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Third-order multireference perturbation theory
The CASPT3 method

By HANS-JOACHIM WERNER

Institut fiir Theoretische Chemie, Universitdt Stuttgart, Pfaffenwaldring 55,
D-70569 Stuttgart, Germany

(Received 13 January 1996, accepted 22 February 1996)

Rayleigh—-Schrodinger perturbation theory is applied to compute second
and third-order correlation energies using complete active space self-consistent
field (CASSCF) zeroth-order wavefunctions. The first-order wavefunction is
expanded in a basis of internally contracted configurations. The zeroth-order
Hamiltonian is a sum of one-electron effective Fock operators, which are
invariant to unitary transformations among the active orbitals. Comparisons
with FCI data are made for the singlet-triplet splitting of CH, and the barrier
height and exothermicity of the F + H, reaction. Potential energy functions and
spectroscopic data are computed forC CN, CO, CF, N NO, O dndF using
large basis sets. It is demonstrated thdt the third-order results (CASPTS) are
significantly more accurate than the second-order (CASPT2) ones. The
equilibrium distances and harmonic frequencies obtained with CASPT3 are
found to be as accurate as MRCI and RCCSD(T) values, while dissociation
energies are generally somewhat too small. Modifications of the'zeroth=order
Hamiltonian as recently proposed by Andersson are found to have a much
smaller effect on the third-order energies than on the second-order ones.

1. Introduction

One of the simplest and most popular methods for treating electron correlation
effects is second-order Meller—Plesset perturbation theory (MP2) [1]. This works quite
well for non-degenerate ground states of closed-shell molecules, but in its simplest
form it is restricted to closed-shell single determinant reference functions. Open-shell
cases can be treated most easily with UHF reference functions [2, 3], but then often
suffer from spin-contamination problems [4-7]. More recently, various spin-adapted
open-shell Meoller—Plesset perturbation theories have been developed [8-18]. The
application of such methods is limited to cases in which the wavefunction is strongly
dominated by a single configuration. Problems may arise in the case of near
degeneracies or in the presence of low lying excited states, which may lead to poor
convergence or even divergence of the Meller—Plesset perturbation expansion [6, 9, 10,
14, 17].

It is therefore generally desirable to generalize M oller—Plesset perturbation theory
to multiconfiguration reference functions, which are properly spin adapted and
account for strong non-dynamical correlation effects. Many variants of quasi-
degenerate multireference perturbation theory [19-26] have been proposed in the past,
but the success of such methods has been quite limited. This is due to the difficulty of
practical implementation, and also to the so called intruder-state problem, which
causes singularities when one or more reference states become (nearly) degenerate with
a state in the complementary configuration space.

A simpler approach has been suggested in 1982 by Roos ef al. [27]. They used a
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CASSCF wavefunction as zeroth-order approximation, and expanded the first-order
wavefunction in the space of internally contracted configurations [28-32], which are
obtained by applying spin-coupled single and double excitation operators to the
complete CASSCEF reference function. From the first-order wavefunction the second-
order correlation energy was computed. The complete set of singly and doubly excited
internally contracted configurations spans exactly the first-order interacting space
[28], but in the original work of Roos et al. [27] only double excitations with two
electrons in external (secondary) orbitals have been considered. The zeroth-order
Hamiltonian was constructed from an averaged Fock-matrix and assumed to be
diagonal in the configuration space. In 1987, Wolinski and Pulay [33, 34] developed a
generalized Mealler—Plesset perturbation (GMP) theory which is similar to the method
of Roos et al. [27], but also included the important semi-internal and internal
configuration spaces. A non-diagonal zeroth-order Hamiltonian was used, and the
first-order wavefunction was obtained by solving a linear set of equations. Their
implementation was restricted to cases with two reference determinants and was called
GMP2 (generalized second-order Maeller—Plesset perturbation theory). Third-order
energies (GMP3) were computed for some two-electron systems [33]. In 1990,
Andersson et al. [35] generalized the earlier method of Roos ez al. [27] by also including
the internal and semi-internal configuration spaces using CASSCF reference functions.
Initially, a diagonal zeroth-order Hamiltonian was employed, but this restriction was
lifted at a later stage [36]. Their method has become well known as CASPT2 and has
been successfully used in many applications.

It has even recently been argued [37] that non-diagonal zeroth-order Hamiltonians
are disadvantageous, since very large sets of linear equations must be solved. This is
not quite so, however. Firstly, the equations can easily be solved iteratively in a direct
way, and the cost for each iteration is low since only one-electron matrix elements are
required. Secondly, the zeroth-order Hamiltonian can be brought to a sparse block-
diagonal form (see section 2), which makes convergence very fast (5-10 iterations). A
major advantage of using a non-diagonal operator is that it only depends on the
density of the reference wavefunction and is invariant to unitary transformations
among certain orbital subsets. This applies to the inactive, active or virtual subspaces
when complete active space (CASSCF) reference functions are used. Therefore, also
the second-order and higher-order energies are invariant with respect to such trans-
formations. Serious problems can occur when such invariance properties are not
fulfilled, in particular for cases with degenerate open-shell orbitals [38, 39].

Even though the CASPT2 method of Roos et al. [27, 35, 36] and the GMP2
method of Wolinski and Pulay [33, 34] are not considered as degenerate perturbation
theories, they allow the treatment of molecules and states for which the wavefunction
is dominated by several configurations. This makes it possible to describe the
dissociation of molecular bonds correctly and to compute global potential energy
surfaces. Murphy and Messmer [40, 41] developed a closely related method, which
differs from the GMP2 and CASPT2 methods by expanding the first-order
wavefunction in a set of uncontracted configurations. These were obtained by
applying excitation operators to each individual reference configuration. Second-
order (GMP2) and third-order (GMP3) energies were computed for H2O, CH2 [401],
N2, and O:Jr [41] using small basis sets. It was found that the third-order corrections are
in some cases quite sizeable, in particular for the singlet-triplet splitting of CH2. Other
second-order multireference perturbation methods, which use uncontracted con-
figurations and diagonal zeroth-order Hamiltonians, have been proposed by Hirao
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[42-44] and Kozlowski and Davidson [37, 45, 46]. The disadvantage of using
uncontracted configurations is that the size of the configuration space increases
strongly with the number of reference configurations. On the other hand, the internally
contracted configurations as used in [33-36] are non-orthogonal and have a very
complicated structure. Orthogonalization is necessary at least at an intermediate stage
and may be difficult for the internal- and semi-internal configurations, since in these
cases the overlap matrices may become very large.

In the present work we use a compromise of both methods, which appears to be
computationally most efficient. The doubly external configurations, which represent
the largest part of the configuration space but are easily orthogonalized [30-32], are
internally contracted. On the other hand, the internal and semi-internal configuration
spaces are left uncontracted. The same strategy is used in our internally contracted
MRCI program [32, 47], which forms the basis for the present implementation. Our
method is applicable to arbitrary MCSCF reference wavefunctions and allows the
computation of second-order (GM P2) and third-order (GMP3) energies. For the case
in which CASSCF reference functions are used, as is the case for all applications
presented in this paper, the method is denoted CASPT3. With a'single closed=shell
reference determinant, the method reduces to standard MP3. In section 2 we will
define our first-order wavefunction and zeroth-order Hamiltonian. The method has
been applied to the calculation of spectroscopic properties of a number of diatomic
molecules using large basis sets. In section 3 we will compare the CASPT2 and
CASPT3 results to MRCI (multireference configuration interaction) and MR-ACPF
(multireference averaged coupled pair functional) [48, 49] calculations performed with
exactly the same one-electron and many-electron basis sets. It will be demonstrated
that the third-order results obtained with CASSCEF reference functions are significantly
more accurate than the second-order ones. Therequilibrium distances and harmomnic
frequencies obtained with CASPT3 are found to be as accurate as MRCI and
CCSD(T) (coupled-cluster with perturbative corrections for triple excitations) values.

2. Theory

As is usual practice, we partition the orbital space into closed-shell (inactive),
active, and external (secondary) orbitals according to their occupancies in the
reference wavefunction. External orbitals are unoccupied and closed-shell orbitals are
doubly occupied in all reference configurations, while all kinds of excitations are
allowed within the active space. In all calculations reported in this paper, we use
complete active space (CAS) reference functions, even though our method is not
restricted to this case. The inactive and active orbitals together form the internal
orbital space and are denoted by indices i,j/,k ... . External orbitals are denoted by the
indices a,b,c..., and any orbitals by r,s,7...

Accordingly, the configuration space can be partitioned into imternal con*
figurations |I> = @, singly external configurations |S = cb‘g., and doubly external
mions |P”l’> = d?‘;,b, where S and P denote N-1 and N-2 electron hole states,
respectively, in the internal space. The reference configurations |R> = @, form a
subset of the internal configuration space. The N-2 electron configurations P are
obtained by annihilation of two electrons from any of the reference configurations.
Subsequently, the N-1 electron configurations S are generated by adding one electron
to an internal orbital of the P configurations. The internal single and double
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excitations @ jare finally obtained by adding one electron to the S configurations. All
possible spin couplings for each orbital occupancy are included.

For the multireference perturbation treatment, it appears natural to include in the
first-order wavefunction only configurations which interact directly with the reference
function via the complete Hamiltonian. As has been shown by Meyer [28], the
interacting space is exactly spanngd Qy a linearly independent subset of the internally
contracted configurations &% = E _E,J0>, where

0> = wO) =3 )| R> (1)
R

A

is the normalized reference wavefunction and E ,;are the usual spin-coupled one-
particle excitation operators. The internally contracted configurations can be
expressed as linear combinations of uncontracted CSFs with the same external but
different internal parts. For a given number of correlated orbitals, the number of
contracted functions is independent of the number of reference configurations, and for
cases with many reference configurations much smaller than the complete set of
uncontracted CSFs [28-32]. Efficient internally contracted MR CI methods have been
developed by the present author together with Reinsch [30] and Knowles
[32, 47,49, 50]. It has been shown in numerous applications of these methods that the
internal contraction has very little effect on the results, but significantly reduces the
computational effort'and the'storage requirements: In the context of multireference
perturbation theory, internally contracted configurations have been used by Roos et
al. [27], Wolinski and Pulay [33, 34], Andersson et al. [35, 36], and Dyall [51].

A complication arises from the fact that the'contracted configurations are in
general 'non-orthogonal and may also be linearly dependent [28—32]. Defining the
doubly external configurations as

Db = +(E ,iE 4 pE ,E ) 0> with i>j,a>b, p = +1, 2)

where p = +1 denotes singlet and triplet coupling, respectively, of the external
electrons, the overlap is determined by the second-order density matrix of the
reference function [30-32]

SPhy= <Ol E i pE ;) 40>, (3)

An orthogonal set of doubly external configurations |D”b9p> can be obtained, for
example, by symmetrical orthogonalization

[Py = 3 |loshy 7P, 4)
= j
with T(P) = [S(P]"1/2, If the matrix S(P) has zero or very small eigenvalues, a
corresponding number of redundant pairs (ijp) is eliminated. It should be noted that
the |D”b9p> are not normalized [31, 32].

The orthogonalization procedure is less simple for the contracted internal and
singly external configurations, since then the overlap matrices depend on the third-
and fourth-order density matrices and may become very large. Therefore, as in our
internally contracted MR CI method [32, 49, 50], but different from the GM P2 method
of Wolinski and Pulay [34] and the CASPT2 method of Andersson ef al. [35, 36], we
decided to use uncontracted functions for the internal and singly external configuration
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§paces. This avoids the orthogonalization problem and simplifies the calculation of the
Hamiltonian matrix elements, but may introduce contributions of CSFs in the first-
order wavefunction that do not interact directly with the reference function. (HSlB

In the Rayleigh—Schrédinger perturbational treatment, the reference wavefunction
|0> = yb)is taken as zeroth-order wavefunction, and the first-order wavefunction is
expanded as

p = DD+ XY eSlsH+ R XY cPpbry, (5)
I¥ R S a D p ab

A

with CZ;D= pC%’. Since the reference wavefunction is an eigenfunction of H in the
spacg of all reference configurations, the latter do not interact with the reference, i.e.,
<R|H—E0|O> = 0, and are therefore normally excluded from the first-order wave-
function. Small higher-order contributions to the reference configurations can arise,
however, via their coupling with the other internal and singly external configurations.
Optionally, they can therefore be included, and then the orthogonality restriction,

CPWw)y = 3 ) = o0, (6)
R

must be fulfilled. In all test calculations performed so far we found that inclusion of the
reference configurations in the first-order wavefunction leads only to negligible
changes of the energies and potential energy functions.

The zeroth-order Hamiltonian is chosen to be

A A A A A A A

H0)= PFP+ QFQ, (7)
where the N-electron operator,
F = ZfrsE rs (8)
Is

is constructed from an effective one electron Fock matrix f with elements

frs= ot 2 <O[E J0> [(rs | ij)—%(riljs)]. ©)
ij

The operators P = |0> <0| and Q = 1— P project onto the reference wavefunction and
its orthogonal complement within the space of all configurations defined aboye. Due
to this simple construgtion, the reference function w)is an eigenfunction of H()with
eigenvalue E®) = <0|F|0>. The zeroth-order Hamiltonian H (0)is invariant with respect
to unitary transformations among the active or inactive orbitals of a CASSCF
reference function, and therefore the same is true for the CASPT2 and CASPT3
energies. For the case of closed-shell single reference functions, f becomes identical to
the closed-shell Fock matrix, and the method reduces to ordinary Maeller—Plesset
perturbation theory.

Similar zeroth-order Hamiltonians have been used by Wolinski and Pulay [33, 34],
Andersson et al. [35, 36], and Murphy and Messmer [40, 41, 52]. They all used the
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same operator F, but somewhat different choices of projection operators. Wolinski
and Pulay have neglected all couplings between the single and double excitations, i.e.,
the zeroth-order Hamiltonian was written as

A AAA A A A A

H©) = PFP+éSFQ5+éDFQD (19)

where Qg and O project onto the subspaces of single and double excitations,
respectively. The coupling between singles and doubles was also absent in the original
CASPT2 method of Andersson et al. [35] (later denoted CASPT2D [36]), since the off-
diagonal elements of f (in a pseudo-canonical basis) were neglected. Later the off-
diagonal blocks were added, leading to the CASPT2N version [36]. A further minor
difference concerns the orthogonal complement of the reference wavefunction in the
subspace of all reference CSFs. Since this space does not interact directly with the
reference function it has been explicitly excluded from the first-order wavefunction by
Andersson et al. [35,36]. As discussed above, we normally exclude this con-
figuration space as well. In their GM P2 methogd, Wolinskj and Pulay have included all
internally contracted internal configurations Eij|0> and Eijk1|0> (orthogonalized on
|0> and among themselves), while Murphy and Messmer [40] used an uncontracted
configuration space obtained by applying these operators to each individual reference
configuration, with exclusion of configurations contained in the reference set.

Other forms of the zeroth-order Hamiltonian have been discussed extensively in
the literature [37, 42-46, 51, 53]. In many of these methods, correction terms are added
to the one-electron Fock operator (equation (9)), with the aim of improving the
convergence of the perturbation expansion in open-shell cases. Here we consider only
the modifications recently proposed by Andersson [53], which were denoted by g, 9,
and g,. These have the effect of enlarging the energy gap between the active and virtual
orbitals, in particular for states with many open shells. It was demonstrated for several
examples that these modifications may lead to improved CASPT2 results. We'coded
all three versions and will present third-order (CASPT3) results in section 3. It will be
shown that the third-order results are much less sensitive to the choice of H (9)than the
second-order ones.

The coefficients of the first-order wavefunction are obtained by solving the set of
linear equations

r,= <1|1§(0>; EO)w)y 4 <I|I;—Eﬁ|0> =0, (11)
r§=<SUHO)—E0ws+<s9mo> = o, (12)
RPP= <DBHH )= EO| )+ DBAH 0> = 0, (13)

subject to the auxiliary condition (6) (which is automatically fulfilled if the reference
configurations are excluded from the first-order wavefunction). The reference energy
E_ and the second and third-order correlation energies are given by

E, = EO+EW = (pOlH|p0), (14)
Bl = <wla|wo), -
E), = <P+ | —E [p0o)+ w), (16)

The linear equations (11)—(13) are solved iteratively using the Gauss—Seidel procedure.
Convergence can be improved, for example, by DIIS (direct inversion of the iterative
subspace) [54]. In each iteration, the residuals r , rS, and RIPmust be computed. The
explicit expressions of these quantities are quite simple and can easily be obtained from
the corresponding MRCI equations given by Werner and Knowles [32]. Only a few
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additional remarks will be made here. In matrix notation, the internal-internal,
single-single, and pair—pair contributions in equations (11)—(13) are given by

rp= ijjz <[|EiJ1/>C(})+..., (17)
i T
ré= f'CS+Zf,-jZ<S|E,-JS’>c5"+..., (18)
ij N
R PP = f.CDP+Z JAQ‘D)DCD‘D+.... (19)
D

The matrices f, R, C DPand vectors rS, ¢ Sare defined in the external orbital subspace
only. Since the energy is invariant with respect to unitary transformations in the
external space, the external orbitals can be chosen such that f is diagonal. If a complete
active space reference is used, one can also diagonalize the active—active and
inactive—inactive parts of the Fock matrixfif- Thus, if both i and j refer to either active
or inactive orbitals, only diagonal contributionsi = j, I = I'’;and S’ = S will survive in
equations (17) and (18). Furthermore, the matrix,

=2 T<,-,1-3>Dk21 TE 2 < OlE o iyt PE i1 il (20)
= > mn

can be precomputed and diagonalized (separately for each p). Then a new set of
orthogonal doubly external configurations can be defined by

[U(p)f%P)U(P)]Bbz 6QD77D (21)
T(p) = T(P.U(P, (22)
[DebPy = 3 |09y T(P), (23)

> j

which also makes the pair-pair block <D?BPH(0)|D"°4% diagonal. These block
diagonalizations not only reduce the computational effort, but also considerably speed
up the convergence. A similar blocking technique has been used by Andersson et al.
[36]. It should be noted, however, that our program is completely general and does
neither require CASSCF reference functions, nor a block diagonal Fock matrix.

In order to ¢compute the third-order energy, it is necessary to evaluate the matrix
element <'P(1)|H|'P(1)>. Since the off-diagonal blocks need to be computed only once,
the computational effort is somewhat less than for one iteration of the MRCI. The
explicit expressions needed can be found in reference [32]. An efficient method of
evaluating the coupling coefficients and density matrices has been described in
reference [47].

3. Applications

The method described in the previous section has been implemented into the
MOLPRO [55] package of ab initio programs by modifying the existing MRCI code
[32547) In this section we present some preliminary applications and investigate the
accuracy of the second-order and third-order energies by comparison with full
configuration interaction (FCI) and MR CI results.

As a first test, we computed energies of the lowest 1A and 3B states of CH2 using
a double-zeta plus polarization (DZP) basis set, for which the FCI results of
Bauschlicher and Taylor [56] are available. Using the same basis set, Andersson et al.
[36, 53] performed CASPT?2 calculations with various different active reference spaces.
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They found that the CASPT2 with full-valence CASSCF reference functions give a
singlet-triplet splitting that is almost 4 kcal mol™! larger than the FCI result. The
CASPT?2 excitation energy converged only rather slowly to the FCI result when the
reference space was increased. Messmer and Murphy [40] have carried out GM P2 and
GMP3 calculations using the full valence reference spaces, and found that the third-
order contribution reduces the splitting by almost 3 kcal mol™!, bringing it into much
better agreement with the FCI value. In table 1 our results are compared to the
previous calculations. First we notice that for all active spaces our CASPT?2 energies
are very close to the ones of Andersson et al. [36, 53], despite the fact that we use a
partly uncontracted basis. As expected, our CASPT2 energies are slightly lower than
the CASPT2N values of reference [36], but not as low as the GMP2 energies of
Messmer and Murphy [40], who used a completely uncontracted basis. Somewhat
unexpectedly, our third-order energies are lower than the GM P3 values. This might be
due to contributions of the non-interacting spin-couplings of singly external
configurations, which are included in our calculation but not in the GMP3.
Nevertheless, the computed GMP3 and CASPT3 energy splittings are in close
agreement.

We have also performed calculations using various larger reference spaces. It is
found that the CASPT3 energies and energy splittings converge towards the FCI
results considerably faster than the CASPT2 ones, but more slowly than the MRCI
values. The best CASPT3 values (obtained with up to 9786 reference CSFs) are within
about 1 mH of the FCI energies, and in no case are the CASPT2 or CASPT3 energies
lower than, the FCI energies. Surprisingly, this was the case for a calculation with a
diagonal H(©)in [40], but not in the corresponding CASPT2D calculation of [36].

Recently, Andersson [53] has proposed three different modifications (denoted g,
g, and gg) of the zeroth-order Hamiltonian, which considerably improved the
CASPT2 energy splittings. We have carried out CASPT3 calculations with these
modified Hamiltonians using the same active spaces as in [53]. Our computed CASPT?2
energy splittings agree with the ones given in [53] within 001 kcal mol™! for all three
versions and all active spaces. The CASPT3(g) (i = 1-3) differ by only 0-02-0-05 kcal
mol 1, and therefore only results for the g, version are presented in table 1. It is found
that the CASPT3(g, ) energy splittings are in better agreement with the FCI values than
the ones obtained without the modification, but the effect is much smaller than in
second order. For instance, for the smallest active space the g, operator reduces the
second-order energy splitting by 2.2 kcal mol™!, while in third-order the effect is only

04 kcal mol. Calculations for CH with other zeroth-order Hamiltonians have been
performed by Hirao [43], Kozlowskl and Davidson [46, 37], and Dyall[51]. The results
are quite similar to the present CASPT2(g) values and we refer to the literature for a
comparison.

Secondly, we have computed potential energy functions for a number of diatomic
molecules with quite different electronic structure (open- and closed-shell, single,
double and triple bonds). In all cases the correlation consistent valence quadruple zeta
(cc-pVQZ) basis sets of Dunning [57] have been used. These include [5s4p3d2flg]
contracted functions for the first-row atoms. For N _, F | andO additional calculations
with the quintuple zeta basis sets (cc-pV5Z, [655p4d3f2g1h]) have been performed.
Full valence CASSCF reference functions have been used in all cases. For comparison,
MRCIand MR-ACPF [48, 49]) calculations with the same basis sets and configuration
spaces, as well as spin-restricted single reference coupled cluster (RCCSD(T)) [58, 59]
calculations have been carried out. The 1s core orbitals were not correlated. For each
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Table 1. Comparison of different correlation treatments for the 'A and B states of CH,.
Energy (au) Exc. Energy
Method Reference A B (kcal mol™1)
Active space (3210)°
CASSCF — 384945529 — 384965954 1282
CASPT2 —39.013092 —39.037695 15444
CASPT2 [36, 53] —39.013078 —39.037664 15443
CASPT2(yg,) —39.012883 —39:033939 1321
CASPT2(g)) [53] —39.012868 —39:033906 1320
CASPT3 —39.023374 —39.043766 1280
CASPT3(g)) —39.023397 —39.043155 12440
GMP2 [40] —39.01331 —39.03794 15445
GMP3 [40] —39.02322 —39.04338 12465
MRCI —39.025362 —39:044360 1192
FCI® —39.027284 —39:046348 1196
Active space (4220)°
CASSCFd — 384968726 — 38982741 879
CASPT2 —39.017120 —39.038707 1354
CASPT2 [36, 53] —39.017092 — 384038660 1353
CASPT2(g)) —39.017026 —39.036436 1218
CASPT2(yg,) [53] —39.016998 —39.036392 1217
CASPT3 —39.024593 —39:044195 1230
CASPT3(yg,) —39:024599 —39.043671 1197
MRCI —39:026429 —39.045366 11-88
FCI® —39.027284 —39:046355 1197
Active space (7331)°
CASSCF —39.007032 —39.025395 1152
CASPT2 —39.023760 —39.043345 12:29
CASPT2 [53] —39.023749 —39.043334 12:29
CASPT2(yg,) —39.023732 —39.043036 12-11
CASPT2(g)) [53] —39.023721 —39.043024 12-11
CASPT3 —39.025954 —39.045359 1218
CASPT3(g)) —39.025951 —39:045299 12.14
MRCI —39.027223 —39:046303 1197
FCI¢ —39.027286 —39:046362 1197

“Basis set and geometries (see [56]).

b The numbers in parenthesis are the number of active orbitals in the a, b2, bl, and a,
symmetries, respectively. The la orbital is inactive and uncorrelated in all cases.

¢ FCI results obtained with the corresponding CASSCF orbitals. The energies for the
different space differ slightly due to different la  orbitals, which are not correlated.

d In this case a lower CASSCF energy for the 3B state could be obtained, depending on the
starting orbitals. The given energy corresponds to the one in [36] but is a local minimum.

molecule, energies have been computed for at least 10 geometries, and spectroscopic
constants have been obtained from polynomial fits of ninth degree to these points.
Variations of the degree or the number of points had virtually no effect on the
computed spectroscopic constants. For the multireference methods, dissociation
energies have been computed as difference of the energy at a very large distance and
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Table 2. Spectroscopic constants for closed-shell diatomic molecules?.

E(r9 r;é‘ BC‘ aé‘ a)é' a)f,'xé' DC‘
Method (hartree) (A) (cm™1) (cm™1) (cm™1)  (cm7!) (eV)
CQ(XIZQ):
CASPT2 — 754793288 12479 1.804 00174 18449 12-83 6:27
CASPT3 — 754793858 1.2443 1815 00171 1870-0 1264 6-08
MRCI — 754794412 12469 1.807 00173 18514 12-80 6:24
MRCI+Q — 75801903 12475 1.805 00175 18453 13-00 618
MRACPF — 754800260 12474 1.806 00175 184646 1296 6:19
Experiment 12425 1.820 00176  1854+7 13.34 632
NQ(XlZg):
CASPT2 — 109384689 11023 1.982 00174 23326 14+51 9:37
CASPT3 — 109397249 1-1011 1.986 00171 23507 14-09 9.59
MRCI — 109389591 1-1011 1.986 00171 23495 14-14 9.71
MRCI+Q — 109403917 11021 1.983 00172 234146 1423 9:66
MRACPF — 109401682 1-1019 1.983 00172 23425 1422 9:67
Experiment 10977 1.998 00173 235846 14+32 9:90
CO(X1z%):
CASPT2 — 113164707 1-1328 1916 00176 21514 13445 10-84
CASPT3 — 113178416 11322 1918 00173 21619 1315 1097
MRCI — 113171903 1.1321 1919 00173 21633 1310 11-13
MRCI+Q — 113186224 1-1333 1914 00173 215445 1315 11.07
MRACPF — 113184070 11332 1915 00173 215544 1315 11.07
Experiment 1-1283 1.931 00175 21698 1329 11.22
FQ(XlZg):
CASPT2 — 199340289 14216 0-878 00131 8882 11.54 157
CASPT3 — 199343373 14118 0-890 00135 9114 1267 1443
MRCI — 199318874 14162 0-885 00136 8929 1243 146
MRCI+Q — 199352133 14158 0-885 00130 909-5 1191 156
MRACPF — 199349884 14163 0-885 00130 9084 11.82 156
Experiment 14119 0-890 00138 91646 1124 164

4 Using basis cc-pVQZ [57].

the fitted energy minimum. In the single reference cases, the asymptotic energies have
been obtained from separate atomic calculations.

The results for the closed-shell and open-shell molecules are presented in tables 2
and 3 respectively. The errors in the harmonic frequencies w . and equilibrium
distances r ,relative to the experimental data are shown in fig. 1. It is found that in all
cases the CASPT3 results are significantly more accurate than the CASPT2 ones. The
values of r , w ;and anharmonicity constants o .x ;are generally in very close agreement
with the MRCI values and in excellent agreement with experiment. With the exception
of C2, the deviations between theory and experiment for w care smaller than 10 cm™1.
The root mean square (rms) errors forr ,are 0-0058 A (CASPT2), 0-0028 A (CASPT3),
0-0035 A (MRCI), 0:0049 A (MR-ACPF), and 0:0023 A [RCCSD(T)]. The rms errors
for w,are 20-7 cm™! (CASPT2), 84 cm™! (CASPT3), 10:1 cm™! (MRCI), 11-8 cm™!
(MR-ACPF), and 8.8 cm™t [RCCSD(T)]. These values should not be taken too
literally, since neither the basis set is fully converged, nor are core-valence correlation
effects taken into account.
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Table 3. Spectroscopic constants for open-shell diatomic molecules?.

E(r9 Le B, xe @ DX e D,
Method (hartree) (A) (cm™1)  (em™!)  (cm7!)  (ecm7!)  (eV)
CN(X2zH):
CASPT2 — 924579438 11781 1-880 00173 20412  13:09 756
CASPT3 — 92586143 11753 1-889 00172 20619 1293 758
MRCI — 92581339 11757 1-887 00172 20589  12.98 769
MRCI+Q — 924592928 11766 1-885 00173  2053.0  13.07 7465
MRACPF — 924590857 1-1764 1-885 00173 20540  13:06 7465
Experiment 11718 1:900 00174  2068.6  13:09 7-89
NO(X2II):
CASPT2 —129+737292 11558 1:690 0:0178 18806  14+40 631
CASPT3 —129:745201 11531 1698 00173 19079  13.93 634
MRCI —129+732230 11534 1697 00174 19050  14.02 641
MRCI+Q —129:752906 11550 1693 00174  1894+3  14.05 644
MRACPF —129-750368 11549 1693 0:0174 18948 1406 643
Experiment 11508 1672 00171 19042  14.08 673
CF(X2I0):
CASPT2 — 137617577 12753 1:409 00185 13043 1116 531
CASPT3 — 137630359 12760 1-408 00182 13049  10-89 5443
MRCI — 137618625 12751 1-410 00181 13112  10+79 5453
MRCI+Q — 137639439 12793 1.401 00180 12943  10:57 5458
MRACPF —137+637240 12792 1.401 00181 12946  10-67 557
Experiment 12718 1.417 00184 13081 11:10 583
02(X32g):
CASPT2 —150-163783 12126 1.434 00158 15661 11-84 5.12
CASPT3 —150-159563 12076 1-446 00159 15909 12.04 489
MRCI —150-142947 12091 1.442 00158  1583.8 1193 491
MRCI+Q —150-170306 12117 1-436 00158  1573.8  11.81 498
MRACPF —150-167722 12118 1-436 00158 15732  11.81 497
Experiment 12075 1.446 00159 15802 11:98 521

4 Using basis cc-pVQZ [57].

The results for the dissociation energies D .are less conclusive than for the bond
distances and frequencies. In most cases CASPT3 improves the results relative to
CASPT?2, but this is not the case for C2, F2, and 02. Interestingly, these are the cases
in which the CASPT?2 dissociation energies are in best agreement with the experimental
values. On the other hand, in the case ofN the CASPT2 dissociation energy is much
too small, and quite significantly improved by CASPT3 (+0.22 eV). This may indicate
that in the former cases the perturbation expansion of correlation energies shows an
oscillatory behaviour as well known from single-reference Meller—Plesset theory. In
all cases the computed dissociation energies are smaller than the experimental values.
The errors of the CASPT3 values amount to 0:2—0.3 eV for the closed-shell molecules
and to 0+3-0¢4 eV for the open-shell ones. Part of the deviations are due to basis set
deficiencies, but these are certainly not the only source of error. The MRCI,
MRCI+Q and MR-ACPF values are larger than the CASPT3 ones by 0:07-0-15 eV,
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Figure 1. Differences of computed and experimental equilibrium distances r . (upper panel)
and harmonic frequencies o, (lower panel). Open circles: CASPT2, open triangles:
CASPT3, open squares: RCCSD(T), full circles: MRCI.

indicating that higher orders of perturbation theory would give significant con-
tributions, even without extending the configuration space to higher excitations.

Rather similar results have been obtained in an extensive CASPT2 study of
geometries and binding energies by Andersson and Roos [60]. In most cases (with the
exception of NO) their equilibrium distances are slightly longer than ours, and the
dissociation energies are somewhat smaller. This is attributed to the fact that their
basis sets did not include g-functions. Furthermore, the 2s-orbitals of nitrogen,
oxygen, and fluorine were inactive in the CASSCF reference functions.

Table 4 shows a comparison of single-reference coupled-cluster calculations and
various multi-reference methods for the homonuclear diatomics N2, O _,and F_, using
the larger cc-pV5Z basis. The improvement of the basis set slightly reduces the r,
values, bringing them into better agreement with experiment. The harmonic
frequencies w .are increased, and for O_ and F2 they now become somewhat larger
than the experimental data. For N2 it is well known [61, 62] that core-valence
correlation effects increase w by about 8-9 cm™1, and if this is taken into account,
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Table 4. Comparison of correlation treatments for diatomic molecules?.

E(r9 r;é‘ BC‘ aé‘ a)é' a)f,'xé' DC‘
Method (hartree) (A) (cm™1) (cm™1) (cm™1)  (cm7!) (eV)
NQ(XlZg):
CCSD — 109393470 1.0922 2:018 00160 24400 1294 937
CCSD(T) — 109414195 1-0994 1.992 00170 23600 1395 977
CASPT2 — 109396180 1-1016 1.984 00175 23356 14+57 9446
CASPT2(g)) —109-395796 1-1012 1.986 00174 23413 14+39 986
CASPT3 — 109406705 11002 1.989 00171 23555 14-10 971
CASPT3(yg,) — 109406840 11004 1.989 00172 235249 1421 966
MRCI —109-398595 1-1003 1.989 00172 235346 14-19 980
MRACPF —109.411085 1-1011 1.986 00172 234645 1427 976
Experiment 10977 1.998 00173 235846 14+32 9:90
02(X32g):
RCCSD — 150165493 1-1936 1480 00141 16983 1026 4474
RCCSD(T) —150-188179 12067 1.448 00151 16025 1102 5.14
CASPT2 —150-181158 12119 14435 00158 156646 11.84 5.17
CASPT2(g)) —150-176947 12088 1443 00155 1590-8 1149 5462
CASPT3 —150-173841 12061 1.449 00158 15989 1192 494
CASPT3(g)) —150-174056 12082 1.444 00161 15792 12-14 4495
MRCI — 150156534 1.2080 1445 00158 15873 1191 496
MRACPF —150-182192 1.2109 14438 00157 157547 1179 5:03
Experiment 12075 1.446 00159 1580-2 1198 521
FQ(XlZg):
CCSD — 199359280 1-3885 0921 00103 10218 876 133
CCSD(T) —199-380987 14110 0-891 00125 9265 1149 1-64
CASPT2 —199:364452 14198 0-880 00131 8925 1163 159
CASPT2(g)) —199-363927 14163 0-885 00123 9120 10-80 1-71
CASPT3 —199:364617 14091 0-894 00133 920-0 1262 147
CASPT3(g)) — 199364916 14106 0-892 00136 911+7 1299 1-44
MRCI —199-338720 14137 0-888 00136 899.7 12448 149
MRACPF — 199371094 14141 0-888 00129 9149 1193 153
Experiment 14119 0-890 00138 91646 1124 1-64

4 Using basis cc-pV5Z [57].

a harmonic frequency which is slightly too large is obtained. The dissociation
energies are very slowly converging with basis set size and are still considerably too
small. Also shown in table 4 are CASPT2(g1) and CASPT3(g1) results obtained with
the modified zeroth-order Hamiltonian as proposed by Andersson [53]. While the
modification tends to reduce the r .,values and increase the frequencies at the CASPT2
level, the opposite is true for CASPT3. Itappears that the CASPT3(g) r.and o .values
are slightly more accurate than the unmodified CASPT3 ones. Similar results were
obtained for all other molecules shown in tables 2 and 3. The situation is different for
the dissociation energies, however. While at the CASPT2 level the D . values are
overestimated when the g, operator is used [53], in most cases (with the exceptions of
C2 and 02) the CASPT3(g1) dissociation energies are slightly reduced. The RCCSD(T)
results are of similar accuracy as CASPT3 or MRCI ones, but single-reference
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Table 5. Computed collinear barrier heights? and exothermicities for the F+H, reaction.

Method Barrier (kcal mol™') Exothermicity (kcal mol™t)

Basis A:
CASPT2 3:339 2900
CASPT2(yg,) 2:826 29-02
CASPT3 34657 28-01
CASPT3(yg)) 4278 2800
MRCI? 34496 2824
MRCI+Q? 3.171 2786
FCI¢ 3169+ 0045 27914002

Basis B:
CASPT2 2:553 31-66
CASPT2(yg,) 2:030 31-88
CASPT3 2:836 31.44
CASPT3(yg,) 3.485 31-44
MRCI? 2623 3181
MRCI+Q? 1918 31-30
Experiment 3173

“ Basis sets, geometries and other details, see text and [65].
b Results from [65].
¢ Results from [64].

MP2-MP4 calculations performed with the same basis set (not shown in table 4) gave
very unsatisfactory agreement with experiment, in particular for N .

In general, the CASPT2 and CASPT3 energies are not exactly size extensive
38, 63], i.e., the energy of two fragments A and B evaluated at a very large distance is
not identical to the sum of the individually computed fragment energies, even if this is
the case for the reference function. This is due to the projectjon operatorsin the zeroth-
order Hamiltonian, which make H(©OXAB) + H0XA)+ HO)B), and consequently,
X AB) £ PlX4) P B)+ Pl 4) wo)B) [63]. However, the size extensivity errors
(evaluated as difference of the molecular energies at R = 100 bohr and the sum of
the separately computed atomic energies) are very small: for the calculations in
table 4, they amount to (—0+0023/+0.0086) eV, (— 0400034 /4 0+00084) eV, and
(—0+00053 /4 0:00041) eV (CASPT2/CASPT3) for N2, 02, and F2, respectively. These
values can be further reduced (but in general not completely eliminated) by projecting
out the non-interacting contributions of the uncontracted configurations. However,

—
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we believe that forany practical application the size consistency errors are unimportant
and can be safely neglected.

As a final test of the CASPT3 method, we computed the collinear barrier height
and exothermicity for the F+ H2 reaction using the same basis sets and configuration
spaces as in our recent studies of this reaction [64, 65]. The active space (denoted
[622 /2] in [64, 65]) included the fluorine 2p, 3p and hydrogen Is orbitals. The orbitals
from CASSCF[622/2] were used and 9 electrons were correlated (for details of the
orbital optimization see [65]). Two basis sets have been used: Basis A ([4s3pld/2s1p])
is of double-zeta plus polarization quality with additional diffuse s and p functions
optimized for F~. For this basis, full CI results are available [64]. Basis B is much larger
([7s6p4d3f2g/6s4p2d]) and should yield results quite close to the basis set limit [65].
This basis has been used to compute a global MRCI+ Q potential energy surface [65],
which has been successfully used in various dynamics calculations [66—70]. It is found
that the CASPT2 and CASPT3 barrier heights are considerably larger than the
MRCI+Q or FCI values. In fact, the CASPT3 value is worse than the CASPT?2 one.
This effect is even more pronounced when the g, correction [53] is used. Most likely,
higher excitations and higher orders of perturbation theory are necessary to reproduce
the barrier height correctly. As for the dissociation energies of some molecules
discussed above, it appears that the perturbation expansion shows an oscillatory
behaviour in this case. In contrast to the barrier height, the CASPT3 exothermicity is
much more accurate than the CASPT2 one. For the small basis set, the CASPT2 value
is 1 kcal mol™tlarger than the FCI value, while the CASPT3 exothermicity agrees with
the FCI value within 0-1 kcal mol™t. The g, correction has almost no effect on the
CASPT3 exothermicity. For the larger basis, the differences between CASPT2 and
CASPT3 are somewhat smaller. Taking into account that further improvements of the
basis would increase the exothermicity by about 0«4 kcal mol[65], the basis set limit for
CASPT3 is likely to be very close to the experimental value.

Our CASPT?2 results are similar to those obtained in a recent CASPT2 study of
Gonzales-Luque, Merchan, and Roos [71], but not exactly comparable since different
basis sets were used.

4. Conclusions

It has been demonstrated that third-order multireference perturbation theory
yields'highly accurate resultsatmoderate cost. For a number of diatomic molecules it
has been found that the equilibrium distances, harmonic and anharmonic frequencies
are of similar accuracy as those obtained in full MR CI calculations. The'dissociation
energies, however, are generally too low, and not always improved relative to
CASPT2. The barrier height of the F+H2 reaction is overestimated at the CASPT3
level, while the exothermicity of this reaction is reproduced very accurately. These
results indicate that in some cases the perturbation expansion of correlation energies
might show an oscillatory behaviout, even though this is probably less pronounced
than in single reference cases. M odifications of the Fock matrix used in the zeroth-
order Hamiltonian as recently proposed by Andersson [53] have also been tested.
W hile equilibrium distances and harmonic frequencies appear to be slightly improved
when the modified operator is used, the CASPT3 barrier height of F+H2 is
overestimated even more than without the correction.

The remaining errors in the CASPT3 energies are likely to be due to the omission
of higher excitations, which would contribute only to the fourth and higher order
energies. Nevertheless, the CASPT3 method appears to be promising and cost effective
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for many applications. Further calculations will'be'necessary torinvestigaterhow the
method performs for larger molecules and electronically excited states. A difficulty in
excited state calculations is the intruder-state problem. This may also occur, though
much less likely, in ground state calculations [72]. This problem is reduced when a
modified zeroth-order Hamiltonian is used [53, 51], or can be circumvented using
level-shift techniques [72]. Another problem is the fact that in certain cases dynamical
and non-dynamical correlation effects are quite strongly coupled. This effect is not
accounted for in the first-order wavefunction if only a single reference state is used.
Our method is also capable of using multiple-state references, as required in near
degeneracy situations, using techniques similar to those described in reference [50].
Results for such cases will be presented in a future publication.

The author thanks P. J. Knowles, P.-/g. Malmquist, P. Pulay, and B. O. Roos for
helpful discussions. This work has been supported by the German Fonds der
Chemischen Industrie.
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