
Abstract. A simple implementation of third-order per-
turbation theory applied to a multireference zero-order
wavefunction is presented. Two different partitions
of the Hamiltonian (M�ller–Plesset baricentric and
Epstein–Nesbet) are considered. Two test cases, CH2

and N2, are examined. The third-order results are shown
to be in good agreement in either partition and are
generally an improvement with respect to the second-
order results. The phenomenon of intruder states, absent
in Epstein–Nesbet, appears to be magnified in the
M�ller–Plesset partition.
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1 Introduction

M�ller–Plesset perturbation theory MPPT [1] is one of
the most widely used methods to address the correlation
problem in quantum chemistry, drawing its conceptual
value from the diagrammatic representation and the
linked cluster theorem [2]. Besides, MPPT represents an
effective computational tool so that nowadays even
high-order perturbation contributions can be routinely
calculated [3]. MPPT is based on a zero-order wave-
function consisting of a single Slater determinant built
on molecular spin orbitals wi obtained by solving the
Hartee–Fock equations and, accordingly, is well suited
to describe molecules with a closed-shell ground state. If
one wishes to describe a large portion of the potential-
energy surface involving the breakage of chemical bonds
or if one wants to properly describe the electronically
excited states of molecules or open-shell states, it is
usually inappropriate to restrict the calculation to a
single–determinant–based treatment and one is forced to

resort to a multireference approach. Multireference
perturbation theory (MRPT) is based on the description
of the zero-order wave-function through the diagonal-
ization of the electronic Hamiltonian in a properly
chosen determinantal space, S, and on the evaluation of
the remaining correlation energy through perturbation
theory. The choice of the reference space, S, is usually
done either on the basis of a complete active space
(CAS) [4], or on the imposition of a given excitation
level, such as a singles and doubles configuration
interaction [5] or on a selection criterion to build up
the determinantal space, such as in the CIPSI technique
[6].
The previous articles in the series published by our

group [7, 8, 9, 10] were involved with the second-order
treatment of the energy, either by proposing an extrap-
olation technique suitable for large zero-order spaces [7],
by improving the selection criteria in the CIPSI algo-
rithm [8, 10] or by adopting diagrammatic techniques
[11, 12] for the calculation of the first-order one-particle
density matrix [9].
The zero-order Hamiltonian, H0, of MRPT is often

chosen to be of one–electron type so that it reduces to the
Fock operator in the case of a single reference space, but
different choices based on a two–electron zero-order H0

are possible and have recently been shown to be viable
and promising [13, 14]. MRPT is usually carried out to
second order in the energy, higher orders being deemed
unnecessary if a good zero-order wavefunction has been
chosen. However, in an important article Werner [15]
showed that third-order MRPT is feasible without pro-
hibitive costs and provided a number of test calculations
useful to judge the convergence of the perturbation se-
ries. Another implementation of third-order MRPT has
been recently provided by Havenith et al. [16]. In the
present work we present a simple implementation of the
third-order MRPT which has been adapted to the CIPSI
suite of programs [6, 17, 8]. Two different partitions of
the Hamiltonian are considered, the M�ller–Plesset
baricentric (MPB) and the diagonal bielectronic
Epstein–Nesbet (EN). The convergence properties of
the two partitions are examined in some test cases.Correspondence to: R. Cimiraglia
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2 Theory

Starting from the usual series expansion of Rayleigh–
Schrodinger perturbation theory

Wm ¼ Wð0Þ
m þ Wð1Þ

m þ � � � ;
Em ¼ Eð0Þ

m þ Eð1Þ
m þ Eð2Þ

m þ Eð3Þ
m þ � � � ;

where H0W
ð0Þ
m ¼ Eð0Þ

m Wð0Þ
m and H ¼ H0 þ V ; the following

results for first-, second- and thid-order corrections to
the energy are well known:

Eð1Þ
m ¼ hWð0Þ

m jV jWð0Þ
m i;

Eð2Þ
m ¼ hWð1Þ

m jV jWð0Þ
m i;

Eð3Þ
m ¼ hWð1Þ

m jV jWð1Þ
m i 	 Eð1Þ

m kWð1Þ
m k2 :

In MRPT the zero-order wavefunction solves a varia-
tional eigenvalue equation PSHPSWð0Þ

m ¼ Evarm Wð0Þ
m , where

PS is the projection operator onto a given determinantal
space S, PS ¼

P
M2S jMihM j: We introduce the auxiliary

projectors

Pm ¼ jWð0Þ
m ihWð0Þ

m j PS ¼
X
m0

Pm0 ;

Q ¼
X
K 62S

jKihKj :

The MPB zero-order Hamiltonian is based on the
introduction of a diagonal Fock operator F ¼P

r �ra
þ
r ar; where �r designate suitably defined orbital

energies. We assume that the spin orbitals upon which
the Slater determinants are built diagonalize the one–
particle density matrix obtained by Wð0Þ

m (natural spin
orbitals) and that the orbital energies are conveniently
defined as �r ¼ hrr þ

P
s nshrs k rsi; where ns designates

the occupation number of spin orbital ws. The definition
of the MPB zero-order Hamiltonian is then:

HMPB
0 ¼

X
m0

Pm0FPm0 þ QFQ :

The EN partition [6] is used with

HEN
0 ¼ PSHPS þ

X
K 62S

jKihKjH jKihKj :

The zero-order energies in the MPB partition are thus

Eð0Þ
m ¼ Wð0Þ

m jF jWð0Þ
m

D E
;

Eð0Þ
K ¼

X
r2K

�r ðwr occupied in jKiÞ;

Eð0Þ
m þ Eð1Þ

m ¼ Evarm ;

whereas in the EN partition

Eð0Þ
m ¼ Evarm Eð0Þ

K ¼ hKjH jKi :

The first-order correction to the wavefunction reads

Wð1Þ
m ¼

X
K 62S

Cð1Þ
K;mjKi Cð1Þ

K;m ¼ 	
Wð0Þ

m jV jK
D E

Eð0Þ
K 	 Eð0Þ

m

:

The perturbation scheme that has been presented can be
classified as an uncontracted treatment because the full
dimensionality of the interacting space defined by the
projector Q is used. In other treatments, such as the
CASPT2 [4, 18], an internally contracted scheme is
adopted where a subset of the interacting space is
defined through the application of all the double
substitutions to Wð0Þ

m . Other promising contraction
schemes have been proposed recently [13, 14].
The third-order contribution to the energy can be

easily obtained once the coefficients Cð1Þ
K;m are available.

The evaluation of Eð3Þ
m was performed by first calcu-

lating the second-order contribution Eð2Þ
m with storage

of the coefficients Cð1Þ
K;m and then by retrieving the

coefficients and carrying out the summationP
K;L 62S

Cð1Þ
K;mC

ð1Þ
L;mhKjV jLi: The renormalization term needs

only to be introduced for the MPB partition which has
a nonvanishing first-order contribution to the energy.
The CIPSI program [6] with the modifications intro-
duced in our laboratory [17, 8, 7] was employed for the
calculation of Eð2Þ

m and Cð1Þ
K;m. Further modifications

were introduced in the code, allowing for the use of
configuration state functions (eigenfunctions of S2 and
Sz) instead of simple determinants.
Being based on the CIPSI procedure, which takes

directly into account the generation of configurations
stemming from the zero-order space, S, our third-order
program suffers from the same limitations inherent in
the CIPSI code, i.e. mainly a severe dependence on the
dimensions of S. Moreover the storage and subsequent
retrieval of the coefficients Cð1Þ

K;m can involve rather large
allocation of computer memory as well as disk space. We
have verified that the the imposition of a small threshold
on the coefficients to be stored is very effective in
speeding up the calculation without any significant loss
of accuracy. Also, the computer code is very easily
parallelizable and we have realized a version of the
program, suited to a cluster of personal computers, in
a ‘‘server–client’’ approach, with the ‘‘server’’ program
‘‘listening’’ and distributing the calculation to the
‘‘client’’ programs.

3 Test calculations

3.1 CH2

A series of calculations was carried out on the 1A1 and
3B2 electronic states of CH2, where both the full
configuration interaction results of Bauschlicher and
Taylor [19] and the CASPT3 results of Werner [15] are
available. We adopted the double zeta plus polariza-
tion basis set and geometrical parameters provided in
Ref. [19] and carried out perturbation calculations
starting from CAS–Self-consistent-field (SCF) zero-
order wavefunctions as defined in Ref. [15]. The
DALTON suite of programs [20] was utilized to
produce the CAS–SCF wavefunctions. The results
referring to a CAS space obtained by distributing the
six valence electrons on the six valence orbitals are
given in Table 1. The second-order perturbation theory
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results for the 3B2 	1A1 separation are too high both
for the MPB and the EN partition, but the third-order
contribution is seen to produce a substantial correc-
tion, bringing also the MPB and EN values closer to
one another. Our results are similar to those reported
by Werner [15]. Table 1 also contains the results for
large CAS spaces with six electrons on either eight or
14 orbitals, respectively. Improving the zero-order
wavefunction clearly shows better convergence prop-
erties and attenuates the discrepancies between MPB
and EN. It is to be remarked that our third-order
results for the MPB and EN partitions produce total
energies close to each other even in the smallest CAS
space.

3.2 N2

As a second test calculation we chose the ground state of
the N2 molecule, which constitutes a rather severe case
for post-SCF procedures due to the difficulties in
properly describing the dissociation process for a triple
bond. Being a symmetrical system, it is well known [21]
that the EN partition meets with particular difficulties in
the description of the dissociative part of the potential-
energy curve.
On the other hand, the MPB partition, albeit sub-

stantially exempt from the size-consistence problem,

may be affected by the presence of occasional ‘‘intruder
states’’ which deteriorate the calculation, as has been
reported by Roos and Andersson [22] in the study of the
3
Pþ

u state of N2. In the present calculation use was made
of the atomic natural orbital basis set of Widmark et al.
[23], which consists of 14s 9p 4d 3f contracted to 7s 7p
4d 3f (138 basis functions). Starting from a CAS–SCF
calculation involving six electrons distributed over the
six valence p orbitals, the dynamical correlation energy
was evaluated with second- and third-order perturbation
theory in both the MPB and EN partitions.
The spectroscopic properties calculated at the various

perturbation orders are set out in Table 2. The energy
profiles for the EN case are shown in Fig. 1. As can be
seen, the corrections brought by the third order are very
small in the region of the minimum but become pro-
nounced in the dissociative part of the curve, causing the
dissociation energy, De, to drop from 10.93 eV for EN2
to 9.75 eV for EN3, in good agreement with the exper-
imental value of 9.91 eV [24]. The curves for the MPB
partition are reported in Fig. 2. Here opposite behaviour
is found with respect to the EN results, the third-order
correction being rather sizable close to the minimum and
small in the dissociation region. For MPB partition De is
calculated as 9.12 eV in MPB2 and 9.39 eV in MPB3.
Also, the phenomenon of the intruder states becomes
apparent in MPB3 for a couple of points (at r = 3.6 and
4.2 au) even though no divergence is noted in MPB2.
The squared norm of the first-order correction to the

wavefunction, which shows a quadratic dependence on
the energy denominators as in the third-order energy
correction, is reported for both partitions in Fig. 3.

Table 1. Energies obtained with the second- and third-order
procedures compared to the full configuration interaction results

Method 1A1 energy
(au)

3B2 energy
(au)

DE
(Kcal mol

)1)

3210 active spacea

CAS-SCF )38.945529 )38.965954 12.82
CAS-PT2b )39.013092 )39.037695 15.44
CAS-PT3b )39.023374 )39.043766 12.80
MPB2c )39.011695 )39.036885 15.81
EN2c )39.024854 )39.048424 14.79
MPB3c )39.021887 )39.042750 13.09
EN3c )39.023624 )39.043291 12.34

4220 active spacea

CAS-SCF )38.968726 )38.982788 8.82
CAS-PT2b )39.017120 )39.038707 13.54
CAS-PT3b )39.024593 )39.044195 12.30
MPB2c )39.016396 )39.038139 13.64
EN2c )39.024499 )39.046250 12.47
MPB3c )39.023789 )39.044005 12.69
EN3c )39.025216 )39.044839 12.31

7331 active spacea

CAS-SCF )39.009906 )39.029672 12.40
CAS-PT2b )39.023760 )39.043345 12.29
CAS-PT3b )39.025954 )39.045359 12.18
MPB2c )39.024489 )39.044125 12.32
EN2c )39.026107 )39.045722 12.31
MPB3c )39.025951 )39.045521 12.28
EN3c )39.026187 )39.045699 12.24
FCId )39.027284 )39.046348 11.96

a Partition of the active space orbitals in the A1, B1, B2 and A2
symmetries
bRef. [15]
c This work
dRef [19]

Table 2. Spectroscopic properties of the 1
Pþ

g ground state of N2

Method re (A) De (eV) xeðcm	1Þ xexeðcm	1Þ

MPB2 1.101 9.115 2325.1 15.5
En2 1.097 10.927 2376.3 14.7
MPB3 1.099 9.387 2354.0 14.9
EN3 1.099 9.745 2348.1 14.9

Exp.[24] 1.098 9.906 2358.6 14.3

Fig. 1. Potential-energy curve for the N2 molecule. Full line:
Epstein–Nesbet (EN) second order; +: EN third order
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Again, the appearence of the intruder states is manifest
for the MPB partition. Finally, in Fig. 4 all the energy
curves are reported together, with a view to showing the
levelling off of the EN3 and MPB3 results.

4 Conclusions

We have shown a simple implementation of the third-
order energy contribution calculation for the MPB and
EN partitions. The main purpose of the present work
was to ascertain whether both partitions manifest a
convergence trend beyond second order and we have
seen through a few numerical examples that this appears
to be actually the case. We have also noted the
preoccupying tendency to magnify the intruder state
phenomenon on the part of the Møller–Plesset partition
and we suspect that this behaviour could be common to
all M�ller–Plesset–based third-order treatments. Such a
problem could possibly be solved by means of some
form of level-shift technique [22, 25] to make third-order
corrections usable.
Third-order calculations can be useful to assess the

validity of specific assumptions introduced in the zero-
order Hamiltonian, such as the introduction of one- and
two-body denominator shifts [26], whose influence can
be properly appreciated starting from third order.
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