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ABSTRACT: We present a second-order formulation of
multireference algebraic diagrammatic construction theory
[Sokolov, A. Yu. J. Chem. Phys. 2018, 149, 204113] for
simulating photoelectron spectra of strongly correlated
systems (MR-ADC(2)). The MR-ADC(2) method uses
second-order multireference perturbation theory (MRPT2)
to efficiently obtain ionization energies and intensities for
many photoelectron transitions in a single computation. In
contrast to conventional MRPT2 methods, MR-ADC(2)
provides information about ionization of electrons in all
orbitals (i.e., core and active) and allows computation of transition intensities in a straightforward and efficient way. Although
equations of MR-ADC(2) depend on four-particle reduced density matrices, we demonstrate that computation of these large
matrices can be completely avoided without introducing any approximations. The resulting MR-ADC(2) implementation has a
lower computational scaling compared to conventional MRPT2 methods. We present results of MR-ADC(2) for photoelectron
spectra of small molecules, a carbon dimer, and equally spaced hydrogen chains (H10 and H30) and outline directions for future
developments.

1. INTRODUCTION

Recently, there has been significant progress in increasing
tractability of the strong electron correlation problem. New
methods enable computations of systems with a large number
of strongly correlated electrons in the ground or excited
electronic states.1−14 These approaches usually start by
computing a multiconfigurational wave function that describes
strong correlation in a subset of frontier (active) molecular
orbitals with near-degeneracies.15−17 The remaining (dynamic)
correlation effects outside of the active orbitals are usually
captured by multireference perturbation theory (MRPT),18−27

configuration interaction,28−32 or coupled cluster (CC)
methods.33−50 In particular, low-order MRPT methods have
been very successful at computing accurate energies of large
strongly correlated systems due to their relatively low
computation cost and ability to treat large active spaces with
up to ∼30 orbitals.51−58

Despite significant advances, application of conventional
MRPT methods to a wider range of problems, such as
simulating excited-state or spectroscopic properties, is
hindered by a number of limitations. For example,
computation of transition intensities in MRPT is not
straightforward due to the complexity of the underlying
response equations.59 Another limitation is that MRPT
methods do not describe electronic transitions involving
orbitals outside of active space that are important for
simulating broad-band spectra or core-level excitations in X-
ray spectroscopies. Furthermore, for computations involving
many electronic states of the same symmetry, MRPT methods

rely on using state-averaged reference wave functions, which
introduce dependence of their results on the number of states
and weights used in state-averaging. This motivates the
development of new efficient multireference theories that are
not bound by these limitations.
We have recently proposed a multireference formulation of

algebraic diagrammatic construction theory (MR-ADC) for
simulating spectroscopic properties of strongly correlated
systems.60 MR-ADC is a generalization of the conventional
(single-reference) ADC theory proposed by Schirmer in
1982.61 Rather than computing energies and wave functions
of individual electronic states, in MR-ADC, excitation energies
and transition intensities are directly obtained from poles and
residues of a retarded propagator approximated using MRPT.
In contrast to conventional MRPT, MR-ADC describes
electronic transitions involving all orbitals (i.e., core, active,
and external), enables simulations of various spectroscopic
processes (e.g., ionization or two-photon excitation), and
provides direct access to spectral properties. In this regard,
MR-ADC is related to multireference propagator theories62−70

but has an advantage of a Hermitian eigenvalue problem and
including dynamic correlation effects beyond single excitations.
For electronic excitations, MR-ADC can also be considered as
a low-cost alternative to multireference equation-of-motion
(MR-EOM) theories, such as MR-EOM-CC,41−43 and
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internally contracted linear response theories, such as ic-
MRCC.71

In this work, we present a second-order formulation of MR-
ADC (MR-ADC(2)) for photoelectron spectra of multi-
reference systems. We begin by describing the derivation of
MR-ADC(2) (section 2) and discuss details of its
implementation (section 3), demonstrating that it has a
lower computational scaling with the number of active orbitals
compared to conventional MRPT methods. Next, we describe
computational details (section 4) and test the performance of
MR-ADC(2) for computing photoelectron energies and
transition intensities of small molecules, a carbon dimer, as
well as equally spaced hydrogen chains H10 and H30 (section
5). Finally, we present our conclusions (section 6) and outline
future developments.

2. THEORY
2.1. Multireference Algebraic Diagrammatic Con-

struction Theory (MR-ADC). We begin with a brief overview
of MR-ADC. In ref 60, we described the derivation of MR-
ADC using the formalism of effective Liouvillean theory.72

Here, we only summarize the main results. Our starting point
is a general expression for the retarded propagator73,74 that
describes response of a many-electron system to an external
perturbation with frequency ω

G G G

q H E q

q H E q

( ) ( ) ( )

( )

( )

1

1

ω ω ω

ω

ω

= ±

= ⟨Ψ| − + |Ψ⟩

± ⟨Ψ| + − |Ψ⟩

μν μν μν

μ ν

ν μ

+ −

− †

† −
(1)

Here, Gμν
+ (ω) and Gμν

− (ω) are the forward and backward
components of the propagator, |Ψ⟩ and E are the eigenfunction
and eigenvalue of the electronic Hamiltonian H, and the
frequency ω ≡ ω′ + iη is written in terms of its real component
(ω′) and an infinitesimal imaginary number (iη). Depending
on the form of operators qν

†, the propagator Gμν(ω) can
describe various spectroscopic processes. Choosing qν

† = ap
†aq −

⟨Ψ|ap†aq|Ψ⟩, where ap
† and ap are the usual creation and

annihilation operators, corresponds to a polarization propa-
gator that provides information about electronic excitations in
optical (e.g., UV/vis) spectroscopy. Alternatively, a propagator
with qν

† = ap
† describes electron attachment and ionization

processes. The number of creation and annihilation operators
in qν

† (odd or even) determines the sign (+ or −) of the second
term in eq 1.
Evaluation of the exact propagator is very expensive

computationally. For this reason, many approximate meth-
ods61−69,75−106 have been developed to compute Gμν(ω) for
realistic systems. A common assumption in most of these
approaches is that the eigenfunction |Ψ⟩ can be well
approximated by a single Slater determinant. Although this
assumption significantly simplifies the underlying equations,
such single-reference methods do not provide reliable results
when strong correlation is important, and the wave function
|Ψ⟩ becomes multiconfigurational.
To efficiently and accurately compute Gμν(ω) for strongly

correlated systems, in MR-ADC we consider an expansion of
eq 1 using multireference perturbation theory, where the zeroth-
order (reference) wave function |Ψ0⟩ is obtained by solving the
complete active space configuration interaction (CASCI) or
self-consistent field (CASSCF) variational problem in a set of

active molecular orbitals (Figure 1). The eigenfunction |Ψ⟩ is
related to |Ψ0⟩ via a unitary transformation27,44−49
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where T generates all internally contracted excitations between
core, active, and external orbitals (see Figure 1 for orbital index
notation). Defining the zeroth-order Hamiltonian to be the
Dyall Hamiltonian24−26,107
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expressed in the basis of diagonal core and external generalized
Fock operators ( f i

j = εiδi
j, fa

b = εaδa
b), we expand the propagator

in eq 1 in perturbative series with respect to the perturbation V
= H − H(0)

G G G G( ) ( ) ( ) ... ( ) ...n(0) (1) ( )ω ω ω ω= + + + + (8)

Truncating eq 8 at the nth order in perturbation theory
corresponds to the propagator of the MR-ADC(n) approx-
imation.
An important property of MR-ADC (along with that of its

single-reference variant)72 is that the forward and backward
components of the propagator in eq 1 are decoupled, and thus,
perturbative expansion (eq 8) can be performed for Gμν

+ (ω)
and Gμν

− (ω) separately. The MR-ADC(n) Gμν
+ (ω) and Gμν

− (ω)
contributions are expressed in the matrix form

G T S M T( ) ( ) 1ω ω= −± ± ± ±
−

±
†

(9)

where M±, T±, and S± are the effective Liouvillean, transition
moment, and overlap matrices, respectively, each evaluated up
to the nth order in perturbation theory. The M± matrix
contains information about transition energies, which are
obtained by solving the Hermitian generalized eigenvalue
problem

Figure 1. Orbital energy diagram showing the index convention used
in this work.
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M Y S Y Ω=± ± ± ± ± (10)

where Ω± is a diagonal matrix of eigenvalues. The eigenvectors
Y± are used to compute spectroscopic amplitudes

X T S Y1/2=± ± ±
−

± (11)

which are related to transition intensities. Combining the
eigenvalues Ω± and spectroscopic amplitudes X±, we obtain
expressions for the MR-ADC(n) propagator and spectral
function

G X X( ) ( ) 1ω ω Ω= −± ± ±
−

±
†

(12)

T G( )
1

Im Tr ( )ω
π

ω= − [ ]± (13)

2.2. Second-Order MR-ADC for Ionization Energies
and Spectra. 2.2.1. Overview. In this work, we consider the
MR-ADC(2) approximation for photoelectron spectra, which
incorporates all contributions to G(ω) up to the second order
in perturbation theory. A propagator of choice for the
description of electron ionization processes is the backward
component of the one-particle Green’s function G−(ω), which
can be defined by specifying qν

† = ap
† in the second term of eq 1.

To simplify our notation, we will drop the subscript
everywhere in the equations. Thus, matrices M, T, and S will
refer to the components of G−(ω) in eq 9. Following the
effective Liouvillean approach,60,72 we express the nth-order
MR-ADC matrices as
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0
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+ =
†

+
(16)

where [...] and [...]+ denote commutator and anticommutator,
respectively. In eqs 14−16, H̃(k) and q̃μ

(k) are the kth-order
contributions to the effective Hamiltonian H̃ = e−AHeA and
observable q̃μ = e−Aqμe

A operators. These contributions can be
obtained by expanding H̃ and q̃μ using the Baker−Campbell−
Hausdorff (BCH) formula and collecting terms at the kth
order. The low-order components of these operators have the
form

H H(0) (0)̃ = (17)

H V H A,(1) (0) (1)̃ = + [ ] (18)

H H A V H A,
1
2

,(2) (0) (2) (1) (1)̃ = [ ] + [ + ̃ ]
(19)

q q ap
(0)̃ = =μ μ (20)

q a A,p
(1) (1)̃ = [ ]μ (21)

q a A a A A,
1
2

, ,p p
(2) (2) (1) (1)̃ = [ ] + [[ ] ]μ (22)

where A(k) = T(k) − T(k)†, as shown in eq 2. The operators hμ
(k)†

compose the kth-order ionization operator manifold that is

used to construct a set of internally contracted (ionized) basis
states |Ψμ

(k)⟩ = hμ
(k)†|Ψ0⟩ necessary for representing the

eigenstates in eq 10.
Introducing shorthand notations72 for the matrix elements

of arbitrary operator sets A = {Aμ} and B = {Bμ}

A BA B ,0 0{ | } = ⟨Ψ |[ ] |Ψ ⟩μ ν
†

+ (23)

A H BA B , ,0 0{ | ̃ | } = ⟨Ψ |[ [ ̃ ]] |Ψ ⟩μ ν
†

+ (24)

we express contributions to the MR-ADC(2) matrices in the
following form

M h h h h

h h h h

h h h h

h h h h

(0) (0) (0) (1) (0) (0)

(0) (1) (0) (0) (0) (1)
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≈ { | } + { | } + { | }

+ { | }

† † † † † †

† † (27)

Computing matrix elements in eqs 25−27 requires solving for
amplitudes of the excitation operators (T(1) and T(2)) and
determining the ionization operator manifolds (hμ

(k)†, k = 0,1).
2.2.2. Amplitudes of the Excitation Operators. To solve for

amplitudes of the T(k) (k = 1,2) operators, we express these
operators in a general form

T ttk kk( ) ( ) ( )∑τ τ= =
μ

μ μ
(28)

where tμ
(k) are the kth-order coefficients and τμ are the

corresponding excitation operators (eq 3). The first-order
operator T(1) includes up to two-body terms (T(1) = T1

(1) +
T2
(1)) parametrized using three classes of single-excitation and

eight classes of double-excitation amplitudes
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p ≡ ap

†aq and ars
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†asar, the corresponding

excitation operators are
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ij
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τ = {

} (30)

To compute t(1), we consider a system of projected linear
equations

H 00
(1)

0τ⟨Ψ | ̃ |Ψ ⟩ =μ
†

(31)

Using the definition of H̃(1) from eq 18, this system of
equations can be expressed in the matrix form60

H t V0 1 1( ) ( ) ( )= − (32)

where the zeroth-order Hamiltonian and perturbation matrix
elements are defined as
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H H E( )(0)
0

(0)
0 0τ τ= ⟨Ψ | − |Ψ ⟩μν μ ν

†
(33)

V V(1)
0 0τ= ⟨Ψ | |Ψ ⟩μ μ

†
(34)

and E0 is the zeroth-order (reference) energy. Equation 32 is
identical to the equation that defines the first-order wave
function in the standard Rayleigh−Schrödinger perturbation
theory. Because H(0) is the Dyall Hamiltonian, the first-order
MR-ADC reference wave function |Ψ(1)⟩ = T(1)|Ψ0⟩ is
equivalent to the first-order wave function in internally
contracted second-order N-electron valence perturbation
theory (NEVPT2).24−26 Importantly, this suggests that
solutions of eq 31 do not suffer from intruder-state problems,
provided that |Ψ0⟩ is the ground-state reference wave function.
The t(1) amplitudes can be used to compute the second-order
correlation correction to the reference energy

E V VT(2)
0

(1)
0

(1)
0= ⟨Ψ | |Ψ ⟩ = ⟨Ψ | |Ψ ⟩ (35)

which is equivalent to the NEVPT2 correlation energy. We
note that eqs 32 and 35 have been recently derived in the
context of perturbation expansion of internally contracted
multireference CC theory.108

Evaluating the MR-ADC(2) matrices in eqs 25 and 26 also
requires semi-internal amplitudes of the second-order ex-
citation operator T(2)

t t t t t tt ; ; ; ; ;i
a

i
x

x
a

ix
ay

ix
yz

xy
az2( ) (2) (2) (2) (2) (2) (2)= { } (36)

These parameters are obtained by solving the second-order
linear equations

H t V0 2 2( ) ( ) ( )= − (37)

where the matrix elements of V(2) are defined as

V V H A
1
2

,(2)
0

(1) (1)
0τ= ⟨Ψ | [ + ̃ ]Ψ ⟩μ μ

†
(38)

Equation 37 is analogous to the first-order eq 32 with the right-
hand side modified by the second-order matrix V(2) and, thus,
can be solved in a similar way. In practice, only a small number
of terms in eqs 25 and 26 depend on the t(2) amplitudes, and
their contributions have a very small effect on the ionization
energies and spectral intensities. We will discuss a solution of
the first- and second-order amplitude equations in more detail
in section 3.2.
2.2.3. Ionization Operator Manifolds. To determine the

ionization operators hμ
(k)† (k = 0,1), we use the fact that these

operators must satisfy two requirements:60,72 (i) at the kth
order, the particle-hole rank of hμ

(k)† must not exceed that of
q̃μ
(k)† or q̃μ

(k) for the forward or backward components of the
propagator, respectively; (ii) hμ

(k)† must fulfill the vacuum
annihilation condition (VAC)75−78 with respect to the
reference state, i.e., hμ

(k)|Ψ0⟩ = 0, which ensures decoupling of
the forward and backward components of the propagator in eq
1.60,72 To obtain hμ

(0)†, we recall that q̃μ
(0) = ap, where the

annihilation operator can be of three different types: ai, ax, or
aa (core, active, or external). Out of these three classes, only
the core operator ai satisfies VAC with respect to |Ψ0⟩(ai

†|Ψ0⟩
= 0) and, thus, can be added to hμ

(0)†. Because |Ψ0⟩ does not
contain electrons in the active space, the external operator aa is
redundant (aa|Ψ0⟩ = 0) and cannot be included in hμ

(0)†.
Although the active-space operator ax does not fulfill VAC
(ax

†|Ψ0⟩ ≠ 0), it can be expanded60 in the form ax = ∑I ZI
†cI, x,

where ZI
† is a complete set of active-space eigenopera-

tors,109−111 defined as

ZI I
N 1

0= |Ψ ⟩⟨Ψ |† −
(39)

Here, |ΨI
N−1⟩ are the CASCI states of the ionized system with

N − 1 electrons computed using the active space and the one-
electron basis of the reference state |Ψ0⟩. We note that in the
context of propagator theory the configurational operators ZI

†

were first used by Freed and Yeager109 and have two important
properties: they are linearly independent and include all types
of active-only ionization operators (ax, ax

†ayaz, ...). Incidentally,
these operators also satisfy VAC with respect to |Ψ0⟩ and can
be added to hμ

(0)†. Although we have assumed that the set of
operators ZI

† is complete, only a subset of these operators
corresponding to CASCI states in the spectral region of
interest need to be included in practice. We summarize that
the MR-ADC(2) zeroth-order manifold hμ

(0)† consists of two
sets of operators

a Zh ;i I
(0) = { }† †

(40)

Following a similar strategy, we determine that the first-
order operators hμ

(1)† have a general form aqr
p ≡ ap

†araq and can
be further divided into five classes

a a a a ah ; ; ; ;ij
x

ij
a

ix
y

ix
a

xy
a(1) = { }†

(41)

describing ionization in the core or active spaces accompanied
by core−active, active−external, or core−external single
excitations, as shown in Figure 2. The all-active operators azy

x

Figure 2. Schematic illustration of the ionized states produced by acting the hμ
(0)† and hμ

(1)† operators (eqs 40 and 41) on the reference state |Ψ0⟩.
The black, green, and red energy levels correspond to core, active, and external orbitals. Empty circles represent ionization, and dashed lines with an
arrow denote single excitation.
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do not appear in h(1)† because they are already included in the
h(0)† manifold by the ZI

† operators.
Figure 3 illustrates perturbative structure of the MR-

ADC(2) effective Liouvillean (M) and overlap (S) matrices.
The {h(0)†| ̃ (k)|h(0)†} block of the M matrix includes all
contributions up to k = 2, while the coupling block

h h
k(1) ( ) (0){ | ̃ | }† † is evaluated to first order, as given by eq

25. In the manifold of first-order ionized states, the

h h(1) (0) (1){ | ̃ | }† † sector is block-diagonal with nonzero
elements for the hμ

(1)† excitations from the same class (eq
41). Overall, the general perturbative structure of the MR-
ADC(2) matrices closely resembles that of non-Dyson SR-
ADC(2),93−95 and the two methods become equivalent in the
limit of single-determinant reference wave function |Ψ0⟩.

3. IMPLEMENTATION
3.1. General Algorithm. In this section, we describe a

general algorithm of our MR-ADC(2) implementation for
complete active space (CAS) reference wave functions.
Although in this work we always employ the ground-state
CASSCF wave function of a neutral system as a reference, in
MR-ADC, other choices of reference orbitals are possible (e.g.,
Hartree−Fock, state-averaged, or unrestricted natural orbi-
tals).112 The main steps of the MR-ADC(2) algorithm are
summarized below:

1. Choose the active space and compute the reference
orbitals and CAS wave function |Ψ0⟩ for the neutral
system with N electrons.

2. Using reference orbitals, compute the CASCI energies
EI
N−1 and wave functions |ΨI

N−1⟩ for NCI lowest-energy
states of the ionized system with (N − 1) electrons.

3. Compute active-space reduced density matrices
(RDMs) for the reference state |Ψ0⟩, transition RDMs
between |Ψ0⟩ and ionized states |ΨI

N−1⟩, and transition
RDMs between two ionized states |ΨI

N−1⟩.
4. Solve linear amplitude eqs 32 and 37 to compute t(1) and

t(2).
5. Solve the generalized eigenvalue problem (eq 10) to

obtain ionization energies Ω.
6. Compute spectroscopic amplitudes (eq 11) and (if

necessary) the spectral function (eq 13).

As discussed in section 2.2, the number of active-space ionized
states (NCI) should be sufficiently large to include all important
CASCI states in the spectral region of interest. Implementation
of the algorithm outlined above requires derivation of
equations for contributions to the M, T, and S matrices (eqs
25−27). Although most of these contributions have compact
expressions, matrix elements of the second-order effective

Hamiltonian (e.g., {h(0)†|
(2)̃ |h(0)†}) are very complicated,

containing ∼250−300 terms for each matrix block. Such
algebraic complexity is a common feature of many internally
contracted multireference theories.31,41,54,59,113

To speed up tedious derivation and implementation of MR-
ADC(2), we developed a Python program that automatically
generates equations and code for arbitrary-order MR-ADC(n)
approximation. Our code generator is a modified version of the
SecondQuantizationAlgebra (SQA) program developed by
Neuscamman and co-workers.113 We use SQA to define and
normal-order all active-space creation and annihilation
operators in eqs 25−27 with respect to the physical vacuum.
Next, we additionally normal-order core creation and
annihilation operators relative to the Fermi vacuum and
evaluate expectation values with respect to the active-space
states |Ψ0⟩ and |ΨI

N−1⟩. The resulting equations, written as
contractions of the one- and two-electron integrals, t(1) and t(2)

amplitudes, and RDMs, are used to generate code and can be
implemented using any available tensor contraction engine. We
present working equations for all matrix elements in eqs 25−27
in the Supporting Information.
In sections 3.2−3.4, we provide more details about the

solution of amplitude equations, efficient computation of terms
that depend on high-order RDMs, and solution of the
generalized eigenvalue problem.

3.2. Amplitude Equations. The general form of the first-
and second-order amplitude equations has been discussed in
section 2.2.2. Because the Dyall Hamiltonian (eq 4) does not
contain terms that couple excitations outside of the active
space, its matrix representation H(0) (eq 33) is block-diagonal,
and the amplitude eqs 32 and 37 can be solved for each block
separately. Using the standard notation for classifying
excitations adopted in N-electron valence perturbation
theory,24−26 operators τ in eq 30 are split into eight groups
τ[i] (i ∈ {0; +1; −1; +2; −2; +1′; −1′; 0′}), where i is the
number of electrons added to (i > 0) or removed from (i < 0)

Figure 3. Structure of the effective Liouvillean (M) and overlap (S) matrices of MR-ADC(2) for photoelectron spectra. Nonzero matrix blocks are
highlighted in color. A colored line represents a diagonal block. Numbers denote the perturbation order to which the effective Hamiltonian H̃ is
approximated for each block. Wave functions ΨI = ZI

†Ψ0 and Ψi = aiΨ0 are the CASCI and core ionized states, whereas Ψqr
p = ap

†araqΨ0 are singly
excited ionized states with orbital index notation shown in Figure 1.
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active space upon excitation. The operator classes with i ∈ {
+1′; −1′; 0′} are used to represent three coupled sets of single

and semi-internal double excitations: τ[+1′] = {ai
x; aix

yz}, τ[−1′] =

{ax
a; axy

az}, and τ[0′] = {ai
a; aix

ay}.
Separating the H(0), t(1), and V(1) matrices in eq 32 into

blocks according to excitation classes τ[i] (denoted as K[i],
t[i](1), and V[i](1), respectively), we express the first-order
amplitude equations in the following form

K t Vi i 1 i 1( ) ( )= −[ ] [ ] [ ] (42)

To solve eq 42 for each excitation class, we consider the
generalized eigenvalue problem for the matrix K[i]

K Z S Zi i i i iϵ=[ ] [ ] [ ] [ ] [ ] (43)

which allows us to obtain the expression for the first-order
amplitudes60

t S Z Z S V( ) ( ) ( )i 1 i i i i i i 1( ) 1/2 1 1/2 ( )ϵ= − ̃ ̃[ ] [ ] − [ ] [ ] − [ ]† [ ] − [ ] (44)

where Kμν
[i] = ⟨Ψ0|τμ

[i]†(H(0) − E0)τν
[i]|Ψ0⟩, Sμν

[i] = ⟨Ψ0|τμ
[i]†τν

[i]|Ψ0⟩,
and Z̃[i] = (S[i])1/2Z[i]. Computing the t[i](1) amplitudes in eq
44 requires diagonalizing K[i] and S[i] and removing linear
dependencies corresponding to eigenvectors of S[i] with small
eigenvalues. Because the matrix elements Kμν

[i] and Sμν
[i] are zero

when the operators τμ
[i]† and τν

[i] do not share the same core and
external indices, diagonalization of K[i] and S[i] can be
performed very efficiently. For the semi-internal amplitudes
t[i](1) (i ∈ {+1′; −1′; 0′}), removing redundancies in the
overlap matrix may introduce small size-consistency errors of
the MR-ADC energies due to the appearance of disconnected
terms in the amplitude equations that become nonzero when
linear dependencies are eliminated.60,114 To restore full size-
consistency of the MR-ADC energies, we use the approach
developed by Hanauer and Köhn115 that removes the
disconnected terms by transforming the excitation operators
τ[i] (i ∈ { +1′; −1′; 0′}) to a generalized normal-ordered form.
We will demonstrate size-consistency of the MR-ADC(2)
ionization energies in section 5.1.
We use eq 44 to compute t[i](1) for all double (i ∈ {0; +1;

−1; +2; −2}) and one class of semi-internal (i = 0′)
excitations. For the t[+1′](1) and t[−1′](1) amplitudes, diagonal-

ization of K[+1′] and K[−1′] requires the four-particle reduced
density matrix (4-RDM) of the reference state Ψ0, which is
expensive to compute and store in memory for large active
spaces (see section 3.3 for details). To avoid computation of 4-

RDM, we evaluate t[+1′](1) and t[−1′](1) using the imaginary-
time algorithm developed in ref 60, which employs a Laplace
transform57,116 to evaluate the operator resolvent (H(0) − E0)

−1

without explicitly constructing and inverting the K[+1′] and

K[−1′] matrices.
The second-order amplitude eq 37 needs to be solved only

for the semi-internal amplitudes t[+1′](2), t[−1′](2), and t[0′](2) (eq

36). Among these, only t[+1′](2) enters equations for the M
matrix, while all three sets of semi-internal amplitudes are
necessary to compute the T matrix elements. The second-order
amplitudes can be obtained in a similar way as their first-order
counterparts t[i](1), i.e., by expressing t[i](2) in the form of eq 44
(with V[i](1) replaced by V[i](2) defined in eq 38) or using the
imaginary-time algorithm. Although solving the second-order
equations is straightforward, matrix elements of the perturba-

tion operator V[i](2) contain ∼600 terms and are rather tedious
to evaluate. On the other hand, because the primary role of
t[i](2) (i ∈ {+1′; −1′; 0′}) is to describe relaxation of the
orbitals, their contributions are expected to have a small effect
on the results of the MR-ADC(2) method that already
incorporates orbital relaxation via the first-order amplitudes
t[i](1) and ionization operators h(1)†. To test this, we considered

an approximation where we neglect contributions of t[+1′](2)

and t[−1′](2) and approximate t[0′](2) by setting tix
ay(2) ≈ 0 and

neglecting all terms that depend on active-space RDMs in

V[0′](2) to obtain ti
a(2) (see the Supporting Information). The

resulting amplitude equations ensure that MR-ADC(2) is
equivalent to SR-ADC(2) in the single-reference limit. As
demonstrated in the Supporting Information, approximating
the t(2) terms has a very small effect on the MR-ADC(2)
results with errors of ≤0.005 eV and ≤3 × 10−4 in ionization
energies and spectroscopic factors, respectively. For this
reason, we adopted this approximation in our implementation
of MR-ADC(2).

3.3. Avoiding High-Order Reduced Density Matrices.
As other internally contracted multireference perturbation
theories, MR-ADC(2) contains terms that depend on high-
order RDMs (e.g., 4-RDM) in its equations. In this section, we
will demonstrate that these terms can be efficiently evaluated
without computing and storing 4-RDMs in memory. There are
two sources of high-order RDMs in the MR-ADC(2)
equations: (i) t(1) and t(2) amplitude equations and (ii)
second-order contributions to the effective Liouvillean matrix
M. As discussed in section 3.2, using the imaginary-time
algorithm60 allows one to completely avoid computation of 4-
RDM in the amplitude equations.
For the M matrix, 4-RDMs appear in expectation values of

the second-order effective Hamiltonian
(2)̃ with respect to

the reference (⟨Ψ0|
(2)̃ |Ψ0⟩) and ionized (⟨ΨI

N−1|
(2)̃ |ΨJ

N−1⟩)
wave functions. In particular, the latter matrix elements depend
on transition 4-RDMs between all CASCI ionized states (e.g.,
⟨ΨI

N−1|aw
†ax

†ay
†az

†az′ay′ax′aw′|ΨJ
N−1⟩), which have a high

N N N( )det CI
2

act
8 computational scaling, where Ndet is the

dimension of CAS Hilbert space, NCI is the number of
CASCI ionized states, and Nact is the number of active orbitals.
To demonstrate how to avoid computation of 4-RDMs, we

consider one of the contributions to the ⟨ΨI
N−1|

(2)̃ |ΨJ
N−1⟩

matrix elements

v t t a a a a a a a a
1
8 awxyzu

vy w z

xy
zw

av
xu

z w
ay

I z w u y y v w z J∑ ⟨Ψ| |Ψ⟩
′ ′ ′

′ ′
′ † † †

′
†

′ ′

(45)

where we use shorthand notation for the first-order amplitudes
txy
az(1) ≡ txy

az and CASCI states |ΨI
N−1⟩ ≡ |ΨI⟩. Changing the

order of creation and annihilation operators, we express eq 45
in the following form

v t t a a a a a a a a
1
8

...
awxyzu
vy w z

xy
zw

av
xu

z w
ay

I z w y u v y w z J∑− ⟨Ψ| |Ψ⟩ +
′ ′ ′

′ ′
′ † † †

′
†

′ ′

(46)

where the remaining terms involve contractions of transition 2-
and 3-RDMs. Computing intermediate states

t t a a a
1
2a

J

y w z
z w
ay

y w z J∑| ⟩ = |Ψ⟩
′ ′ ′

′ ′
′

′
†

′ ′
(47)
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v v a a a
1
2x

I

ywz
zw
xy

y w z I∑| ⟩ = |Ψ⟩†

(48)

we evaluate the first term in eq 46 using a compact expression

t v a a t
1
2 axuv

av
xu

x
I

u v a
J∑− ⟨ | | ⟩†

(49)

Using eqs 47−49 allows us to significantly lower the cost of
computing transition 4-RDM terms from N N N( )det CI

2
act
8 to

N N N N( )det CI
2

act
3

ext , where Next is the number of external
orbitals. We use the same technique to efficiently evaluate all 4-

RDM terms that appear in the ⟨ΨI
N−1|

(2)̃ |ΨJ
N−1⟩ and

⟨Ψ0|
(2)̃ |Ψ0⟩ matrix elements. We note that similar techniques

have been used to avoid computation of 4-RDM in
implementations of complete active space second-order
perturbation theory (CASPT2) and NEVPT2 in combination
with matrix product state wave functions.57,116,117

The M matrix elements also depend on transition RDMs of
the form ⟨Ψ0|aw

†ax
†ay

†az
†az′ay′ax′|ΨI

N−1⟩, which we denote as 3.5-
RDMs. These RDMs contribute to the second-order matrix

elements ⟨Ψ0|ai
† (2)̃ |ΨI

N−1⟩, as well as some elements of the

first-order off-diagonal blocks {h(1)†|
(1)̃ |h(0)†} and

{h(0)†|
(1)̃ |h(1)†} in eq 25. For example, a 3.5-RDM

contribution to ⟨Ψ0|ai
† (2)̃ |ΨI

N−1⟩ has a form

v t t a a a a a a a
1
8 awxyz

uvu w

zw
xy

au
iz

aw
vu

w u v u y x w I0∑ ⟨Ψ | |Ψ⟩
′ ′

′
′ † † †

′
†

′

(50)

To evaluate this term, we reorder creation and annihilation
operators, contract vzw

xy and taw′
vu′ with ax†ay†aw|Ψ0⟩ and av

†au′
† aw′|ΨI⟩

to form intermediate states (|vz⟩ and |tI
a⟩), and contract tau

iz with
their overlap matrix element (⟨vz|au

†|tI
a⟩). As in the case of 4-

RDM, using intermediate states allows one to completely avoid
computation and storage of 3.5-RDMs for all terms of the M
matrix, lowering computational scaling from N N N( )det CI act

7 to

N N N N( )det CI act
2

ext .
Combining efficient algorithms for the solution of amplitude

equations and evaluation of high-order RDM terms, our MR-
ADC(2) implementation has N N N( )det CI

2
act
6 computational

scaling, which is significantly lower than the N N( )det act
8 scaling

of the conventional multireference perturbation theories (e.g.,
CASPT2 or NEVPT2) with the number of active orbitals.
Although the scaling of our current MR-ADC(2) algorithm
originates from computing transition 3-RDMs (⟨ΨI

N−1|
aw
†ax

†ay
†ay′ax′aw′|ΨJ

N−1⟩) for all ionized states, we note that by
using intermediate states the computational cost can be further
lowered to N N N( )det CI act

6 . We did not take advantage of it in
our present implementation.
3.4. Solution of the Generalized eigenvalue Problem.

Finally, we briefly discuss solution of the MR-ADC(2)
generalized eigenvalue problem in eq 10. Because the M and
S matrices are computed in the nonorthogonal basis of
internally contracted ionized states, we transform the
eigenvalue equation to the symmetrically orthogonalized form

MY YΩ̃ ̃ = ̃ (51)

where M̃ = S−1/2MS−1/2 and Ỹ = S1/2Y. Here, the overlap
matrix S contains four nondiagonal blocks corresponding to

ionized states |Ψμ⟩ = {aij
x|Ψ0⟩; aix

a |Ψ0⟩; axy
a |Ψ0⟩; ai|Ψ0⟩; aix

y |Ψ0⟩}
(Figure 3b). Conveniently, the S−1/2 matrix can be constructed
together with the (S[i])−1/2 matrices used for solution of the
amplitude equations (section 3.2). As an example, we consider
nonzero elements of S for aij

x|Ψ0⟩ that have the form Sijx,ijy =
⟨Ψ0|ay

ijaij
x|Ψ0⟩ = ⟨Ψ0|ayax

†|Ψ0⟩. These elements are equal to the
S[+1] matrix elements Sijay,ijax

[+1] = ⟨Ψ0|aay
ij aij

ax|Ψ0⟩ = ⟨Ψ0|ayax
†|Ψ0⟩.

Thus, by diagonalizing the density matrix ⟨Ψ0|ayax
†|Ψ0⟩ and

removing linearly dependent eigenvectors corresponding to
small eigenvalues (<ηd, where ηd is a user-defined truncation
parameter), we simultaneously obtain elements of (S[+1])−1/2

and S−1/2 for the aij
x|Ψ0⟩ ionized wave functions. Similarly, we

construct (S[−1])−1/2 and (S[−2])−1/2 together with S−1/2 for
aix
a |Ψ0⟩ and axy

a |Ψ0⟩, respectively.
For the aij

x|Ψ0⟩, aix
a |Ψ0⟩, and axy

a |Ψ0⟩ states, numerical
instabilities due to linear dependencies are completely
eliminated when using small truncation parameters (ηd ≈
10−10). Except for very small active spaces (Nact < 6),
orthogonalization of these ionized states does not require
discarding any eigenvectors of the overlap matrix. The zeroth-
order ai|Ψ0⟩ and first-order aix

y |Ψ0⟩ ionized states exhibit much
stronger linear dependencies in their overlap matrix. To
remove these linear dependencies, we project out ai|Ψ0⟩ from
aix
y |Ψ0⟩ using the projection approach developed by Hanauer
and Köhn114 and subsequently orthogonalize aix

y |Ψ0⟩ between
each other. Importantly, this ensures that the zeroth-order
states ai|Ψ0⟩, which are already orthogonal, are not affected by
removing redundancies in the first-order aix

y |Ψ0⟩ ionization
manifold. To discard linearly dependent eigenvectors of the
aix
y |Ψ0⟩ overlap matrix, we use a larger truncation parameter (ηs
≈ 10−6) than the one used for other ionized states (ηd).
We solve the eigenvalue problem (eq 51) using a multiroot

implementation of the Davidson algorithm,118,119 which avoids
storing the full M and S matrices, significantly reducing the
memory requirements. Because the second-order block

{h(0)†|
(2)̃ |h(0)†} of M is small (with (NCI + Nact)

2 elements)
and its computation is the most time-consuming step of the
MR-ADC(2) implementation, we precompute this block, store
it in memory, and use it for the efficient evaluation of matrix−
vector products in the Davidson procedure.

4. COMPUTATIONAL DETAILS
We implemented MR-ADC(2) for photoelectron spectra in
our pilot code PRISM, which was interfaced with PYSCF120 to
obtain integrals and CASCI/CASSCF reference wave
functions. Our implementation follows the general algorithm
outlined in section 3.1. All MR-ADC(2) computations used
the CASSCF reference wave functions with molecular orbitals
optimized for the ground electronic state of each (neutral)
system. To remove linear dependencies in the solution of
amplitude equations and the generalized eigenvalue problem,
we truncated eigenvectors of the overlap matrices using two
parameters: ηs = 10−6 and ηd = 10−10 (see section 3.4 for
details). The ηs parameter was used to orthogonalize the
aix
y |Ψ0⟩ ionized states and to compute the semi-internal t[i](1) (i
∈ {+1′; −1′; 0′}) amplitudes (section 3.2), while ηd was
employed for other amplitudes and ionized states. To

efficiently compute t[+1′](1) and t[−1′](1), our implementation
used the imaginary-time algorithm,57,60,116 where propagation
in imaginary time was performed using the embedded Runge−
Kutta method that automatically determines the time step
based on the accuracy parameter Δit.

121 In all computations,
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we used Δit = 10−7 Eh, which allows one to obtain very
accurate amplitudes and reference NEVPT2 correlation
energy. All MR-ADC(2) results were converged with respect
to the number of CASCI ionized states (NCI). For most of the
systems employed in this study, using NCI = 20 was enough to
obtain well-converged results.
We benchmarked the accuracy of MR-ADC(2) for a set of

small molecules (HF, F2, CO, N2, H2O, CS, H2CO, and
C2H4), the carbon dimer (C2), and hydrogen chains (H10 and
H30). For small molecules, equilibrium and stretched geo-
metries were considered. The equilibrium structures were
taken from ref 94. For diatomic molecules, the stretched
geometries were obtained by increasing the bond length by a
factor of 2. For the H2O, H2CO, and C2H4 stretched
geometries, we doubled the O−H, C−O, and C−C bond
distances, respectively. The C−C bond length in C2 was set to
1.2425 Å, which is very close to its equilibrium geometry.
Unless noted otherwise, all computations employed the aug-cc-
pVDZ basis set.122 For H2CO and C2H4, the cc-pVDZ basis
set was used for the hydrogen atoms, as employed in ref 94.
We denote the active spaces used in CASCI/CASSCF as (ne,
mo), where n is the number of active electrons and m is the
number of active orbitals. Active spaces of small molecules
included 10 orbitals with n = 8, 14, 10, 10, 8, 10, 12, and 10
active electrons for HF, F2, CO, N2, H2O, CS, H2CO, and
C2H4, respectively. For C2, the (8e, 12o) active space was used.
For the hydrogen chains, we employed the (10e, 10o) active
space.
The MR-ADC(2) results were compared to results of single-

reference non-Dyson ADC methods (SR-ADC(2) and SR-
ADC(3)),93−95 equation-of-motion coupled cluster theory for
ionization energies with single and double excitations (EOM-
CCSD),83,123,124 quasi-degenerate strongly contracted second-
order N-electron valence perturbation theory (QD-
NEVPT2),26 as well as full configuration interaction (FCI).
All methods employed the same geometries and basis sets as
those used for MR-ADC(2). SR-ADC(2) and SR-ADC(3)
were implemented by our group as a module in the
development version of PYSCF. The FCI results were computed
using the semistochastic heat-bath configuration interaction
algorithm (SHCI) implemented in the Dice program.12−14

The SHCI electronic energies were extrapolated using a linear
fit according to the procedure described in ref 14. We estimate
that errors of the computed SHCI energy differences relative to
FCI do not exceed 0.03 eV. For H2CO and C2H4, the 1s
atomic orbitals of carbon and oxygen were not correlated in
the SHCI computations. For all other methods, all electrons
were correlated in all computations. The EOM-CCSD and
QD-NEVPT2 results were obtained using Q-CHEM

125 and
ORCA,126 respectively. For the ground state of each neutral
system, QD-NEVPT2 used the same active spaces and
CASSCF reference wave functions as those employed in
MR-ADC(2). The QD-NEVPT2 computations of ionized
states used the state-averaged CASSCF reference wave
functions, where state-averaging included four electronic states
for each abelian subgroup irreducible representation of the full
symmetry point group.
Intensities of photoelectron transitions were characterized

by computing spectroscopic factors

P X
p

p,
2∑= | |μ μ

(52)

where Xp,μ are elements of the spectroscopic amplitude matrix
X± defined in eq 11. Spectroscopic factors in eq 52 correspond
to intensities of photoelectron transitions under the approx-
imation that only single-electron detachment contributes to
the spectrum. More rigorous simulation of photoelectron
intensities requires computation of Dyson orbitals with explicit
treatment of the wave function of an injected free electron and
will be one of the subjects of our future work.127

5. RESULTS
5.1. Size-Consistency of Energies and Properties. We

begin by testing size-consistency of the MR-ADC(2) ionization
energies and spectroscopic factors. As for single-reference
ADC, the MR-ADC equations are fully connected, which
guarantees size-consistency of the MR-ADC energies and
transition properties. In practice, however, removing redun-
dancies in the overlap matrix during the solution of the MR-
ADC amplitude equations may result in small size-consistency
errors.60 As we discussed in section 3.2, in this work we
employ a technique developed by Hanauer and Köhn that
restores size-consistency of the MR-ADC results. Table 1

shows deviations from size-consistency of the MR-ADC(2)
ionization energies (ΔΩ) and spectroscopic factors (ΔP) for
the (H2O)2 and (HF)2 systems, each composed of two
noninteracting monomers with near-equilibrium (re) and
stretched geometries (2 × re). The computed size-consistency
errors are very small: ΔΩ ≈ 10−5 eV and ΔP ≈ 10−6 on
average, with the largest errors of ΔΩ = 1.2 × 10−4 eV and ΔP
= −4.5 × 10−6. These remaining errors originate from a finite
time step used in the imaginary-time algorithm for solving the
semi-internal amplitude equations and become increasingly
smaller with a tighter Δit parameter (see section 4 for details).
Overall, our numerical results demonstrate size-consistency of
the MR-ADC(2) results in the present implementation.

5.2. Small Molecules. In this section, we benchmark the
MR-ADC(2) accuracy for predicting ionization energies of
small molecules. Table 2 compares vertical ionization energies
(Ω) and spectroscopic factors (P) of MR-ADC(2) with those

Table 1. Size-Consistency Errors of the MR-ADC(2)
Ionization Energies (ΔΩ, eV) and Spectroscopic Factors
(ΔP) for the (H2O)2 and (HF)2 Systems Composed of Two
Identical Monomers Separated by 10000 Å (aug-cc-pVDZ
basis set)a

system state ΔΩ ΔP
(H2O)2 (re) 1b1 −2.4 × 10−5 6.0 × 10−8

3a1 9.4 × 10−6 −2.7 × 10−7

1b2 2.8 × 10−6 2.5 × 10−7

(H2O)2 (2re) 1b1 −1.3 × 10−5 3.4 × 10−7

3a1 1.5 × 10−5 2.3 × 10−6

1b2 1.3 × 10−5 1.8 × 10−6

(HF)2 (re) 1π 1.2 × 10−4 −1.0 × 10−6

3σ 5.4 × 10−5 2.4 × 10−6

(HF)2 (2re) 1π 1.0 × 10−4 −4.5 × 10−6

3σ 5.9 × 10−5 −9.1 × 10−7

aFor H2O, re = r(O−H) = 1.0 Å and ∠(H−O−H) = 104.5°. For HF,
re = 0.917 Å. The (4e, 4o) and (6e, 5o) active spaces were used for
the H2O and HF monomer CASSCF reference wave functions. For
dimers, (8e, 8o) and (12e, 10o) active spaces were used, respectively.
The number of CASCI ionized states was set to 10 and 20 for
monomers and dimers, respectively.
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obtained by single-reference non-Dyson ADC methods (SR-
ADC), EOM-CCSD, quasi-degenerate NEVPT2 (QD-
NEVPT2), and FCI for a set of eight molecules near their
equilibrium geometries (see section 4 for computational
details). In addition to strict second- and third-order SR-
ADC (SR-ADC(2) and SR-ADC(3)), Table 2 also presents
results of SR-ADC(3) incorporating high-order self-energy
corrections, reported in ref 94, which we denote as SR-

ADC(3+). Out of six approximate methods, the best
agreement with FCI is shown by SR-ADC(3+), EOM-
CCSD, and QD-NEVPT2. These three methods produce
similar mean absolute errors in vertical ionization energies
(∼0.2 eV), with standard deviations from the mean signed
error (ΔSTD) ranging from ∼0.15 to 0.3 eV, as illustrated in
Figure 4a. The MR-ADC(2) method shows a similar ΔSTD

error (0.23 eV) but a larger ΔMAE error (0.56 eV), which is

Table 2. Computed Vertical Ionization Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Equilibrium
Geometriesa

SR-ADC(2) SR-ADC(3) SR-ADC(3+)b MR-ADC(2) EOM-CCSD QD-NEVPT2 FCI

system state Ω P Ω P Ω P Ω P Ω Ω Ω

HF 1π 14.41 0.89 16.79 0.93 16.41 0.93 16.35 0.93 15.85 16.00 16.07
3σ 18.69 0.90 20.65 0.94 20.30 0.94 20.38 0.94 19.88 20.04 20.06

F2 1πg 13.90 0.87 16.03 0.89 15.87 0.90 16.55 0.88 15.40 15.38 15.64
1πu 17.06 0.84 19.25 0.75 19.11 0.81 19.86 0.80 18.77 18.58 18.83
3σg 20.25 0.89 21.26 0.89 21.01 0.88 22.08 0.87 21.16 20.88 21.15

CO 5σ 13.78 0.91 13.57 0.90 13.80 0.89 14.07 0.92 13.99 13.53 13.74
1π 16.24 0.89 17.16 0.90 16.88 0.90 17.38 0.90 16.93 16.75 16.90
4σ 18.28 0.85 20.46 0.76 20.10 0.79 20.15 0.85 19.67 19.48 19.56

N2 3σg 14.79 0.88 15.42 0.91 15.60 0.91 15.76 0.91 15.43 15.21 15.30
1πu 16.98 0.91 16.60 0.92 16.77 0.92 17.33 0.92 17.11 16.75 16.83
2σu 17.96 0.85 18.79 0.82 18.93 0.82 19.00 0.83 18.71 18.44 18.50

H2O 1b1 11.23 0.89 12.99 0.92 12.78 0.92 12.74 0.93 12.38 12.55 12.53
3a1 13.53 0.89 15.28 0.92 15.08 0.93 15.07 0.93 14.66 14.85 14.81
1b2 17.95 0.90 19.34 0.93 19.16 0.93 19.28 0.94 18.89 19.05 18.98

CS 7σ 10.99 0.86 10.99 0.85 11.33 0.85 11.59 0.85 11.36 10.95 11.13
2π 12.84 0.91 12.67 0.90 12.66 0.90 13.43 0.91 12.94 12.74 12.83
6σ 16.88 0.85 15.53 0.18 15.51 0.19 16.83 0.40 17.02 15.83 15.88

H2CO 2b2 9.46 0.87 11.11 0.91 10.87 0.91 11.23 0.92 10.62 10.28 10.72
1b1 13.73 0.88 14.54 0.88 14.30 0.88 15.14 0.90 14.47 14.07 14.48
5a1 14.62 0.86 16.61 0.90 16.20 0.90 16.70 0.90 15.95 15.64 16.01
1b2 16.67 0.88 17.04 0.69 17.32 0.65 17.76 0.88 17.21 16.50 16.86

C2H4 1b1u 10.14 0.91 10.47 0.91 10.46 0.91 11.01 0.90 10.58 10.41 10.58
1b1g 12.79 0.91 13.22 0.91 13.19 0.91 13.75 0.92 13.22 13.05 13.21
3ag 13.78 0.89 14.34 0.91 14.36 0.91 14.74 0.89 14.31 14.12 14.25
1b2u 16.13 0.87 16.50 0.74 16.49 0.79 17.10 0.84 16.61 16.35 16.45

ΔMAE 0.83 0.30 0.21 0.56 0.17 0.17
ΔSTD 0.68 0.32 0.22 0.23 0.28 0.14

aSee section 4 for active spaces used in the reference CASSCF computations, structural parameters, and basis sets. Also shown are mean absolute
errors (ΔMAE) and standard deviations (ΔSTD) of the results, relative to FCI. bNon-Dyson SR-ADC(3) incorporating high-order self-energy
corrections from ref 94.

Figure 4. Mean absolute errors (MAE, eV) and standard deviations from the mean signed error (STD, eV) for vertical ionization energies of
molecules with (a) equilibrium and (b) stretched geometries computed using six methods, relative to FCI (aug-cc-pVDZ basis set). The MAE
value is represented as a height of each colored box, while the STD value is depicted as a radius of the black vertical bar.
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lower than ΔMAE of SR-ADC(2) (0.83 eV) but higher than that
of SR-ADC(3) (0.30 eV), indicating that including high-order
effects in MR-ADC(2) improves its accuracy relative to SR-
ADC(2). For all systems, the MR-ADC(2) ionization energies
systematically overestimate energies computed using FCI,
showing good agreement with FCI for energy spacings
between electronic states of the ionized systems (ΔMAE of
0.11 eV and ΔSTD of 0.10 eV). The QD-NEVPT2 method
shows the best agreement with FCI for energy spacings (ΔMAE
and ΔSTD of 0.03 eV), while EOM-CCSD shows larger errors
compared to MR-ADC(2) (ΔMAE = 0.16 eV, ΔSTD = 0.27 eV).
The MR-ADC(2) spectroscopic factors agree well with those
computed using SR-ADC(3) and SR-ADC(3+), with two
exceptions observed for the 6σ state of CS and the 1b2 state of
H2CO. In these cases, the computed spectroscopic factors vary
significantly depending on the order of the ADC approx-
imation, suggesting that intensities of these photoelectron
transitions are significantly affected by electron correlation
effects.

To assess performance of MR-ADC(2) when strong
correlation is important, we computed its ionization energies
and spectroscopic factors for molecules with stretched
geometries, where at least one of the bonds is elongated by
a factor of 2 (see section 4 for details). The MR-ADC(2)
results are shown in Table 3, along with those computed using
SR-ADC(2), SR-ADC(3), EOM-CCSD, QD-NEVPT2, and
FCI. Due to the difficulty of obtaining the FCI energies, we
show results for only a few lowest-energy transitions of six
molecules. The importance of strong electron correlation for
these nonequilibrium geometries is demonstrated by the poor
performance of SR-ADC(2) and SR-ADC(3), which show very
large deviations from the FCI reference values with ΔMAE > 2.5
eV and ΔSTD > 3 eV. Although SR-ADC(3) shows moderate
∼0.5 eV errors for single-bond stretching in HF and F2, these
errors drastically increase when multiple bonds are elongated,
leading to unphysical values of ionization energies that
significantly underestimate the FCI results. EOM-CCSD
significantly improves prediction of ionization energies over

Table 3. Computed Vertical Ionization Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Stretched
Geometriesa

SR-ADC(2) SR-ADC(3) MR-ADC(2) EOM-CCSD QD-NEVPT2 FCI

system state Ω P Ω P Ω P Ω Ω

HF 1π 9.84 0.77 16.15 0.84 13.86 0.60 13.67 13.61 13.65
3σ 13.30 0.84 14.68 0.76 14.98 0.73 14.76 14.83 14.84

F2 1πg 10.63 0.64 17.55 0.88 18.12 0.74 16.86 16.81 17.13
1πu 10.66 0.64 17.69 0.89 18.16 0.82 16.95 16.87 17.19

N2 3σg 15.70 0.63 −2.60 1.69 14.00 0.69 14.36 13.06 13.38
1πu 17.50 0.55 −5.24 2.16 14.17 0.51 14.77 13.21 13.49

H2O 1b1 6.53 0.71 12.24 0.66 11.31 0.64 10.65 10.99 11.07
3a1 10.49 0.75 12.78 0.67 13.22 0.67 12.69 12.99 13.02
1b2 11.18 0.75 13.01 0.72 13.78 0.71 13.26 13.53 13.56

H2CO 2b2 10.65 0.85 8.31 0.21 11.51 0.39 9.85 10.24 10.37
1b1 10.69 0.86 8.35 0.22 11.21 0.48 9.66 10.38 10.55
5a1 10.60 0.91 10.97 0.88 13.16 0.57 10.97 12.32 13.16

C2H4 1b1u 9.37 0.76 6.87 0.83 9.69 0.53 9.41 9.26 9.25
3ag 11.38 0.79 8.74 0.91 11.36 0.73 11.17 10.94 10.93

ΔMAE 2.70 3.66 0.50 0.56 0.18
ΔSTD 3.10 6.28 0.36 0.81 0.23

aSee section 4 for active spaces used in the reference CASSCF computations, structural parameters, and basis sets. Also shown are mean absolute
errors (ΔMAE) and standard deviations (ΔSTD) of the results, relative to FCI.

Figure 5. Simulated photoelectron spectrum of ethylene for equilibrium (a) and stretched (b) geometries computed using the MR-ADC(2)
method by broadening peaks centered at vertical ionization energies with a half-width of 0.03 eV (aug-cc-pVDZ basis set). Vertical dashed lines
indicate FCI ionization energies for main peaks. See Tables 2 and 3 for the MR-ADC(2) and FCI data.
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SR-ADC(2) and SR-ADC(3) but still exhibits large errors
(ΔMAE = 0.56 and ΔSTD = 0.81 eV, Figure 4b). MR-ADC(2)
shows performance similar to that for equilibrium geometries
(Table 2), with ΔMAE (0.50 eV) and ΔSTD (0.36 eV) smaller
than the corresponding errors for the single-reference methods.
The best agreement with FCI is again shown by QD-NEVPT2
with ΔMAE = 0.18 eV and ΔSTD = 0.23 eV. As for the
equilibrium geometries, the MR-ADC(2) ionization energies
for stretched geometries are systematically overestimated
relative to FCI, reproducing energy spacings between ionized
states within 0.1 eV for all systems except H2CO, where ∼0.5
eV errors are observed. QD-NEVPT2 shows a similar
performance to MR-ADC(2) for energy spacings with a large
error of ∼0.7 eV for the difference of the 1b1 and 5a1 ionization
energies of H2CO.
An important advantage of MR-ADC(2) over conventional

multireference perturbation theories (such as QD-NEVPT2) is
that it provides efficient access to spectroscopic properties. We
demonstrate this by computing the photoelectron spectrum of
C2H4 at equilibrium and stretched geometries in the range
between 8.5 and 20 eV, shown in Figure 5. The spectrum at
equilibrium geometry exhibits five very intense well-separated
peaks corresponding to vertical ionizations in five highest
occupied molecular orbitals. All of the computed peaks are
systematically shifted by ∼0.5 eV relative to FCI. The
computed spacings between the main peaks are in a good
agreement with FCI (Table 2), as well as the experimental
photoelectron spectrum.128 At the stretched geometry, the
MR-ADC(2) spectrum shows four main peaks with signifi-
cantly decreased intensities, along with several satellite peaks
originating from shake-up transitions that involve ionization
and simultaneous excitation in the valence orbitals.
5.3. Carbon Dimer. Next, we investigate the performance

of MR-ADC(2) for simulating a photoelectron spectrum of C2,
which is a challenging test for ab initio methods because
electronic states of both C2 and C2

+ require a very accurate
description of static and dynamic correlation.14,129−139 Table 4
compares results of SR-ADC(3), MR-ADC(2), and QD-
NEVPT2 with those from FCI. The MR-ADC(2) photo-
electron spectrum, shown in Figure 6, exhibits two very intense
peaks for ionizations in the 1πu and 2σu orbitals, corresponding
to the 12Πu and 12Σu

+ electronic states of C2
+, respectively. For

both peaks, MR-ADC(2) is in a good agreement with FCI,
showing errors in vertical ionization energies (0.16 and 0.24
eV) within ΔMAE and ΔSTD of small molecules computed in
section 5.2. The MR-ADC(2) results show significant
improvement over SR-ADC(3), which underestimates the
1πu and 2σu ionization energies from FCI by 0.65 and 1.14 eV,
respectively, indicating that description of multireference

effects is important for these ionization processes. The best
agreement with FCI is demonstrated by QD-NEVPT2, with
errors smaller than 0.1 eV.
In addition to the intense peaks, the C2 photoelectron

spectrum also exhibits several much weaker (satellite) peaks,
which involve ionization in the 1πu orbital accompanied by
single and double (1πu)

3 → (3σg)
0 excitations (Table 4). Out

of four satellite transitions, only two are predicted by SR-
ADC(3), with large errors (>2 eV). For the singly excited
shakeup states of C2

+ (12Δg, 1
2Σg

−, and 12Σg
+), the largest MR-

ADC(2) error is 0.37 eV. However, for the doubly excited
22Πu state, MR-ADC(2) produces a larger 0.66 eV error. The
QD-NEVPT2 ionization energies for all four electronic states
are within 0.1 eV of the reference FCI values. The large error
of MR-ADC(2) for 22Πu may be attributed to the importance
of differential dynamic correlation effects between this state
and the ground state of C2 because in MR-ADC(2) the first-
order amplitudes of the effective Hamiltonian are preferentially
determined for the latter state (section 2.2.2), while in QD-
NEVPT2, the first-order wave function is constructed for each
electronic state separately. The description of these differential
correlation effects is expected to improve for higher-order MR-
ADC approximations and will be a subject of our future
research.

5.4. Hydrogen Chains. Finally, we use MR-ADC to study
equally spaced hydrogen chains H10 and H30. Hydrogen chains
are one-dimensional models for understanding strong electron
correlation in molecules and materials, as well as the hydrogen

Table 4. Vertical Ionization Energies (Ω, eV) and Spectroscopic Factors (P) of the Carbon Dimer with r(C−C) = 1.2425 Å
Computed Using the aug-cc-pVDZ Basis Seta

SR-ADC(3) MR-ADC(2) QD-NEVPT2 FCI

configuration state Ω P Ω P Ω Ω

(2σu)
2(1πu)

3(3σg)
0 12Πu 11.69 0.9215 12.50 0.8986 12.28 12.34

(2σu)
2(1πu)

2(3σg)
1 12Δg 11.17 0.0002 14.31 0.0002 13.92 13.94

(2σu)
2(1πu)

2(3σg)
1 12Σg

− b b 14.55 0.0000 14.12 14.15
(2σu)

2(1πu)
2(3σg)

1 12Σg
+ 11.43 0.0004 14.60 0.0047 14.26 14.29

(2σu)
1(1πu)

4(3σg)
0 12Σu

+ 13.95 0.8738 15.33 0.7190 15.07 15.09
(2σu)

2(1πu)
1(3σg)

2 22Πu b b 14.77 0.0183 15.35 15.43
aFor MR-ADC(2) and QD-NEVPT2, the CASSCF reference wave function was computed using the (8e, 12o) active space. bState is absent in SR-
ADC.3

Figure 6. Simulated photoelectron spectrum of the carbon dimer for
r(C−C) = 1.2425 Å computed using the MR-ADC(2) method by
broadening peaks centered at vertical ionization energies with a half-
width of 0.03 eV (aug-cc-pVDZ basis set). Vertical dashed lines
indicate FCI ionization energies for the main peaks corresponding to
the 12Πu and 12Σu

+ states of C2
+ (Table 4).
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phase diagram at high pressures.140−146 An important property
of a hydrogen chain is its band gap, which can be calculated as
the difference between the ionization potential and electron
affinity. For equally spaced chains in the thermodynamic limit,
this band gap is believed to be zero at short H−H distances
(r), corresponding to a metallic phase, and nonzero for long
distances, corresponding to an insulator. Recently, Ronca et al.
computed the local density of states (LDOS) of the Hn chains
(n = 10, 30, and 50) at the central hydrogen atom using the
density matrix renormalization group (DMRG) method with
the minimal STO-6G basis set.147 They demonstrated that for
near-equilibrium and stretched geometries (r = 1.8 and 3.6 a0)
LDOS converges to the thermodynamic limit already for H50,
while for compressed chains (r = 1.4 a0) finite size effects are
still significant. Although in this study all valence electrons of
hydrogen atoms were correlated, the importance of dynamic
correlation effects beyond those in the minimal one-electron
basis was not investigated.
Here, we use MR-ADC to study the effect of dynamic

correlation and basis set on the density of occupied states in

H10 and H30. Figure 7 shows the LDOS of H10 for r = 1.4, 1.8,
and 3.6 a0 computed at the central hydrogen atom using the
MR-ADC(0) and MR-ADC(2) methods. We use the full
valence (10e, 10o) active space for the CASSCF reference
wave function and combine MR-ADC with the STO-6G148

and cc-pVTZ basis sets, plotting the LDOS for two broadening
parameters: 0.05 Eh (Figure 7) and 0.003 Eh (Supporting
Information). For the minimal STO-6G basis, results of MR-
ADC(0) and MR-ADC(2) are equivalent to those of FCI. The
computed LDOSs are in a very good agreement with the
LDOS obtained by Ronca et al. employing the dynamical
DMRG algorithm for all three geometries.147 Next, we
consider the LDOS computed using MR-ADC(0) with the
larger cc-pVTZ basis set. Increasing the basis set shifts the
LDOS to higher ionization energies, relative to the LDOS from
FCI/STO-6G. For short bond distances (r = 1.4 and 1.8 a0),
the largest shifts are observed for the lowest-energy peaks
corresponding to the ionization potential of the system (∼0.03
and 0.05 Eh, respectively). For the stretched chain (r = 3.6 a0),
increasing the basis set compresses the LDOS and shifts the

Figure 7. Local density of states (LDOS) for the equally spaced H10 chain with r(H−H) = 1.4, 1.8, and 3.6 a0 computed using three methods with
0.05 Eh broadening. LDOS was computed at the central hydrogen atom. The MR-ADC reference CASSCF wave function used the (10e, 10o)
active space.

Figure 8. (a) Density of states (DOS) for the equally spaced H30 chain with r(H−H) = 1.4 and 1.8 a0 computed using MR-ADC(2) with two basis
sets and 0.05 Eh broadening. The MR-ADC(2) reference CASSCF wave function was computed using the (10e, 10o) active space. (b)
Contributions to the DOS from core and active orbitals computed using MR-ADC(2) with the STO-6G basis set.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00528
J. Chem. Theory Comput. 2019, 15, 5908−5924

5919

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00528/suppl_file/ct9b00528_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b00528/suppl_file/ct9b00528_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.9b00528


position of its maximum by ∼0.04 Eh. Incorporating dynamic
correlation effects from MR-ADC(0) to MR-ADC(2) shifts
the computed LDOS further to lower energies. For most of the
peaks at short bond distances, the computed shifts are ≤0.02
Eh. For r = 3.6 a0, including dynamic correlation does not
significantly change the position of the first band in the
spectrum. Overall, our results suggest that increasing the one-
electron basis set and incorporating dynamic correlation effects
are similarly important and should both be taken into account
in accurate computations of the LDOS for hydrogen chains.
An attractive feature of MR-ADC is that it is not limited to

describing ionization processes only in active orbitals. We
demonstrate this by computing the total density of occupied
states (DOS) for the H30 chain using MR-ADC(2) with the
(10e, 10o) active space. Because for this system we do not
include all valence orbitals in the active space, we do not
consider the stretched r = 3.6 a0 geometry. Figure 8a shows the
MR-ADC(2) DOS computed using the STO-6G and cc-pVDZ
basis sets. For both geometries, the DOS computed using MR-
ADC(2) with the STO-6G basis closely resembles the LDOS
of the same system from the DMRG study of Ronca et al.147

Figure 8b plots contributions to the MR-ADC(2)/STO-6G
DOS from core and active orbitals separately. For the
compressed chain (r = 1.4 a0), contributions from active
orbitals dominate the low-energy part of the spectrum, whereas
for equilibrium geometry (r = 1.8 a0), core and active orbitals
have similar contributions to the DOS already for low
ionization energies. Increasing the basis set from STO-6G to
cc-pVDZ shifts peaks in the DOS to higher energies. As for the
H10 chain, the largest shifts are observed for the peak at the
first ionization potential.

6. CONCLUSIONS

We presented derivation and implementation of second-order
multireference algebraic diagrammatic construction theory
(MR-ADC(2)) for simulating ionization energies and tran-
sition intensities of strongly correlated systems. In MR-
ADC(2), ionization energies and spectral intensities are
determined from poles and residues of the one-electron
Green’s function that is evaluated to second order in MRPT
with respect to a CAS reference wave function. In contrast to
conventional second-order multireference perturbation theo-
ries (such as multistate CASPT2 or NEVPT2), MR-ADC(2)
describes ionization in all orbitals (e.g., core and active), does
not require using state-averaged wave functions to compute
higher-energy ionized states, and provides direct access to
spectroscopic properties. Although equations of MR-ADC(2)
depend on 4-RDMs, we demonstrated that computation of
these large matrices can be completely avoided by constructing
efficient intermediates, without introducing any approxima-
tions. The resulting MR-ADC(2) implementation has a lower

N N( )det act
6 computational scaling with respect to the number

of active orbitals (Nact), compared to the N N( )det act
8 scaling of

conventional multireference perturbation theories.
We benchmarked accuracy of MR-ADC(2) for predicting

ionization energies of eight small molecules, the carbon dimer
(C2), and hydrogen chains (H10 and H30) against results from
FCI. For small molecules, MR-ADC(2) shows consistent
performance for equilibrium and stretched geometries, with
mean absolute errors of ∼0.5 eV in ionization energies and 0.1
eV in energy separations between ionized states. For C2, MR-
ADC(2) predicts energies of the main and singly excited

satellite peaks within 0.4 eV from the FCI reference values but
has a large ∼0.7 eV error for the doubly excited satellite
transition. The QD-NEVPT2 method shows smaller (∼0.1
eV) errors than MR-ADC(2) for all ionized states of C2,
providing an improved description of differential dynamic
correlation effects, which are important for this system. We
expect that these effects will be better described using the
higher-order MR-ADC approximations, which will be one of
the directions of our future work. Finally, we used MR-
ADC(2) to investigate the density of occupied states (DOS) in
H10 and H30. For H10, our results provide numerical evidence
that including dynamic correlation effects beyond those
incorporated in a full valence CAS and increasing the single-
particle basis set have a similar effect on the computed local
DOS. Because dynamic correlation is a local phenomenon, we
expect that its effect will be similar for longer hydrogen chains
as well. For H30, we showed that the DOS computed using
MR-ADC(2) combined with a small (10e, 10o) active space is
in a very good agreement with previously reported results from
DMRG, incorporating 30 electrons and orbitals in the active
space.
Overall, our results suggest that MR-ADC is a promising

theoretical approach for computing ionization energies and
spectral densities of multireference systems and encourage its
further development. Future work will be directed toward
more efficient implementation of MR-ADC(2) for systems
with a large number of electrons and active orbitals, as well as
the development of more accurate MR-ADC approximations
that will incorporate description of higher-order dynamic
correlation effects. We also plan to extend our MR-ADC
methods to simulations of core-level ionizations in X-ray
photoelectron spectroscopy, which has become a widely used
tool for experimental investigations of molecules and materials.
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states with internally contracted multireference coupled-cluster linear
response theory. J. Chem. Phys. 2014, 140, 134108.
(72) Mukherjee, D.; Kutzelnigg, W. Many-Body Methods in Quantum
Chemistry; Springer: Berlin, Heidelberg, 1989; pp 257−274.
(73) Fetter, A. L.; Walecka, J. D. Quantum theory of many-particle
systems; Dover Publications, 2003.
(74) Dickhoff, W. H.; Van Neck, D. Many-body theory exposed!:
propagator description of quantum mechanics in many-body systems;
World Scientific Publishing Co., 2005.
(75) Goscinski, O.; Weiner, B. The Role of Algebraic Formulations
of Approximate Green’s Functions for Systems With a Finite Number
of Electrons. Phys. Scr. 1980, 21, 385−393.
(76) Weiner, B.; Goscinski, O. Self-consistent approximation to the
polarization propagator. Int. J. Quantum Chem. 1980, 18, 1109−1131.
(77) Prasad, M. D.; Pal, S.; Mukherjee, D. Some aspects of self-
consistent propagator theories. Phys. Rev. A: At., Mol., Opt. Phys. 1985,
31, 1287−1298.
(78) Datta, B.; Mukhopadhyay, D.; Mukherjee, D. Consistent
propagator theory based on the extended coupled-cluster para-
metrization of the ground state. Phys. Rev. A: At., Mol., Opt. Phys.
1993, 47, 3632−3648.
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