
PC70CH12_Evangelista ARjats.cls March 12, 2019 15:51

Annual Review of Physical Chemistry

Multireference Theories of
Electron Correlation Based
on the Driven Similarity
Renormalization Group
Chenyang Li and Francesco A. Evangelista
Department of Chemistry and Cherry L. Emerson Center for Scientific Computation,
Emory University, Atlanta, Georgia 30322, USA; emails: cli62@emory.edu,
francesco.evangelista@emory.edu

Annu. Rev. Phys. Chem. 2019. 70:275–303

The Annual Review of Physical Chemistry is online at
physchem.annualreviews.org

https://doi.org/10.1146/annurev-physchem-042018-
052416

Copyright © 2019 by Annual Reviews.
All rights reserved

Keywords

electronic structure theory, electron correlation, many-body perturbation
theory, coupled-cluster theory, similarity renormalization group, driven
similarity renormalization group

Abstract

The driven similarity renormalization group (DSRG) provides an alterna-
tive way to address the intruder state problem in quantum chemistry. In this
review, we discuss recent developments of multireference methods based on
the DSRG. We provide a pedagogical introduction to the DSRG and its
various extensions and discuss its formal properties in great detail. In addi-
tion, we report several illustrative applications of the DSRG to molecular
systems.
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Static correlation:
strong mixing of
electronic
configurations

Dynamic correlation:
short-range structure
of the wave function
and dispersion
interactions

CAS: complete active
space

MRCC:
multireference
coupled-cluster theory

SRG: similarity
renormalization group

DSRG:
driven similarity
renormalization group

1. INTRODUCTION

Multireference (MR) theories of electron correlation aim to accurately and efficiently describe
molecular systems that are not well described by a single electron configuration. Strong mix-
ing of degenerate or near-degenerate electron configurations (static correlation) occurs in many
important areas of chemistry, including bond-breaking processes, open-shell species with orbital
degeneracies, electronically excited states, and complexes of transition metals and rare earths in
which localized spins are coupled. The theoretical description of near-degenerate states requires
a balanced treatment of static and dynamic correlation effects and remains challenging for mod-
ern electronic structure methods. The success of conventional single-reference formalisms like
Kohn–Sham density functional theory (1) and coupled-cluster (CC) theory (2–5) has motivated
the search for MR generalizations that do not break down when static correlation plays an im-
portant role (see, e.g., References 6–9). An important class of MR methods are those based on
complete active space (CAS) wave functions (10). In these approaches, a CAS wave function is
used to account for static correlation effects, and the remaining dynamical correlation is treated
at the level of perturbation theory (PT) (11–13), configuration interaction (CI) (14, 15), or CC
theory (15–18).

Despite considerable efforts, MRCC methods have not reached the level of sophistication and
applicability achieved by other quantum chemistry approaches. There are two major limitations
that prevent general applications of MRCC methods: (a) numerical instabilities connected to the
intruder state problem (19, 20) and (b) restrictions on the number of active orbitals in the CAS
reference. The intruder state problem occurs naturally in effective Hamiltonian theory (21) and
is due to small energy denominators that arise from the interactions between perturber states
that are near degenerate with the reference. Intruders lead to characteristic divergences in the
correlation energy (i.e., spikes in potential energy surfaces). The question of how to best deal
with intruder states in MRCC theories and other nonperturbative schemes still remains open.
Conventional solutions to the problem of intruders are successful in regularizing PT (22–26)
but cannot be directly generalized to MRCC methods. As all MRCC approaches appear to be
intrinsically predisposed to numerical problems, one may wonder if a more general framework
with numerically robust equations could be proposed.

Renormalization techniques developed in physics to deal with infinities that arise in quantum
field theory offer one solution to the intruder state problem. The SRG (similarity renormaliza-
tion group) is a many-body formalism developed contemporarily by Wegner (27) and Głazek &
Wilson (28) for applications in quantum field theory and condensed matter physics. In the SRG
approach, the Hamiltonian is diagonalized via a continuous unitary transformation that depends
on an energy cutoff,�. The SRG transformation satisfies an important property: It gradually folds
correlation effects due to excited configurations into the Hamiltonian, avoiding those states with
energy denominators smaller than �. Hence, it provides a way to systematically build in correla-
tion effects while avoiding intruder states caused by small denominators. More recently, the SRG
formalism was applied in chemistry by White (29), and important developments and applications
have been reported in nuclear theory (30–35).

In this review, we summarize our recent development of MR electronic structure methods
based on the driven SRG (DSRG) (36), a many-body formalism that combines elements ofMRCC
theory with the SRG. The renormalization group structure of the DSRG approach leads to MR
theories that avoid the intruder state problem. In addition, the many-body framework used to
derive the DSRG equations leads to energy and amplitude expressions that are simpler and less
expensive than those of other MRCC approaches. The reader is assumed to be familiar with CC
theory and many-body techniques (e.g., second quantization, normal-ordered products, Wick’s
theorem) at the level discussed in References 37–39.
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Since the literature on MR theories is a vast subject, we focus exclusively on reviewing the
DSRG and other methods related to it. Several excellent reviews exist that cover a wide range
of MR methods (15–18). We also note that beside CAS-based methods, several successful CC
formalisms have been developed that rely on a single-reference framework (40–48).

2. THEORY

2.1. Preliminaries

In this section, we introduce some basic notation used throughout this review. We start by con-
sidering an orthonormal spin orbital basis,G ≡ {φ p(x), p = 1, 2, . . . ,N}, where x = (r, σ ) collects
spatial (r) and spin (σ ) coordinates. The Hamiltonian written in terms of second quantized cre-
ation (â†) and annihilation (â) operators is given by

Ĥ =
G∑
pq

hqpâpq + 1
4

G∑
pqrs

vrspqâ
pq
rs , 1.

where hqp = ∫
φ∗
p (x1)ĥφq(x1) dx1 are one-electron integrals, and vrspq = 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉

are antisymmetrized two-electron integrals with 〈pq|rs〉 = ∫
φ∗
p (x1)φ

∗
q (x2)r

−1
12 φr (x1)φs(x2) dx1dx2.

Here we also employ the compact notation âpq···rs··· = â†pâ
†
q · · · âs âr to represent products of second

quantized operators. A product of operators normal ordered with respect to a reference Fermi
vacuum |�0〉 is indicated with braces ({âpq···rs··· }).

2.2. The Similarity Renormalization Group

To introduce and motivate the DSRG, we start by reviewing the SRG, closely following the for-
mulations of Wegner (27) and Tsukiyama, Bogner, and Schwenk (31). These works assume a sin-
gle determinant reference � with respect to which all operators are normal ordered. Following
a common convention (38), we indicate core (C, doubly occupied) and virtual (V, unoccupied)
spin orbitals of � with the indices i, j, k, . . . and a, b, c, . . . , respectively. At the basis of the SRG
formalism is a continuous unitary similarity transformation of the Hamiltonian,

Ĥ → Ĥ (s) = Û (s)ĤÛ †(s), s ∈ [0,∞), 2.

that brings the transformed Hamiltonian Ĥ (s) to a more diagonal (or block-diagonal) form. The
quantity s, defined in the range [0,∞), is a time-like parameter that controls the extent to which
Ĥ (s) is diagonal, and the transformation is chosen to satisfy the condition Û †(0) = 1̂.

The goal of the SRG transformation (Equation 2) is to reduce the magnitude of certain oper-
ator components of Ĥ (s). There is considerable freedom in the way one selects which elements of
Ĥ (s) to suppress, and the choice depends on the intended application of the SRG. For example,
to describe ground state correlation effects, we may demand that in the limit of s → ∞ the SRG
transformation should zero the components of Ĥ (s) that couple the reference� to all of its excited
determinants, �ab···

i j··· ; in other words, we may require that

lim
s→∞

〈�ab···
i j··· |Ĥ (s)|�〉 = lim

s→∞
〈�|Ĥ (s)|�ab···

i j··· 〉 = 0. 3.

When Equation 3 is satisfied, it follows that � is an eigenfunction of Ĥ (s) with corresponding
eigenvalue equal to E0(s) = 〈�|Ĥ (s)|�〉. In discussing the SRG, it is convenient to introduce a
notation that allows us to talk about the components of an operator that we want to suppress via
the SRG transformation. To this end, we partition Ĥ (s) into a diagonal [Ĥd(s)] and an off-diagonal
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Møller–Plesset
denominator:
�
i j···
ab··· = εi + ε j + · · · −

εa − εb − · · ·

[Ĥod(s)] part, Ĥ (s) = Ĥd(s) + Ĥod(s). All the operators that couple � and �ab···
i j··· are collected in the

off-diagonal part, and the condition expressed by Equation 3 is written as lims→∞ Ĥod(s) = 0.
The operator Û (s) that satisfies Equation 3 is a priori unknown. Taking the derivative with

respect to s of the SRG Hamiltonian (Equation 2), it is possible to write an ordinary differential
equation that determines Ĥ (s),

dĤ (s)
ds

= [η̂(s), Ĥ (s)], Ĥ (0) = Ĥ , 4.

where the quantity η̂(s) = dÛ (s)
ds Û

†(s) is the anti-Hermitian generator of the transformation.
Equation 4 is known as the SRG flow equation or an isospectral flow, as it preserves the eigenval-
ues of Ĥ (s). The utility of this differential formulation is that, by a suitable parameterization of
η̂(s), it is possible to integrate Equation 4 and find a numerical solution Ĥ (s) that satisfies the con-
dition Ĥod(s) = 0 without having to explicitly construct Û (s). As shown byWegner, the generator
η̂W(s) = [Ĥd(s), Ĥ (s)] reduces the magnitude of the Hamiltonian couplings in a monotonic way,
in the sense that d

dsTr[Ĥ
2
od(s)] ≤ 0 (see Reference 49). The SRG flow equation with the Wegner

generator has the structure d
ds Ĥ (s) = [[Ĥd(s), Ĥ (s)], Ĥ (s)], which is also known in mathematics as a

double bracket flow equation and realizes a continuous version of the Jacobi eigenvalue algorithm
(50–52).

In application to quantum chemistry, the Hamiltonian at s = 0 is a sum of one- and two-body
operators (Equation 1). However, as the SRG flow equation is integrated, higher-body operators
arise from the commutators that enter into the flow equation, e.g., [η̂(s), Ĥ (s)]. When written in
normal-ordered form with respect to �, the SRG Hamiltonian is a many-body operator with
tensor elements that depend on the flow parameter s,

Ĥ (s) = E0(s) +
G∑
pq

f qp (s){âpq} + 1
4

G∑
pqrs

vrspq(s){âpqrs } + 1
36

G∑
pqrstu

wstu
pqr (s){âpqrstu } + . . . . 5.

To keep the computational cost of integrating the flow equation affordable, we need to truncate
the rank of operators and organize the SRG equations to minimize the truncation error. A well
established practice involves truncating Ĥ (s) and all commutators to a given operator rank, and
working with operators normal ordered with respect to the reference � (31). Normal ordering
is essentially a redefinition of products of bare operators such that the new operators describe
fluctuations with respect to �. In the context of the SRG, this redefinition is important because
it brings contributions from higher-rank bare operators into lower-rank operators and reduces
truncation errors.

The most important feature of the SRG transformation is the separation of energy scales in
the Hamiltonian. To illustrate this point, we consider a perturbative analysis of the SRG, a case
in which the flow equation can be integrated analytically (34, 36). Assuming a one-body diago-
nal zeroth-order Hamiltonian, it is possible to derive closed expressions for the first-order off-
diagonal components of the Hamiltonian [vi j,(1)ab (s)],

v
i j,(1)
ab (s) = 〈i j||ab〉e−s(�i j

ab )
2
, 6.

where�
i j
ab = εi + ε j − εa − εb is a standardMøller–Plesset denominator and εp = f pp (0) are canon-

ical orbital energies. Equation 6 shows that the off-diagonal part of Ĥ (s) decays exponentially as
a function of s with an exponent that is determined by the square of �

i j
ab. A dimensional anal-

ysis shows that [s] = (energy)−2, and so we can define an energy cutoff � = s−1/2 and express
the exponent as (�ab

i j /�)2. For a fixed value of s, if a denominator is large (|�i j
ab| 
 �), then the
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Figure 1

Comparison of the conventional perturbation theory resolvent [g(�)] and the the driven similarity
renormalization group (DSRG) regularized resolvent [ f (�, s)] for different values of the flow parameter (s).

corresponding v
i j,(1)
ab (s) is approximately zero, i.e., an excitation with a large denominator is effec-

tively decoupled from �. On the contrary, for small denominators (|�i j
ab| � �), the off-diagonal

part is approximately unchanged, vi j,(1)ab (s) ≈ 〈i j||ab〉. This result is often summarized by saying that
the SRG transformation integrates out the high-energy degrees of freedom (those larger than �)
of the Hamiltonian.

At second order, the expression of the correlation energy [E (2)
0 (s)] is analogous to that of the

conventional Møller–Plesset PT (MP2), except for a multiplicative factor that regularizes the
denominator,

E (2)
0 (s) = 1

4

C∑
i j

V∑
ab

|〈i j||ab〉|2
�
i j
ab

[
1 − e−2s(�i j

ab )
2
]
. 7.

Equation 7 does not diverge when one or more denominators go to zero because the regularized
inverse denominator f (�, s) = (1 − e−s�2 )/� that enters this expression is always finite. In
Figure 1, we plot the function f (�, s) for two values of s (1 and 10 E−2

h ) and compare it to the
conventional inverse denominator g(�) = 1/�. For any finite value of s, when � approaches
zero, f (�, s) smoothly goes to zero, while, as expected, g(�) has a singularity at � = 0. This
observation suggests that one way to avoid the problem of intruders is to integrate the SRG
equations up to a finite value of s so that excited configurations with small denominators are not
decoupled from the reference �. Note, however, that lims→∞ f (�, s) is not equal to g(�).

2.3. The Driven Similarity Renormalization Group

Our development of the DSRG has been motivated by the desire to realize the SRG transforma-
tion using a formalism similar to that of CC theory (37–39). In the DSRG, we rewrite the SRG
unitary operator Û †(s) in terms of an exponential operator eÂ(s), where Â(s) is an s-dependent
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anti-Hermitian operator. The DSRG-transformed Hamiltonian may be written as

H̄ (s) = e−Â(s)ĤeÂ(s), 8.

where we have used the notation H̄ (s) to differentiate it from the SRG Hamiltonian, Ĥ (s). The
DSRG transformation is isospectral and canonical, with the latter meaning that the transformed
operators ā†p = e−Â(s)â†pe

Â(s) and āq = e−Â(s)âqeÂ(s) satisfy the canonical anticommutator property, i.e.,
[ā†p, āq]+ = [â†p, âq]+ = δ

p
q (53). The exponential unitary transformation has a long history (54–56).

In quantum chemistry, it is at the basis of unitary CC theory (57–63), canonical diagonalization
(29), canonical transformation theory (64–66), and the anti-Hermitian contracted Schrödinger
equation method (67, 68). In condensed matter physics, it is often called the Schrieffer–Wolff
transformation (69, 70).

Following unitary CC theory (57–63, 71), Â(s) is written in terms of the standard cluster oper-
ator T̂ (s) as Â(s) = T̂ (s) − T̂ †(s), where T̂ (s) is a sum of operators T̂k(s), with k ranging from one
to the total number of electrons (n),

T̂ (s) = T̂1(s) + T̂2(s) + · · · + T̂n(s). 9.

A generic k-body component T̂k(s) is defined as

T̂k(s) = 1
(k!)2

C∑
i j···

V∑
ab···

t i j···ab···(s){âab···i j··· }. 10.

The cluster amplitudes [ti j···ab···(s)] that enter the definition of T̂k(s) are s-dependent and antisymmet-
ric with respect to the separate permutation of upper and lower indices.

In the DSRG approach, we aim to identify the operator Â(s) such that the off-diagonal parts
of the DSRG and SRG Hamiltonians match for all values of s, that is, we require that[

e−Â(s)ĤeÂ(s)
]
od

=
[
Û (s)ĤÛ †(s)

]
od
, s ∈ [0,∞). 11.

Formally, we can identify the right-hand side of Equation 11 with a source operator R̂(s) =
[Û (s)ĤÛ †(s)]od and write an equation for Â(s) of the form[

e−Â(s)ĤeÂ(s)
]
od

= R̂(s). 12.

The DSRG equation (Equation 12) is to be interpreted as an operator equation. If we define
the residual operator �̂(s) = [e−Â(s)ĤeÂ(s)]od − R̂(s) and expand it in its many-body components
�̂(s) = �̂1(s) + · · · + �̂n(s) with

�̂k(s) = 1
(k!)2

C∑
i j···

V∑
ab···

ω
i j···
ab···(s){âab···i j··· } + h.c., 13.

where “h.c.” stands for theHermitian conjugate of the first term, then theDSRG equations consist
of the following set of conditions for all combinations of indices,

ω
i j···
ab···(s) = 0. 14.

Since Û †(s) and R̂(s) are not known, we seek an approximate parameterization of R̂(s) that
reproduces the SRG separation of energy scales.To solve this problem,we have proposed to derive
R̂(s) by matching the analytical expressions for the first-order SRG and DSRGHamiltonians (36).
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The resulting source operator is expressed as a sum of many-body operators R̂(s) = R̂1(s) + · · · +
R̂n(s), with the k-body component defined as

R̂k(s) = 1
(k!)2

C∑
i j···

V∑
ab···

ri j···ab···(s){âab···i j··· } + h.c., 15.

and the coefficients ri j···ab···(s) expressed in terms of H̄od(s), the cluster amplitudes, and a regularization
factor

ri j···ab···(s) =
[
H̄ i j···
ab··· (s) + t i j···ab···(s)�

i j···
ab···

]
e−s(�

i j···
ab··· )

2
. 16.

The source operator defined by Equation 16 was derived assuming a diagonal Fock operator
(canonical orbitals). When working with noncanonical orbitals, a more general formulation is
necessary (see Section 3.1).

In Figure 2a, we plot the evolution of the DSRG transformed Hamiltonian driven by the
source operator reported in Equation 16. As s increases, the off-diagonal elements of H̄ (s), H̄ab

i j (s)
and H̄ i j

ab (s), contained in the [CC]/[VV] blocks are gradually suppressed.Figure 2a also illustrates
that the DSRG transformation performs a separation of energy scales, since it starts by zeroing
elements with largeMøller–Plesset denominators and proceeds to those with small denominators.

2.4. Multireference Driven Similarity Renormalization Group

The DSRG formalism introduced in Section 2.3 may be easily generalized to the case of a multi-
determinantal reference. For convenience,we focus onCAS references and, therefore, assume that
the spin orbitals are partitioned into core (C), active (A, partially occupied), and virtual (V) subsets
of dimension NC, NA, and NV , respectively. We also introduce the hole (H = C ∪ A) and parti-
cle (P = A ∪ V) composite sets of size NH = NC +NA and NP = NA +NV , respectively. These
orbital spaces are illustrated in Figure 3.

With this partition, one forms the model space of determinantsM0 = {�μ,μ = 1, 2, . . . , d} ob-
tained by distributing a given number of active electrons in the active spin orbitals. The reference
wave function |�0〉 is assumed to be a linear combination of model space determinants,

|�0〉 =
d∑

μ=1

cμ|�μ〉, 17.

where the coefficients cμ are initially determined by a CAS CI (CASCI) or a CAS self-consistent
field (CASSCF) procedure butmay be relaxed in the presence of dynamical correlation.We further
assume that �0 is normalized, i.e., 〈�0|�0〉 = 1.

The MR generalization of the DSRG formalism requires a redefinition of normal-ordered
products of second-quantized operators. Here, we adopt the generalized normal ordering (GNO)
of Mukherjee & Kutzelnigg (72–75). To discuss this formalism, we first introduce the reduced
density matrices (RDMs) and density cumulants of �0. A generic k-particle RDM is defined as
the expectation value γ

pq···
rs··· = 〈�0|âpq···rs··· |�0〉, where âpq···rs··· contains k creation and k annihilation op-

erators. The corresponding density cumulant λ
pq···
rs··· is the connected part of γ

pq···
rs··· (see References

76–78). For example, the two- and three-body density cumulants are related to the RDMs via the
following conditions,

λpqrs = γ pq
rs − A(γ p

r γ q
s ), λ

pqr
stu = γ

pqr
stu − A(γ p

s λ
qr
tu ) − A(γ p

s γ
q
t γ r

u ), 18.

where A indicates a sum over all unique, separate permutations of upper and lower indices times
a parity factor (−1 for each index transposition), e.g.,A(γ p

r γ
q
s ) = γ

p
r γ

q
s − γ

p
s γ

q
r .
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Bare Hamiltonian

0.0 0.5 1.0
10.0

Renormalized Hamiltonian Large |Δ|Small |Δ|

s (Eh
–2)

0.0 0.5 1.0
10.0s (Eh

–2)

Bare Hamiltonian

b  Multireference driven similarity renormalization group

a  Single-reference driven similarity renormalization group

Renormalized Hamiltonian
[CC]

[AV]
[AA]
[CV]
[CA]

[VV]

[CC]

[CV]

[VV]

Figure 2

Evolution of the two-body contributions of the transformed Hamiltonian with respect to the flow parameter
s for the (a) single-reference and (b) multireference DSRG formalisms. The two-body Hamiltonian tensor
H̄rs
pq(s) is plotted as a matrix H̄[pq],[rs] (s) with composite indices [pq] and [rs]. The composite indices are

blocked into combinations of orbital spaces [XY] with X,Y ∈ {C,A,V}. Within each composite index block,
the orbital pairs pq are sorted in increasing order of the sum of orbital energies, εp + εq. The white regions
indicate near-zero matrix elements (<10−5 Eh). Computations were performed on a 90◦-twisted butadiene
molecule using the 3-21G basis set. RHF orbitals were used for the single-reference LDSRG(2), while the
MR-LDSRG(2) computation employed a CAS(4e,4o) reference. The core orbitals and 11 virtual orbitals
were excluded from the DSRG treatment of electron correlation. Abbreviations: A, active; C, core; CAS,
complete active space; DSRG, driven similarity renormalization group; LDSRG(2), linearized DSRG with
one- and two-body excitations; MR-LDSRG(2), multireference LDSRG(2); RHF, restricted Hartree–Fock;
V, virtual.

For a generic operator âpq···rs··· , its normal-ordered form {âpq···rs··· } with respect to �0 is defined as a
polynomial in â†p, â

†
q , . . . , âs, âr with zero expectation value,

〈�0|{âpq···rs··· }|�0〉 = 0. 19.

For example, for a one-body operator âpq, the normal-ordered form is given by {âpq} = âpq − γ
p
q ,

while for a two-body operator âpqrs , we have {âpqrs } = âpqrs − A (
γ
p
r â

q
s
) − λ

pq
rs + γ

p
r γ

q
s − γ

p
s γ

q
r . With

these definitions, the Hamiltonian operator normal ordered with respect to �0 is given by

Ĥ = E0 +
G∑
pq

f qp {âpq} + 1
4

G∑
pqrs

vrspq{âpqrs }, 20.
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Internal excitations:
involve only active
orbitals

Virtual (V)
(e,f,...)

Primary Composite

Active (A)
(u,v,...)
Active (A)
(u,v,...)

Core (C)
(m,n,...)

Hole (H)
(i,j,k,...)

General (G)
(p,q,r,s,...)

Particle (P)
(a,b,c,...)

…
…

Figure 3

Partitioning of the orbital basis in the multireference driven similarity renormalization group (DSRG) and
corresponding orbital indices adopted in this review.

where E0 = 〈�0|Ĥ |�0〉 is the reference energy and the generalized Fock matrix is defined as f qp =
hqp + ∑H

rs v
qs
prγ

r
s .

A generalized version of Wick’s theorem simplifies expressions involving products of normal-
ordered operators that arise in the MR-DSRG. Two types of contractions appear in the GNO
Wick’s theorem.The first type involves pairs of second-quantized operators and yields elements of

the 1-RDM: , and, . These contractions also appear in the single-
reference version of Wick’s theorem. The second type connects k creation and k annihilation

operators (k ≥ 2) and yields elements of the k-body density cumulants, .
These contractions are unique to theGNO formalism and increase the algebraic complexity of the
MR-DSRG with respect to its single-reference counterpart. However, for a CAS-type reference,
several simplifications can be applied. The 1-RDM is diagonal for the core and virtual blocks, and
the density cumulants are nonzero only when all indices correspond to active orbitals.

In the MR-DSRG, the cluster operator T̂k(s) that enters in the definition of Â(s) is a gener-
alization of the single-reference version, and it is written explicitly in terms of operators normal
ordered with respect to �0,

T̂k(s) = 1
(k!)2

H∑
i j···

P∑
ab···

t i j···ab···(s){âab···i j··· }. 21.

Since excitations that involve only active orbitals (internal excitations) have the net effect of chang-
ing the coefficients of the determinants that enter the reference (see Equation 17), it is customary
to exclude them from the definition of T̂k(s). This condition corresponds to setting tuv···

xy··· (s) = 0 for
all combinations of indices x, y, . . . , u, v, . . . ∈ A.

The source operator used in the MR-DSRG generalizes the single-reference form
(Equations 15 and 16) to include excitations that span the hole and particle orbital spaces. As with
the cluster operator, internal excitations that enter into R̂k(s) are removed by setting ruv···

xy··· (s) = 0
for all combinations of indices x, y, . . . , u, v, . . . ∈ A. In the MR-DSRG, we further assume that
the orbital energies entering R̂ are those from a semicanonical basis.

Figure 2b shows the evolution of the two-body part of H̄ (s) in the MR-DSRG using the gen-
eralized source operator. This transformation proceeds in a way similar to that of the DSRG,
but in the MR case, H̄ (s) contains more blocks due to the partitioning of the orbitals in three
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FCI: full configuration
interaction

spaces. Comparing the two examples, we observe that the decay of the off-diagonal elements in
the MR-DSRG transformed Hamiltonian is slower than that of the single-reference DSRG.

To solve the DSRG equations, we must evaluate H̄ (s), which may be expressed as a series of
commutators of Ĥ and Â(s) using the Baker–Campbell–Hausdorff (BCH) formula

H̄ (s) = e−Â(s)ĤeÂ(s) = Ĥ +
∞∑
k=1

1
k!

[[. . . [[Ĥ , Â(s)], Â(s)], . . .], Â(s)]︸ ︷︷ ︸
k nested commutators

. 22.

Like in other theories based on unitary transformations (60, 61, 63), the BCH expansion of the
DSRG Hamiltonian does not terminate because Â(s) contains both excitation and deexcitation
operators, T̂ (s) and T̂ †(s). Thus, in practical applications it is necessary to use an approximated
form of the BCH series.

Once the MR-DSRG equations are solved, the correlation energy is computed as the expecta-
tion value of the transformed Hamiltonian H̄ (s) as

E0(s) = 〈�0|H̄ (s)|�0〉. 23.

Evaluated in this way, the correlation energy neglects any relaxation of the reference due to the
coupling of static and dynamical correlation. Relaxation effects can be introduced by requiring
�0 to be an eigenvalue of the transformed Hamiltonian H̄ (s), which may achieved by solving the
following eigenvalue problem,

d∑
μ=1

〈�ν |H̄ (s)|�μ〉cμ = E(s)cν , ν = 1, . . . , d. 24.

The self-consistent iterative solution of the DSRG amplitude and eigenvalue equations
(Equations 12 and 24) yields the fully relaxed energy, Efr(s). In the absence of any approxima-
tion, only the fully relaxedMR-DSRG scheme can reproduce the full CI (FCI) energy in the limit
s → ∞. Consequently, this is the method of choice for highly accurate computations using non-
perturbative approximations.The fully relaxed energy is well approximated by the partially relaxed
energy, Epr(s), obtained by forming H̄ (s) using the CASCI reference and diagonalizing it in the
basis of reference determinants only once. This second approach is economical and sufficiently
accurate for low-order PTs derived from the MR-DSRG.

2.5. Nonperturbative Truncation Schemes

The first hierarchy of MR-DSRG truncation schemes that we consider are nonperturbative ap-
proximations in which Â(s) contains operators of rank up to n [MR-DSRG(n), n = 2, 3, . . .]. The
simplest of these methods,MR-DSRG(2), consists in assuming the approximations Â(s) ≈ Â1(s) +
Â2(s) and R̂(s) ≈ R̂1(s) + R̂2(s). The Â1(s) operator, which is given by Â1(s) = T̂1(s) − T̂ †

1 (s), with

T̂1(s) =
C∑
m

V∑
e

tme (s){âem} +
C∑
m

A∑
x

tmx (s){âxm} +
A∑
u

V∑
e

tue (s){âeu}, 25.

is responsible for mixing core, active, and virtual orbitals, but it excludes active–active rotations,
and therefore, it is equivalent to the CASSCF orbital rotation operator (79). The Â2(s) operator
is responsible for pair correlation effects. Note that in the limit of a single Slater determinant
and R̂(s) = 0, the MR-DSRG(2) approach is equivalent to unitary CC with singles and doubles
(UCCSD). Since CC with singles and doubles (CCSD) and UCCSD are known to differ by
fourth-order terms (80) and are found to give nearly identical results in the weakly correlated
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regime (81, 82), we expect the MR-DSRG(2) to be of CCSD-like quality in the single-reference
limit.

To evaluate the BCH expansion of H̄ (s), we follow the linearized commutator approximation
of Yanai &Chan (64), which consists in truncating all commutators in Equation 22 up to two-body
terms,

[ · , Â(s)] ≈ [ · , Â(s)]{2}, 26.

where the subscript {2} ≡ 0, 1, 2 indicates that only the scalar term and one- and two-body normal-
ordered parts of [ · , Â(s)] are kept. Equations for [Ô, Â(s)]{2}, where Ô contains both one- and
two-body terms, may be easily derived and consist of only 39 terms (83). Note that this approx-
imation does not lead to a closed-form expression for H̄ (s), and a recursive evaluation of the the
BCH expansion is still necessary. We denote the combination of the MR-DSRG(2) and the lin-
earized commutator approximation as the MR-LDSRG(2). The MR-LDSRG(2) theory gives a
transformed Hamiltonian H̄ (s) that contains up to two-body operators,

H̄{2}(s) = E0(s) +
G∑
pq

H̄q
p (s){âpq} + 1

4

G∑
pqrs

H̄ rs
pq(s){âpqrs }. 27.

The cost to evaluate H̄{2}(s) scales as Ncom × O(N 2
HN

2
PN

2), where Ncom is the number of commu-
tator evaluations required to converge the BCH expansion of H̄{2}(s). In the limit of NP 
 NH,
this cost is Ncom times that of single-reference CCSD, which scales as O(N 2

HN
4
P ). The memory

requirements of the MR-LDSRG(2) [O(N 4)] is, however, the same as a vanilla implementation of
CCSD.

The error introduced by the linear commutator approximation of Yanai & Chan has been an-
alyzed extensively (64, 66, 84). The lowest-order energy errors introduced by the linearized com-
mutator approximation arise from terms like 〈�0|[[Ĥ , Â(s)]3, Â(s)]|�0〉 since the MR-LDSRG(2)
neglects the three-body commutator term [Ĥ , Â(s)]3. A rigorous evaluation of the double com-
mutator [[Ĥ , Â(s)]3, Â(s)] requires the four-body density cumulant of the reference (85), and this
quantity is both expensive to compute and difficult to store in memory for more than 14 spatial
active orbitals. However, it has been observed that a quadratic commutator approximation—in
which double commutators are computed exactly—can yield larger errors than the linear approx-
imation (85).

For the reference relaxation procedure, we first rewrite H̄{2}(s) in normal-ordered form with
respect to the true vacuum,

H̄{2}(s) = h̄0(s) +
G∑
pq

h̄qp(s)âpq + 1
4

G∑
pqrs

h̄rspq(s)â
pq
rs , 28.

where the quantities h̄0(s), h̄
q
p(s), and h̄rspq(s) may be considered as dressed energy and one- and

two-electron integrals, respectively. These quantities are defined in terms of H̄ as

h̄0(s)=E0(s) −
H∑
i j

H̄ j
i (s)γ

i
j + 1

2

H∑
i jkl

H̄kl
i j (s)γ

i
kγ

j
l − 1

4

A∑
uvxy

H̄xy
uv (s)λ

uv
xy , 29.

h̄qp(s)= H̄q
p (s) −

H∑
i j

H̄ q j
pi (s)γ

i
j , 30.

h̄rspq(s)= H̄rs
pq(s). 31.
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DSRG-MRPTn:
nth-order DSRG
multireference
perturbation theory

Since this Hamiltonian has the same structure of the bare Hamiltonian Ĥ , it can be straightfor-
wardly interfaced with a standard CASCI code. It may be shown (86) that to compute the matrix
elements 〈�μ|H̄{2}(s)|�ν〉, one only needs to evaluate the components of H̄{2}(s) labeled by active
indices, i.e., H̄x

u (s) and H̄
xy
uv (s) with u, v, x, y ∈ A.

2.6. Multireference Driven Similarity Renormalization Group
Perturbation Theory

In addition to the nonperturbative scheme discussed in Section 2.5,we have also studied low-order
perturbative approximations of the MR-DSRG (86–88).We denote these MR-DSRG-based PTs
as DSRG-MRPTn, where n = 2, 3, . . . is the order of the perturbative expansion. The main mo-
tivation for developing low-order MR PTs is the desire to investigate large systems, for which
the MR-LDSRG(2) approximation is too expensive. These approaches are also useful in compos-
ite schemes and focal point analyses to approximate the correlation energy in large basis sets or
extrapolations to the infinite basis limit (89–91). Perturbative schemes are also valuable because
they yield closed-form expressions for the correlation energy, and as such, they provide a way to
analyze formal features of the MR-DSRG.

As is customary in developing a perturbative expansion, we begin by partitioning the bare
Hamiltonian into a zeroth-order contribution Ĥ (0) plus a first-order perturbation Ĥ (1) multiplied
by the perturbation parameter ξ ,

Ĥ = Ĥ (0) + ξĤ (1). 32.

The transformed Hamiltonian H̄ and the operator Â(s) are expressed as power series in ξ ,

H̄ (s)= H̄ (0) + ξH̄ (1)(s) + ξ 2H̄ (2)(s) + ξ 3H̄ (3)(s) + · · · , 33.

Â(s)= ξ Â(1)(s) + ξ 2Â(2)(s) + ξ 3Â(3)(s) + · · · , 34.

where the superscript (n) indicates the nth-order term of a power series. For clarity, in this
section, we drop the labels “(s)” for all s-dependent quantities (e.g., H̄ and Â). After plugging
Equations 32–34 into the definition of the transformed Hamiltonian, applying the BCH formula
(Equation 22), and collecting terms of the same power of ξ , we obtain the following zeroth-order
through third-order DSRG transformed Hamiltonians:

H̄ (0) = Ĥ (0), 35.

H̄ (1) = Ĥ (1) + [Ĥ (0), Â(1)], 36.

H̄ (2) =
[
Ĥ (0), Â(2)

]
+ [Ĥ (1), Â(1)] + 1

2
[[Ĥ (0), Â(1)], Â(1)], 37.

H̄ (3) = [Ĥ (0), Â(3)] + [Ĥ (1), Â(2)] + 1
2
[[Ĥ (1), Â(1)], Â(1)]

+ 1
2
[[Ĥ (0), Â(2)], Â(1)] + 1

2
[[Ĥ (0), Â(1)], Â(2)] + 1

6
[[[Ĥ (0), Â(1)], Â(1)], Â(1)]. 38.

In this perturbative analysis (87), we assume that the reference wave function is fixed and treat
the density matrices and cumulants that result from operator contractions as zeroth-order quan-
tities. Moreover, we employ a one-body diagonal zeroth-order Hamiltonian, Ĥ (0) = E0 + F̂ (0),
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given by the sum of the reference energy E0 and the diagonal blocks (occupied, active, and virtual)
of the generalized Fock matrix F̂ (0),

F̂ (0) =
C∑
mn

f nm{âmn } +
A∑
uv

f v
u {âuv} +

V∑
e f

f fe {âef }. 39.

The operator F̂ (0) is invariant with respect to separate unitary rotations of core, active, and
virtual orbitals. We assume a semicanonical basis ( f qp = δ

p
qεp for p, q ∈ X with X ∈ {C,A,V}) so

that F̂ (0) takes a particularly simple form, F̂ (0) = ∑G
p εp{âpp}. With this choice of F̂ (0), we find

that [Ĥ (0), Â(n)]k is a k-body off-diagonal operator. This choice has two important consequences:
(a) the expectation value is 〈�0|[Ĥ (0), Â(n)]|�0〉 = 0 since internal amplitudes are null, and (b) the
energy and amplitudes at any order can be solved using a noniterative procedure. It is also easy to
show that the zeroth-order energy is equal to the reference energy, E (0) = E0, and the first-order
energy is null, E (1) = 0.

2.6.1. Second-order energy. The first nontrivial correction to the energy appears at second
order,

E (2) = 〈�0|[Ĥ (1) + H̄ (1), T̂ (1)]|�0〉, 40.

where we have employed [Ĥ , T̂ ]† = −[Ĥ , T̂ †] to simplify this expression. Solving the first-order
DSRG equation H̄ (1)

od = R̂(1) leads to the following equations for the first-order amplitudes,

t i,(1)a =
[
f i,(1)a +

A∑
ux

�x
ut
iu,(1)
ax γ x

u

]
1 − e−s(�i

a )
2

�i
a

, 41.

t i j,(1)ab = v
i j,(1)
ab

1 − e−s(�
i j
ab )

2

�
i j
ab

. 42.

Similar to the single-reference SRG-PT2 energy expression (Equation 7), the energy denomina-
tors in Equations 41 and 42, are regularized by an exponential function. The equation for singles
amplitudes (Equation 41) contains both a first-order Fock-matrix term, f i,(1)a (like in MP2 for
a non-Hartree–Fock reference), and a new contribution from semi-internal doubles amplitudes,
t iu,(1)ax , contracted with the 1-RDM.

Expressions for the terms that contribute to E (2) (Equation 40) are given in References 87
and 88. The highest body rank of density cumulants appearing in these expressions is three. In
the majority of applications where NA � NC < NV , the time-limiting step in evaluating E (2) is
a MP2-like term that scales as O(N 2

CN
2
V ). When there are 30 or more spatial active orbitals, the

evaluation of E (2) can be dominated by a term that involves the three-body density cumulant
and that scales as O(N 6

ANV ). Neglect of the three-body density cumulant in DSRG-MRPT2 is
possible (87), and it leads to a numerically stable approach with scalings for large active spaces
reduced to only O(N 4

AN
2
V +N 5

ANV ). Due to its simplicity, the DSRG-MRPT2 can be easily
combined with density fitting (DF) or Cholesky decomposition of the two-electron integrals,
leading to a practical approach to study systems with up to 1,500–2,000 basis functions and 30–40
spatial active orbitals (88).
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SA-DSRG:
state-averaged DSRG

2.6.2. Third-order energy. The third-order energy contribution is obtained by taking the ex-
pectation value of H̄ (3) with respect to �0,

E (3) = 〈�0|[H̃ (1), T̂ (2)]|�0〉 + 〈�0|[H̃ (2), T̂ (1)]|�0〉, 43.

where H̃ (1) = Ĥ (1) + H̄ (1) and H̃ (2) = H̄ (2) − 1
6 [[Ĥ

(0), Â(1)], Â(1)] are themodified first- and second-
order Hamiltonians, respectively. Note that H̃ (2) contains three-body components [H̃ (2)

3 ] and they
can be fully contacted with T̂ (1)

2 via four-body density cumulants. To avoid computing this eight-
index quantity, we have neglected H̃ (2)

3 in Equation 43 (86) and approximated the third-order
energy as

E (3) ≈ 〈�0|[H̃ (1), T̂ (2)]|�0〉 + 〈�0|[H̃ (2)
{2} , T̂

(1)]|�0〉. 44.

This approximation is consistent with the operator truncation scheme used in theMR-LDSRG(2)
theory.

Computing E (3) requires the second-order amplitudes, which can be obtained by solving the
equation H̄ (2)

od = R̂(2). Expressions for the second-order amplitudes are identical to Equations 41
and 42 but with all first-order quantities replaced by the corresponding second-order ones. Specif-
ically, the first-order Hamiltonian elements are replaced by the off-diagonal terms of 1

2 [H̃
(1), Â(1)].

With a diagonal one-body zeroth-order Hamiltonian, the second-order amplitude equations can
be solved with a noniterative procedure that scales as O(N 2

HN
4
P ), and this is the time-limiting step

of the DSRG-MRPT3method. Although the asymptotic scaling of DSRG-MRPT3 is identical to
that of the MR-LDSRG(2), the former is significantly more efficient and can be applied to larger
systems.

2.6.3. Reference relaxation. In the DSRG-MRPT2 and DSRG-MRPT3 methods, the refer-
ence CI coefficients are allowed to relax via the partially relaxed scheme described in Section 2.4.
As such, the PTs remain simple and efficient, without any iterative update of the reference wave
function. Compared to the unrelaxed version, the partially relaxed approach involves two addi-
tional steps: (a) generating the one- and two-body components of H̄ (n) for DSRG-MRPTn and
(b) diagonalizing H̄ (n) in the basis of model determinants (Equation 24). Computing the matrix
elements 〈�μ|H̄ (n)

{2} (s)|�ν〉 required for step b has a cost that scales asO(N 4
AN

2
V ), which is negligible

compared to the cost of evaluating the energy and amplitudes (86). However, this estimate does
not include the cost of diagonalizing the transformed Hamiltonian, which depends on the specific
approach employed and can range from exponential (e.g., CASCI) to polynomial [e.g., density
matrix renormalization group (DMRG) (92–94)] in the number of active orbitals.

2.7. Excited States

TheMR-DSRG schemes discussed so far focus on one state at a time and may be used to compute
the energy of electronic states that are energetically well separated from other states of the same
symmetry. However, it is well documented that state-specific theories yield incorrect potential
energy surfaces when two ormore states become near degenerate (95, 96).To address this problem,
we have proposed a state-averaged DSRG (SA-DSRG) framework (97).

In the SA-DSRG ansatz, operators are normal-ordered with respect to an ensemble of n
zeroth-order CASCI states, E0 ≡ {�α

0 ,α = 1, 2, . . . , n}. To this ensemble we associate the density
operator ρ̂,

ρ̂ =
n∑

α=1

ωα|�α
0 〉〈�α

0 |, 45.
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SA-DSRG-PTn:
nth-order perturbation
theory derived from
state-averaged DSRG

where ωα is the weight of state �α
0 . Here, we assume that all states in E0 have equal weights

(ωα = 1/n). However, this formalism is also applicable to thermal density matrices where the
weights are determined by appropriate Boltzmann factors.

The ensemble average of the Hamiltonian, Eρ , is then given by

Eρ = Tr(ρ̂Ĥ ) =
n∑

α=1

ωα〈�α
0 |Ĥ |�α

0 〉. 46.

To discuss the generalization of Wick’s theorem to the case of an ensemble, we introduce state-
averaged RDMs, γ̄

pq...
rs... = ∑n

α=1 ωα[γαα]
pq...
rs... , where [γαα]

pq...
rs... = 〈�α

0 |âpq...rs... |�α
0 〉 is the RDM of state

�α
0 . The normal-ordered form of an operator Ô, denoted {Ô}ρ , is obtained by requiring that its

ensemble average is zero, i.e., Tr(ρ̂{Ô}ρ ) = ∑n
α=1 ωα〈�α

0 |{Ô}ρ |�α
0 〉 = 0. This condition implies

that contractions in the ensemble GNO yield state-averaged density cumulants (73).
In the SA-DSRG, we perform a single unitary transformation of the bare Hamiltonian impos-

ing the condition H̄od(s) = R̂(s), where all operators are normal ordered with respect to ρ̂. This
transformation has the effect of decoupling, on average, the ensemble states from their excited
configurations, and may be viewed as a way to identify an average description of dynamical corre-
lation effects optimal for a given ensemble. After forming the DSRG transformed Hamiltonian, it
is diagonalized to obtain the energy of n electronic states represented in the ensemble. The basis
used to diagonalize H̄ (s) may consist of (a) the states in E0 or (b) the entire space of CAS determi-
nants. The first option corresponds to a contracted approach as the resulting states can span only
E0. The second option corresponds to an uncontracted scheme, which is similar to the reference
relaxation procedure employed in the state-specific MR-DSRG. For either approach, one can use
the updated reference states to define a new ensemble and build the transformed Hamiltonian,
repeating this procedure until self-consistency is reached.

Since the SA-DSRG framework uses a significant amount of the technologies already de-
veloped for MR-DSRG, it can be easily implemented by replacing state-specific density cumu-
lants with their state-averaged counterparts. The the cost of building the SA-DSRG transformed
Hamiltonian is independent of the number of ensemble states n. However, computing the en-
semble states and their density matrices scales linearly with respect to n. We have currently im-
plemented the SA-DSRG at the level of second- and third-order PT (SA-DSRG-PT2 and SA-
DSRG-PT3) by modification of our DSRG-MRPT2 and DSRG-MRPT3 codes, respectively. As
done in the state-specific DSRG-MRPT approaches, in the state-averaged variants we employ a
partially relaxed schemewhere the transformedHamiltonian is diagonalized only once.By default,
the label SA-DSRG-PT corresponds to the approach with a diagonalization space that spans the
entire CAS. The alternative approach based on a contracted basis is indicated with the suffix “c,”
e.g., SA-DSRG-PT2c.

3. FEATURES OF THE DRIVEN SIMILARITY RENORMALIZATION
GROUP METHODS

3.1. Orbital Invariance

In this section, we discuss the invariance of the energy and other properties computed with the
MR-DSRGmethods with respect to unitary rotations of the orbital basis. This property is impor-
tant because it guarantees that computations performed using different orbital bases (e.g. localized,
natural, semicanonical) yield the same result. We restrict our discussion to unitary rotations that
separately mix core, active, and virtual orbitals, since the reference wave function is only invariant
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Orbital energy:
εp = f pp (0)

with respect to these rotations. A unitary transformation from the basis {φ p′ } to another basis {φq}
is written as φ p = ∑

q′ φ
q′U p

q′ where U
p
q′ =Uq′ p is an element of the unitary matrix U. Restricting

the unitary transformation to separate orbital classes implies that the matrix U is built as a direct
sum of unitary matrices that correspond to coreUC, activeUA, and virtualUV orbital rotations,

U = UC ⊕ UA ⊕ UV. 47.

The SRG formalism based on theWegner generator is invariant with respect to unitary orbital
transformations, while in the case of the DSRG, the invariance properties are determined by the
source operator since the similarity-transformedHamiltonian is known to be invariant (98, 99). In
order to discuss the invariance properties of the DSRG, it is useful to distinguish two categories of
orbital invariance.The first one,which we call general invariance, is used to denote invariance with
respect to any unitary rotationU of the form given by Equation 47.Methods such as the internally
contracted MRCC (ic-MRCC) approach satisfy general invariance (98, 99). The second category,
which we call degenerate invariance, implies invariance only with respect to transformations U
that mix degenerate orbitals (those with same orbital energy εp). As we see later in this section, this
distinction is useful to classify the invariance properties of the DSRG and to compare it to other
MR theories. The source operator defined by Equation 16 was derived assuming a semicanonical
orbital basis, and it is not invariant with respect to general unitary transformations. However, this
source operator is degenerate invariant, which implies that it is possible to formulate a procedure
that, given any orbital basis, can reproduce the results in the semicanonical basis (see Reference
83).

To solve the MR-DSRG equations in a general basis, we first evaluate the source operator
in the semicanonical basis using Equation 16 and then transform it to the general basis via the
unitary matrix U. Equivalently, the MR-DSRG equations are first solved in the semicanonical
basis and then the solutions are transformed to the general basis. For example, the semicanonical
first-order amplitudes of DSRG-MRPT2 [tkl ,(1)cd ; see Equation 42] are computed via the equation

tkl ,(1)cd =
( P∑

c′d′

H∑
k′ l ′

Uc′
c U

d′
d v

k′ l ′ ,(1)
c′d′ Uk

k′U
l
l ′

)
1 − e−s(�

kl
cd )

2

�kl
cd

48.

and then backtransformed to the general basis via the transformation

t i
′ j′ ,(1)
a′b′ =

P∑
cd

H∑
kl

U c
a′U

d
b′ t

kl ,(1)
cd U i′

k U
j′
l . 49.

The evaluation of the energy can then be performed in the general basis by contracting t i
′ j′ ,(1)
a′b′

with the electron integrals, the one-body density matrix, and the density cumulants. The above
rotation has a cost that scales as O(N 3

PN
2
H ), which is comparable to the cost of the integral trans-

formation step performed in the DSRG-MRPT2.However, in the density-fitted DSRG-MRPT2
implementation, the integral transformation cost is smaller [O(N 4)], and therefore it is always
advantageous to start with semicanonical orbitals. For the DSRG-MRPT3 and MR-LDSRG(2)
schemes, the extra cost required to transform all tensors to the semicanonical basis and back to
the general basis is negligible compared to that of the tensor contractions.

We conclude this section by discussing the degenerate invariance property of the MR-DSRG.
In essence, because degenerate semicanonical orbitals are not uniquely defined, this property guar-
antees that the procedure outlined above is well defined and yields a unique solution. The same
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procedure cannot be applied to MR theories that are not degenerate invariant, like methods based
on the Jeziorski–Monkhorst ansatz (100–103). For these methods, even if the equations are solved
by transforming to the semicanonical basis, the remaining ambiguity in the definition of degener-
ate orbitals implies that the energy is not uniquely defined. Consider, for example, a computation
of two noninteracting Li atoms using a CAS(2e,2o) reference built from the 2s orbital of each Li
atom. Both the fully localized 2s Li basis and the symmetry-adapted delocalized orbitals have de-
generate orbital energies and are consistent with the semicanonical condition. In the MR-DSRG
methods, degenerate invariance guarantees that computations that use these two bases yield the
same energy, but the Jeziorski–Monkhorst methods give different results. In practice, degener-
ate invariance is necessary for the continuity and uniqueness of the energy obtained by orbital
semicanoncalization as a function of the atomic coordinates.

3.2. Size Consistency and Extensivity

In this section, we discuss the size consistency (additivity of energy for noninteracting fragments)
and size extensivity (scaling with respect to system size) properties of the MR-DSRG methods.
The energy and amplitude equations that define the MR-DSRG method (Equations 8, 12, 16,
23, and 24) only involve quantities that are diagrammatically connected (104, 105). As a conse-
quence, both perturbative and nonperturbative approximations of the MR-DSRG method yield
size-extensive energies. Due to the connectivity of the MR-DSRG equations, it also follows that
for a multiplicatively separable reference in a basis of localized semicanonical orbitals (these can
be constructed from the semicanonical orbitals on each separate fragment), the MR-DSRG cor-
relation energy is additive for separate noninteracting fragments. The orbital invariance prop-
erties established in Section 3.1 guarantee that size consistency is also satisfied in any other ba-
sis that is unitarily equivalent to the localized semicanonical orbitals. Size consistency and size
extensivity are satisfied by the unrelaxed, partially relaxed, and fully relaxed MR-DSRG schemes.
Size consistency of the MR-DSRG methods was verified by numerical experiments (83, 106).

3.3. Flow Parameter Dependence

Due to the flow parameter dependence of the MR-DSRG equations, the energy and other prop-
erties depend on the value of s used in a computation. This is also the case for other MR theories
that employ level shifts (22, 23, 107) or truncation thresholds to eliminate linearly dependent
configurations (66, 98, 99, 108–110). On the one hand, the s dependence is undesirable because
it requires the user to select a value and introduces an element of arbitrariness in the MR-DSRG
results. On the other hand, s may also be viewed as a parameter that can be used to improve the
accuracy of the MR-DSRG methods.

A few considerations enter in the choice of the value of s. Since in the limit of s → 0 the DSRG
correlation energy goes to zero, the flow parameter should be chosen to be large enough to recover
a significant portion of the dynamical correlation energy. At the same time, in the limit of s → ∞,
the DSRG is exposed to numerical instabilities that arise from intruders, and therefore, s cannot
be chosen to be too large. For the DSRG-MRPT2, it is possible to derive rigorous bounds on
the value of s necessary to avoid the appearance of large amplitudes. For example, in Reference 87
we showed that the first-order amplitudes are bound by a constant tmax, i.e., ‖t i j,(1)ab ‖max < tmax, if s
satisfies the following inequality,

s <

[
tmax

0.6382 ‖vi jab‖max

]2

. 50.
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Semi-internal
excitations: involve at
least one active orbital
and one core or virtual
orbital

DSRG-MRPT2

DSRG-MRPT3

MR-LDSRG(2)

10

0

10–1 1000.5

s (Eh
–2)

a  rH–F = 1.0 Å b  rH–F = 1.5 Å c  rH–F = 2.0 Å

ΔE
 (m

E h
)

101 102 10–1 1000.5 101 102 10–1 1000.5 101 102

–10

Figure 4

Energy deviations of various MR-DSRG methods with respect to FCI/cc-pVDZ as a function of the flow parameter s computed for
HF at different H–F bond lengths: (a) 1.0 Å, (b) 1.5 Å, and (c) 2.0 Å. The purple dashed line indicates the range of s for which the
MR-LDSRG(2) equations failed to converge. The vertical dashed lines correspond to values of s equal to 0.5 E−2

h (default) and 1 E−2
h .

Abbreviations: cc-pVDZ, correlation-consistent polarized valence double zeta; DSRG-MRPTn, nth-order DSRG multireference
perturbation theory; FCI, full configuration interaction; MR-DSRG, multireference driven similarity renormalization group;
MR-LDSRG(2), linearized MR-DSRG with one- and two-body excitations.

A study of the s dependence of the unrelaxed DSRG-MRPT2 energy (87) showed that an optimal
range for the flow parameter is [0.1, 1.0] E−2

h . In this range, the theory yields the smallest absolute
errors and nonparallelism errors (NPEs) for the ground state potential energy curves of HF and
N2. A later test on the potential energy curve of HF showed that theMR-LDSRG(2) energy error
remains fairly constant when s falls in the range [0.5, 1.0] E−2

h (83). Therefore, we have adopted a
pragmatic approach and performed MR-DSRG computations using the value s = 0.5 E−2

h .
In Figure 4 we present a comparison of the s dependence of different MR-DSRG theories.

We consider the HF molecule at three different bond lengths and compare all results to FCI.
For all methods, the correlation energy rapidly decreases from s = 0 to s = 0.2/0.3 E−2

h . For s
in the range [0.5, 1.0] E−2

h , the energy error of MR-LDSRG(2) remains nearly constant for all
three bond lengths, while PTs show a stronger dependence on the flow parameter, especially for
shorter bond lengths. Figure 4a also shows that when rH–F = 1.0 Å, it becomes problematic to
converge the MR-LDSRG(2) for s > 4 E−2

h , likely due to the presence of an intruder state. In
addition, certain semi-internal excitations become significantly larger when going from first to
second order in PT, showing that the DSRG-MRPT3 method may be more sensitive to intruders
than DSRG-MRPT2.

3.4. Projective Versus Many-Body Formulations and the Residual Conditions

In this section, we discuss the consequences of formulating the DSRG using many-body residual
conditions and compare it to methods that employ projective solutions. For simplicity, we as-
sume R̂(s) = 0 such that the similarity-transformed Hamiltonian H̄ (s) is independent of the flow
parameter, and we drop the s dependence in operators and tensors.

Let us first discuss the single-referenceDSRGwhere the Fermi vacuum is a Slater determinant,
�0 = �. In this case, the many-body conditions ω

i j···
ab··· = 0 (Equation 14) are equivalent to

H̄ i j···
ab··· = 0, ∀i, j ∈ C, ∀a, b ∈ V, 51.

where H̄ i j···
ab··· are the tensor elements corresponding to the operator {âab···i j··· } in the many-body

expansion of the operator H̄ (e.g., Equation 27). We now show that the above condition is
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equivalent to satisfying all projections of excited determinants �ab...
i j... onto the Schrödinger equa-

tion, H̄ |�〉 = E|�〉. Introducing the projective residual Si j...ab... = 〈�ab···
i j··· |H̄ − E|�〉, it is easy to show

that

Si j...ab... = H̄ i j···
ab··· , 52.

where we have used the fact that 〈�ab...
i j··· |�〉 = 0 and applied Wick’s theorem. Therefore, in the

single-reference case, the many-body conditions (Equation 51) are equivalent to satisfying Si j...ab... =
0, even for truncated theories. We call the latter the projective conditions because they are based
on projections of the similarity-transformed Hamiltonian.

For the MR case, the many-body conditions are just a generalization of Equation 51, but the
equivalence between the projective and many-body approaches is lost. First, if we compute the
projection of the Schrödinger equation residual with respect to an active space determinant �ν

(Sν ),

Sν = 〈�ν |H̄ − E|�0〉 =
d∑

μ=1

〈�ν |H̄ |�μ〉cμ − Ecν , 53.

we find that Sν = 0 is satisfied for all �ν only if the wave function is obtained via the fully relaxed
procedure, since this condition is equivalent to satisfying the MR-DSRG eigenvalue equation
(Equation 24).

Second, projections of the residual onto excited configurations,

Si j...ab... ≡ 〈�0|{âi j···ab···}(H̄ − E )|�0〉 = 〈�0|{âi j···ab···}H̄ |�0〉, 54.

are only in part equal to zero. To illustrate this point, consider the residual for single excitations,
Sia, which takes the form

Sia =
H∑
j

P∑
b

γ i
jη

b
aH̄

j
b − 1

2

H∑
j

A∑
uxy

γ i
jλ

xy
auH̄

ju
xy + · · · − 1

6

H∑
j

A∑
uvxyz

γ i
jλ

xyz
auvH̄

juv
xyz + · · · . 55.

In analyzing this equation it is convenient to distinguish two cases. If all orbital indices in the
residual Sia are external, meaning that they involve only core or virtual orbitals (Sme ), then all terms
that involve density cumulants are zero for a CASCI reference and the above expression simplifies
to

Sme = H̄m
e , ∀m ∈ C, ∀e ∈ V, 56.

showing that the projective and many-body conditions are equivalent. In the case of excitations
involving at least one active index (semi-internal), the expression for Sia depends on the 1-, 2-,
and higher-body components of the tensors H̄ i j···

ab··· , and the residual condition Sia = 0 can be sat-
isfied only if all of these components are null. It follows then that if the many-body equations
are truncated to a given order, then the residual conditions Sia = 0 cannot be satisfied for semi-
internal excitations. This result may be generalized to a generic residual Si j···ab··· and summarized by
saying that for truncated MR theories, the projective and many-body conditions are equivalent
only for external excitations (those not involving active indices). In most practical situations where
NC 
 NA, we find that semi-internal excitations are significantly outnumbered by externals, and
the projective and many-body conditions are for the most part equivalent.
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Density cumulant
λ
pq···
rs··· : the connected

(or irreducible) part of
γ
pq···
rs···

Reduce density
matrix (RDM) of �0:
γ
pq···
rs··· = 〈�0|âpq···rs··· |�0〉

The main advantage of the many-body conditions is that they require density cumulants of
smaller rank when compared to the projective equations. However, the amplitude equations ac-
quire Fock space character due to the reduced dependence on the one-body density matrix and
the density cumulants. In the many-body approach, the intruder state problem is more severe than
in the projective methods, and therefore it is essential to employ an approach like the DSRG to
regularize the amplitude equations. For example, depending on the Hamiltonian partitioning, a
second-order perturbative expansion of the projective equations may lead to the CASPT2 (CAS
second-order PT) (111) or NEVPT2 (n-electron valence second-order PT) (12) approaches. The
former is subject to intruders, while the later avoids them thanks to the two-body terms in the
zeroth-order Hamiltonian. Instead, the corresponding many-body formalisms with or without
two-body terms in the zeroth-order Hamiltonian can be shown to suffer from the intruder state
problem (86).

The projective conditions are used in several internally contracted MR theories, such as
CASPT2 (111), canonical transformation theory (64–66), and ic-MRCC (99, 112). However, pro-
jective approaches have several drawbacks: (a) It is necessary to perform an expensive orthogo-
nalization of the excitation configurations, {âab···i j··· }|�0〉; (b) the energy and amplitude equations are
more complex than the corresponding many-body ones; and (c) the elimination of linearly depen-
dent excited configurations introduces discontinuities on the potential energy surface. The use of
many-body conditions has been proposed by Nooijen and coworkers (108, 113, 114) as a way to
avoid the orthogonalization of the excited configurations, {âab···i j··· }|�0〉, and the problems associated
with it.

4. IMPLEMENTATION

All the DSRG schemes discussed above are implemented in Forte (115), a suite of MR quan-
tum chemistry methods based on the open source quantum chemistry package Psi4 (116). The
MR-DSRG module can be broken down into three components: (a) an active space solver that
defines the reference wave function, (b) an orbital semicanonicalization module, and (c) a dynamic
correlation solver that determines the DSRG-transformed Hamiltonian.

The first component obtains the reference by diagonalizing the Hamiltonian within the active
space using exact or approximatemethods [CASSCF,DMRG, selectedCI (117, 118), or variational
2-RDM (119) methods]. From the reference wave function, the one-body density matrix and the
two- and three-body density cumulants are computed. Storage of these quantities in memory for
large active spaces with 30–40 spatial active orbitals requires less than 128 GB of memory for a
spin-integrated implementation, and it is generally feasible on a single-node machine. Note that
for SA-DSRG computations on n electronic states, the memory requirement doubles and the
computational time is n multiplied by the time for evaluating the density cumulants.

The second component of our MR-DSRG code performs a semicanonicalization of the or-
bitals, a step required in the definition of the source operator. The orbital rotation matrixU is ob-
tained as described in Section 3.1 and is used to transform the original orbital coefficient matrixC′

into the semicanonical basis C via C = C′U. The active part of the one-body density matrix and
the density cumulants in the semicanonical basis are obtained by rotating each index using only
the active part of the unitary transformation. This procedure is preferred over recomputing the
densities via a secondHamiltonian diagonalization in the semicanonical basis, because theCI coef-
ficients can have arbitrary phases and they are not uniquely defined for degenerate configurations.

The third component solves theMR-DSRGequations using a truncation level requested by the
user.Details of the implementation of each approximate scheme can be found in References 88, 86,
and 83 for DSRG-MRPT2, DSRG-MRPT3, and MR-LDSRG(2), respectively. Here we briefly
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CASPTn: complete
active space nth-order
perturbation theory

discuss the limitations of the current implementation. First, all DSRG equations are spin inte-
grated such that only unique nonzero spin components of the amplitudes and integrals are com-
puted and stored. Second, sparsity due to point group symmetry is not exploited in the storage and
contractions of integrals, densities, and amplitudes. This optimization is desirable especially for
computing small molecules with high symmetry where it can bring 4–64 times speedup, depending
on the number of irreducible representations.

With these two limitations in mind, we now analyze the number of basis functions that can be
handled for each level of theory.The DF version of DSRGPTs are available in the current version
of Forte. In the DF-DSRG-MRPT2 (88), the largest storage demands come from holding six
tensors of size 1

16N
2
AN

2
P . In the DF-DSRG-MRPT3 (86), it is convenient to store all three-index

DF integrals in memory, as well as nine tensors of size 1
16N

2
HN

2
P . As such, practical applications on

a single computer node are restricted to 2,000 and 700 basis functions for DF-DSRG-MRPT2
and DF-DSRG-MRPT3, respectively.

Our current implementation of the MR-LDSRG(2) does not use DF and requires storage
of nine intermediates (three quantities, each with three spin cases) of size 1

16N
4. This memory

requirement limits practical applications of the MR-LDSRG(2) to systems with about 200 basis
functions.Work is underway in our group to implement an alternative DSRG ansatz that reduces
the computational and storage costs of the MR-LDSRG(2) and takes advantage of DF.

5. APPLICATIONS

The MR-DSRG computations reported in the literature so far focus largely on benchmark-
ing different approximation schemes and a few selected applications. We have tested the
DSRG-MRPT2, DSRG-MRPT3, and MR-LDSRG(2) schemes on the ground state dissocia-
tion curves of HF, F2, H2O2, C2H6, and N2 (83, 86, 87). Results for these systems show that the
accuracy of MR-LDSRG(2) is higher than that of DSRG-MRPT3, which is significantly higher
than that of DSRG-MRPT2 (83, 86). For excited states, we have studied 134 low-lying singlets of
28 molecules using the state-specific DSRG-MRPT2 combined with valence CI singles and dou-
bles (VCISD) references. The resulting VCISD-DSRG-PT2 theory yields excitation energies
with an accuracy comparable to that of other MRPT2 approaches (106). In the same study, we
also reported computations on formaldehyde that use the DSRG-MRPT2 with references con-
taining up to 34 active orbitals. More recently, SA-DSRG-PT2 and SA-DSRG-PT3 have been
benchmarked on the avoided crossing of LiF, and the conical intersection of NH3 and the penta-
2,4-dieniminium cation (97). It is found that the accuracy of SA-DSRG-PT2 is comparable to
other multistate second-order PTs, while the SA-DSRG-PT3 results are in excellent agreements
with those from MR CI with singles and doubles (MRCISD) (14, 120). Besides these benchmark
systems,we have computed the low-lying singlet excited states of octatetraene (97) and the singlet–
triplet splittings of (a) p-benzyne (83, 87), (b) all isomers of naphthyne (88), and (c) 9,10-anthracyne
(86).DF-DSRG-MRPT2 computations on a transition metal complex using 1,700 basis functions
have also been reported (88). Here, we briefly review the results for the N2 dissociation curve and
the vertical excitation energies of octatetraene.

5.1. Ground State Dissociation Curve of N2

Accurately predicting the dissociation curve of N2 has long been a challenging problem for MR
methods. As shown in Figure 5, the NPE of CASPT2 is 9.5 mEh, significantly larger than that ob-
served for single-bond breaking (see Supplemental Figure 1 and Supplemental Table 1). This
deterioration is also observed for the DSRG-MRPT2, yet more pronounced (NPE = 18.5 mEh).
The NPE is significantly reduced when going from second- to third-order PTs. For example,
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pc-NEVPT2:
partially contracted
n-electron valence
second-order
perturbation theory

Mk-MRCCSD:
Mukherjee
state-specific
multireference
coupled cluster with
singles and doubles

ic-MRCISD:
internally contracted
multireference
configuration
interaction with
singles and doubles

pc-NEVPT2

CASPT2
DSRG-MRPT2

DSRG-MRPT3
MR-LDSRG(2)

Mk-MRCCSD

ic-MRCISD

ic-MRCISD+Q

CASPT3

30
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Figure 5

Energy deviations of various multireference methods [based on a CASSCF(6e,6o) reference] with respect to
FCI for the ground state of N2. All computations used the cc-pVDZ basis set, and the molecular orbitals
mainly constructed from atomic 1s orbitals were excluded from post-CASSCF treatments. All DSRG results
assumed s = 0.5 E−2

h . Abbreviations: CAS, complete active space; CASPTn, CAS nth-order perturbation
theory; CASSCF, CAS self-consistent field; cc-pVDZ, correlation-consistent polarized valence double zeta;
DSRG, driven similarity renormalization group; DSRG-MRPTn, nth-order DSRG multireference
perturbation theory; FCI, full configuration interaction; ic-MRCISD, internally contracted multireference
configuration interaction with singles and doubles; ic-MRCISD+Q, ic-MRCISD with Davidson correction;
Mk-MRCCSD, Mukherjee state-specific multireference coupled cluster with singles and doubles;
MR-LDSRG(2), second-order linearized MR-DSRG; pc-NEVPT2, partially contracted n-electron valence
second-order perturbation theory.

the NPE of DSRG-MRPT3 is only 4.80 mEh and comparable to that of CASPT3 (6.0 mEh).
Surprisingly, among all PTs, the one that best parallels the FCI curve is pc-NEVPT2 (partially
contracted NEVPT2), with an NPE of only 1.3 mEh. Going from DSRG-MRPT3 to MR-
LDSRG(2), more dynamic correlation is gained, but the NPE is worsened by 1.1 mEh, yet it
is still significantly smaller than the Mk-MRCCSD (Mukherjee state-specific MR CCSD) result
(14.2 mEh).

The above observations shed light on how to improve the MR-DSRG methods. Comparing
DSRG-MRPT2 to DSRG-MRPT3 and MR-LDSRG(2) suggests that the double commutator
[[Ĥ , Â(s)], Â(s)] in the BCH expansion of H̄ (s) is essential in describing triple bond breaking in
N2 at a level of accuracy comparable to that of ic-MRCISD (internally contracted MRCISD).
Furthermore, contrary to CASPT2 and pc-NEVPT2, the MR-DSRG methods considered here
neglect the four-body density cumulant. In the case of N2, it is known that the three-body den-
sity cumulant vanishes at the dissociation limit, while the four-body density cumulant has a large
norm (78). This observation suggests that commutator approximations that include the four-body
density cumulant may be important to reduce the NPE for the N2 curve.

5.2. Excitation Energies of (E,E)-1,3,5,7-Octatetraene

We conclude this section by highlighting the application of the SA-DSRG PTs to the vertical
excitation energies of (E,E)-1,3,5,7-octatetraene (OTE). In particular, we focus on the ordering
of the lowest excited states, 2 1A−

g and 1 1B+
u (97). For the dipole-forbidden 2 1A−

g state, the domi-
nant configuration is a double excitation from the Hartree–Fock determinant, whose description
generally necessitates MR methods. On the other hand, the 1 1B+

u state primarily consists of a
HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) single excitation and it
is dipole allowed. Predicting the excitation energy of 1 1B+

u requires a sophisticated treatment of
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CC3: approximate
coupled cluster with
singles, doubles, and
triples model

ic-MRCCSD-LR:
internally contracted
multireference
coupled cluster with
singles and doubles
linear response

ADC(n):
nth-order algebraic
diagrammatic
construction

XMS-CASPT2:
extended multistate
complete active space
second-order
perturbation theory

QD-sc-NEVPT2:
quasi-degenerate
strongly contracted
n-electron valence
second-order
perturbation theory

dynamic correlation effects. As such, various theoretical studies have given contrasting predictions
of the relative ordering of these two states.

In Supplemental Table 2, we summarize the vertical excitation energies of the 2 1A−
g and

1 1B+
u states of OTE obtained using various theories. Comparing these excitation energies di-

rectly to experiment is not straightforward because these computations employed moderate-size
basis sets that do not contain diffuse functions. Thus, we restrict our comparison to other com-
putational methods. The 1 1B+

u state is dominated by single excitations and is well described by
single-reference equation-of-motion CC theories. As such, we consider the CC3 (approximate
CC with singles, doubles, and triples) method to provide the best theoretical estimate for the ex-
citation energy (4.94 eV) of the 1 1B+

u state. The 2 1A−
g state requires a MR method, and we take

the excitation energy provided by the ic-MRCCSD-LR (internally contracted MR CCSD linear
response) approach (4.65 eV) as the most accurate theoretical estimate.

Among all single-reference methods, only ADC(3) (third-order algebraic diagrammatic con-
struction) predicts the 2 1A−

g state lying below the 1 1B+
u state. However, the ADC(3) excitation

energies are generally too low, especially for the 2 1A−
g state, which is 0.92 eV below the ic-

MRCCSD-LR result. In the case of MR theories, the excitation energy of 2 1A−
g is largely in-

sensitive to the different treatments of dynamic electron correlation. On the contrary, the energy
of the 1 1B+

u state strongly depends on the level of theory. For example, excitation energies from
XMS-CASPT2 (extended multistate CASPT2) and QD-sc-NEVPT2 (quasi-degenerate strongly
contracted NEVPT2)/CAS(8e,8o) are more than 0.7 eV too low, leading to an incorrect ordering
of the two states. This underestimation has been attributed to the lack of dynamic σ polarization
(π → π∗ excitations coupled with σ → σ ∗ excitations) in the CAS(8e,8o) wave function (121).
If we enlarge the active space to CAS(8e,16o), the QD-sc-NEVPT2 excitation energy for the
1 1B+

u state is found to be in better agreement with the CC3 value. Instead, for all SA-DSRG-
PT2/3 methods, enlarging the active space has little effect on the excitation energy of the 1 1B+

u

state.

6. CONCLUSIONS AND FUTURE WORK

The DSRG is a formalism for creating numerically robust MR electron correlation theories. In
the past several years, we have developed a series of computationally feasible MR-DSRG meth-
ods, ranging from an efficient second-order PT to a more accurate, CCSD-like nonperturbative
scheme. These MR-DSRG methods address some of the most critical limitations inherent to
internally contracted MR theories, including the intruder state problem, the unfavorable scal-
ing with respect to the number of active orbitals, and energy discontinuities in potential energy
surfaces due to the elimination of redundant excitations. However, the use of a renormalization
group approach introduces some drawbacks, such as the dependence of the results on the flow
parameter.

Under the current MR-DSRG formalism, several important directions deserve future ex-
plorations. Since MR-DSRG perturbative schemes are sufficiently accurate and avoid expen-
sive terms involving four-body density matrices, it would be useful to develop analytic gradi-
ent theories of the SA-DSRG-PT2 and SA-DSRG-PT3 approaches for applications to geom-
etry optimizations and on-the-fly molecular dynamics on ground and excited potential energy
surfaces. Another important development is to go beyond a treatment of dynamical correlation
that includes only single and double substitutions. The importance of perturbative triple correc-
tions in determining the success of the CCSD(T) (CCSD with perturbative triples) method (122,
123) suggests that attaining quantitative agreement with experiment requires an analogous exten-
sion of the MR-LDSRG(2) approach. Another route to improving the accuracy of MR-DSRG
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theory is to go beyond the linearized commutator approximation employed in MR-LDSRG(2).
As discussed previously, this approximation is known to introduce errors at the third order of
perturbation.

An important open challenge is to reduce or eliminate the dependence of the MR-DSRG re-
sults on the flow parameter. In this respect, the MR-DSRG exposes a problem inherent to all
internally contracted theories that use numerical thresholds to eliminate linear dependencies in
the basis of contracted configurations. The elimination of the discontinuities in the potential en-
ergy surfaces seen in other internally contracted theories represents a major breakthrough for
MR-DSRG, but the presence of an external parameter like s appears to be unavoidable. There are
at least two ways to improve upon our current way of performing MR-DSRG computations. One
is to identify a value of s that minimizes error metrics of a benchmark set. In a recent study (124)
onMP2 with a modified denominator of the formmax(�i j

ab, τ ), the threshold value τ ≈ 2.4 Eh was
used, which is consistent with a flow parameter s ≈ 0.17 E−2

h and suggests that our default value
s = 0.5 E−2

h is close to the optimal value. A direct path to reducing the s dependence is to account
for the off-diagonal components of the Hamiltonian that are not driven to zero by the DSRG
transformation. This can be done by diagonalizing H̄ in a space of configurations that extends be-
yond the active space. This strategy has been successfully applied in the MR equation-of-motion
CC of Nooijen and coworkers (113, 114). We expect that this solution would also alleviate the
dependence of MR-DSRG results on the choice of the active space. Both solutions are under
investigation in our group.

SUMMARY POINTS

1. The multireference driven similarity renormalization group (MR-DSRG) is a general
framework to add dynamical correlation effects on top of any given zeroth-order refer-
ence wave function.

2. The MR-DSRG methods avoid the intruder state problem by performing a gradual
diagonalization of the Hamiltonian controlled by the flow parameter s. An s-dependent
Hermitian source operator drives the Hamiltonian to a band-diagonal structure.

3. The MR-DSRG scheme avoids the problem of linear dependencies in the excitation
manifold inherent to internally contracted theories by using many-body conditions.

4. Under the linearized commutator approximation, theMR-DSRGmethods are currently
applicable to active spaces with up to 30–40 active orbitals, because at most the three-
body density cumulants of the reference are required.
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