OK with manuscript
This commit is contained in:
parent
4dade17fc7
commit
4f70931fb5
@ -409,7 +409,7 @@ Overall, even with the best exchange-correlation functional, SF-TD-DFT is clearl
|
||||
Concerning the multi-reference approaches with the minimal (4e,4o) active space, the TBEs are bracketed by the CASPT2 and NEVPT2 values that differ by approximately \SI{1.5}{\kcalmol} for all bases.
|
||||
In this case, the NEVPT2 values are fairly accurate with differences below half a \si{\kcalmol} compared to the TBEs.
|
||||
The CASSCF results predict an even lower barrier than CASPT2 due to the well known lack of dynamical correlation at the CASSCF level.
|
||||
For the larger (12e,12o) active space, we see larger differences of the order of \SI{3}{\kcalmol} through all the bases between CASSCF and the second-order variants (CASPT2 and NEVPT2).
|
||||
For the larger (12e,12o) active space, we see larger differences of the order of \SI{3}{\kcalmol} (through all the bases) between CASSCF and the second-order variants (CASPT2 and NEVPT2).
|
||||
However, the deviations between CASPT2(12,12) and NEVPT2(12,12) are much smaller than with the minimal active space, with an energy difference of around \SIrange{0.1}{0.2}{\kcalmol} for all bases, CASPT2 being slightly more accurate than NEVPT2 in this case.
|
||||
For each basis set, both CASPT2(12,12) and NEVPT2(12,12) are less than a \si{\kcalmol} away from the TBEs.
|
||||
For the two active spaces that we have considered here, the PC- and SC-NEVPT2 schemes provide nearly identical barriers independently of the size of the one-electron basis.
|
||||
|
Loading…
Reference in New Issue
Block a user