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M o l e c u l a r P h y s i c s , 1996, V o l . 89, N o . 2, 645± 661

Third-order multireference perturbation theory

The CASPT3 method

By HANS-JOACHIM WERNER

Institut fu$ r Theoretische Chemie, Universita$ t Stuttgart, PfaŒenwaldring 55,

D-70569 Stuttgart, Germany

(Recei Š ed 13 January 1996 ; accepted 22 February 1996)

Rayleigh± Schro$ dinger perturbation theory is applied to compute second
and third-order correlation energies using complete active space self-consistent

® eld (CASSCF) zeroth-order wavefunctions. The ® rst-order wavefunction is

expanded in a basis of internally contracted con® gurations. The zeroth-order
Hamiltonian is a sum of one-electron eŒective Fock operators, which are

invariant to unitary transformations among the active orbitals. Comparisons

with FCI data are made for the singlet± triplet splitting of CH
#

and the barrier
height and exothermicity of the F ­ H

#
reaction. Potential energy functions and

spectroscopic data are computed for C
#
, CN, CO, CF, N

#
, NO, O

#
, and F

#
using

large basis sets. It is demonstrated that the third-order results (CASPT3) are
signi® cantly more accurate than the second-order (CASPT2) ones. The

equilibrium distances and harmonic frequencies obtained with CASPT3 are

found to be as accurate as MRCI and RCCSD(T) values, while dissociation
energies are generally somewhat too small. Modi® cations of the zeroth-order

Hamiltonian as recently proposed by Andersson are found to have a much

smaller eŒect on the third-order energies than on the second-order ones.

1. Introduction

One of the simplest and most popular methods for treating electron correlation

eŒects is second-order M ù ller± Plesset perturbation theory (MP2) [1]. This works quite

well for non-degenerate ground states of closed-shell molecules, but in its simplest

form it is restricted to closed-shell single determinant reference functions. Open-shell

cases can be treated most easily with UHF reference functions [2, 3], but then often

suŒer from spin-contamination problems [4 ± 7]. More recently, various spin-adapted

open-shell M ù ller± Plesset perturbation theories have been developed [8± 18]. The

application of such methods is limited to cases in which the wavefunction is strongly

dominated by a single con® guration. Problems may arise in the case of near

degeneracies or in the presence of low lying excited states, which may lead to poor

convergence or even divergence of the M ù ller± Plesset perturbation expansion [6, 9, 10,

14, 17].

It is therefore generally desirable to generalize M ù ller± Plesset perturbation theory

to multicon® guration reference functions, which are properly spin adapted and

account for strong non-dynamical correlation eŒects. Many variants of quasi-

degenerate multireference perturbation theory [19± 26] have been proposed in the past,

but the success of such methods has been quite limited. This is due to the di� culty of

practical implementation, and also to the so called intruder-state problem, which

causes singularities when one or more reference states become (nearly) degenerate with

a state in the complementary con® guration space.

A simpler approach has been suggested in 1982 by Roos et al. [27]. They used a
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646 H.-J.Werner

CASSCF wavefunction as zeroth-order approximation, and expanded the ® rst-order

wavefunction in the space of internally contracted con® gurations [28± 32], which are

obtained by applying spin-coupled single and double excitation operators to the

complete CASSCF reference function. From the ® rst-order wavefunction the second-

order correlation energy was computed. The complete set of singly and doubly excited

internally contracted con® gurations spans exactly the ® rst-order interacting space

[28], but in the original work of Roos et al. [27] only double excitations with two

electrons in external (secondary) orbitals have been considered. The zeroth-order

Hamiltonian was constructed from an averaged Fock-matrix and assumed to be

diagonal in the con® guration space. In 1987, Wolinski and Pulay [33, 34] developed a

generalized M ù ller± Plesset perturbation (GMP) theory which is similar to the method

of Roos et al. [27], but also included the important semi-internal and internal

con® guration spaces. A non-diagonal zeroth-order Hamiltonian was used, and the

® rst-order wavefunction was obtained by solving a linear set of equations. Their

implementation was restricted to cases with two reference determinants and was called

GMP2 (generalized second-order M ù ller± Plesset perturbation theory). Third-order

energies (GM P3) were computed for some two-electron systems [33]. In 1990,

Andersson et al. [35] generalized the earlier method of Roos et al. [27] by also including

the internal and semi-internal con® guration spaces using CASSCF reference functions.

Initially, a diagonal zeroth-order Hamiltonian was employed, but this restriction was

lifted at a later stage [36]. Their method has become well known as CASPT2 and has

been successfully used in many applications.

It has even recently been argued [37] that non-diagonal zeroth-order Hamiltonians

are disadvantageous, since very large sets of linear equations must be solved. This is

not quite so, however. Firstly, the equations can easily be solved iteratively in a direct

way, and the cost for each iteration is low since only one-electron matrix elements are

required. Secondly, the zeroth-order Hamiltonian can be brought to a sparse block-

diagonal form (see section 2), which makes convergence very fast (5± 10 iterations). A

major advantage of using a non-diagonal operator is that it only depends on the

density of the reference wavefunction and is invariant to unitary transformations

among certain orbital subsets. This applies to the inactive, active or virtual subspaces

when complete active space (CASSCF) reference functions are used. Therefore, also

the second-order and higher-order energies are invariant with respect to such trans-

formations. Serious problems can occur when such invariance properties are not

ful® lled, in particular for cases with degenerate open-shell orbitals [38, 39].

Even though the CASPT2 method of Roos et al. [27, 35, 36] and the GM P2

method of W olinski and Pulay [33, 34] are not considered as degenerate perturbation

theories, they allow the treatment of molecules and states for which the wavefunction

is dominated by several con® gurations. This makes it possible to describe the

dissociation of molecular bonds correctly and to compute global potential energy

surfaces. M urphy and Messmer [40, 41] developed a closely related method, which

diŒers from the GMP2 and CASPT2 methods by expanding the ® rst-order

wavefunction in a set of uncontracted con® gurations. These were obtained by

applying excitation operators to each individual reference con® guration. Second-

order (GMP2) and third-order (GMP3) energies were computed for H
#
O, CH

#
[40],

N
#
, and O++

#
[41] using small basis sets. It was found that the third-order corrections are

in some cases quite sizeable, in particular for the singlet-triplet splitting of CH
#
. Other

second-order multireference perturbation methods, which use uncontracted con-

® gurations and diagonal zeroth-order Hamiltonians, have been proposed by Hirao
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Third-order multireference perturbation theory 647

[42± 44] and Kozlowski and Davidson [37, 45, 46]. The disadvantage of using

uncontracted con® gurations is that the size of the con® guration space increases

strongly with the number of reference con® gurations. On the other hand, the internally

contracted con® gurations as used in [33 ± 36] are non-orthogonal and have a very

complicated structure. Orthogonalization is necessary at least at an intermediate stage

and may be di� cult for the internal- and semi-internal con® gurations, since in these

cases the overlap matrices may become very large.

In the present work we use a compromise of both methods, which appears to be

computationally most e� cient. The doubly external con® gurations, which represent

the largest part of the con® guration space but are easily orthogonalized [30± 32], are

internally contracted. On the other hand, the internal and semi-internal con® guration

spaces are left uncontracted. The same strategy is used in our internally contracted

M RCI program [32, 47], which forms the basis for the present implementation. Our

method is applicable to arbitrary MCSCF reference wavefunctions and allows the

computation of second-order (GM P2) and third-order (GMP3) energies. For the case

in which CASSCF reference functions are used, as is the case for all applications

presented in this paper, the method is denoted CASPT3. W ith a single closed-shell

reference determinant, the method reduces to standard M P3. In section 2 we will

de ® ne our ® rst-order wavefunction and zeroth-order Hamiltonian. The method has

been applied to the calculation of spectroscopic properties of a number of diatomic

molecules using large basis sets. In section 3 we will compare the CASPT2 and

CASPT3 results to MRCI (multireference con® guration interaction) and MR-ACPF

(multireference averaged coupled pair functional) [48, 49] calculations performed with

exactly the same one-electron and many-electron basis sets. It will be demonstrated

that the third-order results obtained with CASSCF reference functions are signi® cantly

more accurate than the second-order ones. The equilibrium distances and harmonic

frequencies obtained with CASPT3 are found to be as accurate as MRCI and

CCSD(T) (coupled-cluster with perturbative corrections for triple excitations) values.

2. Theory

As is usual practice, we partition the orbital space into closed-shell (inactive),

acti Š e, and external (secondary) orbitals according to their occupancies in the

reference wavefunction. External orbitals are unoccupied and closed-shell orbitals are

doubly occupied in all reference con® gurations, while all kinds of excitations are

allowed within the active space. In all calculations reported in this paper, we use

complete active space (CAS) reference functions, even though our method is not

restricted to this case. The inactive and active orbitals together form the internal

orbital space and are denoted by indices i, j, k ¼ . External orbitals are denoted by the

indices a, b, c ¼ , and any orbitals by r, s, t ¼

Accordingly, the con® guration space can be partitioned into internal con-

® gurations r I ª 3 U
I
, singly external con® gurations r S aª 3 U a

S
, and doubly external

con® gurations r Pabª 3 U ab
P

, where S and P denote N-1 and N-2 electron hole states,

respectively, in the internal space. The reference con® gurations r R ª 3 U
R

form a

subset of the internal con® guration space. The N-2 electron con® gurations P are

obtained by annihilation of two electrons from any of the reference con® gurations.

Subsequently, the N-1 electron con® gurations S are generated by adding one electron

to an internal orbital of the P con® gurations. The internal single and double
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648 H.-J.Werner

excitations U
I

are ® nally obtained by adding one electron to the S con® gurations. All

possible spin couplings for each orbital occupancy are included.

For the multireference perturbation treatment, it appears natural to include in the

® rst-order wavefunction only con® gurations which interact directly with the reference

function via the complete Hamiltonian. As has been shown by M eyer [28], the

interacting space is exactly spanned by a linearly independent subset of the internally

contracted con® gurations U rt
su

¯ EW
rs

EW
tu

r 0 ª , where

r 0 ª 3 W (! ) ¯ 3
R

c(! )
R

r R ª (1)

is the normalized reference wavefunction and EW
rs

are the usual spin-coupled one-

particle excitation operators. The internally contracted con® gurations can be

expressed as linear combinations of uncontracted CSFs with the same external but

diŒerent internal parts. For a given number of correlated orbitals, the number of

contracted functions is independent of the number of reference con® gurations, and for

cases with many reference con® gurations much smaller than the complete set of

uncontracted CSFs [28± 32]. E� cient internally contracted MRCI methods have been

developed by the present author together with Reinsch [30] and Knowles

[32, 47, 49, 50]. It has been shown in numerous applications of these methods that the

internal contraction has very little eŒect on the results, but signi® cantly reduces the

computational eŒort and the storage requirements. In the context of multireference

perturbation theory, internally contracted con® gurations have been used by Roos et

al. [27], Wolinski and Pulay [33, 34], Andersson et al. [35, 36], and Dyall [51].

A complication arises from the fact that the contracted con® gurations are in

general non-orthogonal and may also be linearly dependent [28 ± 32]. De® ning the

doubly external con® gurations as

U ab
ijp

¯ "
#

(EW
ai

EW
bj

­ pEW
bi

EW
aj

) r 0 ª with i & j, a & b, p ¯ ³ 1, (2)

where p ¯ ³ 1 denotes singlet and triplet coupling, respectively, of the external

electrons, the overlap is determined by the second-order density matrix of the

reference function [30 ± 32]

S(p)
ij,kl

¯ © 0 r EW
ik,jl

­ pEW
il,jk

r 0 ª . (3)

An orthogonal set of doubly external con® gurations r Dab,pª can be obtained, for

example, by symmetrical orthogonalization

r Dab,p ª ¯ 3
i& j

r U ab
ijp

ª T (p)
ij,D

, (4)

with T (p) ¯ [S (p)] Õ " /# . If the matrix S (p) has zero or very small eigenvalues, a

corresponding number of redundant pairs (ijp) is eliminated. It should be noted that

the r Dab,p ª are not normalized [31, 32].

The orthogonalization procedure is less simple for the contracted internal and

singly external con® gurations, since then the overlap matrices depend on the third-

and fourth-order density matrices and may become very large. Therefore, as in our

internally contracted MRCI method [32, 49, 50], but diŒerent from the GMP2 method

of Wolinski and Pulay [34] and the CASPT2 method of Andersson et al. [35, 36], we

decided to use uncontracted functions for the internal and singly external con® guration
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Third-order multireference perturbation theory 649

spaces. This avoids the orthogonalization problem and simpli ® es the calculation of the

Hamiltonian matrix elements, but may introduce contributions of CSFs in the ® rst-

order wavefunction that do not interact directly with the reference function. As a

consequence, the second- and third-order energies are not exactly identical to the ones

which would be obtained using the contracted con® guration space. However, as will

be demonstrated in section 3, the diŒerences are usually very small and are not

expected to have any signi® cant eŒect on practical applications.

In the Rayleigh± Schro$ dinger perturbational treatment, the reference wavefunction

r 0 ª 3 W (! ) is taken as zeroth-order wavefunction, and the ® rst-order wavefunction is

expanded as

W (" ) ¯ 3
I 1 R

c(" )
I

r I ª ­ 3
S

3
a

cS
a

r S aª ­ 3
D

3
p

3
ab

C Dp
ab

r Dab,p ª , (5)

with C Dp
ab

¯ pC Dp
ba

. Since the reference wavefunction is an eigenfunction of HW in the

space of all reference con® gurations, the latter do not interact with the reference, i.e.,

© R r HW ® E
!
r 0 ª ¯ 0, and are therefore normally excluded from the ® rst-order wave-

function. Small higher-order contributions to the reference con® gurations can arise,

however, via their coupling with the other internal and singly external con® gurations.

Optionally, they can therefore be included, and then the orthogonality restriction,

© W (" )r W (! )ª ¯ 3
R

c(! )
R

c(" )
R

¯ 0, (6)

must be ful® lled. In all test calculations performed so far we found that inclusion of the

reference con® gurations in the ® rst-order wavefunction leads only to negligible

changes of the energies and potential energy functions.

The zeroth-order Hamiltonian is chosen to be

HW (! ) ¯ PW FW PW ­ QW FW QW , (7)

where the N-electron operator,

FW ¯ 3
rs

f
rs

EW
rs

, (8)

is constructed from an eŒective one electron Fock matrix f with elements

f
rs

¯ h
rs

­ 3
ij

© 0 r EW
ij
r 0 ª 9 (rs r ij) ®

1

2
(ri r js) : . (9)

The operators PW ¯ r 0 ª © 0 r and QW ¯ 1 ® PW project onto the reference wavefunction and

its orthogonal complement within the space of all con® gurations de® ned above. Due

to this simple construction, the reference function W (! ) is an eigenfunction of HW (! ) with

eigenvalue E (! ) ¯ © 0 r FW r 0 ª . The zeroth-order Hamiltonian HW (! ) is invariant with respect

to unitary transformations among the active or inactive orbitals of a CASSCF

reference function, and therefore the same is true for the CASPT2 and CASPT3

energies. For the case of closed-shell single reference functions, f becomes identical to

the closed-shell Fock matrix, and the method reduces to ordinary M ù ller± Plesset

perturbation theory.

Similar zeroth-order Hamiltonians have been used by Wolinski and Pulay [33, 34],

Andersson et al. [35, 36], and M urphy and Messmer [40, 41, 52]. They all used the
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650 H.-J.Werner

same operator FW , but somewhat diŒerent choices of projection operators. W olinski

and Pulay have neglected all couplings between the single and double excitations, i.e.,

the zeroth-order Hamiltonian was written as

HW (! ) ¯ PW FW PW ­ QW
S

FW QW
S
­ QW

D
FW QW

D
, (10)

where QW
S

and QW
D

project onto the subspaces of single and double excitations,

respectively. The coupling between singles and doubles was also absent in the original

CASPT2 method of Andersson et al. [35] (later denoted CASPT2D [36]), since the oŒ-

diagonal elements of f (in a pseudo-canonical basis) were neglected. Later the oŒ-

diagonal blocks were added, leading to the CASPT2N version [36]. A further minor

diŒerence concerns the orthogonal complement of the reference wavefunction in the

subspace of all reference CSFs. Since this space does not interact directly with the

reference function it has been explicitly excluded from the ® rst-order wavefunction by

Andersson et al. [35, 36]. As discussed above, we normally exclude this con-

® guration space as well. In their GMP2 method, Wolinski and Pulay have included all

internally contracted internal con® gurations EW
ij

r 0 ª and EW
ij

EW
kl

r 0 ª (orthogonalized on

r 0 ª and among themselves), while M urphy and Messmer [40] used an uncontracted

con® guration space obtained by applying these operators to each individual reference

con® guration, with exclusion of con® gurations contained in the reference set.

Other forms of the zeroth-order Hamiltonian have been discussed extensively in

the literature [37, 42 ± 46, 51, 53]. In many of these methods, correction terms are added

to the one-electron Fock operator (equation (9)), with the aim of improving the

convergence of the perturbation expansion in open-shell cases. Here we consider only

the modi® cations recently proposed by Andersson [53], which were denoted by g
"
, g

#
,

and g
$
. These have the eŒect of enlarging the energy gap between the active and virtual

orbitals, in particular for states with many open shells. It was demonstrated for several

examples that these modi® cations may lead to improved CASPT2 results. We coded

all three versions and will present third-order (CASPT3) results in section 3. It will be

shown that the third-order results are much less sensitive to the choice of HW (! ) than the

second-order ones.

The coe� cients of the ® rst-order wavefunction are obtained by solving the set of

linear equations

r
I
¯ © I r HW (! )® E (! )r W (" )ª ­ © I r HW ® E

!
r 0 ª ¯ 0, (11)

rS
a

¯ © Sar HW (! )® E (! )r W (" )ª ­ © Sar HW r 0 ª ¯ 0, (12)

RDp
ab

¯ © Dab,pr HW (! )® E (! )r W (" )ª ­ © Dab,pr HW r 0 ª ¯ 0, (13)

subject to the auxiliary condition (6) (which is automatically ful® lled if the reference

con® gurations are excluded from the ® rst-order wavefunction). The reference energy

E
!

and the second and third-order correlation energies are given by

E
!

¯ E (! )­ E (" ) ¯ © W (! )r HW r W (! )ª , (14)

E (# )
corr

¯ © W (" )r HW r W (! )ª , (15)

E ($ )
corr

¯ © W (! )­ W (" )r HW ® E
!
r W (! )­ W (" )ª . (16)

The linear equations (11) ± (13) are solved iteratively using the Gauss ± Seidel procedure.

Convergence can be improved, for example, by DIIS (direct inversion of the iterative

subspace) [54]. In each iteration, the residuals r
I
, rS

a
, and RDp

ab
must be computed. The

explicit expressions of these quantities are quite simple and can easily be obtained from

the corresponding MRCI equations given by W erner and Knowles [32]. Only a few
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Third-order multireference perturbation theory 651

additional remarks will be made here. In matrix notation, the internal ± internal,

single ± single, and pair ± pair contributions in equations (11) ± (13) are given by

r
I
¯ 3

ij

f
ij

3
I«

© I r EW
ij
r I « ª c(" )

I « ­ ¼ , (17)

rS ¯ f [ cS ­ 3
ij

f
ij

3
S «

© S r EW
ij
r S « ª cS « ­ ¼ , (18)

RDp ¯ f [ CDp­ 3
D«

c (p)
D,D« CD« p ­ ¼ . (19)

The matrices f , RDp, C Dp and vectors rS, c S are de® ned in the external orbital subspace

only. Since the energy is invariant with respect to unitary transformations in the

external space, the external orbitals can be chosen such that f is diagonal. If a complete

active space reference is used, one can also diagonalize the active ± active and

inactive± inactive parts of the Fock matrix f
ij
. Thus, if both i and j refer to either active

or inactive orbitals, only diagonal contributions i ¯ j, I ¯ I « , and S « ¯ S will survive in

equations (17) and (18). Furthermore, the matrix,

c (p)
D,D« ¯ 3

i& j

T (p)
ij,D

3
k& l

T (p)
kl,D« 3

mn

f
mn

© 0 r EW
ik,jl,mn

­ pEW
jk,il,mn

r 0 ª , (20)

can be precomputed and diagonalized (separately for each p). Then a new set of

orthogonal doubly external con® gurations can be de® ned by

[U (p)‹ c (p)U (p)]
D,D« ¯ d

D,D« c h D, (21)

Th (p) ¯ T(p)[ U (p), (22)

r Dh ab,p ª ¯ 3
i& j

r U ab
ijp

ª Th (p)
ij,D

, (23)

which also makes the pair-pair block © Dh ab,p r HW (! )r Dh « cd,qª diagonal. These block

diagonalizations not only reduce the computational eŒort, but also considerably speed

up the convergence. A similar blocking technique has been used by Andersson et al.

[36]. It should be noted, however, that our program is completely general and does

neither require CASSCF reference functions, nor a block diagonal Fock matrix.

In order to compute the third-order energy, it is necessary to evaluate the matrix

element © W (" )r HW r W (" )ª . Since the oŒ-diagonal blocks need to be computed only once,

the computational eŒort is somewhat less than for one iteration of the MRCI. The

explicit expressions needed can be found in reference [32]. An e� cient method of

evaluating the coupling coe� cients and density matrices has been described in

reference [47].

3. Applications

The method described in the previous section has been implemented into the

M OLPRO [55] package of ab initio programs by modifying the existing MRCI code

[32, 47]. In this section we present some preliminary applications and investigate the

accuracy of the second-order and third-order energies by comparison with full

con® guration interaction (FCI) and MRCI results.

As a ® rst test, we computed energies of the lowest " A
"

and $ B
"

states of CH
#

using

a double-zeta plus polarization (DZP) basis set, for which the FCI results of

Bauschlicher and Taylor [56] are available. Using the same basis set, Andersson et al.

[36, 53] performed CASPT2 calculations with various diŒerent active reference spaces.
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652 H.-J.Werner

They found that the CASPT2 with full-valence CASSCF reference functions give a

singlet-triplet splitting that is almost 4 kcal mol Õ " larger than the FCI result. The

CASPT2 excitation energy converged only rather slowly to the FCI result when the

reference space was increased. Messmer and Murphy [40] have carried out GM P2 and

GMP3 calculations using the full valence reference spaces, and found that the third-

order contribution reduces the splitting by almost 3 kcal mol Õ " , bringing it into much

better agreement with the FCI value. In table 1 our results are compared to the

previous calculations. First we notice that for all active spaces our CASPT2 energies

are very close to the ones of Andersson et al. [36, 53], despite the fact that we use a

partly uncontracted basis. As expected, our CASPT2 energies are slightly lower than

the CASPT2N values of reference [36], but not as low as the GMP2 energies of

M essmer and Murphy [40], who used a completely uncontracted basis. Somewhat

unexpectedly, our third-order energies are lower than the GMP3 values. This might be

due to contributions of the non-interacting spin-couplings of singly external

con® gurations, which are included in our calculation but not in the GMP3.

Nevertheless, the computed GM P3 and CASPT3 energy splittings are in close

agreement.

We have also performed calculations using various larger reference spaces. It is

found that the CASPT3 energies and energy splittings converge towards the FCI

results considerably faster than the CASPT2 ones, but more slowly than the MRCI

values. The best CASPT3 values (obtained with up to 9786 reference CSFs) are within

about 1 mH of the FCI energies, and in no case are the CASPT2 or CASPT3 energies

lower than the FCI energies. Surprisingly, this was the case for a calculation with a

diagonal HW (! ) in [40], but not in the corresponding CASPT2D calculation of [36].

Recently, Andersson [53] has proposed three diŒerent modi® cations (denoted g
"
,

g
#
, and g

$
) of the zeroth-order Hamiltonian, which considerably improved the

CASPT2 energy splittings. We have carried out CASPT3 calculations with these

modi® ed Hamiltonians using the same active spaces as in [53]. Our computed CASPT2

energy splittings agree with the ones given in [53] within 0 ± 01 kcal mol Õ " for all three

versions and all active spaces. The CASPT3(g
i
) (i ¯ 1± 3) diŒer by only 0 ± 02± 0 ± 05 kcal

mol Õ " , and therefore only results for the g
"

version are presented in table 1. It is found

that the CASPT3(g
"
) energy splittings are in better agreement with the FCI values than

the ones obtained without the modi® cation, but the eŒect is much smaller than in

second order. For instance, for the smallest active space the g
"

operator reduces the

second-order energy splitting by 2 ± 2 kcal mol Õ " , while in third-order the eŒect is only

0 ± 4 kcal mol. Calculations for CH
#

with other zeroth-order Hamiltonians have been

performed by Hirao [43], Kozlowski and Davidson [46, 37], and Dyall [51]. The results

are quite similar to the present CASPT2(g
"
) values and we refer to the literature for a

comparison.

Secondly, we have computed potential energy functions for a number of diatomic

molecules with quite diŒerent electronic structure (open- and closed-shell, single,

double and triple bonds). In all cases the correlation consistent valence quadruple zeta

(cc-pVQZ) basis sets of Dunning [57] have been used. These include [5s4p3d2f1g]

contracted functions for the ® rst-row atoms. For N
#
, F

#
, and O

#
additional calculations

with the quintuple zeta basis sets (cc-pV5Z, [6s5p4d3f2g1h]) have been performed.

Full valence CASSCF reference functions have been used in all cases. For comparison,

M RCI and MR-ACPF [48, 49]) calculations with the same basis sets and con® guration

spaces, as well as spin-restricted single reference coupled cluster (RCCSD(T)) [58, 59]

calculations have been carried out. The 1s core orbitals were not correlated. For each
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Third-order multireference perturbation theory 653

Table 1. Comparison of diŒerent correlation treatmentsa for the " A
"

and $ B
"

states of CH
#
.

Energy (au) Exc. Energy
Method Reference " A

"
$ B

"
(kcal mol Õ " )

Active space (3210)b
CASSCF ® 38 ± 945529 ® 38 ± 965954 12 ± 82

CASPT2 ® 39 ± 013092 ® 39 ± 037695 15 ± 44
CASPT2 [36, 53] ® 39 ± 013078 ® 39 ± 037664 15 ± 43

CASPT2(g
"
) ® 39 ± 012883 ® 39 ± 033939 13 ± 21

CASPT2(g
"
) [53] ® 39 ± 012868 ® 39 ± 033906 13 ± 20

CASPT3 ® 39 ± 023374 ® 39 ± 043766 12 ± 80

CASPT3(g
"
) ® 39 ± 023397 ® 39 ± 043155 12 ± 40

GMP2 [40] ® 39 ± 01331 ® 39 ± 03794 15 ± 45

GMP3 [40] ® 39 ± 02322 ® 39 ± 04338 12 ± 65

MRCI ® 39 ± 025362 ® 39 ± 044360 11 ± 92

FCIc ® 39 ± 027284 ® 39 ± 046348 11 ± 96

Active space (4220)b
CASSCFd ® 38 ± 968726 ® 38 ± 982741 8 ± 79

CASPT2 ® 39 ± 017120 ® 39 ± 038707 13 ± 54

CASPT2 [36, 53] ® 39 ± 017092 ® 38 ± 038660 13 ± 53

CASPT2(g
"
) ® 39 ± 017026 ® 39 ± 036436 12 ± 18

CASPT2(g
"
) [53] ® 39 ± 016998 ® 39 ± 036392 12 ± 17

CASPT3 ® 39 ± 024593 ® 39 ± 044195 12 ± 30

CASPT3(g
"
) ® 39 ± 024599 ® 39 ± 043671 11 ± 97

MRCI ® 39 ± 026429 ® 39 ± 045366 11 ± 88

FCIc ® 39 ± 027284 ® 39 ± 046355 11 ± 97

Active space (7331)b
CASSCF ® 39 ± 007032 ® 39 ± 025395 11 ± 52

CASPT2 ® 39 ± 023760 ® 39 ± 043345 12 ± 29

CASPT2 [53] ® 39 ± 023749 ® 39 ± 043334 12 ± 29

CASPT2(g
"
) ® 39 ± 023732 ® 39 ± 043036 12 ± 11

CASPT2(g
"
) [53] ® 39 ± 023721 ® 39 ± 043024 12 ± 11

CASPT3 ® 39 ± 025954 ® 39 ± 045359 12 ± 18
CASPT3(g

"
) ® 39 ± 025951 ® 39 ± 045299 12 ± 14

MRCI ® 39 ± 027223 ® 39 ± 046303 11 ± 97

FCIc ® 39 ± 027286 ® 39 ± 046362 11 ± 97

aBasis set and geometries (see [56]).

b The numbers in parenthesis are the number of active orbitals in the a
"
, b

#
, b

"
, and a

#symmetries, respectively. The 1a
"

orbital is inactive and uncorrelated in all cases.

c FCI results obtained with the corresponding CASSCF orbitals. The energies for the
diŒerent space diŒer slightly due to diŒerent 1a

"
orbitals, which are not correlated.

d In this case a lower CASSCF energy for the $ B
"

state could be obtained, depending on the

starting orbitals. The given energy corresponds to the one in [36] but is a local minimum.

molecule, energies have been computed for at least 10 geometries, and spectroscopic

constants have been obtained from polynomial ® ts of ninth degree to these points.

Variations of the degree or the number of points had virtually no eŒect on the

computed spectroscopic constants. For the multireference methods, dissociation

energies have been computed as diŒerence of the energy at a very large distance and
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654 H.-J.Werner

Table 2. Spectroscopic constants for closed-shell diatomic moleculesa.

Method
E(r

e
)

(hartree)
r
e

(A/ )
B

e
(cm Õ " )

a
e

(cm Õ " )
x

e
(cm Õ " )

x
e
x

e
(cm Õ " )

D
e

(eV)

C
#
(X " R +

g
) :

CASPT2 ® 75 ± 793288 1 ± 2479 1 ± 804 0 ± 0174 1844 ± 9 12 ± 83 6 ± 27
CASPT3 ® 75 ± 793858 1 ± 2443 1 ± 815 0 ± 0171 1870 ± 0 12 ± 64 6 ± 08

MRCI ® 75 ± 794412 1 ± 2469 1 ± 807 0 ± 0173 1851 ± 4 12 ± 80 6 ± 24

MRCI ­ Q ® 75 ± 801903 1 ± 2475 1 ± 805 0 ± 0175 1845 ± 3 13 ± 00 6 ± 18

MRACPF ® 75 ± 800260 1 ± 2474 1 ± 806 0 ± 0175 1846 ± 6 12 ± 96 6 ± 19

Experiment 1 ± 2425 1 ± 820 0 ± 0176 1854 ± 7 13 ± 34 6 ± 32

N
#
(X " R +

g
) :

CASPT2 ® 109 ± 384689 1 ± 1023 1 ± 982 0 ± 0174 2332 ± 6 14 ± 51 9 ± 37
CASPT3 ® 109 ± 397249 1 ± 1011 1 ± 986 0 ± 0171 2350 ± 7 14 ± 09 9 ± 59

MRCI ® 109 ± 389591 1 ± 1011 1 ± 986 0 ± 0171 2349 ± 5 14 ± 14 9 ± 71
MRCI ­ Q ® 109 ± 403917 1 ± 1021 1 ± 983 0 ± 0172 2341 ± 6 14 ± 23 9 ± 66

MRACPF ® 109 ± 401682 1 ± 1019 1 ± 983 0 ± 0172 2342 ± 5 14 ± 22 9 ± 67

Experiment 1 ± 0977 1 ± 998 0 ± 0173 2358 ± 6 14 ± 32 9 ± 90

CO(X " R +) :

CASPT2 ® 113 ± 164707 1 ± 1328 1 ± 916 0 ± 0176 2151 ± 4 13 ± 45 10 ± 84

CASPT3 ® 113 ± 178416 1 ± 1322 1 ± 918 0 ± 0173 2161 ± 9 13 ± 15 10 ± 97

MRCI ® 113 ± 171903 1 ± 1321 1 ± 919 0 ± 0173 2163 ± 3 13 ± 10 11 ± 13
MRCI ­ Q ® 113 ± 186224 1 ± 1333 1 ± 914 0 ± 0173 2154 ± 5 13 ± 15 11 ± 07

MRACPF ® 113 ± 184070 1 ± 1332 1 ± 915 0 ± 0173 2155 ± 4 13 ± 15 11 ± 07

Experiment 1 ± 1283 1 ± 931 0 ± 0175 2169 ± 8 13 ± 29 11 ± 22

F
#
(X " R +

g
) :

CASPT2 ® 199 ± 340289 1 ± 4216 0 ± 878 0 ± 0131 888 ± 2 11 ± 54 1 ± 57

CASPT3 ® 199 ± 343373 1 ± 4118 0 ± 890 0 ± 0135 911 ± 4 12 ± 67 1 ± 43

MRCI ® 199 ± 318874 1 ± 4162 0 ± 885 0 ± 0136 892 ± 9 12 ± 43 1 ± 46

MRCI ­ Q ® 199 ± 352133 1 ± 4158 0 ± 885 0 ± 0130 909 ± 5 11 ± 91 1 ± 56
MRACPF ® 199 ± 349884 1 ± 4163 0 ± 885 0 ± 0130 908 ± 4 11 ± 82 1 ± 56

Experiment 1 ± 4119 0 ± 890 0 ± 0138 916 ± 6 11 ± 24 1 ± 64

a Using basis cc-pVQZ [57].

the ® tted energy minimum. In the single reference cases, the asymptotic energies have

been obtained from separate atomic calculations.

The results for the closed-shell and open-shell molecules are presented in tables 2

and 3 respectively. The errors in the harmonic frequencies x
e

and equilibrium

distances r
e

relative to the experimental data are shown in ® g. 1. It is found that in all

cases the CASPT3 results are signi® cantly more accurate than the CASPT2 ones. The

values of r
e
, x

e
and anharmonicity constants x

e
x

e
are generally in very close agreement

with the MRCI values and in excellent agreement with experiment. With the exception

of C
#
, the deviations between theory and experiment for x

e
are smaller than 10 cm Õ " .

The root mean square (rms) errors for r
e
are 0 ± 0058 A/ (CASPT2), 0 ± 0028 A/ (CASPT3),

0 ± 0035 A/ (MRCI), 0 ± 0049 A/ (MR-ACPF), and 0 ± 0023 A/ [RCCSD(T)]. The rms errors

for x
e

are 20 ± 7 cm Õ " (CASPT2), 8 ± 4 cm Õ " (CASPT3), 10 ± 1 cm Õ " (MRCI), 11 ± 8 cm Õ "

(MR-ACPF), and 8 ± 8 cm Õ " [RCCSD(T)]. These values should not be taken too

literally, since neither the basis set is fully converged, nor are core-valence correlation

eŒects taken into account.
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Third-order multireference perturbation theory 655

Table 3. Spectroscopic constants for open-shell diatomic moleculesa.

Method
E(r

e
)

(hartree)
r
e

(A/ )
B

e
(cm Õ " )

a
e

(cm Õ " )
x

e
(cm Õ " )

x
e
x

e
(cm Õ " )

D
e

(eV)

CN(X # R +) :

CASPT2 ® 92 ± 579438 1 ± 1781 1 ± 880 0 ± 0173 2041 ± 2 13 ± 09 7 ± 56
CASPT3 ® 92 ± 586143 1 ± 1753 1 ± 889 0 ± 0172 2061 ± 9 12 ± 93 7 ± 58

MRCI ® 92 ± 581339 1 ± 1757 1 ± 887 0 ± 0172 2058 ± 9 12 ± 98 7 ± 69

MRCI ­ Q ® 92 ± 592928 1 ± 1766 1 ± 885 0 ± 0173 2053 ± 0 13 ± 07 7 ± 65

MRACPF ® 92 ± 590857 1 ± 1764 1 ± 885 0 ± 0173 2054 ± 0 13 ± 06 7 ± 65

Experiment 1 ± 1718 1 ± 900 0 ± 0174 2068 ± 6 13 ± 09 7 ± 89

NO(X # P ) :
CASPT2 ® 129 ± 737292 1 ± 1558 1 ± 690 0 ± 0178 1880 ± 6 14 ± 40 6 ± 31

CASPT3 ® 129 ± 745201 1 ± 1531 1 ± 698 0 ± 0173 1907 ± 9 13 ± 93 6 ± 34

MRCI ® 129 ± 732230 1 ± 1534 1 ± 697 0 ± 0174 1905 ± 0 14 ± 02 6 ± 41

MRCI ­ Q ® 129 ± 752906 1 ± 1550 1 ± 693 0 ± 0174 1894 ± 3 14 ± 05 6 ± 44

MRACPF ® 129 ± 750368 1 ± 1549 1 ± 693 0 ± 0174 1894 ± 8 14 ± 06 6 ± 43

Experiment 1 ± 1508 1 ± 672 0 ± 0171 1904 ± 2 14 ± 08 6 ± 73

CF(X # P ) :

CASPT2 ® 137 ± 617577 1 ± 2753 1 ± 409 0 ± 0185 1304 ± 3 11 ± 16 5 ± 31
CASPT3 ® 137 ± 630359 1 ± 2760 1 ± 408 0 ± 0182 1304 ± 9 10 ± 89 5 ± 43

MRCI ® 137 ± 618625 1 ± 2751 1 ± 410 0 ± 0181 1311 ± 2 10 ± 79 5 ± 53

MRCI ­ Q ® 137 ± 639439 1 ± 2793 1 ± 401 0 ± 0180 1294 ± 3 10 ± 57 5 ± 58

MRACPF ® 137 ± 637240 1 ± 2792 1 ± 401 0 ± 0181 1294 ± 6 10 ± 67 5 ± 57

Experiment 1 ± 2718 1 ± 417 0 ± 0184 1308 ± 1 11 ± 10 5 ± 83

O
#
(X $ R +

g
) :

CASPT2 ® 150 ± 163783 1 ± 2126 1 ± 434 0 ± 0158 1566 ± 1 11 ± 84 5 ± 12
CASPT3 ® 150 ± 159563 1 ± 2076 1 ± 446 0 ± 0159 1590 ± 9 12 ± 04 4 ± 89

MRCI ® 150 ± 142947 1 ± 2091 1 ± 442 0 ± 0158 1583 ± 8 11 ± 93 4 ± 91
MRCI ­ Q ® 150 ± 170306 1 ± 2117 1 ± 436 0 ± 0158 1573 ± 8 11 ± 81 4 ± 98

MRACPF ® 150 ± 167722 1 ± 2118 1 ± 436 0 ± 0158 1573 ± 2 11 ± 81 4 ± 97

Experiment 1 ± 2075 1 ± 446 0 ± 0159 1580 ± 2 11 ± 98 5 ± 21

a Using basis cc-pVQZ [57].

The results for the dissociation energies D
e

are less conclusive than for the bond

distances and frequencies. In most cases CASPT3 improves the results relative to

CASPT2, but this is not the case for C
#
, F

#
, and O

#
. Interestingly, these are the cases

in which the CASPT2 dissociation energies are in best agreement with the experimental

values. On the other hand, in the case of N
#
, the CASPT2 dissociation energy is much

too small, and quite signi® cantly improved by CASPT3 ( ­ 0 ± 22 eV). This may indicate

that in the former cases the perturbation expansion of correlation energies shows an

oscillatory behaviour as well known from single-reference M ù ller± Plesset theory. In

all cases the computed dissociation energies are smaller than the experimental values.

The errors of the CASPT3 values amount to 0 ± 2± 0 ± 3 eV for the closed-shell molecules

and to 0 ± 3± 0 ± 4 eV for the open-shell ones. Part of the deviations are due to basis set

de ® ciencies, but these are certainly not the only source of error. The MRCI,

M RCI ­ Q and M R-ACPF values are larger than the CASPT3 ones by 0 ± 07± 0 ± 15 eV,
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656 H.-J.Werner

Figure 1. DiŒerences of computed and experimental equilibrium distances r
e

(upper panel)
and harmonic frequencies x

e
(lower panel). Open circles : CASPT2, open triangles :

CASPT3, open squares : RCCSD(T), full circles : MRCI.

indicating that higher orders of perturbation theory would give signi® cant con-

tributions, even without extending the con® guration space to higher excitations.

Rather similar results have been obtained in an extensive CASPT2 study of

geometries and binding energies by Andersson and Roos [60]. In most cases (with the

exception of NO) their equilibrium distances are slightly longer than ours, and the

dissociation energies are somewhat smaller. This is attributed to the fact that their

basis sets did not include g-functions. Furthermore, the 2s-orbitals of nitrogen,

oxygen, and ¯ uorine were inactive in the CASSCF reference functions.

Table 4 shows a comparison of single-reference coupled-cluster calculations and

various multi-reference methods for the homonuclear diatomics N
#
, O

#
, and F

#
, using

the larger cc-pV5Z basis. The improvement of the basis set slightly reduces the r
e

values, bringing them into better agreement with experiment. The harmonic

frequencies x
e

are increased, and for O
#

and F
#

they now become somewhat larger

than the experimental data. For N
#

it is well known [61, 62] that core-valence

correlation eŒects increase x
e

by about 8± 9 cm Õ " , and if this is taken into account,
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Third-order multireference perturbation theory 657

Table 4. Comparison of correlation treatments for diatomic moleculesa.

Method
E(r

e
)

(hartree)
r
e

(A/ )
B

e
(cm Õ " )

a
e

(cm Õ " )
x

e
(cm Õ " )

x
e
x

e
(cm Õ " )

D
e

(eV)

N
#
(X " R +

g
) :

CCSD ® 109 ± 393470 1 ± 0922 2 ± 018 0 ± 0160 2440 ± 0 12 ± 94 9 ± 37
CCSD(T) ® 109 ± 414195 1 ± 0994 1 ± 992 0 ± 0170 2360 ± 0 13 ± 95 9 ± 77

CASPT2 ® 109 ± 396180 1 ± 1016 1 ± 984 0 ± 0175 2335 ± 6 14 ± 57 9 ± 46

CASPT2(g
"
) ® 109 ± 395796 1 ± 1012 1 ± 986 0 ± 0174 2341 ± 3 14 ± 39 9 ± 86

CASPT3 ® 109 ± 406705 1 ± 1002 1 ± 989 0 ± 0171 2355 ± 5 14 ± 10 9 ± 71

CASPT3(g
"
) ® 109 ± 406840 1 ± 1004 1 ± 989 0 ± 0172 2352 ± 9 14 ± 21 9 ± 66

MRCI ® 109 ± 398595 1 ± 1003 1 ± 989 0 ± 0172 2353 ± 6 14 ± 19 9 ± 80

MRACPF ® 109 ± 411085 1 ± 1011 1 ± 986 0 ± 0172 2346 ± 5 14 ± 27 9 ± 76

Experiment 1 ± 0977 1 ± 998 0 ± 0173 2358 ± 6 14 ± 32 9 ± 90

O
#
(X $ R +

g
) :

RCCSD ® 150 ± 165493 1 ± 1936 1 ± 480 0 ± 0141 1698 ± 3 10 ± 26 4 ± 74
RCCSD(T) ® 150 ± 188179 1 ± 2067 1 ± 448 0 ± 0151 1602 ± 5 11 ± 02 5 ± 14

CASPT2 ® 150 ± 181158 1 ± 2119 1 ± 435 0 ± 0158 1566 ± 6 11 ± 84 5 ± 17
CASPT2(g

"
) ® 150 ± 176947 1 ± 2088 1 ± 443 0 ± 0155 1590 ± 8 11 ± 49 5 ± 62

CASPT3 ® 150 ± 173841 1 ± 2061 1 ± 449 0 ± 0158 1598 ± 9 11 ± 92 4 ± 94

CASPT3(g
"
) ® 150 ± 174056 1 ± 2082 1 ± 444 0 ± 0161 1579 ± 2 12 ± 14 4 ± 95

MRCI ® 150 ± 156534 1 ± 2080 1 ± 445 0 ± 0158 1587 ± 3 11 ± 91 4 ± 96

MRACPF ® 150 ± 182192 1 ± 2109 1 ± 438 0 ± 0157 1575 ± 7 11 ± 79 5 ± 03

Experiment 1 ± 2075 1 ± 446 0 ± 0159 1580 ± 2 11 ± 98 5 ± 21

F
#
(X " R +

g
) :

CCSD ® 199 ± 359280 1 ± 3885 0 ± 921 0 ± 0103 1021 ± 8 8 ± 76 1 ± 33

CCSD(T) ® 199 ± 380987 1 ± 4110 0 ± 891 0 ± 0125 926 ± 5 11 ± 49 1 ± 64

CASPT2 ® 199 ± 364452 1 ± 4198 0 ± 880 0 ± 0131 892 ± 5 11 ± 63 1 ± 59
CASPT2(g

"
) ® 199 ± 363927 1 ± 4163 0 ± 885 0 ± 0123 912 ± 0 10 ± 80 1 ± 71

CASPT3 ® 199 ± 364617 1 ± 4091 0 ± 894 0 ± 0133 920 ± 0 12 ± 62 1 ± 47
CASPT3(g

"
) ® 199 ± 364916 1 ± 4106 0 ± 892 0 ± 0136 911 ± 7 12 ± 99 1 ± 44

MRCI ® 199 ± 338720 1 ± 4137 0 ± 888 0 ± 0136 899 ± 7 12 ± 48 1 ± 49

MRACPF ® 199 ± 371094 1 ± 4141 0 ± 888 0 ± 0129 914 ± 9 11 ± 93 1 ± 53

Experiment 1 ± 4119 0 ± 890 0 ± 0138 916 ± 6 11 ± 24 1 ± 64

a Using basis cc-pV5Z [57].

a harmonic frequency which is slightly too large is obtained. The dissociation

energies are very slowly converging with basis set size and are still considerably too

small. Also shown in table 4 are CASPT2(g
"
) and CASPT3(g

"
) results obtained with

the modi® ed zeroth-order Hamiltonian as proposed by Andersson [53]. While the

modi® cation tends to reduce the r
e

values and increase the frequencies at the CASPT2

level, the opposite is true for CASPT3. It appears that the CASPT3(g
"
) r

e
and x

e
values

are slightly more accurate than the unmodi® ed CASPT3 ones. Similar results were

obtained for all other molecules shown in tables 2 and 3. The situation is diŒerent for

the dissociation energies, however. While at the CASPT2 level the D
e

values are

overestimated when the g
"

operator is used [53], in most cases (with the exceptions of

C
#

and O
#
) the CASPT3(g

"
) dissociation energies are slightly reduced. The RCCSD(T)

results are of similar accuracy as CASPT3 or M RCI ones, but single-reference
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658 H.-J.Werner

Table 5. Computed collinear barrier heightsa and exothermicities for the F ­ H
#

reaction.

Method Barrier (kcal mol Õ " ) Exothermicity (kcal mol Õ " )

Basis A :

CASPT2 3 ± 339 29 ± 00

CASPT2(g
"
) 2 ± 826 29 ± 02

CASPT3 3 ± 657 28 ± 01
CASPT3(g

"
) 4 ± 278 28 ± 00

MRCIb 3 ± 496 28 ± 24
MRCI ­ Qb 3 ± 171 27 ± 86

FCIc 3 ± 169 ³ 0 ± 045 27 ± 91 ³ 0 ± 02

Basis B :
CASPT2 2 ± 553 31 ± 66

CASPT2(g
"
) 2 ± 030 31 ± 88

CASPT3 2 ± 836 31 ± 44

CASPT3(g
"
) 3 ± 485 31 ± 44

MRCIb 2 ± 623 31 ± 81

MRCI ­ Qb 1 ± 918 31 ± 30

Experiment 31 ± 73

a Basis sets, geometries and other details, see text and [65].

b Results from [65].

c Results from [64].

M P2± MP4 calculations performed with the same basis set (not shown in table 4) gave

very unsatisfactory agreement with experiment, in particular for N
#
.

The computation times for the CASPT2 } CASPT3 calculations are rather small.

For instance, for the N
#

calculation with V5Z basis (182 contractions, D
# h

symmetry)

and full-valence reference function (176 reference CSFs) one iteration of the CASPT2

takes 1 ± 30 s on an SGI PowerChallenge (R8000 } 75 MHz processor). The corre-

sponding M RCI takes 36 ± 1 s per iteration, i.e., 28 times longer. Both calculations

require 7 iterations, yielding a total of 260 s for M RCI and 13 ± 3 s for CASPT2

(including initialization and integral transformation). Evaluation of the third-order

energy takes 31 ± 6 s, yielding a total of 45 s for CASPT3. The total time for a single-

reference CCSD(T) calculation (8 iterations) is 133 s (all times obtained with the

M OLPRO [55] package).

In general, the CASPT2 and CASPT3 energies are not exactly size extensive

[38, 63], i.e., the energy of two fragments A and B evaluated at a very large distance is

not identical to the sum of the individually computed fragment energies, even if this is

the case for the reference function. This is due to the projection operators in the zeroth-

order Hamiltonian, which make HW (! )(AB) 1 HW (! )(A) ­ HW (! )(B), and consequently,

W (" )(AB) 1 W (! )(A) W (" )(B) ­ W (" )(A) W (! )(B) [63]. However, the size extensivity errors

(evaluated as diŒerence of the molecular energies at R ¯ 100 bohr and the sum of

the separately computed atomic energies) are very small : for the calculations in

table 4, they amount to ( ® 0 ± 0023 } ­ 0 ± 0086) eV, ( ® 0 ± 00034 } ­ 0 ± 00084) eV, and

( ® 0 ± 00053 } ­ 0 ± 00041) eV (CASPT2 } CASPT3) for N
#
, O

#
, and F

#
, respectively. These

values can be further reduced (but in general not completely eliminated) by projecting

out the non-interacting contributions of the uncontracted con® gurations. However,
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we believe that for any practical application the size consistency errors are unimportant

and can be safely neglected.

As a ® nal test of the CASPT3 method, we computed the collinear barrier height

and exothermicity for the F ­ H
#

reaction using the same basis sets and con® guration

spaces as in our recent studies of this reaction [64, 65]. The active space (denoted

[622 } 2] in [64, 65]) included the ¯ uorine 2p, 3p and hydrogen 1s orbitals. The orbitals

from CASSCF[622 } 2] were used and 9 electrons were correlated (for details of the

orbital optimization see [65]). Two basis sets have been used : Basis A ([4s3p1d } 2s1p])

is of double-zeta plus polarization quality with additional diŒuse s and p functions

optimized for F Õ . For this basis, full CI results are available [64]. Basis B is much larger

([7s6p4d3f2g } 6s4p2d]) and should yield results quite close to the basis set limit [65].

This basis has been used to compute a global MRCI ­ Q potential energy surface [65],

which has been successfully used in various dynamics calculations [66 ± 70]. It is found

that the CASPT2 and CASPT3 barrier heights are considerably larger than the

M RCI ­ Q or FCI values. In fact, the CASPT3 value is worse than the CASPT2 one.

This eŒect is even more pronounced when the g
"

correction [53] is used. Most likely,

higher excitations and higher orders of perturbation theory are necessary to reproduce

the barrier height correctly. As for the dissociation energies of some molecules

discussed above, it appears that the perturbation expansion shows an oscillatory

behaviour in this case. In contrast to the barrier height, the CASPT3 exothermicity is

much more accurate than the CASPT2 one. For the small basis set, the CASPT2 value

is 1 kcal mol Õ " larger than the FCI value, while the CASPT3 exothermicity agrees with

the FCI value within 0 ± 1 kcal mol Õ " . The g
"

correction has almost no eŒect on the

CASPT3 exothermicity. For the larger basis, the diŒerences between CASPT2 and

CASPT3 are somewhat smaller. Taking into account that further improvements of the

basis would increase the exothermicity by about 0 ± 4 kcal mol [65], the basis set limit for

CASPT3 is likely to be very close to the experimental value.

Our CASPT2 results are similar to those obtained in a recent CASPT2 study of

Gonza! les-Luque, Mercha! n, and Roos [71], but not exactly comparable since diŒerent

basis sets were used.

4. Conclusions

It has been demonstrated that third-order multireference perturbation theory

yields highly accurate results at moderate cost. For a number of diatomic molecules it

has been found that the equilibrium distances, harmonic and anharmonic frequencies

are of similar accuracy as those obtained in full MRCI calculations. The dissociation

energies, however, are generally too low, and not always improved relative to

CASPT2. The barrier height of the F ­ H
#

reaction is overestimated at the CASPT3

level, while the exothermicity of this reaction is reproduced very accurately. These

results indicate that in some cases the perturbation expansion of correlation energies

might show an oscillatory behaviour, even though this is probably less pronounced

than in single reference cases. M odi® cations of the Fock matrix used in the zeroth-

order Hamiltonian as recently proposed by Andersson [53] have also been tested.

W hile equilibrium distances and harmonic frequencies appear to be slightly improved

when the modi® ed operator is used, the CASPT3 barrier height of F ­ H
#

is

overestimated even more than without the correction.

The remaining errors in the CASPT3 energies are likely to be due to the omission

of higher excitations, which would contribute only to the fourth and higher order

energies. Nevertheless, the CASPT3 method appears to be promising and cost eŒective
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for many applications. Further calculations will be necessary to investigate how the

method performs for larger molecules and electronically excited states. A di� culty in

excited state calculations is the intruder-state problem. This may also occur, though

much less likely, in ground state calculations [72]. This problem is reduced when a

modi® ed zeroth-order Hamiltonian is used [53, 51], or can be circumvented using

level-shift techniques [72]. Another problem is the fact that in certain cases dynamical

and non-dynamical correlation eŒects are quite strongly coupled. This eŒect is not

accounted for in the ® rst-order wavefunction if only a single reference state is used.

Our method is also capable of using multiple-state references, as required in near

degeneracy situations, using techniques similar to those described in reference [50].

Results for such cases will be presented in a future publication.

The author thanks P. J. Knowles, P.-A/ . Malmquist, P. Pulay, and B. O. Roos for

helpful discussions. This work has been supported by the German Fonds der

Chemischen Industrie.
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