excited states is harder because of the strong multiconfigurational character where SF-TD-DFT can present more than 1 eV of error compared to the TBE. However, SF-ADC can show error of around \SIrange{0.1}{0.2}{\eV} which can be better than the multiconfigurational methods results. %%%%%%%%%%%%%%%%%%%%%%%% \acknowledgements{ diff --git a/Manuscript/D2h.pdf b/Manuscript/D2h.pdf index cddb1bfad3937fce992e34a3a53955e78933bc85..56ffdd6f17c7f59081c8ee7b7ba51d1f0a5f1e2e 100644 GIT binary patch delta 24816 zcmV)KK)S!os|Mq^2C$^re{Yg2IkK}0&b5jdRt^3vStpsM52ytc>h8dShd|-P{-@<% zLz?-ClNU%JgFJG{8X8Gs>y6pqsU;LfQB3&C*Y=QFQ>@RxDY-E^l;wHK2WNDLudg+` z>v4|B!vGk7=e3r{@aqF3Te+9{5GuDuMDy765Suq;#Mof7$s~+F%v9n1b6l*r=40EgHdF-V;Kwt zqf8mhYTsf}@&>?Il)g-83^f7Q%(>m6mDK4_v^(Xz>LV%`h3T))_IA7-#86ygkZ6GkX?0&5~eN$;vV=iH6)D^s~NIQwqZp)e@bd78IQ8&*Ig`nt-!D;B$vo0 z;9Nw(8&5Mv;#E}#WxcY#J{*to$cm$KkBUdZZgq#F6x*1-)6p)|==~qNOfzO%e8ivJ z{{lud%Gj5_s>;$&Fh5au(*h-0grlTHb8tyYvaP3A({wxv~7Bh3XzG|IvZIT1pjG1O#k0?mj`pyeYL zXpBbbOQ3DxD1Q?qS>RLz435DFUlk3}3`e;nf3DnXqg$h4kRanxt{}16A|6F04qBAm zgRc$cNm-OrUw#qO-K0-J(7;4n+M*a+a(+g>h@+)ByWF1iF@oa3KRTe-0Jj%}H;iU4#qzPnRaBz9SA6(v#Y+OEm6g;>0Uq^($-gmCU_-E7D#7K;=?d@32hMpnQN`#8J5d9>BekKzGVDUFnL7&JZ&*~mOE(4 zQ2%^-t9#`3aWS{dUMq@Og!lY&RDp zlFtX6e13o6+`!=T+c(7L84j}DTo{ou7Ndu2O<`xj=^2vpadS~j%1lnrkdy7^67b^m z`9yH~97b$6!cxkIlxJMZy16hcWxKf`F6Hy)LRaI?=n<9jd2wM>%E!g!l;L=BfBI9b zY{Av;wnQ*_FZetoPFk>egU80@^8qt?gfi^67Dl9eyR{@e`ql!4m~jmXNPrTh;0Tt4 zX%4`Up9=h2p)if{gd!DI!B#xVq}JXYk1~tY`ll!SO2vOY(Hv}2R1-BW4~j<#IXD?6 zQ{^tjnLOQ_i6-646+Xvi>FBDWe|agkFnF-SQC#A~p*JjW;EPgs4)!bWQi>(92_2WM z?!@@GvIP9f3)_0)@kTb;LBz8n97ShM*FuJ))RNamg`?cR;(p?Z#Fgc9*FK_AhI}j; zj*{@-@hHPr(>{4~|D&>8FcKSsx=x6B0!(dch}cw_maK47>Zn07xuCgN?4Xl;NGGs%S$D!PB zR%JT{KT&s#r4w1skmb=%8A4EXu5(^8_zZOp@0ncz( z24;RvX($JmmH{T2se;`Qp$fzO>?-&tl8~v1gsSaDu(Xz*YW=Vke*wk)Vk+28)}5QC zI&hr}9-uKio6ZZ@C1co;h!-crkeYnNM`bATY{4aeu`u${jbdUwb)!P_7hH>b^rQlY zWQ-bx{;8%tS-^(p*94}D3;P+rT{7|Sa}QZ?Svh56N6G@!fi=d#X;)+2q{~f%0dtj` z3a%K2j&VCUEuQE_e_jf-T4C9}rr@-plAH!#u1=VkV`Diga++|P5lNMp%e70rNRVZS zO&e7fia@+vHL)h4T*t0ZYplb=rq&-29M~Mf1}gJZL*07MxN(qCMJ%X z>K_|g>uDGbQiiI8YTmv`$-?akF_BOCfa!-~Vb4JYRefB6c{M|8C6y?%2wE88t41zDrMse?7H>tkHl zsOvj|%iDM(|8HM)U?fpD@DlYFp%_h*vF+NbdNCQk+O(eEz?~QCfe;NHO?CEW$?n=XUKQ zF=nG{L>4bfzZIf7SmidR>uB3tk;uLQBT(pqFkjn|LWeir^?v_wGJRaNHj~$wKWjwi z?Y>~Kf54{_qg{6tAjhHc9EsRYnlV0Ub77L7;hpzbM@=6+b}E05%v{L_;S=FvbJQc^ zn!Dm~tn;F}pp~OT{W&DO!Egn`90jNBde<>>!1d(G%6`BW?_;y*lp&?AyvwH8r zL5<^44w?*v*ga*o(HwKh zf4%Y>f-rk-8h(YswI28ecD0*}Z@dEaF%H#R+lH#_VUPYV$OYs_)(;Q;5st>kS zSh9cp+l+=7>?qX3W$=XG0Quu{RvKQUTK^WuS;2I`?#Hcj` zUqRC0%z3G${e4^B;z;X9VY|cC0^DUIf0W38rHU#DH+yv~)Z|%~E~*m5!o)yW$nhS@ z?&Ii+y|>$AD^@I3K=Scj&3xINR$d#X$oaOxygKQXAM0cF>1^Z($<|M$JT7=}HBwM1 zZ2s}JD2ii>g~vxF1YVXFpMqhN77Wp43Dh-1VZOFyvHj|2_+X&83Zkq>6y*66f2@yO zWPMAJ8gp!tlzFf<<<@Y%Rw*I4824U$DXgm96iRrJxa4ej><}DORGIDZ<%@aR&nef= zCG#p^XIlhjK2cYc{FL$4Q#X{${oiIZI`dQ`1BpN~hLz8!*jyH4U7 z+a0=P4xhmbxt~>qu|%XUhBtH*8^x8S1d9#aA5U2MA>t7qPyxi@I-YFe@hHUEmgS-T zs7&C@p{ZabMA#4uQ{8bDh9i7l37dsopHFZqsC9i^FW1 znfiO*>~&4pF~httCVaUzvN4L*RT~loH=)LydO_ z9TVn4z4W3HZMfIgeWxl+VSVJtEm^ywp)Y^-a!t54+XfG(A}&l*djQ&xSa1)^w3xcU z*P@#EyGip_u4=%COq`3GCqFBOV8xw7 z%bR2Q3sDu94NpZX#(L|q5clKOm!<*q!yoPh_k3?;YA3uuG;xl92n%INx zdiJ%yZWRq!i!aQ+_!kRA=ECMn1CDl@d5vP@x;eKuR2m@i6U8B3YZxVh*K(*;(ItRX2VC!|YVZGw%VpE6o{b3&U`suZ4gqYnZvK>AR|V zzbQq^Wz-S$S%h-)*3N1f0AB}SVlWm3cT)r zgAbP$+zkn==-B4Zuxj{u&i2<3L+6&s)QGUq1*l(;qvr#1#qO{)uk9nQ@`Z( zR(&o9yR+V0fB1BmrHKbrvo3CVBdp>>>JzI!s;3e)41uquN5|iT$YKmZV(jR>)9n~` zxkNs|Wd)_UI$f3nyBrJ5I(k;_7si=9AgV_-{q84ja8#pl71nJ^t{cX4Uv-0f_!k4A ztWCU=vAt9aAAU89J%;eU6!?^nSSK;ZhjvfxUq7|!fBrj3l1|-f5>?w2&ip=4vWhFQUHxT_w$ zG)492XtlFDIhw}Pwfc;l$&0?T%hAj#M3b6W@7dc*z3K-!BKP-F@N$@fUDCO8$Cu9q zi0Gd;f8DCxz9IAu>}5R>*0$~(a8#^Sl(jN4UtIIkl?5-g5~Q`QD}VgDrhB_rdy{_u zuyIrgno1raGF9Qs8>ZUA;4bv-cE2ZLPF2dge9L=I7uUP4`T0N(nHCsUX&5d=8xhg4 z>@yQ?A0jk*xD-lM+dF5#3TJNKV-BmO6T-@gF`IJIdYV*Y0fw8H#R9pbUasJ9NwQ>W z#`wO?FJDn*0ZRLHb-j>jv|OQ|lf9;l&Fm+y(l0xXKM84^^whemw$r~ ze?{evYhQgNi0?9OhcCt&U!O7!m=BpIM9MUSn@r0GEYmhvGHv^aWm;A3*_3I>qTXd% zeeC}ZnN~;CVNIDkg}7MxGi6#GHd2O6Gh&lz`G{p& zRhin9X-pUSCexB6NvDN{(GVm&=v{(;gK?XaA#s4!V|&Uvi1-H-&T=^z(-=8T)YiF_ zJdWUG>L+g&&HCT9go*S*@k%u)mj~;*9A@u$avcv|FA&!@9Y%2}vYJ!A+~|$bf2yA0 zx5?~m9zwW8O;4;~5Rz7mpYG!Q=hN z;_>mDU~wK+GQrYZ*?RH#(j(E?9N-hdk(Ez1_y?G`+t&w5x7r1tZi!l4Zm&6@#XP>K zcEjTF=c8-7Ms-e?yG<5v%*NtRf8Fag7SF)sd$D*_IjVJAz|$S8^Nbs_v3QgZdY%s! zU#i8gS$t_3{6-dEqA0@ezlmt)@Tl|i!QqYA*8Z%Y9R3qNi1^0g&+^IPclctI@h68T zX6Num1cwiBarpIs=xc|`;rEY3`LE}b!=EyYCx<`#Hx7>nJ~=#F$8Q{-e+}Cghc~!5 zeE!`WKF1K7jnZTv93Fm`ox`8~lf$3mFAjfR-#Pp_zH@lEYd$$VoM;~${_LL|{;c0P zJOa{p4u78CIJ^-XhtEgM;ZeP6=kRCyo5Lqbl1`-%BQW++fj#skpDscNUph<+4B>U~ z2d!DnJ=jwt!x2ObuN?Wse-#0Xl1-r5w=3aS>i+AA;c(^RN+Kgdo~s)y^M=t}>dql+ zqU5Fn&pS#^mn!pB-+7BdFZW zc50eji!N|n(bT#ILbR;oxnWpt{s&m!be&B7M9%2xrUby;iosAXTW)%B5HP}hr+ZK< zdEt^5???nzv}Z`Vvpx`@-xdaNaTq%-qK{16r;+D^27uX|W(+6!7G;c2vyj7(e_8MzWgJgLl(CaIGRkdHEL^Wt^CdG7g6@ql`s*yaQyEvApP8knwbv z;s`RHs?ew)-QdH%pS)p z#`sZxt&B1bcrBFVpFw; zVt zlKlx~e|r4^ew+>G_{ZQ=#sr&EtTFVbjZf7Ojxk-w9_ND8C>jA$ziMED`;lf#^z=*W zErptjFy%@FL1rN?m=PaDJj26h$N5r{5i5Po7akNZK4-$OwV}csrh#X!hmt0WT6zc3 zs8ahb{!mj_OC;huzM&Mht4j3$4Sw1#hmj_Ge;?oAMc<`I0gxDmF^jy>&OGUTmU^u4 z;+$)>0ujqm<2L?u<>(mmwVkY@l7~F9e;rSsSuM;Y=lzo-I@1ImiyOgd5#e;|>@UT@ zi0!}`vndAgqu^?IDVU89oWA;@7`#X3dO2|xJ}~OHqdEq8dRUA1*%X5_+-v#75SQIx zf2Qi?8@rv{`O%_4=x>M**p_6gO!BWwDI9hQ+#9XxYi)o+@CaU#LdqlS;{{ z_+E|LVAcFy3)2);o>bs?RlHB2V|AW0f8$jh>kbUp{Z!HDybGLaD!1V3SjmMc%3jZx zMybt5$=-}$HCfoyh4@}}@`He*Zi)MNFB^vaM4&<+`R27A-(ZyboC|)X61G3#rptl2 zGgfxU1!~MT68F8{MvLO7kEU2TMbxvu^&?-fxZrEXh_LhgNR%@otra$8_~5#_e>_Y+ z(qt!`E;0As85Xk0SLSwF_Z1>JcNdDeN4}b#YRi~l<<0uF5Q?GV3tKsI>b#*vk9e=J zIx;EbcMxWEsK>Ee)-4SmR#Dlh#gBY#m>EXn*|SSLb4fH3m8iZ`ID8yxU-kIfO&&y8 zd2(q4gqOJ32~(U9w;@6ySFQMce}PnAyD2RuxcsR~FL|3h2bW`$TBqGL`G(-<@y+RO zhrfRi6PxT%faI|3&OR6gJIEHc0XGI>* zDDtfOr&qT3jxa-w&ymOF@`X&TW!1Zd%&R{u^cc!cZ4Nzd*6oSeLXV%Je}ORcxQYk2 z=Fnp^`hM@B$GA~VM;-?yy2!61k1e1x^w_h{$m3Wa#u>LwKQQLlH)={Kd}6wdAL@HD zB$I-?=M^<%h1nvHw@03h;n$LOzrYL4vQ!j5C>rb3FsMia0&06j{3_i78h9=^w!^L zuj9|(&m9S0ZuhbwXz-LpkNu<}sbtY(yJ@R0lF>(ud0F%rr+d}3f7h`h@hlrW!j_wu zrs6|3=`orZ8Fk6V4KIt{dcqWW*E9<7T7a*(a!)>@(#abb`gwG+ch`tGD2#J0>t4X- z+oNspj2;LZM)uRcVGV0$9rf*0yGn4JobpdHJ@Ex+lgOaQ!paZncewSOqJx&+9+;)K z2PSTo8Gh`$CqG(3fBR(+(5!iFl>YmPVVB=|nhQFpCnKQ)aX(>_P7Ir&=Ns-@iL3Dq zkbLiJ97m$ko<}Nt_Iom4TFRQOPg<^r;A1!FtN#vQDn4na=#UA9FvP^W6j>t#dWQZ;cX39 zw6WIN(Z;zmq?ktr=GZw08wa?>8h<~7w27+F6MIBYnm2-2jagPZR?xk!e}ffk>{@pD zNLAq64=_K{<5c#kcwD+;co^mrh&0aytcx~-8sh<-f6X11qU8^`eCtpJLBdVLfldvW z6$jyyRs71M9+>v{p}c@Eb8Hyj2?MJ_$JXCsi#PJ>r9>? ziB9!}Z)z9=8_=!5TzVgZarT~iP?upN+Hqg(cBq=b+-oXDgruoGCH@GFY5fk1%eaKz zBgSS9|GJw)sL%>W$JLb+IfgGsi|U5E4#C&bf4ZVSHd^0!NG$9zBXIa45o&qaNTxey zQJ$8Ak;6=2&RN}#hrp!OlRTcVO|3hR`ngq^c4)C)TxiAb4|{8#Y~u}+!F{R;nP ze{h*mDL9-T+#o;lwXAsYqaY}cEM#?Kt^Zws=b!$qqNkuf|;fo zjLaC{sE6W@9f${QylFFOjSRaKmh})VD$D&Q;f0AP= z2E55J)NB2eV~r(#H#vrg({gdD5N6iGQI_(P7xBO%A!5-a5x z8)|-&V@Z)D)2;%yMO~2<)4*QY#Z^6EzdC67^*j!Fe?P?o<)-9aq9|R0qZ|?f{-_UhoH-_ahsdj~@k} z^T>h`qNeXGAAG(jsD9(~9~hMaF5aPkhuQq;^?_>p4HIFzWxG$7bBo29e=eVltHfgT z?tz-)f-6u-B*Ey7S&Sb3-THCcS3B;F(X(pvwuGn4CB``yV&n3NjDF_M<>7nvHHBOr zLEC3pTpoQ_BZ1^ED%!a`V>#>2<&D|a{&at{pW%ov{xF*`p1A)AD}M6c?(ThdhX;N4wKLCe;^o$>7 z41hR&z>CwbC(P+{6tUkKVw{M^Ov>Q%j4-Z?&ojb!?0o)Qo(CgFMj4pTBfeO@gUsg{ zUfec5PmkwZTpi)X_1gJ7XhkOusU3&489 z7X-jJyY|iqK(2P-fJxpDKT9TJ`#ocUYhF`g9rQbns$76Txu-u3zKR? zi;40=#i`DA#APd5e{sjHCE!RXrvmDHAIyH~x-N2vZw4F}l$eAr zE#LQS4=ujku{1)97yMUf@r@j&qRQ_IJOf5)JHvsCcb#s5aPhR?Y&t+e3T7)%BA&u7 z{$ACz{f7QorI3Jn?pmG56^)MXGE=MJe%(c-w%8!!t{Z$hf66W~ZUKG22ZOLsj1htq zuoHeR$1UFIPta;&zBbHo+#*KOlqLe1kGJq{jI@0l(l===w|iu`;@?yQJ`zayx}Tkr&LUMR2??dP^1WyC%nS}yZC-SQ zh6?YICLKXB>5Gg6ZdByIi$bJgAOtW;=DeJ%voN}CCJ~{u{@H?v0zP&k@*^7&oskzB zL1mWI)OS3EO@w`!@@{I1r5y0iEKkO(Tesh zIMGdWwm17`>Mup*WYiTo0NXG;POSSjyXtqfPE)Q}%OReK0m7Z6}fRF_1c>PXRDsTF+Ssd@*J0RihCP*7js;IW9L zf3W!sADkFCFkn72G{NiM;Gs|zBYYUEM7d7I%{$XNitwC?GyKH`K9n1FG#E>{N%(K& z2E9tzo-d;6fuY@?M^?s-M7ZJd6JWjYa1NP}soe;com%QmJTY|py~iVuqm<(tDJ%SQ zWM$k#)tQZXuWMH<9}Aj5y$QJINl1(?f5Cup>gY0ndc$@O<46R)QvH)i%UBrM(Z4tn zwZ&9g23~{6Ccx5f@ZBM2fc2ZM>o*+;&~GqCx(Ae(vEVysL>Lv#f#3sz+c1=uarf{{ zMP3HRabKziMCQVzKY4tZmw`nELpFjx(V-2@eW|D_s{_>yUTZ4M!J*^3K&Wl#3E-V& zZT(8j_?wgA{;Yq0(GQ3U+0C~u3%CXT;rL}F6b3NE(a={3oF=vt4W3#aRxT29Ng#@1 z9jlz03$8AYY={#jMln{bET0^sR|i| z2vS}hjNG}0^0#?sl)f<}>oIbOaWpoeQNO6R*UfU6InjR?5sdhQc8k-DY{MdBG}iTI zXhwoBo>``g<`bx#F=TlL{VuqvcGW__v`$bb;lg?2wlW|eIaHT8zZ}0<2zFFV#O+%2 zpg8$lWZ(hJTiA{u$<^p%M(ROGM?8_kP(?YwG=f$d=MGaT11PHki;|9E7$A`b+?{T@ zFlw{oj~;)r{o`&lZr`@1%}dxKk!w7mj1b<1NftvV0pzM-jpZ+Zn+5RgEks<#JsiYY zs~a=i!<8$bFOg$4*Q%}xCBi8R+EdUr2%4_ycp^>>3e7;2CQMWCvGYl4@ZytlTNSE+ zfXO)A&hfQ4DO?moERe~Z(G!xqsEc0lYO(J)@6Ufw65iiDfYOH9NwmH&QkyIWRy zK7O6i2XNSS#^cdtv*eL=Q5lxoc)0tBE(lng`^-Qb&S=AmywCy65OR;3f27dF}pP^^Lns6;UgG7GyZ$dQ3iKgq#67X$ocN0VFmO_f3J zr3D3stVJeamm~t)=8BBA!NoO_jnT5Ac*%d=)ftGiQ6zWhY(8(-7~&b4!tf&~4|2&A zk2KH}kLSg0(2-(Q0FoDd_0^V&P{TfOOM!p0 ztEY+?A|BYF^cyxpFy<@A7QeW3BjFcDjU&q|y3PU+w7H{A9Nji?%8d$4myPD!c*}Zg zz$!=iS_}#oN5q<~S1@gFeWN+uX$_>g(r}IyJg*+cXf{I@n4GKN6yVf} z*N;wn2!>VF*p%UB9t)E;!o;w7kTiedTh&+k{>maZRS+`m1#JGkFegQ&21e~VP<$ub zSf1pP!DIjri5&4Z879v80kdIg@F^BXDbL2r==y<;AYtvx2F`2aeKOjp*YSGDia~zm zv3S)m*f&*&ESWScD55gYj!k2GiRlZ5GL~n*goN8L>Obyv4$Euo%&iusJk5XJC>7~> zKH$D_!;eGwVV!tR8M(qbk?`Nv2~+OodVvAy`Eb2>+0*sHAcoENB6xSc#1r9td6dY~GjI{gd>*BqqHtvsr_* z`vuDVeQ)U7L1KUGhY4~DKTML7 z5gR!zKTKlM4-@1Rj+h`PIbt?)T8@|?r*OoWe!>$IV7g+0oWdCsb(_+kQH%bC;^?wFva@W$khZtj@xghOH~ww#vhG_1HwPSeQ`~lWS zP8XE*K#oLx#c(Nj?>pw#CCl%z&9<8V#(EIuTw;0vaRvi)Rq*jI14~C=-=@k=<(>i{VJ6dauuV;->taXl?02{E)Y^+InO7 z{R@b$8HnQzcLjgKUux^V;BIlTFqL9(7PU^nC?Q+%Mn(w*0zbL^lhfiiF|at%J1~p# zG>LhOU%XaU_($TG-)%~!lK7oqN|SGe^aV((5$sKG#+uMCoM9rf9B*^fj1fJD>S%lyw4CdzsX1afhE?x==yx?3?VGa%*-^D(1 z@|W6%<-U$5CGg)A^d`kbA_sxS-6X3%>>Nn4Lh1GOYPe9|WVeWlm*!`uD%@z_15T=f z9kpGHsthlx5@MsO!6fnpp0;EsrfY4IsJco^Euu1FBdQ+Nrxs>d2q#eigRKanLh*a3 z2T4>|9SVQpAgZozm`Ox^^1`*?C}6yZ$|diUsD>(nB~h_BXy1v74YU_cA(01iIB80V zou-UQ8X5}aU2v{w(o~mAB54Zs^~<$w{75{e z#BQQ!d&{F*>2kXGXs%;ZD%OIheFJNy6}*R!aC3jX+*mc*Q-t6z9=AFW25|H(fDi_q zLY}j@KV1V{=r+{20ImTbM0bU*0l>6Kwa2ajU}jZ%%fzZyS{djF!c83rs#u=rix|d~ zqfk5#bNk1o<-t&Dx2rDVL$C?Fcdkct*<*&y)i(H%YakJwCOEu6=YUn!4iFE`zdb4g z;G=&GU&2bzH?T0#s1_LJiK&h&NyoM8=|_VIio#-Yll7$&WKy@hW8D0OV8 z^bI5(qv{}uG~m;|fy5va2%JJ6jjSClue^8N>N+++4`VP~LMj>TsOQ(GUz_3ebFJ@R%J+6N-Gg$s{ih}s$8<@penejldKm{$YL-d4e zV4)^$7l1K5Wpp*Zk$j`wHZdk2Wy1wAK-z#vjID_kRV}An1N(6g*TCN_fU@RxON44G zAz2LFkJY{bVt9Vk#`IrcWueG&l8;m+UhHrc@$>v4pvULMUu8xO+2;r11D0=KVOW20 z8lWnr#f zM+Q-~!`HR3rt`5gAh{QOr%zq5_hkd+3^3-fCv=)s=^<+Z@fGIV-D`gouz2f`#mEuG zEN4JY4rcIPV)le5xv1BtM6uu3@MwP#qniDXS%sgZwz%{Sc6sUkmm9FvPel^z8%4q$*$s`zZhfuo%=0&wY3lAoX^ zUt>$#X)BY<;(01|d7b4lMqe)c4q=<7@UJpeIJw8!Jxz=JM2b)iT{gn0 z&tdI%YP#*=Wn%566_@F}B}88&Z(`hY6^zRS4WLg*T2_3aX>NZ`s>e`@VyaYi+e}#6 zOJhW`pYTPD@!Go02V%OXLEhC+HIo;>%k3tVT7Zv`+ZpzSR>_6&$h5;<^O8X61YtAInd?Zx;Q+-UnPyOfR_%KE~hAoYe3IA=kmJ9(7 z0Uh?TRV6!qtz~tZ%2%vBF_cd0Krs_x2gOs~hxf0y!3_Zl0e^pn${t`Ul%d|FKb&0C zje(Z?1&X#3Y~4%oh7Vp*#>LfR6*P2` zsl;@jkAHY4H{lSU;V>c?elqcZ2zY6}$k-JYp@w{)n3Husj`iYLk?(LLa|qZR&lN1< z2`0NQgcx^x<@JGykyKj_)@UUmh@t5QIXlj0=G6s4rk9TyOAIAt0@j*Muc{XPay!F( zK&@a2b_MZJ7s>bKR(4f-GA0z5Yq-^=xuya`<$v2)a5M;9nC@H8t#;xudFp+o?`zyA zX*|+k0mIGG)!=9{*fgL+R|6Sdi22$Ox_C+5R6=T8#YDdmC6xN!cC4)e^Q~>^?z;2N z4esF(*)T9zE?BLh)*IL2NbP3qc3X-lSs2VPYgjWJq4~%|lT2#v$8(b*e||y4ftTIUnfL!a@b{q#^nc#3NZ{l4`@jBkR003<{y%b-8Fg{h_gVSR zpX2}f-~V&|&-ttT`p^G9{*Us1{^$QY{_p>Mj-YiK&DIEvh!GS;bFRM|;lH=1JJZ;I z4@CU^mSJoC-H7=6pj}2Y4B)@duu<{8>wo$84C@awY;2rXw-Fc-BPc4xv;J;`|6U)~ z49-6rj=$dOAiMs2M<-?d-QABlzX1OG{3=wnG2ch?`}Eom)2qn)JU0>wL=2!v#a(|l z!hbK1vH|k%fr!7~#WjTE??%MmnVM`84dA~|us{so&wCNSPq69q7Tc0t8=Xb@~y z_d+pFp1X`0Ds<_EaLB9zi2RA2o_-(dfS^d**YKJdi|1d;~)lC z)URJ`7yf)hRKDSw1m2Vc2tlw3R)2Xyj~#=`jR~s6LAyYjOJUKMx=Lo0ltAJd!iWRkd&OfJ+OnScNTAdZLmHsecJ;(h?pJ@E-bk2 zH9Zeqzo^RSHbJGL<^nK-g@3Cz9J*3^Ux> zi0+tUSy%#&4|n#L<{qqL*m((TY;lepD-OL4Wv>Tx(?a;#U`XVElz&$rFM6V%uoQ>J zINTB61$VhNK-E(NuGFUDhi0Vyj5sp%v~Mi>t)#)G_ddC;N5xax5ZKsw;WA%3?_7Fw)%GRUhuW0vZT}dE7PzpG4S_N<$l0e^DsE?{7 zAPxqyeW6$RT+lPuMt^ia;@y?7dQ^FuL!s=tbGD(ld8eNOl%{?ZwX0~(z?D3@hJMeW z^TNPFA|QfnUFY}O*g-mMUkl>_CzJmUM_fS>Ude0VP6mL=mAtAb*UdsE!-JTE>!b=!wfU zj0ts>9R4@3(_WsBAHd*FyFCyfU*FscBG%K0Z3gPvd}xb6GhKRn$R5)&L|MI)&~aM+ zIvY4I%Ghm9-3sE)`t!YiLnj00tz{g$XP1dV(19lY-NGYNEUo>_E;z=hh$MF z4HZRcCjq{4M~rw_pA>t>1Q-VlnGF_qEs`L&t-l{7n*2qVN)`cU z0Rxw^76CBf`gXvHfK3_48Mg`sihs7aoEmyT z7EsMI;=sZ{{|bb8agj47pxdDm24x$ztS*XYS&*4stnC*A@p*Y99*K z<6>P|5dNSA0T&0smbp+Ujep4Vk3w|;l&OyB8w~GbQKf2t@Sv1ix=4}1nR?aWq&A|v z#KelC=%F6qrdZ@@OmMo7q!CABQ8PXuB7UgC6=gpJDEr6U{@$dZ6ju8L$o3O>Kb`3a zZN@o?33%y>+T1$`Vy*QL^VxWC(e^JMT#_ElgN=w)JXLx$dGL9M`hO7*u*PKY;8Qsy zaqiB`?V*APBV=Ib!Kd0GEFKKU`o?rmsb&e@j&n}LRNi6m;B%%<1|Dp1@n9ns4?c(T zc7q3>W;Eu(`Mh~>!sfw-&4bU$20!M(XAp>a@Tsz{$%9W-juH<(mA7IZT$mfOcyLkM zI`d#$2p11F6g=2q@_%6Hgr7V(F~9#Ni={B08Pz8~bXHrGtT3L9Hcx#NowTpe7tf(P zSL%yGEd9_86&9@GeAX8MZTh0XU0?JAOJ9s%Sk*dJe<)Zr3nA?4;yG+;4gv6iAla(l z?!SR7gK)fdMBTK-4dmNT2TX-{F=Epe&*H#?oPxY|IYI43E`NZ)P2D9QwV}0)6WCDBK&jL~CSCkBYzkz<=qE?dz zkF+|*-(zS+8GqOx1IO&dR_dc(8Gn8ST6xH z(-khnM+5%aV08!zSecFDvw*1Fn$a3wd^QltX9Hm-MR1nbgahz1?ronip0RnmJ`oy1 z-oi1{b$=;82)B7}WHJ>w8^0Ypm&LLxa63OP#IdNv)powt1eB(i)6-7m^rIvpB4A;@ zUR&jmv_L4J4)2%AO;Dp-;+1d-zXaQ{#hEFU5zj7ebz2&F#3E1Cl&hO1dv4z{wz?g;g}qJIxAo4Xb@r2>Lu?z~w8q)AQnH|u>m zf7tN*)kVkD@Zg;kE~>YBT(3?|9Qy2NoC)<_-WD!CAkL1yXPl8+|Y;gWPcuk>& zx_?}fTIl&+y#crdVAUwqEQMkV0+d$1q|~KCy`hg|Q6F7vK#-RrRrq$?Rj>|27hfKM zOT}`F+&}>34x({ctE^%Se|{CY3h=>7;elBIf?g6(q{Jp-s-k56*t607&jjNml_2h_ zII-6gUO{NW0I&K;jRXw?0h+fQ!l!7X6n_-!6fnn0w~MCGz%{W_n4wa@@u8_H(|AzC z6)x3x{+Z^_suhZ&G}7rbyZEz=`*LQt2%&? zq|DdHB+%E-1zKU^B+Gdimf7hv?ZfC9T)Eq z!M!j1b$>nqDYeOXzfZSpO#Id1Iv&kc_=3%m0_3EYH=9qG5tq6o|M;KCx)Is>X0CB} zb|Z_nIz)=x{iO}4$X|ag&T-e~gzU?v{K@uuZFHx|E5*AUeyk@3l6US)&yuf#-qwGpZh3?1uNe4F9%1c2z`;fp^F4_)jmZ!o6ayDJ+7WM`q!+4O0hNP zy$LGP<2pC)XoZeFBP14U0Unx2oYk2;#vZeSY?^5+oa<0QN~EXq$w02$n?P-yybw6V zw`E~{J2SRF>+DkUjso`tb1yBfe_6sS1n9kg1nJW0a%T$1d|WbB7<*NyDtYyU0qw1K zN+5Bs?1dyCVcD@rX9w5d{>(|QWcx^=x1BcSSFy)Lv2R!OMT1rC389`KO>lZF3ysca zn7`@tROZqEGC0m})(f7tG;kI<3fjVcjXJB9Zzywy>$Phvj6vE@E8fBE)rFwN{!T@MM!qXqqRHNFzPA8^ws|1rdmv^1>SEF>|3rFUs3kuM9-Fe5ofUGs7G|kbV~)aX1G>xMBZ)hiV$tNnoIY0T9<m%30es_}3S{Y;;o<+&vVZf|+=9kvr1*WntD=Y( zvXM;@#Zk#y80%@*UlU&+lkiF%6Fr3MO?C5kb0A~r1HHV)R*ZOc7!i-Y6C1X5jB(G2PYT3ed9lCYSR4U`nG}!t zfC~@bXXN9x6jZCIz?F2BjedERI`?*teAbr(Sk#5=e{5RcK&+uR80BA3FL1_3!Iff}4qdFZl zr(Rl89VI59huSZp!EQ6gS$TywkY*n8CLbFX$w}0g7H2(f3H0CFFpMQi_)vE`s`OZGCS!dpJsDr;9@OFlzyF}s1tUxUvUmG=;Bm3!=p!5 zme^D#*_Wspcbe&dK-K0kL!q2VYnMsE>Jj2=P1U20&jY^ue!?BG=dT!ZqlW7MBnD(0 z;Arx)W4m$e0n>{okXd?KR$EQcPgtK8a9WBY6-rFX_Qis2AzCSN?qaquPNh zZcs9m$n5MfWf^MZWzH4a4 z!H&+0g`}dTVtlx3J@f|rncU=NJ$TSh?nm3N zYQ_PO7UZq!fsWH#1I}w(agMu7EsJJQv3{9LM1^>B^=&?_ySk{q#ZiKqLa;_Lo+Qki zk^%0H$pF=N=yw`7NStX&^u?6U?Ba7hI4(qPN};M9E#kXrmw*m_uucN4_O2g)(wW-I zTMa#Wcf&yAA6abb?AIfN=Un}|Xt-+E_$T!TwfP%h|Ec2?bN-(Ys{9PHYF=6vRJsWa zLimOW{CT#TXN@006V#bqXDDBDH^Lg;r6TapIbF~QNV*oO+?``;$v*v<-6LG6Ue~$} zi^9P+ny+}9@FmD$C?8g$0x7CpY#h&n_udv}x@{0ID$xFkVwyMM1_u$O##2-Y32`K0 zjfNB`Ak-`~-$9L>vnby;Yo-Psa#jD4xlCS+Dk0?Qfv8bG!nqKU!WdX2id^<@o%m&i8 zbt?Xhi*BN0=5=FGB86`Rv2q%|IJ4i2XoxkJf)=0J!R36ViKgBwvKUOAKP4POZP zd>kz@U>xU9ICea`PTfJJG@PMg(Y4tC8zTE>!gi&=7X`z7FRpF<8`#ODWvfj>kGiB4 zMoQcngC(8kcdwC)rs!~r@m(W=vO0~v5+l9$t=ku8@z!TXW79qPXs*mZ=?JUuAkjf6 zU36xm{IWU2JCg@dqQcWC^E+7nptFkh{(2Od+^E{pX_4lETo)JBk zz7&eURjDkA7k924?&vpm2eU_=B>{=1zix9m@6I@gJ_uje6B4|Hx~6$udnM9_D%=s= zQH?F?u<1uY-pDJ0(-JT)WJ51pmBl11Uv#jfGxx*)m8VrnOxvXD#xw+f2#T^Zas!gb-}b*($}H+TbxZ45D$fez|iR zb;CByXfA-q5=n=-`^mk$`$$HFYK9icY=06)vVOkor+B@~0`4vw#4A=AL;5pG3K}F! z0VMEVTN>r0=bc=T9;yTnH<9A}ZKVt~J)>ZKgO3yEeYI#=M)SjocKtL> zWdr{f{f>*JTJIzv&9hv!4JB~rawsY^ghq6ju+#BA5^Jm-9e6G>DaDASnu z`;6`i3>;C}6TvKKr36h6!!#=m`RVn|jM1_?2$jhA^0%{BxMz0eH?cP41hgJ-_7uYg zS5LM*u-FnEcQPy|=oTyOJdD9O0UkQq+$1Mj`J~=xyLRR1l?u`-!X&}dN@px#B2XSd z4Z^9`r)HE?Sq2%jdLaCUaI5n3i4;|q_ri&Sexr(j_{_n5=Y9zF-Z&&G$!up|9nlv- zfD8>6)KA#9%j~AZ0uvca@oW;i?Oo^#sNVvP8Pu=r+&RJ~&Lnbop&5g%&`FVFXfr)& z2Nn^fBENg(BQMt7n)v$(U4e^LIa|Jy=DvaC&1;Mz%kvqY@vbwvJRXi;YR|Q@W-{1ks7rH5rOb4JB#q$J)s8>roR~liy)Pot>RP z=0tVPpL4A7B!w!NXz1%Z)|V!`c)xBbBi0}wb>-T0x8Yd>6-o~hSf9R>Jn_zD{bP7NCd^mE)snIED8lV3|k!+v2_+ z(#ak@a)oFzPy)FXJC2*fw&t=KQZpDvIs^(OMx|pS*<}$i5wDt5j#T1qOA@RacrtC+ zBPMqM5ed9v&O5wEr9 zNK?6Q8Y4^+>9K*DM8+TgMtn@4*+k$DJp`D4E@|XTq9~szC-83FTxKey^^~&Rv3c}E zT6dg!_jM3QLfcD4IYwLtrpY3Pu8DzP3=pFu z9?>4_IRod^75Bd873b!}G#sN(`!%GCsr4Q9H)=?a5WS}UAhHYZujmADvc-r}(r{y( zF>BoeinYjK!u98F0Ap!!yOOBrA%Ww_&#qV7fg!Zb6{t8Y&=`7Fx@f<$l;$H@(6a$q z(9cio%Xm2S!`Zdw>swP}vxQ5-I-yRVAcL{Z>uq`^?o zIa-LoyZ9zqO=*D}R5|LqTq=2E(D`i2)*9Vh!b&Rc!vrqOovwRm73g3nn|WBJ-tE;E zZAdXTXGDtlS^CSaN=5stU{D&!w}ATO5H~~%YrA4rHh8|z1v92(vBmM)n}miwOV|z> zQ2n(sw7B$ifjb-#Pq}6}I@_gSV}g+@mSoFS5g6dIj1s}Tt=yhx$Jhz%p7oHCGp&k| z*T$nH2AeV4P1e!H{0c?t@ zHGr|_<#}IFOEv2|LVJr>v=|_eWd17T;ggkL`Lp6+g9PQ?R~U*ehR$!+er;G4DIOm0 zKx?{@w65VQww@T&%f*%#s5REdoQN@syj$|N!n4`bMO_EM5_wPsUIj7Cupdjbf{-GD zA+n(boUn(?duf9wUz?*0d*FPYQ<57YVJJ)CO-rDGK!YL*eM>B#y-4^N!|8+MO3Sq< z^u&(om$iAhWnLlnoo3i0#3|F*zY^r*IQn8+&&hA`l{>)~f~!=FVpG>P&HEfyQCbtq5|*|rc<_uD!Yf!k^ZA>T{U~yrH`ns9 z(VeiG7Wx?-D>-j;x5a~oneY}QWpl5A+`yQsgn+>fP+EgHi!_FCF&8*L46HH+(ssIG zrYz?gd!{~a>nuvUglsdt9b6zDOM_3_Du?c`HkR=B4r<<-o)UZru-@rfpw%x@DMt?` z4v+ppo%$R#YAujnt?c|g=GRg_s?VlQ!%W)+!s{lE#9#bpRo?WFljF%C4dwRK(x1OY z)JM9>egNSU4SDtes+G{k8OzCkM-=XvqnCi4+DBqF-fxNO88H;$l`)61sV~qcz1_pu z>0GXvLN8e?C8kp_RUT_)Yv{{&V2?2S>4G!od(^C`{ogNf1H4-c6` zhG(K;6USC+V~a4gkEdfu=8`t#NUH0HL5;HE?2wNhJ>VpLcc(R!)JZ`#Xlg#O^QYBl zj}UOuTlQfl>waUta&UQDTz-=7X46Z(kD3-u6N9i8K#54p183%MeoPv)ms0R#CDqra zd}U1Beb?O+g{KytnZNIa?>q=7pL^ZW)(d^Q-8^;yBpk7W4iHYrWlf++Lu(YRxE{L0 zeB@|W-@O>#TKfpt<)(OaGANugR(v zxY4~Te?}csdZ_DyWHApeW~sEtq!f6OSmSbo=rha{VQSH1%LqZeR$Hf=m7bbKb*KYJ zq4hUOgin|a`GE-mbEyn0oGGvX{1hG>@wP8}~GV-Hi@bGHB{%g`HJZ#ony&pIO6^X;t35S zW5ARgz6e06u3>_RYtCgMN&u2-xBSDQzH_#Na*L1$$y(=wAf|PX(T1|RCsY0|0=>RH zo)!dc4K7CQ!E4FoG+AVB!6$S&bleFf+37Sd97A&!@KA7RI~PwwzXzOb>rN(6Npw#n zpx_KqIu-=}j#g%>PHY_Jv!4~Y=H;a8zHC@L=SFkWZQ%B5nt3xqw;s}swrBb0K4ZrP z_b1tNyER<|BRu zbosm_BM(_BY@yWtR*Us#?agj60{vqdHsna!HV5jH{e=q=dmII6-}ctQBxN(Nj0{T{ zN?L-ek)ay)W^ko(FmR-GTN(%d`BxbS;wQTO5+TE84NJ7u#Deb^$779 zi-y>#bL>%yaZT=YcB|Kr{5rkC6?!IA;Y}_SW49Sm3+!z8F*te}Ph(&G#rA}JN7|>H zY*Lk)zX#Y9H)8Omxr`-~)@hjk#Ky5SKeLEJuqfdb>f=sc=Y_9)Fm`75Q6l#)8FnI% zyxMYw;51PiiPM=tC->-0oBLk@(0X4Uj30Hr!&VtFq~gY8_;z~^{#0vd*ECb#Ujfik zLiT(vgqn>7s_OZ6m_)2?5HYz`k1`}Lj5-+hKu$58?bnJW(z|cV3m1Jg+QFnoGY%Ta$j3WI67Rna+~+8WqOdnYf&dUxZi^O_5I+HF?$sl{ zn!`bbq4Pv9rl;%6lGkgnbJ?{@Gs;0c^{xa*8vaoF>3HI(UQp|680Q^$W>3GBU>x>|VrDEyXn96hw73Wk5p+A}2BE@AOX zZ+N~Rw~dwqyvETXZ;CM34Qu%^k$Zjd;JHcNm&NOK09j{~yfNA)X%xLjE_EnkFXMO% z5@gu0zw?!l8|d07Yg5?JSDlfs62@mH{LmPOgSE=_^mf1QmtY?a;h;@~SeB(kY>R_@ z-o6F%XXz<--a&yrDzfd*iaT^Nwph(98%zaMd@eV{?LjFtH*V}XquT8cy?g$5lccQNZdy2f1H|pkNO~lC^I<*vl@N3e#Fn;L1O! zcgl(wIu{&(&PiCT=|wk?qG{TtgfAuBYw4T8zGE#zAS{{{!|3aR#7aFOOUouJ_NZnq zH}X38qc?I1ZC_mNAn_Dc3TgS^f8VnAjRUXE4Q{n8aV0&sMEA9Zw2|iP@m`w@PxQJM)4I)okf-j!pBfm z4%Bx80Cv}3S{-z*{mFPP!s8&!m!o)vyx5QFcG!C`ny)9)op4qtklZcxE30S8(-`}Y zM|4#x!#pW-o$QK>DT*a7JoJl>k-8jYwOWF+AK7IA8fpd|pW2`6d<|_gecr_fQgay# zzmx_U#p~Uy%{ZHevTIQ^VZ{)j&vEgMu(CmPonrC(XhRQHNFb{pIV)et1QjgfdV~pRvkA28g z&^T?C&$DZ6kg`D3MatBbdhO!eSS&Upx5f7mgk_iTe zV-|B``HTNjPs@E%xmEGPiV*q1#JZ?FT^zzm9GB{k)Sw+nk_Bi9QfAAqV{YN9qGreH zMFevUl-|(?ptC1}0+(9R&f^y#?3r_FZGe*>(cR zm1z5>HC;s?qSk(OvX^-!5sg+uegCwx z%Rj9}G~eFDw4Mp1->$c|h+zq>dDK6!*86n}@$dSSYTcMKovN&a3QeQhTH!& z;p2ru5D*vys>g;627`H&oh+nH-7LYZybxYq$p3qq5|M!7%gN6Rg@PgfTwq5q_J3~R z5QN~rnIIgI0{MW#fP_N?1qJ>d0z<&ze=!6P}d~kl)e=`Ui3WfbW z77pVRc$7o_x2-Tf_`ht0!61BpD}=%RWegn7E5Q4g9DdDZ``u|7uANIG=PzXQoe+*=Ll>EO-N0IQ(#4K5Ql? JnU}KI{{wD``Az@; delta 23101 zcmV)9K*hh~xCYFt2C$^rfA5kbJJPd_&9#a%vkg?pE{ol z8Ie`hFVMhgvXoL>7$k#NZ_EZyEuk=qV!~IxwujW3Vtocq$&JyWEYDLuIHNm!eXZGD zk8?~O2EYJ3ueCgeUmqCR%Dv2oP`NcCn#ZPx*t{tt#s;e&!#}?qe@2{8)KzB#tD6z~ ze;3Ufvt2`my!`(HAB;gzJEQeT<-OoHm>)s>O5R+kn)RvpJD!wt1VX0(+}yCv(uM$d zZeXR0=Gec%HYE&kVKOT~*CwOR^td+JNOi>N41CHE`I}(1wB!7R<`XuMJV9!koGxjpFN0aYIuhq&Cram5*3K8R{krtzV_-x|M~0 zexXSc>QG2bS3&!~%EokiBOFVlcQUrFckA-zqP?ef^tke#e}hr*b%nzX-UoPpg0^H> z3Kcsw<`c~wrW}mIg(ektTfnJ9@Fm@B!}mr9qlE1!W`bpn;LaZ9v{Nf%Fp3O!EQ5hy zlqrK*?OQBL-T)Yj(w7O1p(fy(Ik!8sk~$rVcBh0-&7jam`fNMbp@|zl#d5SP;6jy z>woA;Z|VZaWi400hlxb(*6z&;N8f1tCHV31`b(Q%;O3^kdXKr>F}VkZ~)z^Ec*`P77efk*vd@^4HO*br=&N^tpdy25*Mc~mMa8dWNKY+*}lsGLzFYQuoaIoskL{-CN6}f+wUFT`wdA!?;VAc?xSx0;ab@}3wU20&AsLl5j*RuQOGbqXQ)UTl&5jJfBc=Qoh&%I z0xygb7+G2j!4A(Ex6<_7Dhh0QB16-Zd7Rgf@^V)o>ah) zj8UV|Kh?A+3)t}dn!r?XVL#)yOD6t2_mBmbl~Xo$q%1%kSYsTVb~V;by4*AvFju*$ z;EG}B7`KDd;)!15f2BaH6_(v=3Qij;$!YNA>V%0oHkP9zrwO+ikyMGfT)WhZ1X+gI zv{7ZD2*k@(6Ki6=HcX4)G^AAy)gq&fi+yy&p%t8l?^;SaI&DaB!d4CYy+0^Z2Qs*fu$Pp4Wk+-f(E zsVoXcsNxs7fBI0PGr;ubjOuX0rot535IUFqh>ljh*Ke+7WxJ)MAZye&b+E>DeT)km zb$v&0c^hx!{|zq5wTlBZrVGISfaMla;R6pNF<&uK>2a!EwI-vQp*h#eGH1CK1Wn*I z;KTD^phQavMiO-cU%?DTF@`Wratp3J8$if7fvWs8fAY@*WbvZ(TOq20Rc>Rtj<(GeiR>FN0);LJ^R*o*ba>-k@1I{zrjM)EX7U>Ica7-0 z-4`qtfA~~lwCj!nyz?IGsOh7}PUY{BnJf7qd?H+Ij(S9# zoYUrV!5W%+I;=+qBbGLhteV#(n`$g>x2Lc2M-*1>~q) zpvJ~6_-spdGh0jNh=T#luP>0F}owe`TeDAaV?;Li3;!-!5x6G=%ATR_{GH zsBt{XL6dFGi>IPSLQZwdoknO$gzx)L(Y8`a}i!TqfTL|$*#Bgk| zj_Pn(&a){zE#c}?0Si-H?>OG+8ceh*&b2dy>1v41sooj3fw)q ze^-7(5N6L!!>>@d)&t+bu6A?rjaQ&P#-Vy^+fbE#Oa!aVtB4a|DPH4pnnO%h^}*I^ zTv@p??io?H(xy9Mw2Q;vP$YbplA5o~T`USES-WUW3cpZE_M%%k2xHtET*CyA7`0~L zD@Zz=IWM)ezi-Q19BKV1Y38PIo>1L zeH>k}_jY@1#fqg0NIt%+nJ>H3%4@?EIo~#zS0}ylV|}bXosAqJ+4`xJ#|00rMhYs0 z%|E^tMR82A@c5{Nz{}F&Q!s4Of+4yrfx2cW%-6OowqN}Y9}E;%L6r4~f;@kNfAx`z ztZxZYV~$OdG7q+<+#1f;DkTILU9mC+dolpEACB>V|T;|J#g42X+F^>7Hl2J-Hl8aGm1l)alG331vpNU(cHT zY-&-RD>S3qRj#5i$G%r8FZc~Zek*VY9I7^9fD`wXUx#W~&N}QZxSf8d|R=0 zrvBbHdtDQD%rGyE316;_Y>c9H)rLgDO{g)aUJy<4->|GOjKa<*T)G)=xGjr?xLmM! z$Ar01FTH3)8}7Ar->C{ySRXlZOV+Mv=*yqITobO%w!y=xhzrxy9)R{E7Tm)!Ev7E; zwWuckZqmG!s~Yg(xaHUOf5foKYQfUZP3#Quem4HhmFR6<3m7{)#s_Slb7CIT$4|IL zO+;GFXA?5$Vj-i?~S`u_^9>S&DmL;#vuqiF0xDi9P79 zXJ7m4R?&d9_`>Xqf3ZMhE^NLu;Ap3r*C;lwn{#_Zr2!&8Q5@p6hEXDTEr(iF-g8^~ zOKmyVY+GDo6b7CWe=U}b2q|b(b>kN>%ua|Fbo&^S_qi3hMBvXzN?x? zz7ueXVc_Hs+sD5)jKUqPI$jQFriU(M21C=M|bDyT%rmk4-j# z`~NdOU~WsoO>V5EdO3V~llK=Zl&+85?AW?Sp@tJXLp&9MfBdy3$L3-qW-s_0YkdrF zYj{2U~cI~tr0`>H|f=gWwc|Z!0Y}u z_;6{#-H^bFj&1%9tA?NFY<~?gbZ(hUjR*@}fcgbFdOjdm><&xw+CJhcUswnlC>#K5 z)#q}sJL}Dbe@};5ns`7p>*AI-!YV$bKC$|vdMZ)F5cpbpbo@PtEXEKd#*W@Q-Hu_G zOXLGwR#1wo(`7lZ%dx<$qi5xQVVubWqIy)*?|$M2M>QH(Vcn+Wx?w!`RX4bYe=!is z+Qd5<+e@|Z;a9WRV+ij{flv8}brN%YX!q3q^;4Vff4`F?>C~+zQMFCs%58?RPnj$jdyC9`mjfAN8$$2EUe*&~ZR^efN5xu2St}#+#Wg=&S@2RTL0a3o^2e`hy0?3^H|d{W zHjXMmQ^_MlrYf9y!&F-s+=af~?)OB@sY-d5Z+Xw@;(FILKOg8J(*naP4a22qBO)4> zeMSV|8B1w_5s!SOg)e>+gyn&y^lmAxQoCx8e=BGP$NNNZWS1-z{{?2B+1CfEZN3l& z1lLXLLxe^TmqLkZd*=*T;mpl@%we^3LRdL5W>ZdDPm^jaz;F|@SRi-Q%M~0hNtR5_ z7~i+~Hd`en!QCn4=Jt?30zrWvuVKC-#*@^A2= zf2iDX?W>Oj@m;3v@Woi;>rBPk-|9BH5Emjp-uaWLlCW>9nvg8iIrey-V)MK!zeCAR&&ai8@(}Ff7LVm zHkqBxBR2Kkxx52YH!fd9>Km6YX!iSTT)wac%E#Zw&f^hy%v*_hJfore;_-q%c)TB3 zJU)ICEY8D9CRmy)TQ448dL%lV1AHPlvht}0{{r)N`}#oXR=eQSEm4ch?KKCqn8z2@ zZdg42d~{9MsLttfx5?s-*;xFke|z1=;u)BHFBXp~N40JXc)DYCo^fL~7LW2l&-20J zOSSkli!UvM-^k)i6h-*wClT!&9(8^`IJ^>S>R;P3%14!<4{eeEzg{Qi+B|Mh%w_)~`QV2_>IG}e_{LL@CFx$ z&%c|)=NMwMQJU<7!^7{gbNI7=a`|cMe$- zB{v;--cfQQueio2pxMEAX2h6_>^k*7)1lk5I+aVenLSJe~4&y^Pr4qPWWd; z^JLYMYbdw%{VaS^O_UA6G9Bd?mXQsv3Y8N^HZF#{p&kq)7N;(UYFHK^elh>!U`qY{ z`H!7dg=t;^m&l+GL}iHmeAIuv%5;nZH!{hp^5*rp9-u}{_5ugrTy|W*aQe`hf=x-d zFiH2dFkJ}_95PF)f4wiCbmhCRRlqM!n}M|XM3Z^EE8-<#IW`Y3U7(Qpv%}4B1eKfF zPEC_*(FKkxnp)RDh?aFcHw??o{{riqu9K;s$QeD|lmM7pF&OG)%S|s10!Fy+bPsAJ zFI@8C9f`n-_6$jP)&~Og+rj`Y4r8Z9^pS~s+)sX8A}LJIz-#Ipgyq)s2tWKx*1iW3-K*`P!x<;kBmgH1b>!!93RAPa}Br zqr^H!ii$@+T@<#$jNv5TqKxrr7IGN!FALtIjN^%jGIkP2Mj21l!P>%%r>nSSnDLbC z%P`}BS6FOff4o}glQ-`bW(>#m^$}$}FaIK=j1!Yl#^DfVl(9&UcYusCmKS{sGM?^I z96`oY6&e*}JT^FkjD?9HTE00I5&QaH2y(9Br0WIf7Z*5Z?DJca5e26D52JskYx2Z zFs-;M1>eK)8b%g#!~EtqLVZ>K`S~#nAlOhe+)ilOt2}%8bg2D_*4zy7}Is^aV|)Wq7fkVs|F^xA8EEkPrszz zQmCm2Q?5i1WESFr8Sz2HGdz5DoG&FAvC`Lk;X(1@b0+*+8!F6U8hGYfhQL?XW98%kljszm?a;HT|!7-_QifAI}o^j&%s0EuB3v&b9m%#+?{smBU0 z&bd}A5V0IJZsSi^j*c;3+sP^_dB`LC<9PbaYGEch@82BJnI`a9+z3vK2&YqLe<=n= zYzNMmO)-cc1y{pM!EAis^wkf=;5{Zd#12$)i&xJe5ri)GX`EY`h3%T5;eQ~@jfLNzL%R7y_8 z_iEGztLFDwn5L-mqyopQ;(Y=gtMi;0f3NCTcVM{gr;0}BUEowxxdm6pN-j)M_IkcF zN^L$$_GSdD$-<^C#P_n39|RnAOWenM*)Z%U0u}nmH?Q^h2BXyHT<|NEu>A=)T@J*Z zv9d!hP-C`{xbO8gS`j!E@*u*> zlS?BYyu`&$nBs)E4G{{tYQ^shf28`_O=&T~PxE!0*I_<8>Hv~VAZ%%hR z{O1=jvB?evNDj*m%}|&nQ#083claatI3IDa@h`AGa{XuSQdNj!NmWH2$1v{stjOaT zMV?jv^vd?$5oW0IIr6w%zL2T4ta`VQdG%+79z)rw&7sH5x;-&l=-h8cb4S9L+r4ZE8a!puV?Sv~Dp~Z{ZrbXLWb_eZUKTyZ>0UMMe|4-#Jj(`;u;nJE zsrZmhdW?)}bn*s0n*yVSg=7J9D$w=rx+)tRK6T@cc`G)&e;%a;Y zB;WfQ$C0SC=aCAZ{hrL1ma=B+la}it_}C44>omp*z4vfq@f?R6H?DPc`D5x(({0ra z=h`2M+7>^46vK_kV9#eo8^_vj(Z;bbE8IAi&f&(fu-i)oeXf8akOzx)@i1(_J&{Enh7JjVYUyqZl^Bh4mgf&$#~;Hh;e)+g5k#1 zJbkQa<9H#XjhhEi*&sQijT4j6#*i;ebctx=kQ5PZ96SVW)B9ecb443(FdeGNR93Wc z@Q8>u-r)P*f4EFW8>g6v~lhXDdv%ZId;y$#sO}z#^28%ZK5jl#2(R;=8Yg$W0uv96?Cub-(bZWyOv!( zQWZG&3(Sx7IF)@W9+&PI9)|e@BF%FF>!Qt|#&|$ye{+YWX!!#!-#S!5kZ{v*pi={8 z#X?rdB>W@%t~ZaHHrg%EtNT+2QG1TP)ex$j$6g1bos4{JRT}m7YOCD>G-kmoZ}6?Qe#H+vTte^BiT_6Xk39%FnNu+ z2onxSe}~*MCbsdT3{4SySU+MoQalp62)uZ>cs&Xw!bjvy_~#dDe3R&n)KjFqbtX@c zM5p?~H#Llb4d_;2F1-)IID1b$sLQYs?YJ*?J5)_z?lqMnLekWp5`Toow0?)hWn4n< z5o0rlf8EU?RA_~xwnjz+7p5N!QehHssnt<4)I^$QR?pd07{m< zfCp0)L(OO-R9?Hr5Ed*0C1HgYYs+I;ZF4t}vW!`pNb8#sxwtN}YOm$`C@poZV5X@C zBQwS~>Y?~!2jW2+Z`w>+Bf~C*WqkxQe@e2StE&1BI@)CzTy&o@%$RNUU3>3eV8s@n zpE9h9fBpvZBWzQ&Nio15QcQ>?#SAYgmJe8pZLp+Re!_CBcKL`xj-hVvF30La_tKJM zmFXj5HI`$wsTPvuSZ%f!T8n_chC`7F##BbFxiC{&?^^U^FiE$T#kYiPuA}PlNf5@?TB;=S|Vx=5o zL(Ok;EGd#?+Ew7Ts4KE!8rUnlxT*&Xc#k4{SzPdu@1BK`^R&7dvMX7^-+_!+RF_3X z6W5qPB(d$EY)D&GJz4d%p2s2Yf2Vk$+?2da6s1d$bWa62Ytmg!s&8MU{`qA(JD)GA zG`R73bz%G{#JAfyf7yQBI{m91V<43{g zJhEVfsOdY)2cItrs^9qh2S%lUi+AYXVK#qyeW2QY!$jC_+3u6&++uO2f6FK1DzO;7 zd!XjH;0ja{Nice27NduMw|?CA)sA~(^sL&vE#c{MiE++_*tk3*qo28RdH7y^O(B;@ z(Dqptmq*{#NFez^MLU;gEN9)hyfNF_pYCt=I~?)FA7&HA6ZcG7P4t0TO)UOS&>eDPR(p25Ro@p-`?d_EotK9BffIP-$fe>1+gee(IFN#0kA z`=pQPMug?73U-w(?#YN+2A-iF&!Zq*H|2URm4`quupIY|#{|*BipNm_(tuxa0a#D? zf&lnt*WMWc$ki?!Fv6W_R6w2YgV`@#*F_HT&4A;A5|hxS z<@=uPp~bg5mPTmtf`5b--^gJqs{F3NGhmdqGaR^h*Xb4r7f<`mrUMkDV73A!;wkLn z?^R9PZ|I*@3JIv^uGNWL(dhUtGqoD-*IiUUqh^41ye>gK9dv9wrB=0XJG#SK)ikaz?!3w$T^ zsswW>jZiPae}k|leUrv=yGMpA{-hf4kwC)N{p^%<7O7H6NGP?H?>(DmW^kx#^P(d( zRCtdx=?IERUt}b3qay!Z6e1M^A%ICT=jB|Th0$#@i3p|j&lW@!@Uat-AK8fLjJ(hw zA|S475z(n44yGaXKaiy(iRe_$v&jU7`TBx}Z59FFe^i4^Lz*XiV@X6M?x9IUN`6Zk zD&o{3I8UP z3%XkcDWWE-N1R;_qprvS*oNV8k_|A*FnZk1e~L_J=ou~Y%*;0y%*3#|`%d`u)h83x zNI)XySn~ugTS0_4l>0Mo!l*G3{Ug>8RK{Mze5~8RObYmPw+LR_vEHTKf#6RV>=y`b zyE{<8N_p36Ww<(}hWzlU+C#XyfB<8nx+DTsM~d!Bt>6Ps)jN<32w3-kg8Bjnk3}Sf zf6Zt3;Kaaz0rQ!m310UG4~422;lo%Z%5^Gk-kH`>gy&40;RhG^P;S`KU@YY(;h)M4 zdX=(0UqsadL%Ttbtc)9paKq&%z*REJT7Bqo+6L8OykQiNpe*xpv(PaSjhV2~2kqCUH`X`Z=u`sfue{m#g zi>b5>yatg?fTiEyyF<o;B3Z#od5-(ZY%4=68V!FSMzFe;h@!3PAlVJI)-?%|n= zybO%vzEll}%!NsR^7t?>1B(iVYy^LzLmQa;Qc+b_2dW#q)>N2-L&tZ4P}|VK2s_K# z`jwdRlau29tbae~2SkPJ=3AEq+yeh{{4x>>1DN4x=&J-y6WfUfPc08C7YVr}5Jj<$ zRZh(XR~K7b7+r+<5f*Z|HL-iBJCYGxrIu!DVD4edD&+Mw2tQ3mYhA>-(nzONg^WT3 zDX$Jj?%YH9+q^SM-x!kh7&*i^8k^9lUsT)cW;x89=zog{M*Km$#c4*iVUaN!>v}UZ zBf%HXEYn5v2~^G)vOI%+7u;04Y9U}+C#aKf;ke!DQFu6O;>e15vK-)W*|xvrYZQ?`6M-X@kzO@3ROVB zWE^hi_*$G4E{Y)*$Yjpw2}xemMXz|Z*ms=wXMZRO?m!T=OU`Zc>Rrl(iS_+`&A|zPD?rjeq!7^_9NAvdB#pgiLz@n}09NNl~eRQM(Ql-^n(X zC%I%W8Nfp#N4!mjiF1CyY*-q6iiJ_iv#~O|eqbX=So^Yp^V)cyj5g|ZydJV*kY9N$ zUNsE%P1PYwCJhUUsLZot)7V~O`hua1<=HPG;Wmu=k9(cN@)|pHt3@eKvwt^AMS7kO zxNqF>;}CvWC!SMAuCPud{L?yN%H3QqFd#i2t`{$Rx?UK>u=!pD@6MNaBD^n;vRc#o zGIdYiyf1L0wcY#j9xL71;eAOsT?T;(@5@xX=JdYIrbvy=`!c(KlHQlZr1xbuYmj!o zz*~Fn?w9v>89lPxFGy2pn}7Rdp5e@(ZX94bV2C)v1;gLBXY;@yr2*`Hd0^lpKKt^( zFy|<|D;U#s`|@t`K(9G?F$$j6PFhA%AA|jCKgbA8T zCrpr(oG|g?@WLcP$q%zrRQO?nqU>i0f=WM3&=V0GIfWl4;q)FP#(#d8AgA!dBsm$e zk<;?SBqseZK~CX_338GnW+SKNhzW8EM~vwwJTU>LD<;S(oH0R8;fo1!TE3VdC;MVd zP2qY;YO>>Hqo#1h1oeb3Cg8Q4NloF732F*&Oz!CBj`>bFB&K59xw`iLet=8jl9hS$wsV149t zL0J#vNYqyhmxA}cV}4z-{2tqEtNCxN2Vq_wbJ6t3*M@;?}C5G--(#Y zt~LYWpA!<$7|CBegJ5T5?LbADsN{?6UfWmlbv!A7e^St!6cdRY1R8gftopEXAjt})*Vn7zLV1(jA}U^*pPj03qkRuJsS0+~ zb}gzhyr@cujj9Hd$QO9plAV~YwMnAtDlN5$%7~4qdQ_iUm|-EDL6 zGA3zgD3o`>xuQu^T`q~FDb&|5*S7H^a!CyRXbs!Aj=vx3G3_688 zXK{bJ2Ds2|sBr;Y13-xG3S9$$X_0D=T?4?(s`QqLRjsr#&=G{2IuKN`Jkb|1j44N< zcpm2VAD5N~L#f@ax`+?KCh*?59?@lw88%nj;76{3M0A?q@B*C!R#iJdJT(9Is0@IQ zGJkvtD?#7D!bGE5V3;SSI?8y-IoWz*AxLtDHE`O;^NARTDw|@MwD$EDz5$@rv7yp8 zkaUcygCx>`Px}TEgG?ZB3Vk%PcC@_m-gT?%*Z`4hJfSYiOxht`6rBW+tA}+mEL0ge zq8#WuOg9>Zl%*}5_6-2TE}^}cVNLb8#(&IU`Nt^=;*)P+7H4I~1Hl3nw7d?{6Rv@U znzUU2#_*KU)%Zs8jdt6_n0%BC7sLQ*10pfDCRS9noN^89$30vFKUn}}&Fz*5)mB2X z7`h*;eFMbs{HTrTzre~uk>w;GsY<-q;VR0bFvcFdqVoYBO~NP=I%-DI>=@t)x@5D_M_jjuZo*^9 zMn{P1K-D2>*tJBzAmfT7TDqM9#Mu92XFwinp#o!H**cp(R zbJ|d~Ft-H3EY6ZVaXVk{Jl**usrS6?4Op1V-T)&$}!%(uJOD1Tt_)**|LBZ^th zfSer6;Jw7`2~ToSuTP0$!8=CI059_)RPKz3=GJk}-Mn<$-{8Knz>iZ%u{>QIelp_w zFI6V6Bw*mt{vt*-`yaCobxC3B62xK=Lep^tq) za1R_GaGl~uPsURt1%I1wxSdl)e)Kpd7lkT43T7O@0Haj#*@^>4J7omm(xW6lK~28K zmbTMYCYQzYRP6FP%VmtdT=*TrHcjDcJ6z0;p9nT>yhL$wkF$H47Ws)3p&Ghugj1ix z+V9kK+r!Jm+Dj`g(|JpXzDVB0xaTSumkAm`pOCby_(Id%oPSi0p%lebsp__wu(X%P zh-5$Eix}gzb(;^wbWel4tD$NpFMyZZO(?YhA0f9h>EmsQRb+n0%l5@5}LFjC2fJ8Y2__X}6dR0S*Bj z?`5k>cKlk)>NJ(FSb1V7oz{V3Cc+Mir@RmEkGI1O0SW8lf>Ek}`#ypmjDr6oVMJDvYAcib|ND%{>dbRamGS($c+Oc|Pmt44pEw%h&2mop zV9j!lM5Gpym`w?Z9}VgCeCK^HmZOix$vqv*p&LdXS1%9#+QQu78E38t9 z={_HS@lI~SAwI)lL@@kh;sFux(tMGzD=b0{`93ix>wX;T#jzsa;YQ{VusNP9Si}=d zc3%iF?)b{<0}~^uwj8X{Nt4niD1%}Fhx3S=85V$bix1L+=#AEW*`%2%}xKGk} zq`?A)o29G4(PXe`K!>gdGQ1G;wIOuzlDesc)VPX?ej`dK^}X#_TLtD@+tS^2=bane z!y&R^V6a@UT0^ZjuEmks&Dia>6j8D;m|@niW;jCgk%uOk)ZCMyuZ)Wl*5@B$V!z{m zqI2o3M!bLjK*WKU-O-u%|2gpYp$hbW->*pE9t>`SCRL5ZX^_l7(kJVyZ&y3 z|6U$t1LWTW5r4mnYY4~RjflT9HQ6K@z<-}$ff&A@_ac6uVE<);#dQML0J3m@pay^* z$=9|0-3b33G5q@m8TMaq1rq094g0U}DREx!|Ni@w-mLliT!!b;Y3XU~f{O3ZAlR<% zg<_mSyVUcl(+~=X4aj(DF$Apu{=7F?#NWUE&|tU_EW$GMwl{0Cbw0lJ`Xl4UK@6^_ zUw_yx{P~8ce8V*fyeSC~f?yMWtn!2&I|h{-6I6+Vcvo?qh4>iswEOu69t*x5m%1Tv z9)AJxvC-`xgem8}(nny}u)6aB+}L1meCxLW)sZ3*pyks2as~Yq7L_;z-}8@sas=rW zDQxBh72SA_y(TriDHmLQgZV4zz(Y3S-kzV!TP-PZ4dAuVtP2Zu;9Aa z^gML^qAH`?1eJ=K3&0G27OoEI)ZoKky#mI?tMX+~IswAo9ABakMKMU zD4iqX&ew!c&wzmg0jvH`r#6$bRKM3)B76zf2M{4NM%6JRgxmOkxT6AIe-un-nBmSw zbjKXa!V++NxU;`B_h22v&P!lpi*w{yap-L*dp)3=7Q)vCLm~%%q`dlg(G&fIr8qRk z;g0w&xXZNxs-7Bfr8X5mG$ZwA#F3$=ePhvYB@H&c_sMNNDxT7Y@P@^qK~V6x1BTM4 zssexzXR#pF8w|L)nlnBWYMT7!>fiRY$I&J`K8B4~YCob18 zCe&4O_}{=zdwD*70E0X2_CSDqeRC^_SWhFi8K`UXp)CTqp?k8id^t%LYIrxh)#~DpEJkk{M)zX4#0=dI12Z_e-BZ&= zd~3tG!yH?GS4YD`oEeM?HAxB-L!AahlDSt4!_ zr?s7?Vjw{WO?;OxC-2s*4;>Z~V;gP-6mlMsvsARj&=I!T$^xB{EcoE;u~1MB$)Zjg zDvHuh0(|9;81b+^DSrGE0f(kWCLVv~w;tLFFb)_FGA-^}BtdRle?Lkz`9YUU76E4g z3zxGN0Wkr8m*o}#D*@k^5f=f2e-CQ708)=$Wm@uCDjsZ7z@=s5xc_+B*+E`cEtUcz zjZE^U>O5}g>Q!Z!Z!dwMm-$AGD&caM;9NkR)r{fdUYLJ=k_AXbI&?#z8@W{+IhFcY z2fBz9{v9lHKhKWPv#2Nv%guMITGTquM(8*rYXraO+W{v6Hf0=V+$tC-f7;@5YUl-7 zKsC>Z0}BKFD-hx zXO4cJgYTGETbDP4QS^}`m4`l{sAC?mLe{aB;1Lc3g`w-7xr^I6$mK{~TO2^CeJE6q zi*;o|_=6S%TpR>j=0c$~e4gHmqkB1Hyg>Q#f2+KBEF z6Dx|MhkAgUVv(mY!RbDdMjVYr&G>+b_@N3{l>HE(>>qRcdy|4vSnU%a+fU&AbfzP; z8RsM>;H4{SbMGLCwbsAPXXC*|+rM~lNqR63HX>H>RO!*=!RH<7e@8sP8k50;Pvwxr zxjQenhYB8ykb#{CpK6D&crYC68`C|dnk9HU&N&fNd56J+&zU+Ic(B36gN;}`_#DdH z4IX@&(U=G4^X9<`n+F><4?ZUw{Fn!yK_KSAr^>n}4?a~nN<8>f-imo}VQ$Fc!9{KB z%!6?uTs+uN@L+?uRG;|JS#43W!gw~?JoQm@(!N4pJcsUF zsV@q#^g}mPSg?xoSziRS>5Bq)ebEmreKCGvRqIs!pb<-9%kZ(U7Fcsp(h)r8OivtgG3i8_J1hp5re*gkEb?a1}$kY~3<^&w>9o6-X74c%3Tw@HdV?y=4;E!13&mGT0L_ zA)=3Oa2%kD4%6p$fC7=)7=F;px@{f&#;L0T^fQ3af0ulK0+dC)%|v|Jlo4=HB3c6X z+-x-MP?(!xReYFKV*#;90H;u=HNThH?;8_!?ZjtySZ}ic5}U14f|G2v&Ra2KVzhNm zSGW)#4ftz=)gdTgWj2b>0-|zjMr(NS*+3+p4TPB#!C7Jx4#3a2w|&BR#^&w%L}&GTe?GWu?poB83J8w5^JWc@CNgLhK6sNU*vy*f2<=(D47Ce(X*Te$duI6E#6&n58U^U%x!#QNf98?aB& z)m1exz&jGb6K2vC19C8JNGj!wVOFAI#ZA_m!dd48v%XbP7jmaR338FJ!TI;#HH8-H ze{xA`q33(`2H+NeRijk16pAefP+IwtQkM$#hCYr(eRQn>L0*bf;oEUn!8#0Ge0c;e z70WGh0|Asfh{k2DvWhYM{Zr&Bzy~XZ2W9~XdPzW$5}Syrijw(b&qnt@6O4~kg1D>V z#9mK$1)&K8yy_!05;P11Xx?%NpQ4RYe^9Jbz#J#tE}B9E*ThO;hDrg)ho+`X<3SNu zxK!Wy+k*VMMw$9ET&S{f0NTDoDWW$A8d0YT}IE{Ua_rKANV z77R+d5s~hc5=l{zE(rl?i68g={7HhxI6PT73>M1sIE41ir zHVyYyI)scpF>?#&S*9D9fMCXu83gr!j7GDA5~8VF(>JmnmvZq2?|kWjJkq+@scNmP zXWXf8Ec*qobkVvZNliYij0y%c;B~8Nl>Ivsh4uFEW{m`!WJMoY8$VXyk~TMqb9cmk zzQ8sac-l=#YCR#7&-~`xEk>>}zp%%W9?RO3mH1iU>Oh%)KWdEao+sh{w6Dv9C9>UG z??Rt&k)2&wx5j+FrHMgi&&{?54`bz&IiQc%DHIyX&^bL>W7P&1zBkL#r{Sgh+gcY# z0?BPXmL_!{$pP2ZX00|rJoi(YYUcQ=KH27DM1Gbv6WniSBZ52q9f8A+Z@MFuos)2BaaXp z7$eh?q|mV4oTf-`B$P8rioyA2bjcrKnfQ_*t~xyMK^FfC%{NzIR;-6Ej&T@jVVyv^ z)V{aro|qMcybX-Z!}cE|x|xbxWN!obixfmF$QI%-y0cQdGi}BItPc zK!h2z80v09BwyC~`{L{)SEXE^AnZu?^;)^P8~hrta%T@LIQ2bqxL3(>22Jda%tTvN z|2T~_H3{;g1IT2Lt(O-a{pdb(Dzc{YrjuAbeBnnuEV7Uf?A&>9>*g{282P4_c6K^C z;m@u$ZS5RIk(z<)`^>eK@m@10Kf-Qo-NwxnS5?mqiHDC?VN-$oxK6Col8<~0#zmX@ zLypw4XPo*H^J-V-Ujl4|VyS(&ZfNFcg^p4H#lzjgtMMv(eOyZ>%HM(&fWy z3PQ$t*w^Y;yC`ImHWi1sbUc3SsAR6=N}adF>d*Txw{yA=OXTZ~P|Y6RZ<9Z8BzZr( zCw5g)1!!KRiBi(jw%YePRBu_V03)?Z^2mb_+9rlk2Ug2k)~H-Hy(Rck$Zx4%{cv)RN@=JN(oaq zLcUSkY;L3c3BKN))&tH5&V7cFbXOq`bCMAFJN8Gqy;Y<_z6e(O6NqQOYblO+uz;gJ z&>f4`xV|Dp3+p85s5~dlEhuWy$K1X7rg=hVBzDXb0fU~_>#D&$_lR~H*`j(6j*|Ln z?jC4EmG-h^1nBdcuFmMiCZj%ubhJ-uNm1l7qFG+k6eQnrS`#}ZGLV6E(fbasmcarY zbpqHS%+d)Fr0h8B#CV*3#f8yDNO@}D_66*YZ=PqHOQZa4>PS|Gw9yZ-x!==gEqGwm`67?4SXjc!6DG}%6RJhg&~r`VsD!Ebx(7z*)a@11#^(@Vvwk?->lET zM>{&0ld@Hrg7+wV#D&!XX1RYsMUe}#-?UTTAT>~_7|EW?vBimEU4c00zw#gl0<^V* z%I&mL&(Ep56y>8CY##~Oohik=`xq0F)?XPGcw#TM_VCyDeYdA~W?g;|SH8SVH8Sj@ORVM$!tWG(@1`x1AjX8|XbcgbwD zJXb?L4`ET`iLJM_==`_>kF;xf<|l{AhYs_}i7pK@ikJPK()v#C z%E-(VY6laHoq0eeVSOyOtG*atLt`0TVQItO;m^_gtBAVOiiJGtS%a-Ht=KS0rp@)F z%Vc9po)n1hLtL0RvA_vIvpA{w$E0zO_0y0K)!|>UT#dVCtVd-Wf|TvW0K8??UstRg z`_wW5t!F#OUduz@-|A?M#QQ|Zl@h-{$U?;U=Lc- zG%pYhttl1YJYj!eW&);2&LSpT*9OzhC;SjsD&Kvqkt$b9Cw%ik2V)iD_rX z@7e^XHYV=`wI_rcc9?OLYpN-Cf&EGdL(Xc{(5moPfEy7h39n%_2c-n&>vM*>Z{qhK z>FtgA%_U3Uc74dvqTw4R@piQ}m9dBRhxkz*D|W&7{M3Z+3*HkjMR0rk5N7g=Y4JS_ z2cOZv3!dLT@%v$aW-&wMoy0yKF_(gkbt}gABGDARU^RjsF5F*;>HWnHbw9%?Y|DJK~no^8hDvV7K5@k#p2}R*;t(lPX*JNcdhjGZKqG z=17=v+=6VP&Kp`#N^uqa(#>C z?-8H-60(@Z^!ngOq2Hk9SW)=JB~CgAQ`VdxFC=#$WpvkpEYn8GV{(NeS^_>v=BBv> zfIm_b*BqqLX;F2XgSbkh(orFnP+L`0f zB&3rjA3vA;*F*LubR=E`xr9Cq5wCQ80cnqc4KUgrm9uu@lsUlL9rTkv_X@8~#M#8a z#rbEicTQux@lQ6F*YO-S&KwDFVvwjP;OHL$-G(fqsgAyAF}qaj2wap!<}T_H#9Qv_ zSX|K2+H8|=EJ;yd1Pbn=b0h?z4_P?;4_ufTGZ&GQRrc52n1C$rwEK3+yL0nGJWQu}nuE??VkF3~u0qL5pjB!F-P#I(ywZ22 zz2J{$v~L889(Pk{t%wUpt0`siY!6)Z-fXw@UV@q8EqEa6sqQ>?9SxlRm~h}czHj}! zb+Hmk6M0K;==Bo>eZZ@5;vZKa1FzlZY3-E4x0;eK9km`vv?*_<`04(9?~9Tvo0F7n zz`N!fSge;vwfe51j{Gh4p8g?B0k~-ROPwh%jo(3-Z{Gi#2HbM_E$dcvJw>oz?{h0B zNPQ`lFf^wA&hlQ5Wjl>!aa{LcisZLNm4-~vd?l}F8N*iS?d0CX7R=KV7v^W0>C0ZY zkDPrh0~wYGq|tX|J1S+WL8W4w^3nnd^i{j*XTm@5mko<1ni5tFrt~pg)Iihz!>Q*c zs=-6T^5tRK*eL?BtwWQDR*@qH_UPuuKo5cI7xPEQk9fF$PEKK3N;Bhg`g}D=46nq0 z(d~{!=trJ4cX5!$Oq;9DF1*h5nhx8hfv9ckKaCUGX>e2R+XBs8RD>mkM(2~A8YCR{ z-c@@=U_p#;QYP)vI_Cn#?F9ywv53b{C;FP@mKbkufo>+4mLhv_-e@cfA3j90ciNrSlCzAXv5qL&Tlk}0{l95E>E-S% zxq5{im`hp+T}uNNnYJ=kRE1=fQ+{vT^O}KS^@NJY_SSKMJMhC zC=r0}RuB9IM*B(EzJNxm;s$Dz5+0Fgpr~-rbvz9`Jy6_Js|tALXeP_avhsw5tu645 z1AA7GOlrm(NFznrIwaPxxr?0wu@Ze$g9I2Fk_Ll$#OXbOzgX2{OzQ5{G z7_n=#bC)k?UzJUD9Uvw#Q)Gfsjm3C8qPz=tzBE^t=}DwWhAfaEw;{ONk1)ZRC*-}LcC zZUq*OU8%#Mm#gn>m`gw{f~n%Q9P*mB_Lz>Kh6nl8sy^TU^c5jH?%fqq2m<8 zT_}lE5@j_}$y}xKjc~e`VKNI7Jb~SGTDqsW^W!0Q;W|B#%eBvsWv&TX6hE9KRMUE` zfb`_-rukHHfqDJvJB2vxTrNnxBk%a^!N}qt(c3)7RidqLetI6}^sE=x%Z%9n#A*`X z0S7koPPLF25J78_6eeO|7eyKvzfiS;NSYgl@ zc?n?TTG!JLMo7EV^Af}DC)+5~VpV>U#8=v*#ow)cGIRPhpZ=nWi&GF0%;$c11zn!Y zs{wky4?W5pq!sCiW7O!l_>-b<)~0HG-!bJ=Eai(V{}jh67A*Jkj(MWqp<-?a+c{JM zdRCLuYGx|8vEpU2%ve|4m5s`jUmr(s^>*+ogR=QBoffL5f((2pzy8|7*&8xYQ@9fs zIiHh#DPKRs3ilD^lmOdA;b#%XuPAbKcmgJ=OW!N94OJWh4lI5ydG|>qq^ZMfs#BX` za+=^FrAw|nW=28hfHful!a>Q2xZEaM+Ab zomQORI)QiO{=Rp>&Yvf10++v+tC~NPN%nTk&i4s&}ujss-*ij)nWI+8v zLZ7FuJd$epW|>w_<(YvBq4sRL*BVaa96>*V{$p3jCwEmPCC1*k!A(yV(Fay+@#L02 z>)S6X$CVVMM{zSo3hgoiz1pp(%d=^My5ZTXRcqz!M&j{mvQJKiYiTXYwJe-%##m$N zk~&SeQ8^n~C+qda*0=o^Y}AnZ({7A<91$$-BtmZ ze#i^5sg!6{jwSQQ^pHPy>!GePA^OT{)DGrvThqXyRo~6b>G25e7B#s)bItyQ^1(yB z@H|{^a;jlKaN>%-`SpR|U^^Dq*}C8dd5fGB0YjL!tLbR(75al($W}xDP#!QyvZLn} z5Zfd6K=C6x#7z88xy|_QcGMuzp0>5xnVYFIWo|t3)(ip6kI9^S(ME30IxfQE4K6h9 z>Kh}CJ&T~5NbZ!6-M4(vDHfTxEsr?)X`EeLJco6oOZFBQogIyswOl#kkVMgS!J=x= z(#E6*#O0q(s9D8NV>6&O^Rj?n$my(hRUQ-Fkak;FR|N0*yj+a>!D@aXe&{twpY#L0 z)<;N9e2Xm?>@iLj0@n7m_>rmOMS6#Al+#OHg?LgZD}G~CkLYxZ@;2n2j$ifnE+r#t;}WEaBdEV3 zQvHo+V>nB`3;T)TlO1<1o%?^Y{t?j=biiardF8EHMPvT6I!siD6xN-{kXk~fzD1z6 z!Jd|QnK~NLE9rTi?+ncPRtefen#u`xJIko#@&Dxi=u0vjG6jh(Sh#4Aj%Fyk_ERo+ ze$!>)*y?QYXW~#+epX$4WPd3VFz0)an@IA;F30%zD{X6D-D1yK&7i7m_N3Qqk8=7u zXTJvxmN2azNks)j71_?eL-o|6Pu%BRi^Ev}l=XbJPWT)7ib0?p)wdH$wx|D=vgLwZ zd2xNl-30EuQ1pA@yvC+M9JgYQFf(3ea60Sb3;N}dj)v7JyRP|%&?+T8U zT<`%nWV8hwR&cZL~^ z;=V5>AJLWk8<$Tblxf-9Z)3&Axnyp!{RntUNk`!M98oCuA&S@!=_9vxLhP_k(#%!) zc&H$W|70msCAC3Ng|#KRAyuWw^R18(-xDR#z{Ge^e>3n|N-n!3)PEy+3!I6-#A9Cm z5Hc^*0fz`aB}39~*rtlDBG}kPONT!5S*LS;(ZTLj?0Q2YVozrFV#E*7%uk{Vq^ul& z9z7^pB26J{VI+^Oz#dS9G_aNxLom zu}c?v2&t=zSNPf;FPHTbvizP!2kTs#8@;UtK5rVB= zr!OH(%=p1r>GZ^bOT`4h zk6=-=($<=Yzwb;E+Hd1Gu^XqfiLpA+zPK!KOp)4L*hMfO%5fAhp9HMugW=)k8!q5{ zgQ&!(AZhK`NGE6N^Uu1Z`)hZnP3e2or%q3FS@7y`;dAIz;>Xg7tj&0~4tOj^)I?Df zfE;lO0so~w^~uB{(__z7%Z#1U=YfR#e&?DIm869GX8YMJBXoMp-}n22y!3_Ybs}k4 z!Uz^YV7x6d+aQOb4Sd-+7WLyp}GHdG41?gM$#?0y!O!9H9Y36Bb_z z%m5Wfp-{*=ZYl6*b3$PuQG|pLQW${+XMm~y>yjx09Ly&yCM*g^{Of?b!-@WVA}%2; z{!fNL2xI#)z^s5cNgTqwBA68zqO)}2qENO32)dx#GsI3NU^`-B!t9;h5yM!|C0~+|3;D!Mu`1g z@eLFI%N;^OSWH6X?}SL?KPyHe|KV5yDIxKXe1JGY`0wVD5EuKqON0a} z$H~8q+_0OyQvX-rzu4cRZ@NkB-vZhHYpC2nr0`$vgb*SKq!1SN2CNMe5fVWXv9qh_ HsuKMl4mZ3D diff --git a/Manuscript/D4h.pdf b/Manuscript/D4h.pdf index 50258b0cc9621a0439a8e782802a9ce4e8229e96..75e1b74fae8445e398737e87c4d98373a1b48fb8 100644 GIT binary patch delta 5863 zcmZvfWmME%yT-wxL_&~M1SF(kV1^DsxvPsRXFac;{b{e?zV7?JuDw6)(@ugA6hTNeE}I}wSK3vuI(pqHDd9^_8SQ~s zdP|p)vMD1#M~+$L|q_+OX-FOkUfmlrjhjBWg?o?jr)0&@z#? zld;y|Tkn8U_C6=&732k%ZO*l!)hp6U*JQk>IqL0swC!hum74fn_sA!Ln?zvtVjUI@ zhVznNy2ylz2`*(>^gRnZzx4XF>e5vJRv;vyF(>-oO(!GMM(#(8Ud>%lEzEGx9qqPB*Fr)fjK$0Jmh##2vXaT+ zd$|DZRV;Xce5lXq^Tih$V(%w#mnmVz?Qe9KW-$fZ-vmmn7Ghs1O73zt$1+}Da6Aoj z(T(h-Fa0uFn@PfcKoBkYEtxuDmVL_OhvF}#X!6Q2BI0wH>vhb?9cV{!(E<1T)1Z?i zo-WLVRk=7$=n$d*@yFH{I=quc^O$zZY4bqflFNA(u@D*9<}5B77u()o^03&{yZyHQ z8IN5$I6uLQ}zZd(jsXYDaNrXW=!t%jVtb1mEr2dHPii4(JU?Dyn)E;Ejvq`H>g zRI3^B*oW_Z>M?KRj+MB7gOc=6kug~Cu(KC*__YCcx>)x3a<_kwIM3205(h1QeO-lE znS%Kio|~HWT)rYeMY^0>*5 zh(vgohF4fR{jJpGarM_qvy3?hRZ@D1>^$^#_EkQsx4Qa8^yt_i=%boHF{~o#7(-C? z_WB$tJo?D<*eO@q>v)&5JwF$)coy-tCE3=mX3VWqQyI9p$-v0L^S0>o&rI|A+75+Q z^Fz)VzP)6luRC@v9WT4F*s?Zt*6Uf@FRkV#`rI7&$^y7QlYd-^iZ4G`L7|@UFPo81 zdua8cbaz&sg|XTWkV*|g8E!MA1-TaC5gs=hl5DFW;4?I&? zx=(7PG~oL2uImP-2A#(lYV@_PA2A*{RY0rw2|Yr4oi}S8dV9pCJ_wB`eOMFV$1}=u zcAKbq&E7Xz>0c>DbwLq6Mds7FzJsqls#ul zT@nt?dW6ESD1Ml1m1IIR2B)`=zHGZCXfnD4?<)(Vn4j#pJ6X|rckrmhdvqT zM$@IAEnqZp1Xlzuyj+J#QLA+#*>!=)8t0>8lBzpS$}Fc{_G=)_RB{=3yQ4M{ST5cL zN4#v+$BNwF?~L>&_3gCx9ZKhvqnW-A1ByBL{p+R1a|So(9WdJ4T7|k^yCk2oDEmVh zKkZYxG_s2^Vg+OXcbSV2*2_}9VO-_F~udv zuBOR>F&`76_&z9o2E#j!0rukeH?AP!stgG@eed@9#i%Ai&0yYCb1t(JZ9rr^Key3rD@+{w z5#vOnEHn`XfF98*L^R$vzhmDfKCyq2y1${Ljps}2+^25-Nc?k2WF3n2F2}34+*{3& z;gqU7q1}@a{x)7Oi9XoH?*(A6-GvH;wf;7$cx>HrxEy*EBO;__oQI!$hP1bf7Dm&T z)uD_%yr^eNN=)&TMukgCmgPVAEFiYg;CY$KdQ+)4fN(PKjkKC@)lNQtpqFO5Day3``U7`anhrx)Ys#;L#fehr8YOJ?A9+s>8bvLhmM7 z7I^e|j7wWwHSe>U}yvqnp`?9%2LktV$&ps_{QPvUSOYjEK7F42cC&$5EfFAl{i zR=R6qBNEXOP?tOZF|Or$A|Pr;U1AuvNq&@dA@r8A5G*KR@s7g&zNo1n6N&LyoWN>` z+)|iX|DBN&?9%s>!5zAEn~WE};tP)v)RWXVqFrIpyg#v8FD_KtTBi=bl$<Gk`2W2D>dtnp9JjjOq1;?%6JNfEuvIB zPw#u38+P3osD@ zyVmHC2{^gN%=1XQawU3r=`trGWh*{e05E-d_=}$KphT6?PM?SOWJ~CDm$h!T^Lg=@ z!qKTI3LM;Zk|3kjUuJYqc|UiJeXW7b@;y$#X*QhXE%prHr(QBw8USIc)hE?o_V;~# zPh1ZD{^aA~81hN`r0WA`7c1j!z2taU;UJ{cySOB$?UfRWkV%N^Kqb>eaVa%0 zHK`DFfn#fqT$CeW;q&Aj))siUgC0vfI?vulrE~oGA^f z6Sx}ZH;43Y9a75MY7nxd8Ob~~2fYIowJEtb2QWJshQnCouO}#3UwNKg9{rI>?#T4; zMpC)&m;QW_{QVV|-m1}^2_KpTaJzm|5K@v8E#RLS6b-N>P%VL#dU4jvkfZUhErNR< zs1v#l^7ts4QkRuUT3Q4A7%{-2`63-Lfa4e&Tx=$Y$~~+ooVGAnq2WvI;VLsw!*71U zf0|!8*}`Ofh#Y(K4s_--6dL6JuwD`0xL36Z%B_2IOd0>ZZTGu=E8)x)D^++M9U*OA z;Pe}>nlIt0D2_)YI3j`6zHb-yPu_iqeK*xszZ%W?ZILQ=CA%1SgrzY+My`xxChcV@ zbn)0KHxWn)4%SU_(#dtk>bb9kg0!0NAKk!@cKg1elp4CXKXY`2&X4hi52rB0_rV%X z6Z)ltrClf3O&{XBkBqEoWJSt(%L`*d_ONlHsPA2gcaza`!HBRSk9qr0<|#&^=q`iSzm+LQy3$;?ZC00TUGB;ebv=zxJc4_ zAQ9f0d$S+A!K$Jlh- zgWWh?#H}Ms$Cs=kqzxZl{$j^!=pekdb6%!|_*eEBs5S!R*`HC8^SW|om0@kZH$uaN zwh#FI;ucKTqzXhGWApE+ANVY5$DP(}l@~yG=?{KnQ<^W6bZ#>|Y*ZbMPP(#hvBiWq zfT2R>sl*I7cqqH!Sd=Mf&xUoF9-}Y!Qx&3{J;0ZfAXXw4)-6vwrZ=LDJ&B z)S0ghzB+cTRC2UF)eYIiX0{YV@|or&TV1LF$Oq;EE*sR()?D{x0wkqEU~NX9QM*Mt ztD)HNCt&N%6LS;%MnWCfjn(qwg~oNmhpCQx(jpVYw#kkv=N&;)6yan_xuK~7byRFR zyh#&CsW>`kJ)ddH95*i@ z#myjX*uXoBrz?MYQ)|z-!Y!0C~WH5QvA{t*IvD+w4Jm(eX$y}1U$^D zs0-WgWGhir9S=7SVl|~t9d*&xB9f3|Y^2)SHCZ}^>M0e6)ETc9;iA@fS(f;nfQ%>r zYN~!N5<{i9$njHphBjeBDiUR>zQSH0ja<2Oo2j<|s}gZ5d6iZlmu>fudHqp# z+TzGv$X?t>DH_v=Jff?BBODx zHavNHin5j2#e`4Dh3`6nM!K>b*SzHcIz?_&=NmBLn>@waY#qW>_u=a$g+IX=>O-bB zwi;K}<*PFUD7$FbmaAbUyMH^a+w2Dd6#j6ADjxChaYcvr0p1Ocsst!6KpTdZFbTn= z5mC>Fs6|wz#Mo~6NV!)G=*Np0J!f~kloP!|&SfAr!u5DP?!MnzO(WB_qJofZ8_wRM za(E?V==*X?cn!%jm>$Z7sehJo>7GE4S(M1oGW(I_{Q)x0O{Hg7p^19Y9syIN@}RW< z$Y?EsIGt{5HV?c?(`XR`@cNmS38iF{X@g#gy`L>E8G zEE$S%HN`FGAA|LO-XkGV($j!SZrm;;`2C3+_7s$9i9eGQh7VN$I!yg@VG=>r!r_O? z$v6V)Q$?KT$j;q4)r)wl+&+RRw?ICvDu@u>{%zAOJb_M5EQ?CVlmG`Fey-q~NhA+E zg+^5{jatxYURBI5U5RAtJKd{Ahl9_iSR}|O<=pFtfl(XBrZd3q(IruFxx-it_x)z` zh?Vr%lwOFBF!c_QEnk(OPs3+BajVvFL#MvTdn0w(UA?K={a~!0<4dEr<&u*|zt{S} zcHvy35N9o6-N0;>`yP3`(R03_gI%=_g^TU&7Xgv3dZW(}I`U6XPvnV}o)l|wcu?5O zMQ)*%*2(!EFiuVcOE7xHFkC#Yzx-2#n8; zV83o;*fijZ7p=T-6XIO;bKmJ$(pU62_{x=9JN^KU<-xBVz?gNjK^3XUM!|cjLMZ1? z_!?mDE89SGKEdaw3w>(*YC6T&&x1+`8*YUVdF~lMSNhh}`+~Y+oPYQhZa@~xK`%YS z>Zd7x*``cVR}O4Sk>(s92zcWYalM$^=;|6*uWVydula^>rnM}u2zCE#R8#QNQ_i_#T)$E7l zE==LkIp@pt6{Zp;NsUIDV*XT4b^enlcJ3hWz8GvJfO`nr$Vl0Fsjp7`Me0{p+WbXV z1PD)GAVWdCNj}&wr*JX#&JW1qfU2PcCv4NAq9Sr>`ucT-x&~ppM>|Ee7OCozY`b=o zL5hc*d2T%(1q0NU@qkh#j&7pD@#-{y`u#rarrTg}ppwtz&QTn8>o)sV6zjM1T*nhd z&;gC9NR9LB_}=hP!mX#|P=vDF4#|*ZFg%rJK)s528#KPoRn*_aVZXhKZCyK-9{M$M z@Czho-~d7t$>1{LK?FrbY6oR-+s!#3LV{p%u!s=Un2VU1nOQ*7#Zuv=rxi1&5LieE z{C}s2>I~dKUQvjk5Ht9n#q7*X{68Bph_DFsFD4`|gm|8b%LYJ%M8y6${XOk(CMqZ- z{NFl3un<`EFD4=m{j;AKL{wD#ziWRd0z(9UGvMD=e?#Fv8vYhS#2|kaL%||{F>%PB zF~voM!T%2v`j^3f=7YiFB4SYRpAALCME)8q3K9Fq_3!n+_bUh%gbM$m`-h2&{-qNY z`yi7FK|1vH5`%V5a$oB6f eqENxVgJg<}FciAt*6ByP~!d@qYj*_OrSG delta 4202 zcmZva2{@GP+r}ei7$f@-(b$(PGt6pNb|xVqAz33smXPHMZ`np98baB(@!GPz+3MBM z5XsU)DLbLDX6LW}aeUwRzWVOtIgaN(e%ElR zxJt5lG_3H)-Cmxka^Cw;`eL6DCoov6^kz+zo_|~HDGjW!7uj^i|6_7z^|*#yo1(O% z&okN8Sftbu3GQjtVcKNtFp~jrYbp+zud-9IpGRm0Zef*qMYOI4a3HfCe03O%}ezGgL5t^V% zxTwCAm=#dCyPw@?J&U7-$WHCR0n??6<`C)6 z*148iC%Z=3YfKiJgY3+Iy!y_z-%>It@j0(1BI+hm{($P(S7&4*;ZW36)-wCbWrd15 z%QQ_r&RPB)6>%la^#wgb0hHhfEH4`f-RFPUUQ4S77=Hr1@Lw#Rt)ll_J;5mE4FQaC|ma%ZEW$-5&oVcpVp zeVpI4ET!_?G!XjK4gJta3V)N7SVv4H;RR5Gy{S#M!cJt;o5L~nBy zope@Xx2}yiuRlBEVhBXaze=!s<6D;GSeg@BC&R%mOuG0knE6W6`|78Yp?nQ_XXM`Z z<;IxBk{WAdc-xQpg5Z4GVs+LyID zkw$hp&+$XO{D;#tQ)8MT+>ABc3dL9QomsY$-Iy=ja^{iODYg;vyKpaSTY{r6$UF0@ z5MT^``W8sx_iw%t)k6{&@-3CSVO%fTnI%Al*6kd!Cxy?vgL|e8`=wZ2Umm~e661Z1$~`W{RtX<+WsVikzzi7u*K&hDAZs< z?GD>K|C)gXa{1tr+v?`3G~b8Q-cuPT?2e0+%GpgI*xktu-~TjesK*cs3tF?0WI&V=ivgg3}+%&S!?1*T_YB=4Z9cwuImfe(;f$lxO{CQMMT|_4W{j-g0@%gi5t% zrbglwF|6hf)UE8tT0<@pFI*ZJNJ}`gpngiNv!;qL-KWL9-hO>g+j`jRl=)^shOIH* zW!@FRTBu|1b#HE_u0p0lg#USJKstcWyxAWGX-Z;sNyD6#Z5EYK=PM%K)^^l6-9~gZ z41c)U-a`y9AWWLAzQCR|Y1aPgV=vt1Y@)t$LspI7khHYOzWkA#ul*)ZHo@nMy>I4> zEH)=*Z({>}Fv=`*E$95#Hw0urpsj**WC2Z1#9fZK0#-QAM#181ATd5tCP0;#_s*9` zGH3IG#)gI#bCOc^^@bd#a3B z#9E1OZm1K5x$)mC9yow}5Gb6ZQFo<2#Hu@_D9D6^V>^M_Xj=H;5_MP}YX--5t6e&; zK?zF^R>~jISu(%k_`<2a5|H2D(#u;d7~VA4DlBI2ySuj*&{%+r2xtFiB)d5}lHMtY`TL$sQGoT#W`mmi&VGx&o1 zW!HJaUk6ICQ#lL*#~DFhl+XGnl3#XD6wkX~5ecnznN;7~_iDNdMg!B{2FIoux?<4b zm1jn}u2sDKj$N26_Ng7$i&5R7ZY$jFynHZ<-chvX?|_o)za}v(h_TOrLPHzbh0O4_m*c#Z}grH3hB(@l{UBpzd!i zlo`K?=W1Pn3R>qrl?Q%8H-6;vgrQv`e6So&)DQkPi3Z$!BCNMkmx4xR-Fr;4v8j@Z zCsUX^$=|~@uh)lFFO(47ne(^cPydz`=s_n@Jh`p-bWak<^T{TeU_D-#zTvCGpOz?g zDqJTJrB>2pDUA_NO7jd6;Jv;=ox3w#@gRO{!_kYYd!Urx4rnaJf++6tDR_aK3U`gX zp>x{yfv{;`{WBLC_{Z&|y=wlrWdefg?F;^#BE(8K^uBUEHaq@lv);6zpmBp>6_dyx zPDxY#`(!`Js01aeVKS80CYEtpKG0|&g4s>SuIO2Tpz~t+=O`1Fzq9?*z<+H^gZ$WX zht(oRd1wB*C=TrXumLqNG;XTqHS~=468yXBJwn`k{oh7ao1Grs@y5uew3;EL!*#=0 zVQ{H0q${oJYiom#fQQZC`r7$GVz0x6)laWi%s3hlPrOxC=A5OH^e6%Y7F2SVedkx7 z$f?4(&K~tpD?E6VL%e`(CQ7?*;-_DeRUhUx(Onl200@UKp?LK7cha9z_)xkbXUE@G z#Cw&kB4DblE!SG)(z;r0vLy$FJBx=3clB*bcjqreS{wwd0T%YnrbXuQahVgW`2pX2 zO%KEcF&7m`Q~gmaN>$e%)8%pm&0c(Z$$qOl(Rn#)z7%&Gk0%QPZgTVt@W;^ky$E((Xa&< z36(G*JKy|fN>USb6^}6wq+Rg-($s&K<*GnV^d^j|+oj6HA2Rr1yl+pTXR;|lw>41u z(aYdI*AxzqFu7cqh+6E*Ow7wyux!T2vHJ}64*(jAfdj(Vj5#|~dFb&AzvDQ@Nf`!( z(wG}N9FmE|V5xlW<{~WPF_xs0^^4%GC&jW!tp~ee6S5<#Utec}?l>MmI;tDAm#iDO zNH2%p^RhA0!qVUA?F^nGhAH$02nMu1C}c+6wM^^L8PA!K8k##t#IVw~(xbDL8s`+R zB?7Ibc5tCM@qiW**IQ8R%`k=Y{`ae{rpAbx4>Ie^#;hM} z$XNDd`oW$O^=(;wX?*^s=RMm?84f21QQMXLPCmyQ(OWaNi998BU3%qB>Q^sLFF!l* z=LBfF;Xl8P39SV~+My}$J0)@;gnr~;T!qL4%e`?+k~F_yd^sdB7)`GenBeG01+W(Y z^21y?(H?y{a8LD38#UpvB`FFgxXggLrmSyCDdMTlmrgz77k4h>9xMNduHY75e^{H& zsy_u^3g5fG%(#UZ5i<&mF``e<86>_jN&K{$4{^a5sq}lTOUvd|T=AI)ahr@njbZ@I$)$Cq@3~ zy)vVhl-HHwSX_ao*?{%tz7K((hwt*;(n)hyEOl4D#RbiV!}Mb2GZ{x|bHNpsI;4bs z!P;auJ<%l<8e%(o%y~Ret}rxw<(#R*$40kj!Um_xY9v+tybDO1iIFyrYoFYYanPzy zup(Wy?mz-{7R!`wd?wJ(ZJ0cJ=klSM`Hz`+80u~O(}%3iQjw3V}zWQTWTUze-939~WJx z09Uw-GD7+A`JXCTy^tYH9*sdE;D}!fPJ~1LyTKuGc;(+1Mj1h#EM$-XkZ3&SXcdS5 zjp5NKw93DANCX0f_>G~JvA@kzMk28P?nU5mDro#61O8>Ofrku#^k6(1i}>aGaQ*N7;_+DAZ#p~M#28qRzWl9(bY#3#