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ABSTRACT: This study examines several techniques to
improve the efficiency of the linearized multireference driven
similarity renormalization group truncated to one- and two-
body operators [MR-LDSRG(2)]. We propose a sequential
MR-LDSRG(2) [sq-MR-LDSRG(2)] scheme, in which one-
body substitutions are folded exactly into the Hamiltonian.
This new approach is combined with density fitting (DF) to
reduce the storage cost of two-electron integrals. To further
avoid storage of large four-index intermediates, we propose a
noninteracting virtual orbital (NIVO) approximation of the
Baker−Campbell−Hausdorff series that neglects commutators terms with three and four virtual indices. The NIVO
approximation reduces the computational prefactor of the MR-LDSRG(2), bringing it closer to that of coupled cluster with
singles and doubles (CCSD). We test the effect of the DF and NIVO approximations on the MR-LDSRG(2) and sq-MR-
LDSRG(2) methods by computing properties of eight diatomic molecules. The diatomic constants obtained by DF-sq-MR-
LDSRG(2)+NIVO are found to be as accurate as those from the original MR-LDSRG(2) and coupled cluster theory with
singles, doubles, and perturbative triples. Finally, we demonstrate that the DF-sq-MR-LDSRG(2)+NIVO scheme can be applied
to chemical systems with more than 550 basis functions by computing the automerization energy of cyclobutadiene with a
quintuple-ζ basis set. The predicted automerization energy is found to be similar to the value computed with Mukherjee’s state-
specific multireference coupled cluster theory with singles and doubles.

1. INTRODUCTION

The failure of conventional many-body methods to describe
near-degenerate electronic states has motivated the develop-
ment of many efficient and practical multireference ap-
proaches, including multireference perturbation theories
(MRPTs)1−7 and multireference configuration interaction
(MRCI) schemes.8−12 Considerable efforts have been
dedicated to the development of multireference coupled
cluster (MRCC) methods,13−27 with the goal of creating
nonperturbative theories that are both size extensive and
systematically improvable. Analogous many-body methods
based on unitary transformations have received less atten-
tion.27−34 Unitary theories yield Hermitian transformed
Hamiltonians and, therefore, can be interfaced with many
exact and approximated methods for Hamiltonian diagonaliza-
tion. This property is important both for the formulation of
multireference theories and in new applications of unitary
methods to quantum computing.35−47

One of the main obstacles in the formulation of both single-
and multireference unitary coupled cluster theories is that they
lead to nonterminating equations. The central quantity
evaluated in these approaches is the similarity transformed
Hamiltonian (H̅) defined as

H H U HU e HeA Â → ̅ = ̂ ̂ ̂ = ̂† − ̂ ̂ (1)

where Ĥ is the bare Hamiltonian and Û is a unitary operator.
In writing this transformation, we have expressed Û as the
exponential of the anti-Hermitian operator Â (Â† = −Â),
which is commonly written in terms of the coupled cluster
excitation operator T ̂ as Â = T ̂ − T ̂†. Using the Baker−
Campbell−Hausdorff (BCH) identity,29,31,33 the transformed
Hamiltonian may be computed as the following commutator
series

H H H A H A A

H A A A

,
1
2

, ,

1
3

, , ,

̅ = ̂ + [ ̂ ̂] +
!
[[ ̂ ̂] ̂]

+
!
[[[ ̂ ̂] ̂] ̂] + ···

(2)

Since the operator Â contains both excitations and de-
excitations, contractions are possible among components of Â,
and as a consequence, the BCH series given in eq 2 is
nonterminating.
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Various approximations have been proposed to evaluate the
unitarily transformed Hamiltonian. Perhaps the simplest
approximation is truncating the BCH expansion after a certain
number of commutators.29,31,48 Proof-of-principle studies on
unitary coupled cluster (CC) theory48 suggest that for a series
containing up to n-nested commutators, the error decays as
10−n, and about four commutators are necessary to achieve
sub-milliHartree accuracy. Taube and Bartlett33 have suggested
tractable approximations to unitary CC theory based on the
Zassenhaus expansion that are exact for a given number of
electrons. A convenient way to truncate the unitary BCH series
was suggested by Yanai and Chan.49 In their linear truncation
scheme, each single commutator [·, Â] in the BCH series is
approximated with its scalar and one- and two-body
components, which we indicate as [·, Â]0,1,2. Since in this
truncation scheme, the commutator [·, Â]0,1,2 preserves the
many-body rank (number of creation and annihilation
operators) of the Hamiltonian, the full BCH series can then
be evaluated via a recursive relation. Consequently, the linear
truncation scheme is equivalent to a summation of a subset of
the diagrams that contribute to the BCH series, some of which
enter with incorrect prefactors.50 An advantage of this
approach is that closed-form expressions for terms like [Ô,
Â]0,1,2 can be easily derived, where Ô is an operator containing
up to two-body terms. This truncation scheme has been
employed in canonical transformation (CT) theory49,51,52 and
has been used to truncate normal-ordered equations in the
flow renormalization group of Wegner.53,54

We have recently developed a multireference driven
similarity renormalization group (MR-DSRG)55−60 approach
that avoids the multiple-parentage problem21,23,61−64 and
numerical instabilities63−69 encountered in other nonperturba-
tive multireference methods. In MR-DSRG, we perform a
unitary transformation of the Hamiltonian controlled by a flow
parameter, which determines to which extent the resulting
effective Hamiltonian is band diagonal.56,60 The simplest
nonperturbative approximation, the linearized MR-DSRG
truncated to two-body operators [MR-LDSRG(2)],57 assumes
that Â contains up to two-body operators (singles and
doubles) and employs the linear commutator approximation
as described in the previous paragraph. Preliminary bench-
marks indicate that the MR-LDSRG(2) method is more
accurate than CCSD around equilibrium geometries, and this
accuracy is preserved along potential energy curves, especially
for single-bond breaking processes.58 The cost to evaluate a
single commutator in the MR-LDSRG(2) scales as

N N N N N N N( ) ( )C V C V C V
2 2 2 2 4 3 3= + + ··· where NC, NV, and

N are the numbers of core, virtual, and total orbitals,
respectively. This scaling is identical to that of CC with
singles and doubles (CCSD) [ N N( )C V

2 4 ]. However, while in
CCSD the most expensive term is evaluated only once, in the
MR-LDSRG(2) the same term must be evaluated for each
nested commutator in the BCH series. Consequently, if the
BCH series is truncated after n + 1 terms, the computational
cost of the MR-LDSRG(2) is roughly n times that of CCSD,
where approximately 10 or more terms are usually required to
converge the Frobenius norm of H̅ to 10−12 Eh.

57 Moreover,
computing the BCH series requires storing large intermediate
tensors of size that scales as N( )4 . When these intermediates
are stored in memory, practical computations are limited to
200−300 basis functions on a single computer node.

In this work, we combine a series of improvements and
approximations to reduce the computational and memory
requirements of the MR-LDSRG(2) down to a small multiple
of the cost of CCSD. To begin with, we consider an alternative
ansatz for the MR-DSRG based on a sequential similarity
transformation.70 This sequential ansatz reduces the complex-
ity of the MR-DSRG equations and, when combined with
integral factorization techniques, reduces significantly the cost
to evaluate singles contributions. Second, we apply density
fitting (DF)71−73 to reduce the memory requirements and the
I/O cost by avoiding the storage of two-electron repulsion
integrals. Together with Cholesky decomposition (CD)74−78

and other tensor decomposition schemes,79 these techniques
have been crucial in enabling computations with 1000 or more
basis functions and have been applied in numerous electronic
structure methods,80−91 including coupled cluster meth-
ods.92−96 Third, we reduce the cost of MR-LDSRG(2)
computations by neglecting operators that involve three or
more virtual electrons. We term this truncation scheme the
noninteracting virtual orbital (NIVO) approximation. A
perturbative analysis of the NIVO approximation shows that
the errors introduced appear at order three in the amplitudes
and order four in the energy. To the best of our knowledge,
such approximation has not been introduced in multireference
theories, but it is analogous to other truncation schemes used
in CCSD in which certain diagrams have modified
coefficients50,97−99 or are completely removed.100,101

This paper is organized in the following way. In Section 2,
we present an overview of the MR-DSRG theory, discuss the
sequential MR-DSRG, and introduce the NIVO approxima-
tion. Details of the implementation together with a discussion
of timings are given in Section 3. In Section 4, we assess the
accuracy of several MR-LDSRG(2) schemes on a benchmark
set of several diatomic molecules and determine the
automerization barrier of cyclobutadiene. Finally, we conclude
this work with a discussion of the main results in Section 5.

2. THEORY
We first define the orbital labeling convention employed in this
work. The set of molecular spin orbitals G ≡ {ϕp, p = 1, 2, ...,
N} is partitioned into core (C), active (A), and virtual (V)
components of sizes NC, NA, and NV, respectively. We use the
indices m, n to label core orbitals, u, v, x, y to label active
orbitals, and e, f, g, h to label virtual orbitals. For convenience,
we also define the set of hole (H = C ∪ A) and particle (P = A
∪ V) orbitals with dimensions NH = NC + NA and NP = NA +
NV, respectively. Hole orbitals are denoted by the indices i, j, k,
l, and those of particle by the indices a, b, c, d. General orbitals
(G) are labeled by the indices p, q, r, s.
The MR-DSRG assumes a multideterminantal reference

wave function (Ψ0) given by a linear combination of a set of
determinants {Φμ; μ = 1, 2, ..., d} that spans a complete active
space (CAS)

c
d

0
1

∑|Ψ ⟩ = |Φ ⟩
μ

μ
μ

= (3)

The orbitals and expansion coefficients (cμ) that enter in eq 3
are assumed to come from a CAS self-consistent field
(CASSCF) computation.102 All operators are then normal
ordered with respect to Ψ0 according to the scheme of
Mukherjee and Kutzelnigg.103 For example, the bare
Hamiltonian is expressed as
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H E f a v a
1
4pq

p
q

q
p

pqrs
pq
rs

rs
pq

0 ∑ ∑̂ = + { ̂ } + { ̂ }
(4)

where E0 = ⟨Ψ0|Ĥ |Ψ0⟩ is the reference energy and {ar̂s···
pq···} =

{ap̂aq̂···aŝar̂} is a product of creation (ap̂ ≡ ap̂
†) and annihilation

(ap̂) operators in its normal-ordered form, as indicated by the
curly braces. The generalized Fock matrix ( f p

q) introduced in
eq 4 is defined as

f h vp
q

p
q

rs
pr
qs

s
r∑ γ= +

(5)

where hp
q = ⟨ϕp|ĥ|ϕ

q⟩ and vpq
rs = ⟨ϕpϕq∥ϕrϕs⟩ are the one-

electron and antisymmetrized two-electron integrals, respec-
tively. Here, we have also introduced the one-particle reduced
density matrix (1-RDM) defined as γq

p = ⟨Ψ0|aq̂
p|Ψ0⟩.

2.1. Review of the MR-DSRG Method. The MR-DSRG
performs a parametric unitary transformation of the bare
Hamiltonian analogous to eq 1, whereby the anti-Hermitian
operator Â(s) depends on the so-called flow parameter (s), a
real number defined in the range [0,∞). The resulting
transformed Hamiltonian [H̅(s)] is a function of s defined as

H s He( ) e A s A s( ) ( )̅ = ̂− ̂ ̂
(6)

The operator Â(s) is a sum of many-body operators with rank
ranging from one up to the total number of electrons (n)

A s A s( ) ( )
k

n

k
1

∑̂ = ̂
= (7)

where Âk(s) is the k-body component of Â(s). In the MR-
DSRG, the operators Âk(s) are written as Âk(s) = T ̂

k(s) −
T ̂

k
†(s), where T ̂

k(s) is an s-dependent cluster operator defined
as

T s
k

t s a( )
1

( )
( )k

ij ab
ab
ij

ij
ab

H P

2 ∑ ∑̂ =
!

{ ̂ }
··· ···

···
···

···
···

(8)

Note that the cluster amplitudes tab···
ij··· (s) exclude internal

excitations, which are labeled only with active orbital indices.
The DSRG transformed Hamiltonian has a many-body
expansion similar to eq 4,

H s E s H s a H s a( ) ( ) ( )
1
4

( )
pq

q
p

p
q

pqrs
rs
pq

pq
rs

0 ∑ ∑̅ = ̅ + ̅ { ̂ } + ̅ { ̂ } + ···

(9)

where,

E s H s( ) ( )0 0 0̅ = ⟨Ψ | ̅ |Ψ ⟩ (10)

is the DSRG energy and the tensors H̅rs...
pq···(s) are analogous to

one- and two-electron integrals but dressed with dynamical
correlation effects.
Here we briefly summarize the most important features of

the DSRG approach, glossing over some of the more technical
aspects of this formalism. For more details on the DSRG and
its connection to the flow renormalization group, we
recommend the reader to consult ref 60. The goal of the
DSRG transformation is to decouple the interactions between
the reference wave function (Ψ0) and its excited config-
urations. Such interactions are the couplings between hole and
particle orbitals represented by generalized excitation
[H̅ab···

ij··· (s){aîj···
ab···}] and de-excitation [H̅ij···

ab···(s){aâb···
ij··· }] operators,

where ij··· ∈ H and ab ··· ∈ P, excluding cases where all the
indices are active orbitals. These terms of H̅(s) that the DSRG
transformation aims to suppress are called the off-diagonal
components and will be denoted as H̅od(s). Instead of
achieving a full decoupling of the off-diagonal components
[i.e., H̅od(s) = 0], we demand that the DSRG transformation
achieves a partial decoupling, where most of the electron
correlation is recovered, but excitations that may cause
numerical instabilities (small denominators) are excluded
from the treatment of electron correlation. This goal is
achieved by an appropriate parametrization of H̅od(s) that
separates excitations according to the value of their Møller−
Plesset energy denominator [Δab···

ij··· = ϵi + ϵj + ··· − ϵa − ϵb −
···].55 This parametrization is imposed via the DSRG flow
equation, a nonlinear equation of the form

H s R s( ) ( )od̅ = ̂ (11)

where the source operator R ̂(s) is Hermitian and continuous in
s. The source operator in the DSRG flow equation drives the
off-diagonal elements of H̅(s) to zero as s → ∞. The operator
R ̂(s) contains both generalized excitation and de-excitation
components, with the former defined in terms of the elements

r s H s t s( ) ( ) ( ) eab
ij

ab
ij

ab
ij

ab
ij s( )ab

ij 2
= [ ̅ + Δ ]···

···
···
···

···
···

···
··· − Δ ···

···

(12)

and the de-excitation components defined as rij···
ab···(s) =

[rab···
ij··· (s)]*. Note that eq 11 should be interpreted as a set of

many-body conditions,26 which guarantees equal numbers of
amplitudes and conditions, and avoids the multiparentage
problem that affects many MRCC methods.63−69

In the MR-LDSRG(2) method, we retain up to two-body
operators in the cluster operator [i.e., Â(s) ≈ Â1(s) + Â2(s)]
and the BCH series for H̅(s) [eq 2] is evaluated using the
linearized approximation, keeping up to two-body normal-
ordered operators in each commutator. The transformed
Hamiltonian can then be evaluated by the following recursive
equations

C s
k

C s A s

H s H s C s

( )
1

1
( ), ( ) ,

( ) ( ) ( ),

k k

k k k

( 1)
1,2
( )

0,1,2

( 1) ( ) ( 1)

l
m
ooooo

n
ooooo

̂ =
+

[ ̂ ̂ ]

̅ = ̅ + ̂

+

+ +
(13)

starting from C ̂(0)(s) = H̅(0)(s) = Ĥ and iterating until the
norm of C ̂

1,2
(k+1)(s) is less than a given convergence threshold.

The solution of eq 11 yields a set of amplitudes tab...
ij··· (s) that

define the operator Â(s) and the DSRG transformed
Hamiltonian H̅(s). From this latter quantity, the MR-DSRG
electronic energy is computed as the expectation value of H̅
with respect to the reference [via eq 10]. We refer the energy
computed using this approach as the unrelaxed energy because
the reference coefficients are not optimized. To include
reference relaxation effects, we require that Ψ0 is an eigenstate
of H̅(s) within the space of reference determinants, a condition
that is equivalent to solving the eigenvalue problem

H s c E s c( ) ( )
d

1

∑ ⟨Φ | ̅ |Φ ⟩ ′ = ′
μ

ν
μ

μ ν
= (14)

Equation 14 defines a new reference Ψ0′ with expansion
coefficients cμ′ . This new reference may be used as a starting
point for a subsequent MR-DSRG transformation, and this
procedure can be repeated until convergence. The energy
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obtained at the end of this iterative procedure is referred to as
the fully relaxed energy. For the nonperturbative MR-DSRG
schemes discussed in this work, we use the fully relaxed energy
by default, unless otherwise noted.
2.2. Simplifying the MR-DSRG Equations: Sequential

Transformation. Our first modification to improve the
efficiency of the MR-DSRG consists in transforming the
Hamiltonian via a sequence of unitary operators with
increasing particle rank

H s e e e He e e( ) A s A s A s A s A s A s( ) ( ) ( ) ( ) ( ) ( )n n2 1 1 2̅ = ··· ̂ ···− ̂ − ̂ − ̂ ̂ ̂ ̂
(15)

We term the MR-DSRG approach based on eq 15 the
sequential MR-DSRG (sq-MR-DSRG), while we refer to the
original formalism based on eq 6 as the traditional MR-DSRG.
Note that in the limit of s → ∞ and no truncation of Â(s),
both the traditional and sequential MR-DSRG can approach
the full configuration interaction limit.70 However, these
schemes are not equivalent when the operator Â(s) is
truncated to a given rank, like in the case of the MR-
DSRG(2) approach.
An advantage of the sq-MR-DSRG approach is that Â1(s)

can be exactly folded into the Hamiltonian via the trans-
formation

H s e He( ) A s A s( ) ( )1 1̃ = ̂− ̂ ̂
(16)

which preserves the particle rank of the bare Hamiltonian [eq
4]. The resulting Â1(s)-dressed Hamiltonian [H̃(s)] can be
evaluated efficiently [for details, see Section 3.1], especially if
the two-electron integrals are approximated with DF or CD.
The transformed Hamiltonian for the sq-MR-DSRG truncated
to one- and two-body operators [sq-MR-DSRG(2)] is given by

H s e H s e( ) ( )A s A s( ) ( )2 2̅ = ̃− ̂ ̂
(17)

In the linear approximation, the evaluation of eq 17 is simpler
than in the traditional MR-LDSRG(2) since the total number
of tensor contractions is reduced from 39 to 30.57 As in the
traditional MR-LDSRG(2), the sequentially transformed
variant still requires the iterative update of both the Â1(s)
and Â2(s) amplitudes (see ref 57 for details). In both the
traditional and sequential approaches, the singles and double
amplitudes are obtained by solving the same set of equations,
except that H̅(s) is computed differently.
Another advantage of the sequential approach is that Â1(s) is

treated exactly, while in the traditional scheme some
contractions involving singles are neglected. To appreciate
this point, consider all the contributions to the double-
commutator term in the MR-LDSRG(2) that depend on Â1(s)

H A s A s H A s A s

H A s A s

H A s A s

, ( ) , ( ) , ( ) , ( )

, ( ) , ( )

, ( ) , ( )

1,2 0,1,2 1 1,2 1 0,1,2

1 1,2 2 0,1,2

2 1,2 1 0,1,2

[[ ̂ ̂ ] ̂ ] ← [[ ̂ ̂ ] ̂ ]

+ [[ ̂ ̂ ] ̂ ]

+ [[ ̂ ̂ ] ̂ ] (18)

The first term on the r.h.s. of eq 18 is treated exactly in the
MR-LDSRG(2). However, since contractions involving Â2(s)
generate three-body terms (truncated in the linearized
approximation), the contribution of Â1(s) in the second and
third terms are not included exactly in the MR-LDSRG(2)
transformed Hamiltonian. In the sequential approach, all
contributions from Â1(s) are folded into the operator H̃(s) and

are treated exactly even in the linearized approximation.
Therefore, the treatments of singles in the traditional and
sequential versions of the MR-LDSRG(2) differ by terms of
order three and higher in perturbation theory (assuming that
both Â1(s) and Â2(s) are first-order quantities). Note that
neither ansatz is in principle superior to the other as both are
exact when the operator Â(s) is not truncated, so that the
different treatment of singles in the sequential theory should
not be viewed as an approximation of the traditional scheme.

2.3. Alleviating the Memory Bottleneck: The Non-
interacting Virtual Orbital (NIVO) Approximation. The
bottleneck that arises in the evaluation of the BCH series for
H̅(s) is the cost to store the intermediates generated during the
evaluation of the commutator [C ̂

1,2
(k)(s), Â(s)]0,1,2. The two-

body components of this commutator have a storage cost of
N( )4 , a factor N2/NH

2 higher than that of CCSD.
To reduce the cost to store H̅2(s) and C ̂

2
(k)(s), we propose to

discard certain tensor blocks of these operators. By partitioning
of orbitals into core (C), active (A) and virtual (V) spaces,
each general 4-index tensor may be subdivided into 81 blocks
according to the combination of orbital indices, for example
CCCC, AAVV, CAVA, etc. In our approach, which we refer to
as the noninteracting virtual orbital (NIVO) approximation,
we neglect the operator components of C ̂

2
(k+1)(s) = [C ̂

1,2
(k)(s),

Â(s)]2, k ≥ 0, with three or more virtual orbital indices
(VVVV, VCVV, VVVA, etc.). Removing these blocks, the
number of elements in each NIVO-approximated tensor is
reduced from N( )4 to N N( )H

2 2 , a size comparable to that of
the Â2(s) tensor. For instance, in the cyclobutadiene
computation discussed in Section 4.2, the memory require-
ments for storing H̅2(s) or C ̂

2
(k)(s) using a quintuple-ζ basis set

are reduced from 2.7 TB to 6.8 GB by the NIVO
approximation.
To justify the NIVO approximation, we analyze its effect on

the energy. The first term in the BCH series that is
approximated in the sq-MR-LDSRG(2)+NIVO scheme is the
commutator C ̂

2
(1)(s) = [H̃(s), Â2(s)]2. Indicating the terms

neglected by the NIVO approximation as δC ̂
2
(1)(s), we see that

the lowest-order energy error comes from the expectation
value of the triple commutator term [δC ̂

0
(3)(s)]

C s C s A s A s( )
1
6

( ), ( ) , ( )0
(3)

2
(1)

2 1,2 2 0δ δ̂ = [[ ̂ ̂ ] ̂ ]
(19)

whose contributions are shown as diagrams in Figure 1. From a
perturbation theory perspective, these diagrams are of order
four [assuming Â2(s) to be of order one] and, therefore, are
negligible compared to the leading error (third order) of the
linearized commutator approximation. Since beyond the first
commutator, the NIVO approximation affects core and virtual

Figure 1. Diagrams that are neglected by the NIVO approximation in
the evaluation of the term Ĉ

0
(3)(s) [eq 19]. The wiggly and horizontal

solid lines indicate elements of Ĉ
2
(1)(s) and Â2(s), respectively. The

two-body density cumulant is labeled with the symbol λ2.
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orbitals differently, it breaks hole-particle symmetry.104 The
most significant consequence of breaking this symmetry is the
loss of exactness for two-electron systems, which, however, is
already compromised by the linear commutator approximation
made in the MR-LDSRG(2) approach. Therefore, in practical
applications, the only major consequence of the NIVO scheme
is to introduce small energy deviations from the MR-
LDSRG(2) results. We also found that restoring hole-particle
symmetry in the NIVO approximation by neglecting terms
with three or more core orbital indices (CCCC, CCCA, etc.)
leads to numerical instabilities and significantly larger errors in
the correlation energy.
Hereafter, we shall append “+NIVO” at the end of the

method name to indicate the use of NIVO approximation. For
example, the density fitted MR-LDSRG(2) method in the
sequential transformation ansatz with NIVO approximation is
termed “DF-sq-MR-LDSRG(2)+NIVO”.

3. IMPLEMENTATION

The sq-MR-LDSRG(2) method combined with DF and the
NIVO approximation was implemented in FORTE,105 an open-
source suite of multireference theories for molecular
computations. This implementation reuses several components
of our previous MR-LDSRG(2) code based on conventional
four-index two-electron integrals.57 The DSRG equations were
implemented as tensor contractions using the AMBIT tensor
library.106 The DF/CD integrals were obtained from the PSI4
package107 using the MEMDF interface.108 In the following, we
provide the details of our implementation of the sequential
ansatz in combination with DF.109

3.1. Sequential Transformation. The Â1(s)-dressed
Hamiltonian [H̃(s), eq 16] can be obtained by a unitary
transformation of Ĥ via the operator Û(s) = exp[Â1(s)]. For
clarity, we shall drop the label “(s)” for all s-dependent
quantities [H̃(s), Â1(s), and Û(s)] in this section. The one-

and two-body components of H̃ (h̃p′
q′ and ṽp′q′

r′s′ ) are given by

h U h Up
q

pq
q
q

p
q

p
p∑̃ =′

′ ′
′

(20)

v U U v U Up q
r s

pqrs
r
r

s
s

pq
rs

p
p

q
q∑̃ =′ ′

′ ′ ′ ′
′ ′

(21)

Here, the unitary matrix U ( )p
p

p p=′
′ and its inverse

U ( )p
p

p p= *′ ′ are given by e = , where the matrix  is

composed of elements of the Â1 tensor, t( ) a
i

ia = and
t( ) a

i
ai = − . Note that we use primed indices only as a way to

distinguish labels, yet these indices by no means imply a new
set of orbitals.
The Â1-dressed Hamiltonian written in normal ordered form

with respect to Ψ0 is given by

H E f a v a
1
4pq

p
q

q
p

pqrs
pq
rs

rs
pq

0 ∑ ∑̃ = ̃ + ̃ { ̂ } + ̃ { ̂ }
(22)

where the transformed energy (Ẽ0) is given by

E h v
1
4i j

i
j

j
i

i j k l
i j
k l

k l
i j

H H

0 ∑ ∑γ γ̃ = ̃ + ̃
′ ′

′
′

′
′

′ ′ ′ ′
′ ′
′ ′

′ ′
′ ′

(23)

and the Fock matrix elements ( f ̃ p′
q′) are defined as

f h vp
q

p
q

i j
p i
q j

j
i

H

∑ γ̃ = ̃ + ̃′
′

′
′

′ ′
′ ′
′ ′

′
′

(24)

Note that the quantities γj′
i′ and γk′l′

i′j′ in eqs 23 and 24 are the
untransformed 1- and 2-RDMs of the reference |Ψ0⟩ defined as
γq
p = ⟨Ψ0|aq̂

p|Ψ0⟩ and γrs
pq = ⟨Ψ0|ar̂s

pq|Ψ0⟩, respectively.
The two-electron integral transformation [eq 21] has a

noticeable cost [ N( )5 ] and must be repeated each time the
Â1 operator is updated. However, in the implementation based
on DF integrals, this transformation may be performed in a
significantly more efficient way. In DF, the four-index electron

Figure 2. Batched algorithm implemented in the tensor library AMBIT to compute the second term of eq 28. (1) The algorithm proceeds by first
permuting tensor indices to rearrange the data with the same s-index continuously in memory. (2) Small batches of tensors are copied into
temporary tensors (B′[ˈˈQaˈˈ] and O′[ˈˈijrˈˈ]). (3) Each batch is contracted, building appropriate intermediates (I[ˈˈabrˈˈ]) to minimize the
number of floating point operations. (4) The result of the tensor contraction is copied back to a temporary tensor (OT[ˈˈsijrˈˈ]). (5) After
looping over all batches, the indices of the temporary tensor OT are permuted back to the original order.
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repulsion integral tensor is implicitly a contraction of a three-
index auxiliary tensor (Bpq

Q )

pq rs B B
Q

M

pr
Q

qs
Q∑⟨ | ⟩ ≈

(25)

where M is the dimension of the fitting basis in DF. Using this
decomposition, the unitary transformation may be directly
applied to each auxiliary tensor

B B U Up q
Q

pq
pq
Q

p
p

q
q∑̃ =′ ′ ′ ′

(26)

reducing the cost to evaluate H̃ down to N M( )3 .
Equations 22 and 23 specify the procedures to obtain H̃ as a

unitary transformation of Ĥ . Since H̃ retains the structure of
Ĥ , we can reuse most of our previous MR-LDSRG(2) code57

to implement sq-MR-LDSRG(2) by using h̃p′
q′ and ṽp′q′

r′s′ in place
of the bare integrals and removing contractions involving Â1.
3.2. Batched Tensor Contraction for the DF Algo-

rithm. Despite the storage cost reduction of the DF and
NIVO approximations, another potential memory bottleneck is
the size of intermediates generated during tensor contractions.
For example, consider the following contraction

O ab rs t i j r sH G, , ,rs
ij

ab
ab
ij

P

∑← ⟨ ⟩ ∀ ∈ ∀ ∈
(27)

which is also found in the CCSD equations. In the DF case, eq
27 is written as two contractions involving auxiliary tensors

O B B t B B trs
ij

ab Q

M

ar
Q

bs
Q

ab
ij

ab Q

M

as
Q

br
Q

ab
ij

P P

∑ ∑ ∑ ∑← −
(28)

The most efficient way to evaluate the second term of eq 28 is
to introduce the intermediate tensor Iasbr = ∑Q

M Bas
QBbr

Q of size
N N( )P

2 2 . To avoid storage of this large intermediate, it is
common to evaluate eq 28 using a batched algorithm like the
one reported in Figure 2, whereby a slice of the tensor Iasbr is
computed and contracted on the fly with the amplitudes tab

ij . To
automate this optimization of the tensor contraction we have
coded a generic batching algorithm in the tensor library

AMBIT.106 Whereas the AMBIT code for the second term in eq
28 is written as

our new implementation allows batching over the index s by
simply surrounding the contraction with the batched()
function decorator

This command is executed by AMBIT using the same procedure
reported in Figure 2 and only generates intermediate tensors of
size NN( )P

2 . Our implementation is general and allows
batching over multiple indices (e.g., rs).

3.3. Computational Cost Reduction. Here we discuss
timings for all the MR-LDSRG(2) variants introduced in this
work. In MR-LDSRG(2) theory, the main computational
bottleneck is forming the transformed Hamiltonian H̅. The
total timing (ttot) for n evaluations of this quantity is
partitioned according to

t t t ttot 1 2 misc= + + (29)

where t1 and t2 are the timings to evaluate the commutators
involving T ̂

1 and T ̂
2, respectively. In the sequential trans-

formation approach, t1 is instead defined as the time for
forming the Â1-transformed Hamiltonian. The term tmisc
accounts for the cost to sort and accumulate the results of
contractions with T ̂

1 and T ̂
2. In Table 1 we report the

computational scaling of the various terms that contribute to t1,
t2, and tmisc for the original MR-LDSRG(2) and all the variants
considered in this work.
To illustrate the performance of the various schemes

developed in this work, we report timings for computing H̅
in the case of cyclobutadiene in Figure 3 assuming that all
tensors can be stored in random-access memory (see Section
4.2 and the Supporting Information for details). Figure 3
shows that the timing for the traditional MR-LDSRG(2) is
dominated by contractions involving T ̂

1 and T ̂
2. The cost of

the singles contractions can be reduced significantly (3−5
times) by employing the sequentially transformed approach,
even though at each iteration of the sq-MR-LDSRG(2)
equations it is necessary to build the operator H̃.

Table 1. Computational Scaling of the Steps Involved in the Evaluation of the DSRG Transformed Hamiltonian (H̅)a

time computation original DF NIVO

traditional t1
(0) Ĥ (1) ← [C ̂(0), T ̂

1] N N N( )H P
3 unchanged reduced to N N N( )H P

2 2

t1
(k), k ≥ 1 O

k
k

( 1) 1
1

̂ ←+
+ [C ̂(k), T ̂

1] N N N( )H P
3 unchanged reduced to N(NN )H P

3

sequential t1 H̃ = e− Â1ĤeÂ1 N( )5 reduced to N M( )3 unchanged

traditional/sequential t2
(0) Ô(1)← [C ̂(0), T ̂

2] N N N( )H P
2 2 2 unchanged reduced to N N( )H P

2 4

t2
(k), k ≥ 1 O

k
k

( 1) 1
1

̂ ←+
+ [C ̂(k), T ̂

2] N N N( )H P
2 2 2 unchanged reduced to N N( )H P

4 2

tmisc
(k)

C O O
H H C

k k k

k k k

( 1) ( 1) ( 1)

( 1) ( ) ( 1)

l
moo
n
oo

̂ = ̂ + [ ̂ ]
̅ = ̅ + ̂

+ + + †

+ +

N( )4 unchanged reduced to N N( )H
2 2

aFor each step, we report the computational scaling of the original MR-LDSRG(2) and asymptotic scaling changes when density fitting (DF) or the
NIVO approximation are applied.
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Applying the NIVO approximation to the original MR-
LDSRG(2) leads to a drastic reduction of the total
computational time (×18 speedup). This reduction in timing
is due to several contributing factors. First, the evaluation of
the T ̂

1 contractions in NIVO is sped up by a factor of
nN N( / )H , where n is the number of commutators included

in the BCH series. Second, the contributions due to doubles,
[C ̂(k), T ̂

2], have identical scaling for the first commutator, but
for k ≥ 1, they can be evaluated with a speedup of a factor of

N N( / )H
2 2 . Third, the NIVO approximation also reduces tmisc

significantly because the cost of tensor transpose and
accumulation operations are reduced from N( )4 to

N N( )H
2 2 . For large N/NH ratios, the cost to compute H̅ in

the NIVO approximation is dominated by the commutator [Ĥ ,
T ̂

2], with scaling identical to that of CCSD. For comparison,
the similarity-transformed Hamiltonian can be evaluated in 24
s with Crawford’s CCSD code in PSI4, in 121 s with our MR-
LDSRG(2)+NIVO code, and 2208 s with the original MR-
LDSRG(2) code (in both cases employing an unrestricted
implementation and C1 symmetry).
For methods combined with DF, we observe an increase in

t2 due to the extra cost to build two-body intermediates from
the auxiliary tensors. The traditional and sequential approaches
using the DF/NIVO approximations have similar costs, with
the latter being slightly faster due to the efficient trans-
formation of the auxiliary tensors [B̃, eq 26] afforded by the
DF approximation. For this example, the DF-sq-MR-
LDSRG(2)+NIVO computation ran 12 times faster than the
one using the original approach. As we will demonstrate in the
next section, this method is as accurate as the MR-LDSRG(2),
and therefore, it is our recommend choice for large-scale
multireference computations.

For our last timing test we study the scaling for a system in
which the number of active orbitals is proportional to the
number of electrons. To this end we consider a polyacetylene
chain containing m carbon atoms (CmHm+2) with m ranging
from 2 to 16 and employ a CAS(me, mo) reference wave
function. In the MR-DSRG(2), the term with the highest
degree in the active orbitals scales as N N( )A V

6 . This
contribution, however, becomes important only when NA >
30. For smaller active space, the MR-LDSRG(2) equations
contain a term proportional to N2NH

2NP
2, which in our example

is expected to be proportional to m6. In Figure 4, we show the

timing for the original and approximate MR-LDSRG(2) and
illustrate the asymptotic computational cost, which is found to
be close to m5. Although the techniques introduced in this
paper do not change the overall scaling with respect to the
original MR-LDSRG(2) method, they significantly reduce the
computational time and enable computations on systems with
large active spaces. In the polyacetylene system, the original
algorithm cannot be applied beyond octatetraene (m = 8) on a
single node. In contrast, the DF-sq-MR-LDSRG(2)+NIVO
method is four times faster and may be applied to systems
twice as large. In addition, we also tested the dependence of
the computational time as a function of the number of active
orbitals for a fixed number of electrons and orbitals. For
example, in computations on the C16H18 molecule, increasing
the number of active orbitals from 2 to 16 increases the cost by
a factor 1.6 (see Figure S1 in the Supporting Information for a
plot of the timing for this example). Although restrictions
imposed by the use of a CAS reference limit the polyacetylene
computations to about m = 16, we estimate that when
combined with approximated CAS diagonalization methods,
the MR-LDSRG(2) method will be applicable to problems
with 25−30 active orbitals. For the large-basis computations
on cyclobutadiene reported in Section 4.2 (580 correlated
orbitals), we find that active spaces as large as the full valence
CAS(20e, 20o) are in principle attainable on a single node

Figure 3. Time to evaluate the DSRG transformed Hamiltonian [H̅]
of the ground-state cyclobutadiene when different techniques are
introduced in the MR-LDSRG(2) method. These techniques include:
density fitting (DF), sequential transformation (ST), and the
noninteracting virtual orbital (NIVO) approximation. The total
time for computing [Ĉ(k), T ̂

1] in MR-LDSRG(2) or H̃ = e− Â1ĤeÂ1

in sq-MR-LDSRG(2) is labeled as t1 in this plot. All computations
employed the cc-pVTZ basis set and were carried out on an Intel
Xeon E5−2650 v2 processor using eight threads.

Figure 4. Log−log plot of the time to evaluate the DSRG transformed
Hamiltonian [H̅] vs the number of carbon atoms in computations of
the ground-state of polyacetylenes (CmHm+2, m = 2, 4, 6, ···, 16) for
the original MR-LDSRG(2) and the DF-sq-MR-LDSRG(2)+NIVO
methods. All computations employed the cc-pVDZ basis set, and they
were carried out on an Intel Xeon E5−2650 v2 processor using eight
threads. The largest computation (m = 16) corresponds to 298
correlated orbitals.
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since the size of each NIVO-approximated two-body tensor is
18.5 GB. However, in our current implementation, batching of
tensor contractions is applied only to intermediate tensors that
scale as N( )4 , but not those generating intermediates that
scale as N N( )A

3 . Consequently, computations with around
600 correlated orbitals are limited to about 16−18 active
orbitals.

4. RESULTS AND DISCUSSION

4.1. First Row Diatomic Molecules. We first benchmark
the effect of DF and the NIVO approximation on the
traditional and sequential versions of the MR-LDSRG(2). Our
test set consists of eight diatomic molecules: BH, HF, LiF,
BeO, CO, C2, N2, and F2. Specifically, we computed
equilibrium bond lengths (re), harmonic vibrational frequen-
cies (ωe), anharmonicity constants (ωexe), and dissociation
energies (D0) and compare those to experimental data taken
from ref 110. The dissociation energy D0 includes zero-point
vibrational energy corrections that account for anharmonicity
effects and is computed as D0 = De − ωe/2 + ωexe/4 (in a.u.),
where De is the dissociation energy with respect to the bottom
of the potential.111 Since our current implementation of the
MR-DSRG cannot handle half-integer spin states, the energies
of the atoms Li, B, C, N, O, and F were computed as half of the
energy of the stretched homonuclear diatomic molecule at a
distance of 10 Å. All spectroscopic constants were obtained via
a polynomial fit of the energy using nine equally spaced points
centered around the equilibrium bond length and separated by
0.2 Å. For all eight molecules, we adopted a full-valence active
space where the 1s orbital of hydrogen, and the 2s and 2p
orbitals of first-row elements are considered as active orbitals.
No orbitals were frozen in the CASSCF optimization
procedure. The flow parameter for all DSRG computations
was set to s = 0.5 Eh

−2, as suggested by our previous work.56 All
computations utilized the cc-pVQZ basis set112 and 1s-like
orbitals of the first-row elements were frozen in the CC and
MR-DSRG treatments of electron correlation. In DF
computations, we employed a combination of different
auxiliary basis sets. For CASSCF, the cc-pVQZ-JKFIT auxiliary
basis set83 was used for H, B, C, N, O, and F, and the def2-
QZVPP-JKFIT basis set113 was used for Li and Be. In the
DSRG computations, the cc-pVQZ-RI basis set114 was used for
all atoms.
Figure 5 and Table 2 report a comparison of second- and

third-order DSRG multireference perturbation theory (DSRG-
MRPT2/3),56,58 the original MR-LDSRG(2), DF-sq-
LDSRG(2)+NIVO, CCSD, and CCSD(T). The mean
absolute error (MAE) and standard deviation (SD) reported
in Table 2 show that MR-LDSRG(2) method is as accurate as
CCSD(T) in predicting re, ωexe and D0, while it predicts ωe
values with accuracy in between CCSD and CCSD(T).
The fact that the MR-LDSRG(2) results are more accurate

than those from CCSD suggests that the full-valence treatment
employed in the former improves the treatment of electron
correlation. It is also rewarding to see that in many instances,
the MR-LDSRG(2) has an accuracy similar to that of
CCSD(T), despite the fact that the former does not include
triples corrections.
To analyze the impact of each modification to the original

MR-LDSRG(2) method, in Table 2 we report statistics
computed for all variants of the MR-LDSRG(2) considered
here. The use of a sequential ansatz has a modest effect on all

properties and the MAEs with respect experimental results are
nearly unchanged, if not slightly improved. The DF and NIVO
approximations have an effect on molecular properties that is
comparable in magnitude and smaller than the deviation
introduced by the sequential ansatz. When these three
approximations are combined together, the resulting method
shows errors with respect to experimental values that are nearly
identical to those from the traditional MR-LDSRG(2). The
only noticeable deviation is found for ωe (MAE 13.9 vs 14.3
cm−1).
In this study, we also investigate the effect of combining the

DF-sq-LDSRG(2)+NIVO method with truncation of the BCH

expansion, that is, terminating H s H s C s( ) ( ) ( )k
n

k

k
1

1 ( )
̅ = ̃ + ∑ ̂

= !
at a given integer n. The recursive evaluation of H̅(s) via eq 13
usually requires 10−12 terms to converge. In Table 2 we
report statistics computed by approximating the BCH
expansion with n up to 2, 3, and 4 commutators. The use of
only two commutator introduces noticeable deviations for ωe
and D0: the MAE with respect to the results obtained using the
full BCH series increases by 3.8 cm−1 and 0.6 kcal mol−1,
respectively. The inclusion of the triply nested commutator
significantly reduces these deviations to only 0.7 cm−1 and 0.2

Figure 5. Comparison of second- and third-order MR-DSRG
perturbation theory (DSRG-MRPT2, DSRG-MRPT3), MR-
LDSRG(2), DF-sq-MR-LDSRG(2)+NIVO, and single reference
coupled cluster methods on a test set composed of eight diatomic
molecules. Deviations of equilibrium bond lengths (re), harmonic
vibrational frequencies (ωe), anharmonicity constants (ωexe), and
dissociation energies (D0) with respect to experimental values.110 All
results were computed with the cc-pVQZ basis. Core orbitals were
frozen in the MR-DSRG and coupled cluster computations.
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kcal mol−1, respectively. The 4-fold commutator term yields re,
ωe, and ωexe that are nearly identical to those from the
untruncated BCH series.
In practice, the cost savings of truncating the BCH series

when using the NIVO approximations are small because
contributions past the first commutator are inexpensive to
compute. However, our results suggest that an alternative way
to approximate the BCH series could be to keep the first four
commutators, evaluating their contribution exactly.
4.2. Cyclobutadiene. Next, we consider the automeriza-

tion reaction of cyclobutadiene (CBD, C4H4). We study the
energy difference between the rectangular (D2h) energy
minimum and the square transition state (D4h).

115 This
reaction is a challenging chemistry problem for both
experiment and theory.115−127 Due to its instability, there are
no direct measurements of the reaction barrier, and experi-
ments performed on substituted cyclobutadienes suggest the
barrier height falls in the range of 1.6−10 kcal mol−1.116 In this
work, we optimize the equilibrium and transition state
geometries using finite differences of energies to compute
the barrier height. Specifically, we compare both DF-MR-
LDSRG(2)+NIVO and DF-sq-MR-LDSRG(2)+NIVO opti-
mized geometries to those obtained from the second-order
complete active space perturbation theory (CASPT2),4 the
partially contracted second-order n-electron valence state
perturbation theory (pc-NEVPT2),6 and the internally
contracted MRCI with singles and doubles plus the relaxed
Davidson correction (ic-MRCISD+Q)9,128 as implemented in
MOLPRO, and the state-specific MRCC of Mukherjee and co-
workers (Mk-MRCC)21,129 as implemented in PSI4.130

To reduce the computational cost, all MR-DSRG calcu-
lations performed two steps of the reference relaxation
procedure discussed in Section 2.1. A comparison of this
procedure with full reference relaxation using the cc-pVDZ
basis set shows errors of ca. 0.01 kcal mol−1 for absolute
energies, 0.0001 Å for bond lengths, and 0.001° for bond
angles. The Mk-MRCC implementation used in this work

neglects effective Hamiltonian couplings between reference
determinants that differ by three or more spin orbitals and
therefore yield approximate results when applied to the
CAS(4e,4o) reference considered here. To guarantee con-
vergence, we applied a Tikhonov regularization denominator
shift131 of 1 mEh in all Mk-MRCC calculations. All
computations utilized the cc-pVXZ (X = D, T, Q, 5) basis
sets,112 and the corresponding cc-pVXZ-JKFIT83 and cc-
pVXZ-RI114 auxiliary basis sets for DF-CASSCF and DF-
DSRG computations, respectively. The 1s core electrons of
carbon atoms were frozen in all post-CASSCF methods. All
results were computed using semicanonical CASSCF orbitals.
Preliminary computations using the cc-pVDZ basis using the

CAS(2e,2o) and CAS(4e,4o) active spaces revealed an
interesting aspect of this system. As shown in Figure 6, the

Table 2. Error Statistics for the Equilibrium Bond Lengths (re, in pm), Harmonic Vibrational Frequencies (ωe, in cm−1),
Anharmonicity Constants (ωexe, in cm−1), and Dissociation Energies (D0, in kcal mol−1) of the Eight Diatomic Molecules
Computed Using Various MR-DSRG Schemesa

DSRG-MRPT MR-LDSRG(2) sq-MR-LDSRG(2) DF-sq-MR-LDSRG(2)+NIVO

PT2 PT3 conv.b DF DF+NIVO conv.b DF DF+NIVO comm(2) comm(3) comm(4) CCSD CCSD(T)

re mean 0.63 0.41 0.30 0.30 0.30 0.28 0.28 0.28 0.28 0.28 0.28 −0.41 0.38

MAE 0.63 0.48 0.39 0.39 0.38 0.39 0.39 0.39 0.40 0.38 0.39 0.65 0.40

SD 0.85 0.74 0.49 0.50 0.49 0.48 0.48 0.48 0.49 0.48 0.48 0.92 0.57

max 2.07 1.96 1.15 1.15 1.15 1.10 1.10 1.10 1.11 1.10 1.09 2.13 1.36

ωe mean −11.2 7.2 11.2 11.1 11.1 11.8 11.9 11.8 13.0 11.9 11.9 54.9 −0.1
MAE 16.5 13.1 14.3 14.2 14.3 13.8 13.9 13.9 16.0 13.8 13.9 54.9 7.9

SD 20.0 19.0 22.0 21.9 22.0 21.9 22.1 22.1 26.3 21.6 22.2 64.5 10.7

max 38.3 36.1 53.2 52.8 53.7 51.2 51.8 51.9 64.5 50.3 52.3 99.3 24.5

ωexe mean 1.1 1.9 1.7 1.5 1.7 1.7 1.8 1.7 1.9 1.6 1.7 1.0 1.7

MAE 2.0 1.9 1.7 1.5 1.7 1.7 1.8 1.7 1.9 1.6 1.7 1.6 1.7

SD 2.4 2.5 2.3 2.1 2.3 2.3 2.6 2.3 2.6 2.2 2.3 2.6 2.6

max 4.2 4.9 4.7 4.1 4.8 4.8 5.7 4.7 5.9 4.4 4.8 6.2 6.2

D0 mean −5.2 0.2 −0.1 −0.1 −0.0 −0.3 −0.3 −0.3 −0.7 −0.3 −0.3 −9.5 −2.4
MAE 5.4 3.0 2.8 2.8 2.6 2.9 2.9 2.8 3.3 2.9 2.8 9.9 2.9

SD 6.9 3.6 3.7 3.7 3.5 3.9 3.8 3.8 4.1 3.9 3.8 11.8 3.3

max 12.7 6.0 7.9 7.8 7.5 8.4 8.4 8.3 8.6 8.4 8.2 21.9 5.6
aAll results were obtained using the cc-pVQZ basis and core orbitals were frozen in the MR-DSRG and CC computations. The statistical indices
are mean signed error (mean), mean absolute error (MAE), standard deviation (SD), and maximum absolute error (max). bComputed using
conventional four-index two-electron integrals.

Figure 6. Automerization barrier (Ea) of cyclobutadiene computed
using the DF-sq-MR-LDSRG(2)+NIVO theory with varying flow
parameters. Results were obtained using the cc-pVDZ basis set. We
also applied a Tikhonov regularization denominator shift131 of 1 mEh
in all Mk-MRCC calculations to guarantee convergence.
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s-dependency of the automerization barrier displays a
significantly different behavior for these two active spaces. In
both cases, the predicted activation energies change signifi-
cantly for small values of s (<0.2 Eh

−2), a normal trend observed
for all DSRG computations and due to the increased recovery
of dynamical correlation energy. Interestingly, while the
CAS(4e,4o) curve flattens out for larger values of s, the
CAS(2e,2o) curve shows a significant s-dependence in the
range s ∈ [0.5, 8] Eh

−2.
To understand the origin of this difference, we analyze the

double substitution amplitudes [tab
ij (s)] as a function of s for

both the equilibrium and transition state geometries, as shown
in Figure 7. In the CAS(2e,2o) case, we notice some
abnormally large amplitudes (indicated in red), some of
which are as large as 0.1. These amplitudes correspond to
excitations within the four π orbitals of CBD, and their large
value suggests that the CAS(2e,2o) space is insufficient to
capture all static correlation effects in CBD. The offending
amplitudes converge at different rates as s increases and
introduce a strong s-dependence in the energy barrier. Note
also that in the limit of s → ∞ there is a significant difference
in the barrier for the CAS(2e,2o) and CAS(4e,4o) spaces.
In contrast, in the CAS(4e,4o) computations all excitations

within the π orbitals are included in the active space and the
resulting DSRG amplitudes have absolute values less than 0.05.
Diverging amplitudes in computations with CAS(4e,4o)
reference wave functions, corresponding to intruder states,
can also be seen in Figure 7. Our results reported in Table 3
are all based on the flow parameter value s = 1.0 Eh

−2, which is
significantly far from the region (s > 5.0 Eh

−2) where amplitudes
begin to diverge, and at the same time leads to well-converged
absolute energies (see Figure S4 in the Supporting
Information). We also performed computations using s = 0.5
Eh
−2 to verify that the automerization energies computed with

different values of the flow parameter are consistent. In general,
the difference in automerization energies computed with s =

0.5 and 1.0 Eh
−2 is of the order of 0.6−0.7 kcal mol−1. Note that

intruder states are also encountered in Mk-MRCCSD
computations based on the CAS(4e,4o) reference and lead
to convergence issues that could be avoided only via Tikhonov
regularization.
Geometric parameters for the optimized structures and

energy barriers of CBD computed with the CAS(4e,4o)
reference are reported in Table 3. A comparison of the
CASSCF and correlated results shows that dynamical
correlation is important in this system as it increases the
energy barrier by about 1−3 kcal mol−1. Our best estimate for
the automerization barrier of CBD is 10.3 kcal mol−1 at the
DF-sq-MR-LDSRG(2)+NIVO/cc-pV5Z level of theory. This
value is likely to be slightly higher than the exact results since
in the Mk-MRCC results perturbative triples corrections
contribute to lowering the barrier by ca. 1.5 kcal mol−1. In
general, the MR-LDSRG(2) results are between those of Mk-
MRCCSD and Mk-MRCCSD(T), reinforcing the same
observation we made in the benchmark of diatomic molecules.
There is also good agreement between the MR-LDSRG(2)
results and the ic-MRCISD+Q and pc-NEVPT2 barriers (ca.
9−9.5 kcal mol−1), while CASPT2 results consistently
underestimate the barrier height by about 5 kcal mol−1. For
instance, at the D4h geometry the MR-LDSRG(2) C−C bond
length is 1.4446 Å, which is almost midway between the Mk-
MRCCSD (1.4406 Å) and Mk-MRCCSD(T) (1.4480 Å)
values. As expected, the differences between the traditional and
sequentially transformed MR-DSRG(2) results are negligible.
Our results in cc-pVDZ and cc-pVTZ bases also agree well
with other reported theoretical values, especially those
computed with multireference methods,115,118,121−126 and the
experimental range reported in ref 116 (see Supporting
Information for a list of theoretical predictions). Using our
new implementation, we were able to perform, for the first
time, nonperturbative multireference computations on cyclo-

Figure 7. Value of the DF-sq-MR-LDSRG(2)+NIVO double substitution amplitudes involving both alpha and beta electrons (A2
αβ) as a function of

the flow parameter s for the rectangular equilibrium and the square transition state of cyclobutadiene. All results were computed with the cc-pVDZ
basis set and do not include reference relaxation effects.
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butadiene using the cc-pV5Z basis (580 correlated orbitals) on
a single node with 128 GB of memory.

5. CONCLUSIONS

In this work, we describe a strategy to reduce the computa-
tional and memory costs of the multireference driven similarity
renormalization group (MR-DSRG). We demonstrate that the
cost of the linear MR-DSRG with singles and doubles [MR-
LDSRG(2)] can be lowered substantially without compromis-
ing its accuracy by using a combination of (1) a sequential
unitary transformation, (2) density fitting (DF) of the two-
electron integrals, and (3) the noninteracting virtual orbital
(NIVO) approximation. The sequential MR-DSRG scheme
introduced in this work [sq-MR-DSRG] reduces the cost of
evaluating single-excitations and allows to treat them exactly.

Like in the case of Brueckner coupled cluster values
reported,132−134 this approach reduces the number of algebraic
terms in the DSRG equations because there are no terms
(diagrams) containing single excitations. The use of DF
integrals reduces the memory requirements of the original MR-
DSRG(2) from N( )4 to N M( )2 , where N and M are the
number of basis functions and auxiliary basis functions,
respectively. Density fitting is particularly convenient when
combined with the sequential approach because the con-
tributions of singles can be directly included in the DF auxiliary
three-index integrals, reducing the integral transformation cost
from N( )5 to N M( )3 . The NIVO approximation neglects
the operator components of a commutator with three or more
virtual indices. A formal analysis of this approximation showed
that the leading error is of fourth order in perturbation theory.

Table 3. Automerization Reaction Barrier (Ea, in kcal mol−1) and Geometric Parameters (Bond Lengths in Å, Bond Angles in
Degrees) of Cyclobutadiene Computed with Various Multireference Methodsa

D2h D4h

method Ea C−Cb CCb C−H ∠C−C−Hc C−C C−H

cc-pVDZ (nV = 60)
CASSCF 6.49 1.5502 1.3567 1.0790 134.87 1.4472 1.0779
CASPT2 3.48 1.5603 1.3712 1.0916 134.94 1.4578 1.0910
pc-NEVPT2 8.33 1.5710 1.3609 1.0920 134.91 1.4566 1.0906
ic-MRCISD+Q 7.66 1.5732 1.3655 1.0924 134.92 1.4610 1.0914
Mk-MRCCSD 8.80 1.5733 1.3623 1.0931 134.91 1.4585 1.0920
Mk-MRCCSD(T) 7.56 1.5772 1.3699 1.0951 134.92 1.4652 1.0941
DF-MR-LDSRG(2)+NIVO (s = 0.5) 9.05 1.5710 1.3636 1.0923 134.90 1.4587 1.0908
DF-sq-MR-LDSRG(2)+NIVO (s = 0.5) 9.09 1.5709 1.3635 1.0922 134.90 1.4587 1.0907
DF-MR-LDSRG(2)+NIVO (s = 1.0) 8.56 1.5769 1.3660 1.0945 134.92 1.4624 1.0932
DF-sq-MR-LDSRG(2)+NIVO (s = 1.0) 8.62 1.5768 1.3659 1.0944 134.92 1.4623 1.0931

cc-pVTZ (nV = 160)
CASSCF 7.44 1.5475 1.3471 1.0694 134.83 1.4409 1.0683
CASPT2 3.87 1.5521 1.3552 1.0771 134.94 1.4451 1.0765
pc-NEVPT2 9.34 1.5617 1.3454 1.0774 134.91 1.4437 1.0760
ic-MRCISD+Q 8.93 1.5624 1.3480 1.0766 134.90 1.4464 1.0755
Mk-MRCCSD 10.09 1.5628 1.3452 1.0775 134.89 1.4442 1.0764
Mk-MRCCSD(T) 8.56 1.5671 1.3535 1.0797 134.90 1.4515 1.0786
DF-MR-LDSRG(2)+NIVO (s = 0.5) 10.57 1.5611 1.3465 1.0767 134.89 1.4447 1.0751
DF-sq-MR-LDSRG(2)+NIVO (s = 0.5) 10.60 1.5608 1.3463 1.0766 134.89 1.4446 1.0750
DF-MR-LDSRG(2)+NIVO (s = 1.0) 9.87 1.5668 1.3488 1.0789 134.91 1.4483 1.0775
DF-sq-MR-LDSRG(2)+NIVO (s = 1.0) 9.93 1.5666 1.3487 1.0788 134.91 1.4481 1.0774

cc-pVQZ (nV = 324)
CASSCF 7.53 1.5467 1.3462 1.0689 134.84 1.4400 1.0678
CASPT2 3.87 1.5488 1.3520 1.0763 134.98 1.4418 1.0757
pc-NEVPT2 9.49 1.5584 1.3421 1.0766 134.95 1.4403 1.0751
ic-MRCISD+Q 9.15 1.5587 1.3443 1.0758 134.94 1.4427 1.0746
Mk-MRCCSD 10.28 1.5591 1.3417 1.0768 134.94 1.4406 1.0756
Mk-MRCCSD(T) 8.69 1.5634 1.3500 1.0791 134.95 1.4480 1.0779
DF-MR-LDSRG(2)+NIVO (s = 0.5) 10.89 1.5576 1.3427 1.0759 134.94 1.4410 1.0743
DF-sq-MR-LDSRG(2)+NIVO (s = 0.5) 10.92 1.5575 1.3426 1.0759 134.94 1.4409 1.0742
DF-MR-LDSRG(2)+NIVO (s = 1.0) 10.16 1.5634 1.3452 1.0782 134.96 1.4447 1.0768
DF-sq-MR-LDSRG(2)+NIVO (s = 1.0) 10.21 1.5631 1.3451 1.0781 134.96 1.4446 1.0766

cc-pV5Z (nV = 568)
DF-MR-LDSRG(2)+NIVO (s = 0.5)d 10.94
DF-sq-MR-LDSRG(2)+NIVO (s = 0.5)d 10.96
DF-MR-LDSRG(2)+NIVO (s = 1.0)d 10.26
DF-sq-MR-LDSRG(2)+NIVO (s = 1.0)d 10.30

aAll computations employed the CAS(4e,4o) reference and core orbitals constructed from carbon 1s orbitals were frozen for all post-CASSCF
computations. The number of virtual orbitals (nV = NV/2) is reported for each basis set. bC−C and CC refer to the longer and shorter carbon−
carbon bonds, respectively. c∠C−C−H is the bond angle between the C−H bond and the longer C−C bond. dBased on the corresponding cc-
pVQZ optimized geometries.
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In practice, NIVO is crucial to both avoiding the memory
bottleneck of the MR-DSRG(2) and reducing the computa-
tional cost to evaluate the transformed Hamiltonian.
To benchmark the MR-LDSRG(2) and sq-MR-LDSRG(2)

approaches and assess the impact of the DF and NIVO
approximations, we computed the spectroscopic constants of
eight diatomic molecules using the full-valence active space
and the cc-pVQZ basis set. Compared to experimental data,
both MR-DSRG methods yield results that are as accurate as
those obtained with CCSD(T). Moreover, the DF-sq-MR-
LDSRG(2)+NIVO results are almost identical to those
computed without the NIVO approximation: the harmonic
vibrational frequencies, anharmonicity constants, and dissoci-
ation energies only differ by, on average, 0.1 cm−1, 0.1 cm−1,
and 0.2 kcal mol−1, respectively. These results supports our
claim that the speedup brought by the NIVO approximation
does not sacrifice the accuracy of both variants of the MR-
LDSRG(2).
Combining DF and the NIVO approximation, both the

traditional and sequential MR-LDSRG(2) can be routinely
applied to chemical systems with more than 500 basis function.
We demonstrate this point by studying the automerization
reaction of cyclobutadiene using a quintuple-ζ basis set (580
basis functions). Our best estimate of the reaction barrier from
DF-sq-MR-LDSRG(2)+NIVO/cc-pV5Z is 10.3 kcal mol−1.
However, we expect that this result is likely overestimated due
to the lack of three-body corrections in the MR-LDSRG(2)
theory. Our results agree well with Mk-MRCCSD predictions
and other multireference coupled cluster values reported in the
literature.
In conclusion, we have shown that it is possible to

significantly reduce the cost of MR-LDSRG(2) computations
without reducing the accuracy of this approach. The sequential
approach and NIVO approximations are general, and can be
applied to improve the efficiency of other unitary non-
perturbative methods (e.g., unitary coupled cluster theory) and
downfolding schemes for classical-quantum hybrid algo-
rithms.47
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Cholesky decomposition: Coulomb and exchange energies. J. Chem.
Phys. 2008, 129, 134107.
(78) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. Atomic
Cholesky decompositions: A route to unbiased auxiliary basis sets for
density fitting approximation with tunable accuracy and efficiency. J.
Chem. Phys. 2009, 130, 154107.
(79) Parrish, R. M.; Sherrill, C. D.; Hohenstein, E. G.; Kokkila, S. I.
L.; Martínez, T. J. Communication: Acceleration of coupled cluster
singles and doubles via orbital-weighted least-squares tensor hyper-
contraction. J. Chem. Phys. 2014, 140, 181102.
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(90) Haẗtig, C.; Weigend, F. CC2 excitation energy calculations on
large molecules using the resolution of the identity approximation. J.
Chem. Phys. 2000, 113, 5154−5161.
(91) Pedersen, T. B.; Sanchez de Meraś, A. M. J.; Koch, H.
Polarizability and optical rotation calculated from the approximate
coupled cluster singles and doubles CC2 linear response theory using
Cholesky decompositions. J. Chem. Phys. 2004, 120, 8887−8897.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00353
J. Chem. Theory Comput. 2019, 15, 4399−4414

4412

http://dx.doi.org/10.1021/acs.jctc.9b00353


(92) Rendell, A. P.; Lee, T. J. Coupled-cluster theory employing
approximate integrals: An approach to avoid the input/output and
storage bottlenecks. J. Chem. Phys. 1994, 101, 400−408.
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