CBD/SF-TDDFT/B2PLYP/AVQZ/CBD_sf_td_B2PLYP_avqz.log

293 lines
13 KiB
Plaintext
Raw Normal View History

2021-03-02 16:40:19 +01:00
Running Job 1 of 1 CBD_sf_td_B2PLYP_avqz.inp
2021-03-10 10:56:58 +01:00
qchem CBD_sf_td_B2PLYP_avqz.inp_9090.0 /mnt/beegfs/tmpdir/qchem9090/ 0
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s CBD_sf_td_B2PLYP_avqz.inp_9090.0 /mnt/beegfs/tmpdir/qchem9090/
2021-03-02 16:40:19 +01:00
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, M. Head-Gordon
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.2.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
http://arma.sourceforge.net/
2021-03-10 10:56:58 +01:00
Q-Chem begins on Wed Mar 3 18:45:44 2021
2021-03-02 16:40:19 +01:00
Host:
0
2021-03-10 10:56:58 +01:00
Scratch files written to /mnt/beegfs/tmpdir/qchem9090//
2021-03-02 16:40:19 +01:00
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
MEM_TOTAL 5000
NAlpha2: 30
NElect 28
Mult 3
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
SF-B2PLYP
$end
$molecule
0 3
C -0.78248546 -0.67208001 0.00000000
C 0.78248546 -0.67208001 0.00000000
C -0.78248546 0.67208001 0.00000000
C 0.78248546 0.67208001 0.00000000
H -1.54227765 -1.43404123 -0.00000000
H 1.54227765 -1.43404123 0.00000000
H -1.54227765 1.43404123 0.00000000
H 1.54227765 1.43404123 -0.00000000
$end
$rem
JOBTYPE = sp
METHOD = B2PLYP
BASIS = aug-cc-pVQZ
SCF_CONVERGENCE = 9
THRESH = 12
MAX_SCF_CYCLES = 100
MAX_CIS_CYCLES = 100
SPIN_FLIP = TRUE
UNRESTRICTED = TRUE
CIS_N_ROOTS = 8
CIS_SINGLETS = TRUE
CIS_TRIPLETS = TRUE
RPA = FALSE
2021-03-10 10:56:58 +01:00
MEM_STATIC = 5000
AO2MO_DISK = 3000
2021-03-02 16:40:19 +01:00
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 C 0.7824854600 0.6720800100 -0.0000000000
2 C -0.7824854600 0.6720800100 0.0000000000
3 C 0.7824854600 -0.6720800100 -0.0000000000
4 C -0.7824854600 -0.6720800100 0.0000000000
5 H 1.5422776500 1.4340412300 -0.0000000000
6 H -1.5422776500 1.4340412300 0.0000000000
7 H 1.5422776500 -1.4340412300 -0.0000000000
8 H -1.5422776500 -1.4340412300 0.0000000000
----------------------------------------------------------------
Molecular Point Group D2h NOp = 8
Largest Abelian Subgroup D2h NOp = 8
Nuclear Repulsion Energy = 98.83857161 hartrees
There are 15 alpha and 13 beta electrons
Requested basis set is aug-cc-pVQZ
There are 136 shells and 504 basis functions
Total QAlloc Memory Limit 5000 MB
2021-03-10 10:56:58 +01:00
Mega-Array Size 4888 MB
MEM_STATIC part 5000 MB
2021-03-02 16:40:19 +01:00
Distance Matrix (Angstroms)
C ( 1) C ( 2) C ( 3) C ( 4) H ( 5) H ( 6)
C ( 2) 1.564971
C ( 3) 1.344160 2.062983
C ( 4) 2.062983 1.344160 1.564971
H ( 5) 1.076043 2.446448 2.238980 3.136920
H ( 6) 2.446448 1.076043 3.136920 2.238980 3.084555
H ( 7) 2.238980 3.136920 1.076043 2.446448 2.868082 4.211933
H ( 8) 3.136920 2.238980 2.446448 1.076043 4.211933 2.868082
H ( 7)
H ( 8) 3.084555
A cutoff of 1.0D-12 yielded 9126 shell pairs
There are 126486 function pairs ( 204852 Cartesian)
Smallest overlap matrix eigenvalue = 6.08E-07
Linear dependence detected in AO basis
Tighter screening thresholds may be required for diffuse basis sets
Use S2THRESH > 14 and THRESH = 14 in case of SCF convergence issues
Number of orthogonalized atomic orbitals = 503
Maximum deviation from orthogonality = 1.349E-10
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000022 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 28.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Exchange: 0.5300 Hartree-Fock + 0.4700 B88
Correlation: 0.7300 LYP
Using SG-1 standard quadrature grid
2021-03-03 08:36:07 +01:00
A unrestricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-09
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -155.4330274771 6.80e-03
2 -154.3138118814 5.25e-04
2021-03-10 10:56:58 +01:00
3 -154.3344075460 3.76e-04
4 -154.3526621553 5.52e-05
5 -154.3531118818 6.84e-06
6 -154.3531228181 2.58e-06
7 -154.3531253172 7.01e-07
8 -154.3531255171 1.35e-07
9 -154.3531255225 2.76e-08
2021-03-03 08:36:07 +01:00
10 -154.3531255239 5.02e-09
2021-03-10 10:56:58 +01:00
11 -154.3531255234 7.36e-10 Convergence criterion met
2021-03-03 08:36:07 +01:00
---------------------------------------
2021-03-10 10:56:58 +01:00
SCF time: CPU 1065.41s wall 1066.00s
2021-03-03 08:36:07 +01:00
<S^2> = 2.009866462
2021-03-10 10:56:58 +01:00
SCF energy in the final basis set = -154.3531255234
Total energy in the final basis set = -154.3531255234
2021-03-03 08:36:07 +01:00
Spin-flip DFT calculation will be performed
CIS energy converged when residual is below 10e- 6
---------------------------------------------------
Iter Rts Conv Rts Left Ttl Dev Max Dev
---------------------------------------------------
1 0 8 0.002573 0.000608
2 0 8 0.000568 0.000127
3 0 8 0.001204 0.001068
4 1 7 0.000158 0.000122
5 4 4 0.000046 0.000024
6 6 2 0.000014 0.000009
7 7 1 0.000005 0.000003
8 8 0 0.000003 0.000001 Roots Converged
---------------------------------------------------
---------------------------------------------------
SF-DFT Excitation Energies
(The first "excited" state might be the ground state)
---------------------------------------------------
Excited state 1: excitation energy (eV) = -0.9069
Total energy for state 1: -154.38645491 au
<S**2> : 0.0319
S( 1) --> V( 1) amplitude = 0.1518 alpha
S( 2) --> S( 1) amplitude = 0.9710 alpha
Excited state 2: excitation energy (eV) = 0.6174
Total energy for state 2: -154.33043507 au
<S**2> : 2.0201
S( 1) --> S( 1) amplitude = 0.6727 alpha
S( 2) --> V( 1) amplitude = 0.6916 alpha
2021-03-10 10:56:58 +01:00
S( 2) --> V( 11) amplitude = 0.2114 alpha
2021-03-03 08:36:07 +01:00
Excited state 3: excitation energy (eV) = 1.8694
2021-03-10 10:56:58 +01:00
Total energy for state 3: -154.28442455 au
2021-03-03 08:36:07 +01:00
<S**2> : 0.0285
S( 1) --> S( 1) amplitude = 0.7222 alpha
S( 2) --> V( 1) amplitude = -0.6653 alpha
2021-03-10 10:56:58 +01:00
S( 2) --> V( 11) amplitude = -0.1519 alpha
2021-03-03 08:36:07 +01:00
Excited state 4: excitation energy (eV) = 3.5416
Total energy for state 4: -154.22297509 au
<S**2> : 0.0458
S( 1) --> V( 1) amplitude = 0.9320 alpha
2021-03-10 10:56:58 +01:00
S( 1) --> V( 11) amplitude = 0.2636 alpha
2021-03-03 08:36:07 +01:00
S( 2) --> S( 1) amplitude = -0.1849 alpha
Excited state 5: excitation energy (eV) = 3.5503
Total energy for state 5: -154.22265579 au
<S**2> : 1.0114
S( 2) --> S( 2) amplitude = 0.9597 alpha
S( 2) --> V( 12) amplitude = 0.2515 alpha
Excited state 6: excitation energy (eV) = 3.8698
Total energy for state 6: -154.21091440 au
<S**2> : 1.0118
S( 2) --> V( 2) amplitude = 0.9059 alpha
S( 2) --> V( 8) amplitude = -0.3578 alpha
Excited state 7: excitation energy (eV) = 3.9670
Total energy for state 7: -154.20734077 au
<S**2> : 1.0120
S( 2) --> V( 3) amplitude = 0.9377 alpha
S( 2) --> V( 9) amplitude = 0.3164 alpha
Excited state 8: excitation energy (eV) = 4.4735
Total energy for state 8: -154.18872851 au
<S**2> : 1.0102
S( 2) --> V( 5) amplitude = 0.9907 alpha
---------------------------------------------------
Setting up for CIS(D)
SETman timing summary (seconds)
2021-03-10 10:56:58 +01:00
CPU time 5496.73s
2021-03-03 08:36:07 +01:00
System time 0.00s
2021-03-10 10:56:58 +01:00
Wall time 5501.49s
2021-03-03 08:36:07 +01:00
Algorithm is semi-direct
2021-03-10 10:56:58 +01:00
Memory given = 703 MB Disk given = 3000 MB
2021-03-03 08:36:07 +01:00
not enough memory
not enough disk