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In this work, we generalize the recently proposed matrix product state perturbation theory
(MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory.
Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory,
which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of
Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space
invariance which is important for obtaining smooth potential energy curves. Thus, when we use
MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate
n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of
QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark
problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist
around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited
states. In accordance with our previous work, we find that multi-reference linearized coupled cluster
theory is more accurate than other multi-reference theories of similar cost. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4939752]

INTRODUCTION

Perturbation theory (PT) has been one of the most
successful theories in all of quantum chemistry as it
provides accurate size-extensive energies at polynomial
cost. But one of the major shortcomings of the usual
single-reference perturbation theory is its instability in the
presence of orbital degeneracies between occupied and virtual
orbitals: for example, Möller-Plesset perturbation theory
diverges when the target wavefunction is not dominated
by a single determinant. To overcome this problem, several
multi-reference perturbation theories have been proposed.
These theories work within the “diagonalise-then-perturb”
philosophy, where first the active space Hamiltonian is
diagonalized and then perturbative correction is calculated
by exciting up to two holes into the doubly occupied core
and two particles into the empty virtual orbitals. Usually, a
further approximation known as internal contraction (IC)1,2

is made to make the equations computationally tractable.
Even with the IC approximation, these calculations can be
expensive because they require three and four body reduced
density matrices (RDMs) of the active space. This framework
is widely used and works quite well as long as the number of
active space orbitals is restricted to between ten and twenty.

With the invention of the density matrix renormalization
group (DMRG)3–10 and full configuration interaction Monte
Carlo methods11–14 calculations with up to 40-50 active or-
bitals have now become routine. With such large active spaces,
calculating and storing high body reduced density matrices
becomes a severe bottle neck. In this context, it should be
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noted that Kurashige and Yanai15 have implemented DMRG-
complete active space second-order perturbation theory
(CASPT2) by using pseudo-canonical molecular orbitals
which resulted in great simplification in constructing the
four-body reduced density matrix. The full three body reduced
density matrix was nevertheless required and problems with
up to 28 active space orbitals have been tackled with this
approach. But in general, to treat semi-internal excitations, at
least the fourth order reduced density matrix is required16

which becomes prohibitively expensive for all but very
small active spaces. For this reason, 4-RDMs are usually
calculated using the approximate cumulant reconstruction17–19

in methods such as canonical transformation (CT),20,21 approx-
imate multi-reference configuration interaction (MRCI),22,23

and approximate n-electron valence state perturbation theory
(NEVPT2).24

To overcome the need for calculating reduced density
matrices, we have recently proposed a method called
matrix product state perturbation theory (MPSPT)25 that
expresses the first order correction to the wavefunction as
a MPS. This wavefunction is optimized by minimizing the
Hylleraas functional of the appropriate perturbation theory.
The advantage of this approach is that it completely bypasses
the need for calculating reduced density matrices altogether,
further it is highly flexible and essentially any zeroth order
Hamiltonian (Ĥ0) can be used and finally, in the limit of
large virtual bond dimension (M) of the MPS, we recover
the fully uncontracted results. So far, we have used MPSPT
to perform NEVPT2 and multi-reference linearised coupled
cluster (MRLCC)26 theory calculations on a large set of
strongly correlated benchmark systems. In general, we have
found that MRLCC theory, in particular the one formulated
by Fink,27,28 is extremely accurate and outperformed other
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methods of similar cost by sometimes over an order of
magnitude.

In the current publication, we extend the MPSPT to
address the well known shortcoming of the usual multi-
reference perturbation theories when the ground state is
nearly degenerate with one or more other states, for example,
in avoided crossings. In such cases, the “diagonalise-and-
perturb” philosophy is insufficient because the zeroth order
state calculated by diagonalizing the active space Hamiltonian
can be quite inaccurate and one needs to allow it to relax
in the presence of the perturbation, in absence of which
spurious curve crossings can occur.29,30 This is accomplished
by using the quasi-degenerate perturbation theory (QDPT)31–36

where an effective Hamiltonian is constructed in which both
the diagonal and off-diagonal elements are perturbatively
corrected. This Hamiltonian is then diagonalized which allows
the desired reorganization of the structure of the zeroth order
wavefunction.

The rest of the paper is organized as follows: in the
section titled MPSPT, we outline the salient features of the
MPSPT; after this, we show how MPSPT can be extended
using the quasi-degenerate perturbation theory to calculate
the energies of the excited state. Finally, we show some
benchmark calculations on LiF and ethylene to access the
accuracy of the ground and excited states calculated using this
theory.

MPSPT

As noted in the Introduction, the novel aspect of MPSPT
is that the first order correction to the wavefunction in
the perturbation theory is written as a MPS, which is the
wavefunction ansatz used in the DMRG algorithm. A MPS
parametrizes a wavefunction by expressing it as a product of
three-dimensional tensors,37,38 one tensor per orbital which is
shown graphically in Figure 1. The dimension of the virtual
indices (M) determines how accurately the MPS represents a
wavefunction of interest. Although an exponentially large
M is necessary to faithfully represent the ground state
wavefunction in the absence of linear topology; in practice, it
is often observed that a much smaller M is sufficient to obtain
chemically accurate ground state energies.

The truly remarkable property of MPS is that operations
of linear algebra, such as calculating the overlap (⟨Ψ1|Ψ2⟩) and
matrix element of an operator (⟨Ψ1|Ô |Ψ2⟩), can be performed
with a cost that scales polynomially with M and the number of
orbitals k. It is worth pointing out that many of the commonly
used wavefunction ansatz in quantum chemistry do not have

FIG. 1. A matrix product state (MPS) can be represented graphically using
a series of three-dimensional tensors A

nl
il−1il

in which the physical index
nl (pointing upwards) denotes the occupation of the orbital and the other
two indices il, il−1 (pointing horizontally), known as virtual indices, are
sequentially contracted.

TABLE I. The cost of performing various linear algebra operations with two
MPSs |Ψ1⟩ and |Ψ2⟩. Here, k , M1, and M2 are the number of orbitals and the
virtual bond dimensions of |Ψ1⟩ and |Ψ2⟩, respectively. Ô1 and Ô2 are general
one and two body operators, respectively.

Operation cpu

⟨Ψ1|Ψ2⟩ kM2
1M2+kM1M

2
2

⟨Ψ1|Ô1|Ψ2⟩ k2M2
1M2+k

2M1M
2
2

⟨Ψ1|Ô2|Ψ2⟩ k3M2
1M2+k

3M1M
2
2

this property; for example, calculating the expectation value
of energy of a coupled cluster wavefunction is exponentially
hard. Table I summarizes the cost of calculating overlaps and
transition matrix elements between different MPSs. Finally,
without getting bogged down in details, we would like to point
out that the DMRG method consists of an ingenious algorithm
called the “sweep algorithm” which uses all these properties
of MPS to optimize the ground state |Ψg⟩ by minimizing the
energy functional shown in Equation (1) under the constraint
that ⟨Ψg |Ψg⟩ = 1,

⟨Ψg |Ĥ |Ψg⟩. (1)

With this background about MPS, we show how they can
be used to perform perturbation theory. Let us assume that
the full Hamiltonian of the problem (Ĥ) is partitioned into
the zeroth order Hamiltonian (Ĥ0) with the mth eigenfunction
|Ψ0

m⟩ with an eigenvalue E0
m and the rest which is treated

as perturbation (V̂ ). The first order correction to the ground
state wavefunction (Ψ1

g) is calculated by solving Equation (2),
where Q̂g is the orthogonal complement of P̂g = |Ψ0

g⟩⟨Ψ0
g |, the

projector onto the zeroth order approximation of the ground
state,

(Ĥ0 − E0
g)|Ψ1

g⟩ = −Q̂gV̂ |Ψ0
g⟩. (2)

This equation can alternatively be formulated as a
variational problem, where the Hylleraas functional L̂ shown
in Equation (3) is minimized with respect to |Ψ1

g⟩,
L̂[Ψ1

g] = ⟨Ψ1
g |(Ĥ0 − E0

g)|Ψ1
g⟩ + 2⟨Ψ1

g |Q̂gV̂ |Ψ0
g⟩. (3)

Note that both the Hylleraas functional in Equation (3)
and energy functional in Equation (1) are quadratic in their
respective unknowns |Ψ1

g⟩ and |Ψg⟩. Thus, by using essentially
the same sweep algorithm as in DMRG, one can optimize |Ψ1

g⟩
by minimizing the Hylleraas functional with a cpu cost that
scales as k3M3

1 for the first term and k3M2
0 M1 + k3M0M2

1
for the second term assuming both Ĥ0 and V̂ are two body
operators and M0 and M1 are the virtual bond dimension of
states |Ψ0

g⟩ and |Ψ1
g⟩, respectively.

In this work, we will mainly focus on uncontracted
NEVPT39,40 and MRLCC26–28 theories, in which the zeroth
order Hamiltonian Ĥ0 are, respectively, the Dyall Hamiltonian,
ĤD, and excitation conserving Hamiltonian of Fink, ĤREPT,
specified in Equation (4), where i, j, k, l refer to core orbitals,
a,b,c,d refer to virtual orbitals, r, s, t,u refer to active orbitals,
and m,n,o,p refer to any orbital; ∆nex = 0 signifies that all
terms that change the number of electrons in the active, core,
and virtual states are removed,
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ĤD =

i j

f i ja
†
i a j +


ab

faba†aab

+


rs

teff
rs a†ras +

1
2


r stu

⟨rs|tu⟩a†ra†sauat,

ĤREPT =

mn;
∆nex=0

tmna†man +


mnop;
∆nex=0

⟨mn|op⟩a†ma†napao. (4)

QDPT

MPSPT like all other multi-reference perturbation
theories becomes inaccurate near conical intersection or
when describing excited states with significant Rydberg
character. This is because the zeroth order states calculated
by diagonalizing the active space Hamiltonian can be quite
inaccurate and they need to be allowed to relax in the
presence of the perturbation. This relaxation is allowed
when one works within the QDPT framework which uses
the “diagonalize-perturb-diagonalize” philosophy. There are
several versions of QDPT the most common of which uses
intermediate normalization41 and results in non-Hermitian
effective Hamiltonians. In this work, instead, we use the
Kirtman-Certain-Hirschfelder (KCH) form of the canonical
Van Vleck perturbation theory (VVPT)33–36 which gives
Hermitian effective Hamiltonians and in addition obeys
Wigner’s 2n + 1 rule, thus allowing us to calculate third order
correction in energy with just the first order correction in
the wavefunction. The disadvantage of KCH-VVPT is that it
does not give size extensive energies beyond the fourth order.
This is not a problem because most practical applications are
restricted to orders no greater than three.

Let us assume that we will include m low lying states
in our model space. The zeroth order approximation of these
states is given by the m lowest eigenvectors of the zeroth
order Hamiltonian |Ψ0

1⟩, |Ψ0
2⟩, . . . , |Ψ0

m⟩, with eigenenergies
E0

1,E
0
2, . . . ,E

0
m, respectively. To the best of our knowledge,

a simple order-independent expression for the effective
Hamiltonian is not available,36 but here we use the explicit
expressions up to third order of perturbation theory given by
Nakano.42,43 The effective Hamiltonian projected in the model
space PH effP is an m × m matrix and the elements of this
matrix up to third order are explicitly given by Equations (5),
where |Ψ1

j⟩ is the first order correction to the jth model state,

H 0
i j = E0

i δi j,

H 1
i j = ⟨Ψ0

i |V̂ |Ψ0
j⟩,

H 2
i j =

1
2

(⟨Ψ0
i |V̂ |Ψ1

j⟩ + ⟨Ψ0
j |V̂ |Ψ1

i ⟩
)
,

H 3
i j = ⟨Ψ1

i |V̂ − E1
i j |Ψ1

j⟩.

(5)

The first order correction to the jth state can be
calculated by solving Equation (6), where Q̂ is the
orthogonal complement of the model space, or alternatively
by minimizing the functional displayed in Equation (7),

(Ĥ0 − E0
j )|Ψ1

j⟩ = − Q̂V̂ |Ψ0
j⟩, (6)

L̂[Ψ1
j ] = ⟨Ψ1

j |(Ĥ0 − E0
j )|Ψ1

j⟩ + 2⟨Ψ1
j |Q̂V̂ |Ψ0

j⟩. (7)

According to the above expression, one minimizes the
Hylleraas functional in Equation (7) for different states to
obtain the first order corrections; the first order states of
all m states can be calculated in parallel independently of
each other. These can then be used in the expression in
Equation (5) to calculate an m × m effective Hamiltonian
which is then diagonalized to calculate the QDPT energies.
Note that in usual cases, one can ignore the off-diagonal
elements of the effective Hamiltonian and this makes little
difference; but in cases of near degeneracy, the off-diagonal
elements are crucial to allow relaxation of the zeroth order
wavefunctions and avoid spurious curve crossing as we will
see in the following examples.

Before we move to the examples, it is appropriate to
discuss the invariance of the QD-MPSPT energies with respect
to rotations within the model states. Granovsky44 has recently
published his extended multi-configuration quasi-degenerate
perturbation theory which lists the criterion for QDPT to have
the desirable property of being invariant under rotations within
the model space. The traditional QD versions of CASPT245

and multipartitioning47 based QD-NEVPT246 do not satisfy
this criterion; the former because the Fock operator is not
invariant under rotations of model states (this shortcoming
has been addressed to some extent with the implementation
of extended multi-state CASPT248) and the latter because
in QDNEVPT2, non-universal perturber functions are used
for each model state. Both these problems are absent from
our formulation because both in the MPSPT implementation
of NEVPT and MRLCC, the zeroth order states are exact
eigenfunctions of the unprojected zeroth order Hamiltonian
Ĥ0, i.e., the definition of the zeroth order Hamiltonian does not
involve the zeroth order wavefunction. This is, for example,
not true in the case of CASPT2 where the zeroth order
Hamiltonian is defined as the projection of the Fock operator
onto the zeroth order state. Further, we work with matrix
product states that in the limit of large M span the same Q̂
space for each model state. Model-space invariance is lost
when a small M calculation is performed, but nevertheless
smooth potential energy curves can still be generated when

TABLE II. The table shows the energies of the ground and first excited
states of LiF molecule at various internuclear distances. The second and third
columns show the full configuration interaction (FCI) energy in Hartrees (Eh)
calculated using DMRG and the rest of the columns show the error in energies
of various methods in mEh relative to the FCI energies for the two states.
Both the MRLCC and NEVPT3 are calculated using MPSPT presented in
the current publication. Extended multi-state CASPT2 (XMS-CASPT2) and
MRCI are calculated using the Molpro package.

FCI
QD-

MRLCC
QD-

NEVPT3
XMS-

CASPT2 MRCI

r/a0 I II I II I II I II I II

3 −107.2912 −107.0383 7.8 5.7 11.7 10.2 16.1 12.2 11.3 8.0
4 −107.2522 −107.0600 7.9 5.9 12.9 10.8 17.0 11.5 12.5 8.4
5 −107.2016 −107.0652 6.8 5.5 13.0 10.6 17.9 10.7 13.2 8.4
6 −107.1603 −107.0689 5.7 5.0 12.9 10.4 17.9 10.6 13.2 8.4
7 −107.1284 −107.0715 4.9 4.6 12.6 10.1 17.0 10.9 12.7 8.3
8 −107.1040 −107.0728 4.3 4.2 12.1 10.1 15.6 11.6 11.6 8.5
9 −107.0867 −107.0714 3.8 3.4 10.9 10.7 13.3 13.4 9.3 9.7
10 −107.0801 −107.0640 3.9 0.5 9.7 11.8 11.8 14.6 7.4 11.1
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FIG. 2. The graph shows the first two excited states of LiF molecule with
various internuclear distances using different methods. MRLCC appears to
be the most accurate of all the methods presented here with NEVPT2 close
behind.

calculations are restarted from the solution at a nearby
geometry as the initial guess.

BENCHMARKS

Here, we test the effectiveness of the proposed theory by
performing calculations on the lowest two states along the
bond stretching of LiF molecule and the lowest three states of
an ethylene molecule as it is twisted along the double bond.

LiF

LiF is the quintessential benchmark used to test QDPTs
because of the presence of an avoided crossing between
the ionic and covalent curves.43,45,46,49 At short internuclear
distances, the ionic configuration dominates the ground state
wavefunction and at large bond distances, the molecule
dissociates with separation of neutral Li and F atoms. Thus,
along the curve, the nature of the wavefunction changes
drastically from ionic to covalent, but the two potential energy
surfaces (PESs) never cross each other because both these

FIG. 3. The ground and first excited states of LiF calculated using quasi-
degenerate NEVPT3 and MRLCC (solid lines). For comparison, we have also
plotted simple NEVPT3 and MRLCC energies (dotted lines), which show
spurious curve crossing and larger errors.

wavefunctions belong to the same irreducible representation
1Σ+g and thus obey the non-crossing rule of diatoms.

Here, we first calculate nearly exact all electron full
configuration interaction energies with a cc-pVTZ basis
set50,51 using DMRG as implemented in the Block code.52

These energies are then compared to those calculated using
MRCI,53 CASPT2,48,54 NEVPT3, and MRLCC which are
tabulated in Table II; MRCI and CASPT2 energies are
calculated using Molpro quantum chemistry package.55 The
zeroth order wavefunction for these calculations is obtained
by performing a two state-average complete active space self
consistent field (CASSCF) calculations with an active space
containing 6 electrons in 6 orbitals.

From Table II, it can be seen that the errors in MRLCC
are the lowest, while CASPT2 shows the largest errors.
The energies of all the methods including the FCI energies
are also plotted in Figure 2. It should be noted that near
avoided crossing at around 8 bohrs, it is essential to perform
quasi-degenerate perturbation theory. For example, we have
also plotted the energies obtained with simple multi-state
perturbation theory of MRLCC and NEVPT3 in Figure 3; and

TABLE III. This table shows the energy of the ground state and of the two first excited states of the ethene
molecule at different values of the dihedral angle. Second, third, and fourth columns are the near-exact FCI
energies, in Hartree, obtained using the DMRG algorithm. The remaining columns show the error in energies of
various methods in mEh relative to the FCI energies for the three states.

FCI QD-MRLCC QD-NEVPT3 MRCI CASPT2

ang I II III I II III I II III I II III I II III

00 −78.3242 −77.8928 −77.8318 2.7 3.4 3.7 8.7 10.5 11.1 7.3 10.3 10.2 16.2 11.5 16.7
10 −78.3223 −77.8955 −77.8345 2.7 3.6 3.6 8.8 10.6 11.1 7.3 10.1 9.9 15.9 11.4 14.9
20 −78.3165 −77.9056 −77.8441 2.7 4.2 8.1 8.7 11.4 16.6 6.4 9.3 13.7 13.3 11.4 12.1
30 −78.3070 −77.9267 −77.8558 2.8 4.1 5.7 8.8 11.3 13.7 6.6 9.2 11.2 13.4 10.8 11.0
40 −78.2936 −77.9578 −77.8626 2.9 3.8 5.0 8.8 10.8 12.7 6.6 8.8 10.5 13.4 10.3 11.0
50 −78.2769 −77.9939 −77.8650 3.0 3.6 4.8 8.9 10.4 12.4 6.7 8.5 10.4 13.3 10.2 11.1
60 −78.2573 −78.0309 −77.8643 3.0 3.4 4.9 8.9 10.1 12.4 6.7 8.3 10.5 13.3 10.3 11.4
70 −78.2362 −78.0654 −77.8612 3.1 3.3 5.3 9.0 9.9 12.8 6.7 8.2 10.7 13.3 10.4 11.8
80 −78.2168 −78.0929 −77.8559 3.0 3.1 6.2 8.9 9.7 13.7 6.5 8.0 11.4 13.0 10.5 12.7
90 −78.2074 −78.1041 −77.8501 2.6 2.5 6.9 8.6 9.2 14.2 6.0 7.4 11.7 12.4 10.3 13.0
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these energies show a much higher level of degeneracy with
NEVPT3 showing a spurious curve crossing near 8 bohrs. In
these cases, the off-diagonal term of the effective Hamiltonian
H eff which is ignored in simple perturbation theory becomes
absolutely essential and is responsible for relaxation of the
zeroth order states.

C2H4

We now turn our attention to the evaluation of the three
lowest electronic states of the totally symmetric representation
of the ethylene molecule with different values of the dihedral
angle. The PESs of the ground and excited states of
ethylene have been extensively studied both experimentally
and theoretically because it is the simplest model of the photo-
induced cis-trans isomerization. During the isomerization, an
initial photoexcitation of the molecule from the ground state
N (π2) to the excited valence state V (ππ∗) is followed by
torsional motion around the C==C double bond where the
V state crosses the Z state (π∗2) and remains approximately
degenerate with it. The V, Z, and N states are thought to play
an important role in the isomerization.

The accurate characterization of the ground and excited
state PESs is complicated by the fact that in addition to
being strongly correlated, these states show several avoided
crossings.45,56–58 Here, we calculate the first three states of
ethylene involved in cis-trans isomerization using various
multi-reference methods. Even though the point group
symmetry of the molecule changes from D2h in the flat
molecule to D2 symmetry at intermediate geometries and C2v
when the two CH2 fragments are orthogonal, we use the D2
point group for all the calculations to generate smooth curves.
The geometry of the flat molecule is obtained from the G2-1
test set of Curtiss et al.;59 the geometries at different torsional
angles are obtained by keeping all the internuclear distances
and angles fixed except the torsion angle. We use Pople’s, i.e.,
6-31G*60 basis set for all the calculations.

Nearly exact FCI calculations have been performed using
DMRG on these (36o, 16e) systems. These energies are

FIG. 4. Energies of the ground (straight line) and two first excited states
(dashed and dotted lines) of ethylene at several C==C angles. The full CI re-
sults are indicated by crosses, MRLCC with squares, NEVPT2 with triangles
down, CASPT2 with triangles up, and MRCI with circles.

FIG. 5. The error, in mEh, with respect to FCI calculations are displayed
with the same legend as in Fig. 4.

then compared with MRLCC, NEVPT3, CASPT2, and MRCI
results presented in Table III and are also plotted in Fig. 4.
The zeroth order wavefunction has been obtained by CASSCF
calculations on a (12o, 12e) active space.

The lowest errors are found with MRLCC and the largest
errors with CASPT2; the same trends were observed with the
LiF molecule. In Figure 5, it can be seen that the MRLCC
errors are at least a factor of 2 smaller than the errors obtained
by the other methods.

CONCLUSION AND OUTLOOK

In this article, we have shown that quasi-degenerate
version of MPSPT can be used to calculate highly
accurate energies of ground and excited states when near
degeneracies are present. The most accurate energies were
obtained by using MPSPT with Fink’s excitation retaining
zeroth order Hamiltonian (MRLCC), in agreement with
our previous findings. We have used Kirtman-Certain-
Hirschfelder’s canonical Van Vleck perturbation theory, which
enables us to use Wigner’s 2n + 1 rule and thus all MPSPT
energies in this paper are calculated up to third order with
only the first order correction in the wavefunction. Finally, the
presented theory satisfies Granovsky’s requirement of being
model space invariant which gives smooth potential energy
surfaces.

In this article, we have performed calculations on small
problems with modest basis sets; so we would like to end by
describing the prospect of using the current approach with a
large basis set. The strength of MPS based methods is their
ability to treat static correlation with active spaces containing
around 30-40 orbitals, but the usual DMRG algorithm is not
a practical route for calculating dynamical correlation where
one is often required to work with several hundred to a few
thousand orbitals. The current approach can nevertheless be
used for performing NEVPT2 calculation by using the fact
that such calculations can be embarrassingly parallelized over
pairs of virtual orbitals. The NEVPT2 energy can be written as
a sum of pair energies which can be calculated independently
of each other and in parallel. Such embarrassing parallelization
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is not possible for performing canonical MRLCC calculations.
For such calculations, we can truncate the external perturber
space (states containing two virtual orbitals) by using internal-
contraction, while the semi-internal and internal perturber
states can be treated using the current approach. The advantage
of such an approach is that one does not need four body
RDM, which poses a severe bottleneck for large active spaces
treatable by DMRG. We are working on a manuscript which
will describe this approach in detail.
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