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Abstract

We present an implementation and benchmark of new approximations in multireference algebraic
diagrammatic construction theory for simulations of neutral electronic excitations and UV/Vis spectra
of strongly correlated molecular systems (MR-ADC). Following our work on the first-order MR-ADC
approximation [J. Chem. Phys. 2018, 149, 204113], we report the strict and extended second-order
MR-ADC methods (MR-ADC(2) and MR-ADC(2)-X) that combine the description of static and dy-
namic electron correlation in the ground and excited electronic states without relying on state-averaged
reference wavefunctions. We present an extensive benchmark of the new MR-ADC methods for excited
states in several small molecules, including the carbon dimer, ethylene, and butadiene. Our results
demonstrate that for weakly-correlated electronic states the MR-ADC(2) and MR-ADC(2)-X methods
outperform the third-order single-reference ADC approximation and are competitive with the results
from equation-of-motion coupled cluster theory. For states with multireference character, the perfor-
mance of the MR-ADC methods is similar to that of an N-electron valence perturbation theory. In
contrast to conventional multireference perturbation theories, the MR-ADC methods have a number
of attractive features, such as a straightforward and efficient calculation of excited-state properties and
a direct access to excitations outside of the frontier (active) orbitals.

1 Introduction

Ab initio electronic structure methods1–4 are of-
ten used in combination with experiment to gain a
deeper understanding of the excited-state proper-
ties of molecules and to study the behavior of these
molecules as they undergo various photochemical
transformations. Among many quantum chemi-
cal methods, algebraic diagrammatic construction
theory5–9 (ADC) has become one of the widely
used approaches for studying electronically excited
states,10–25 due to a combination of its low compu-
tational cost and systematically improvable accu-
racy. In its original formulation proposed almost
40 years ago,5 ADC is based on the conventional
(single-reference) perturbation theory, which sig-
nificantly simplifies its working equations and al-
lows for efficient calculation of excitation energies
and excited-state properties. However, due to its
single-reference nature, conventional ADC approx-
imations become unreliable in systems with strong

electron correlation in the ground or excited elec-
tronic states.

Recently, we proposed a multireference formu-
lation of ADC26 (MR-ADC) that can be consid-
ered as a natural generalization of the conventional
ADC theory for strongly-correlated (multiconfigu-
rational) wavefunctions. MR-ADC combines the
advantages of the multireference perturbation the-
ories,27–42 effective Hamiltonian approaches,43–51

and multiconfigurational propagator methods52–61

in a single theoretical framework that offers a
hierarchy of computationally efficient approxima-
tions that provide a straightforward access to size-
consistent excitation energies and excited-state
properties and allow for calculation of excita-
tions outside of strongly-correlated (active) or-
bitals. More recent work in our group concen-
trated on the development of the second-order MR-
ADC approximations for simulating charged exci-
tations (such as electron attachment or ionization)
and demonstrated that the MR-ADC methods per-
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form very well in a variety of weakly- and strongly-
correlated systems.62,63 On the other hand, our
computer implementation of MR-ADC for neutral
electronic excitations has been limited to the first-
order MR-ADC approximation (MR-ADC(1)),26

which did not provide accurate excitation energies
missing much of the dynamic correlation effects.

In this work, we present the implementation
and benchmark of the strict and extended second-
order MR-ADC methods (MR-ADC(2) and MR-
ADC(2)-X) for neutral electronic excitations that
provide a more balanced description of static and
dynamic electron correlation effects. We present an
overview of the MR-ADC theory for neutral exci-
tations in Section 2, before outlining the principle
components of our implementation in Section 3.
We lay out the details of our computations in Sec-
tion 4 and present our benchmark results for ex-
cited states of small molecules (HF, CO, N2, F2,
H2O), the carbon dimer (C2), as well as the ethy-
lene (C2H4) and butdiene (C4H6) molecules in Sec-
tion 5. Our results demonstrate that the second-
order MR-ADC approximations provide accurate
predictions of the excited-state energies for weakly-
and strongly-correlated electronic states at equilib-
rium geometries and near dissociation. We outline
our conclusions in Section 6.

2 Theory

2.1 MR-ADC for the Polarization Prop-
agator

We begin with a brief overview of the principal
components of the MR-ADC theory in the con-
text of neutral (particle-number-conserving) elec-
tronic excitations. A more detailed discussion of
MR-ADC using the formalism of the effective Li-
ouvillean theory64 can be found in Ref. 26. Elec-
tronic excitations arise from the perturbation of a
molecule by an external electric field. The response
of the molecule is described by the spectral func-
tion5

T (ω) = − 1

π
Tr
[
Im(D†Π(ω)D)

]
(1)

where D is a dipole moment operator matrix with
elements Dpq expressed in a finite single-particle
basis set and Π(ω) is a polarization propagator,
which is the central object of interest in this work.

The polarization propagator Π(ω) is a particular
type of the retarded frequency-dependent propaga-

tor3,4 G(ω), which can be generally written as:

Gµν(ω) = G+
µν(ω)±G−µν(ω)

= 〈Ψ| qµ(ω −H + E)−1q†ν |Ψ〉
± 〈Ψ| q†ν(ω +H − E)−1qµ |Ψ〉 (2)

where G+
µν(ω) and G−µν(ω) are the forward and

backward components of the propagator, H is the
electronic Hamiltonian, |Ψ〉 and E are the eigen-
function and eigenenergy of H, respectively. The
polarization propagator Π(ω) is characterized by

the choice of q†ν = a†paq−〈Ψ| a†paq |Ψ〉, expressed in
terms of the fermionic annihilation and creation op-
erators, and the negative sign for the second term
in Eq. (2). In the case of the polarization propa-
gator, the forward and backward components are
related as Π†+(−ω) = −Π−(ω), so in computing
one component, the other is trivially obtained. For
this reason, in this work we define Π(ω) ≡ Π+(ω)
and consider only the forward component of the
propagator henceforth.

When written in the equivalent Lehmann65

(spectral) representation, in which a resolution of
identity is introduced over all excited eigenstates
of the system (|Ψk〉),

Πpqrs(ω) =
∑
k 6=0

〈Ψ|a†qap|Ψk〉 〈Ψk|a†ras|Ψ〉
ω + E0 − Ek

. (3)

the poles of the polarization propagator Πpqrs(ω)
correspond to excitation energies (ωk = Ek − E0)
while the expectation values in the numerator de-
scribe the probabilities of the corresponding tran-
sitions. The frequency ω ≡ ω′ + iη is defined in
terms of real (ω′) and infinitesimal imaginary (iη)
components. Eq. (3) can be written compactly in
a matrix form

Π(ω) = X̃(ω − Ω̃)−1X̃† (4)

where Ω̃ is a diagonal matrix of excitation energies
(ωk) and X̃ is a matrix of spectroscopic amplitudes

X̃pqk = 〈Ψ|a†qap|Ψk〉. The expressions for the po-
larization propagator in Eqs. (3) and (4) are exact
if written in the basis of the exact eigenstates, how-
ever in practice these states must be approximated.

MR-ADC provides a hierarchy of efficient ap-
proximations to the polarization propagator (4) by
expressing it in a time-independent multireference
perturbative expansion and truncating this series
at a low order in perturbation theory. Working
equations of the MR-ADC approximations are de-
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external
(a, b, c, d)

core
(i, j, k, l)

active
(u, v, w, x, y, z)

E

active + external
(a′, b′, c′, d′)

core + active
(i′, j′, k′, l′)

general
(p, q, r, s)

Figure 1: Indexing convention of the orbital
energy diagram used in MR-ADC.

rived using the multireference generalization of the
effective Liouvillean theory,26,64 which starts by
writing the wavefunction |Ψ〉 as a unitary trans-
formation64,66–70 of the complete active-space self-
consistent field71 (CASSCF) reference wavefunc-
tion |Ψ0〉

|Ψ〉 = eA |Ψ0〉 = eT−T
† |Ψ0〉 , T =

N∑
k=1

Tk (5)

Tk =
1

(k!)2

∑
i′j′a′b′...

ta
′b′...
i′j′... a

†
a′a
†
b′ . . . aj′ai′ (6)

In Eqs. (5) and (6), T is an excitation operator
that generates all of the internally-contracted exci-
tations between the core, active, and external or-
bitals (Figure 1). Next, the full electronic Hamil-
tonian H is partitioned into the zeroth-order part
H(0) and a perturbation V = H−H(0), where H(0)

is the Dyall Hamiltonian33–35,72 with an eigenfunc-
tion |Ψ0〉. This partitioning of H leads to the per-
turbative expansions for the wavefunction |Ψ〉 and
the polarization propagator Π(ω):

|Ψ〉 = eA
(0)+A(1)+···+A(n)+··· |Ψ0〉 (7)

Π(ω) = Π(0)(ω) + Π(1)(ω) + · · ·+ Π(n)(ω) + · · ·
(8)

Truncating these expansions at the nth order
defines the polarization propagator of the MR-
ADC(n) approximation. The MR-ADC(n) work-
ing equations are derived by writing Π(ω) in the
form

Π(ω) = T(ωS−M)−1T† (9)

where M is a non-diagonal effective Hamiltonian
matrix that can be used to compute the excita-
tion energies and T is an effective transition mo-

ments matrix that contains information about the
probabilities of electronic transitions. The matri-
ces M and T are evaluated in an approximate ba-
sis of many-electron (internally-contracted) states,
which are in general non-orthogonal with an over-
lap matrix S. In Eq. (9) each matrix is evaluated
up to the same (nth) order in perturbation theory.

The MR-ADC(n) excitation energies Ω and com-
plementary eigenvectors Y are obtained by solving
the generalized eigenvalue problem

MY = SYΩ (10)

Combining the eigenvectors Y with the effective
transition moments matrix T allows to compute
the spectroscopic amplitudes

X = TS−
1
2 Y (11)

and the MR-ADC(n) polarization propagator

Π(ω) = X(ω −Ω)−1X† (12)

along with the spectral function T (ω) in Eq. (1).
The spectroscopic amplitudes X can be also used to
compute the oscillator strength for each electronic
transition k

fk =
2

3
ωk |〈Ψ|D|Ψk〉|2 =

2

3
ωk

(∑
pq

DpqXpqk

)2

(13)

where 〈Ψ|D|Ψk〉 is the transition dipole moment
matrix element.

2.2 Strict and Extended Second-Order
MR-ADC Approximations

2.2.1 Perturbative Structure of the MR-
ADC Matrices

In this work, we consider the strict and extended
second-order MR-ADC approximations for elec-
tronic excitations, denoted as MR-ADC(2) and
MR-ADC(2)-X. In the MR-ADC(2) approxima-
tion, contributions to Π(ω) are included strictly
up to the second order in the MR-ADC perturba-
tion expansion, while the MR-ADC(2)-X method
partially incorporates selected third-order terms as
discussed below.

At each perturbation order n, contributions to
the matrix elements of M, T, and S in Eq. (9) are

3



Figure 2: Schematic illustration of the electronically-excited basis states produced by acting the h
(k)†
ν

(k = 0, 1) operators (Eqs. (17) and (18)) on the reference state |Ψ0〉. A circle connected with an arrow
denotes a single excitation. Black, green, and red lines represent core, active, and external orbitals,
respectively.

expressed as

M (n)
µν =

k+l+m=n∑
klm

〈Ψ0|[h(k)
µ , [H̃(l), h(m)†

ν ]]|Ψ0〉 (14)

T (n)
µν =

k+m=n∑
km

〈Ψ0|[q̃(k)
µ , h(m)†

ν ]|Ψ0〉 (15)

S(n)
µν =

k+m=n∑
km

〈Ψ0|[h(k)
µ , h(m)†

ν ]|Ψ0〉 (16)

where H̃(l) and q̃
(l)
µ are the l th-order operators ob-

tained from the perturbative analysis of the Baker–
Campbell–Hausdorff expansions for the effective
Hamiltonian H̃ = e−AHeA and observable q̃µ =
e−Aqµe

A operators, respectively. The excitation

operators h
(m)†
ν are used to construct the many-

electron basis states that are necessary for repre-
senting the wavefunctions of the excited electronic
states. Defining apq ≡ a†paq and apqrs ≡ a†pa

†
qasar,

the low-order h
(m)†
ν used in MR-ADC(2) and MR-

ADC(2)-X have the form:

h(0)† = {Z†I (I > 0), aai , a
x
i , a

a
x} (17)

h(1)† = {aabij , aaxij , aabix , a
xy
ij , a

ab
xy, a

yz
ix , a

az
xy, a

ay
ix }
(18)

These excitations are pictorially represented in Fig-
ure 2. The h(0)† operator set contains two classes
of operators: (i) the eigenoperators73,74 Z†I =
|ΨI〉 〈Ψ0| (I > 0) that describe excitations within
the active space and (ii) the operators apq that pro-
duce single excitations outside of the active space.

The excited-state active-space wavefunctions |ΨI〉
(I > 0) that appear in Z†I are obtained by per-
forming a multistate CASCI calculation using the
CASSCF orbitals optimized for the reference state
|Ψ0〉. Although, formally, the set of |ΨI〉 (I > 0)
includes all CASCI wavefunctions in a given com-
plete active space, in practice only a small number
of CASCI states relevant to the spectral region of
interest need to be computed. As shown in Fig-
ure 2, the h(1)† operator set describes all possible
double excitations outside of the active space.

Eqs. (14) and (15) define the perturbative struc-
ture of the M and T matrices shown in Figure 3,
with the effective operators H̃(k) and q̃(l) expanded
to different orders in different sectors defined by

the h
(0)†
ν and h

(1)†
ν operators. Both MR-ADC(2)

and MR-ADC(2)-X incorporate up to H̃(2) in the

〈Ψ0|[h(0)
µ , [H̃(l), h

(0)†
ν ]]|Ψ0〉 sector of the M matrix

and up to H̃(1) in the h
(0)
µ – h

(1)†
ν and h

(1)
µ – h

(0)†
ν

coupling blocks. The two methods differ in the h
(1)
µ

– h
(1)†
ν sector approximating the effective Hamilto-

nian to H̃(0) and H̃(1) in MR-ADC(2) and MR-
ADC(2)-X, respectively. For the T matrix, MR-
ADC(2) and MR-ADC(2)-X describe the effective

observable operator up to q̃(2) in the h
(0)†
ν sector,

but differ in its expansion in the h
(1)†
ν block (Fig-

ure 3).

2.2.2 Amplitudes of the Effective Hamilto-
nian

Computation of the M and T matrix elements in
Figure 3 requires solving for the amplitudes of the

4
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0
0

0
0
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0
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1

1
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1
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Figure 3: Graphical representation of the effective Hamiltonian M and transition moments T matrices
for the a) MR-ADC(2) and b) MR-ADC(2)-X methods.

excitation operator T (k) (Eq. (6)). We express T (k)

in a general form as

T (k) = t(k) τ † =
∑
µ

t(k)
µ τ †µ (19)

where t
(k)
µ are the kth-order amplitude coefficients

and τ †µ denotes the corresponding string of creation
and annihilation operators. In MR-ADC(2) and
MR-ADC(2)-X only the low-order amplitudes t(1)

and t(2) need to be evaluated. These amplitudes
are determined by solving a system of projected
linear equations

〈Ψ0|τµH̃(k)|Ψ0〉 = 0 (k = 1, 2) (20)

For the details of solving these amplitude equations
we refer the readers to our earlier publications.62,63

Both MR-ADC(2) and MR-ADC(2)-X require
calculating all first-order amplitudes

t(1) =
{
t
a(1)
i ; t

x(1)
i ; ta(1)

x ; t
ab(1)
ij ; t

ax(1)
ij ; t

ab(1)
ix ;

t
xy(1)
ij ; tab(1)

xy ; t
ay(1)
ix ; t

yz(1)
ix ; taz(1)

xy

}
(21)

The first three sets of amplitudes correspond to

single excitations (t
a(1)
i ; t

x(1)
i ; t

a(1)
x ) and the next

five sets represent external double excitations. The
last three sets of t(1) in Eq. (21) describe the semi-

internal double excitations (t
ay(1)
ix ; t

yz(1)
ix ; t

az(1)
xy ).

The MR-ADC(2) and MR-ADC(2)-X equations
for the effective Hamiltonian matrix M also de-
pend on the second-order singles and semi-internal
doubles amplitudes of the form:

t
(2)
s =

{
t
a(2)
i ; t

x(2)
i ; ta(2)

x ; ty(2)
x (x > y);

t
ay(2)
ix ; t

yz(2)
ix ; taz(2)

xy

}
(22)

We note that in addition to the external singles am-

plitudes (t
a(2)
i ; t

x(2)
i ; t

a(2)
x ), Eq. (22) also includes

the internal singles amplitudes t
y(2)
x (x > y) that

we did not encounter in our previous work. These
amplitudes are necessary to ensure the Hermiticity
of the effective Hamiltonian matrix M as discussed
below. Additionally, the MR-ADC(2)-X equations
for the T matrix elements (Figure 3b) depend on
the external double-excitation amplitudes

t
(2)
d =

{
t
ab(2)
ij ; t

ax(2)
ij ; t

ab(2)
ix ; t

xy(2)
ij ; tab(2)

xy

}
(23)

In our previous work on EA/IP-MR-ADC(2) and
EA/IP-MR-ADC(2)-X,62,63 we demonstrated that

neglecting all second-order amplitudes except t
a(2)
i

has a negligible effect on the computed charged ex-
citation energies and transition probabilities. How-
ever, for neutral electronic excitations, some of the
second-order amplitudes need to be computed to
prevent asymmetry of the M matrix. To illustrate
this, we consider the second-order contributions to
one of the off-diagonal blocks of M and its trans-
pose that can be expressed and simplified as:

M
(2)
ix,jb = 〈Ψ0|[a†iax, [H̃

(2), a†baj ]]|Ψ0〉

= 〈Ψ0|a†iaxH̃
(2)a†baj |Ψ0〉 (24)

M
(2)†
ix,jb = 〈Ψ0|[a†jab, [H̃

(2), a†xai]]|Ψ0〉
†

= 〈Ψ0|a†iaxH̃
(2)a†baj |Ψ0〉

+δji 〈Ψ0|H̃(2)a†bax|Ψ0〉 (25)

The two blocks of the M matrix are equal to each

5



other provided that the second term in Eq. (25)
is zero, which is satisfied if the second-order ef-
fective Hamiltonian H̃(2) is parametrized with the

t
b(2)
x amplitudes that fulfill the projected amplitude

equations 〈Ψ0|H̃(2)a†bax|Ψ0〉 = 0 (Eq. (20)). As
another example we consider one of the diagonal
blocks of M:

M
(2)
ix,jy = 〈Ψ0|[a†iax, [H̃

(2), a†yaj ]]|Ψ0〉

= 〈Ψ0|a†iaxH̃
(2)a†yaj |Ψ0〉

−δji 〈Ψ0|axa†yH̃(2)|Ψ0〉 (26)

M
(2)†
ix,jy = 〈Ψ0|[a†jay, [H̃

(2), a†xai]]|Ψ0〉
†

= 〈Ψ0|a†iaxH̃
(2)a†yaj |Ψ0〉

−δji 〈Ψ0|H̃(2)axa
†
y|Ψ0〉 (27)

Here, the last two terms in Eqs. (26) and (27)
are in general different, unless the effective Hamil-
tonian includes contributions from the internal
second-order amplitudes t

y(2)
x (x > y) ensuring that

〈Ψ0|axa†yH̃(2)|Ψ0〉 = 〈Ψ0|H̃(2)axa
†
y|Ψ0〉, which re-

sults in the Hermitian M
(2)
ix,jy block. The solution

of the amplitude equations for the t
y(2)
x (x > y) am-

plitudes is described in the Appendix.
Including all second-order singles amplitudes en-

sures the full Hermiticity of the M matrix in all
sectors. On the other hand, neglecting the second-
order doubles amplitudes does not affect the sym-
metry of M and has a negligible effect on the com-
puted excitation energies and oscillator strengths
(see Table S1 of the Supporting Information for
details). For this reason, in our implementation
of MR-ADC for electronic excitations, we approx-
imate:

t(2) ≈
{
t
a(2)
i ; t

x(2)
i ; ta(2)

x ; ty(2)
x (x > y)

}
(28)

3 Implementation

Our implementation of MR-ADC(2) and MR-
ADC(2)-X for electronic excitations follows the
steps outlined below:

1. Given an active space, compute the reference
(usually, ground-state) CASSCF wavefunc-
tion |Ψ0〉 and molecular orbitals.

2. Using the reference CASSCF molecular or-
bitals compute the CASCI wavefunctions
|ΨI〉 (I > 0) for the user-defined number of
excited states (NCI).

3. Calculate the reduced density matrices
(RDMs):

(a) reference RDMs with respect to |Ψ0〉;
(b) transition RDMs between |Ψ0〉 and
|ΨI〉 (I > 0);

(c) excited-state RDMs amongst |ΨI〉 (I >
0).

4. Solve the linear amplitude equations
(Eq. (20)) to compute the first- and second-
order amplitudes t(1) and t(2) discussed in
Section 2.2.2.

5. Diagonalize the effective Hamiltonian matrix
M (Eq. (10)) to compute excitation energies.

6. Compute the spectroscopic amplitudes
X (Eq. (11)) and oscillator strengths fk
(Eq. (13)).

As discussed in our previous work,62,63 the MR-
ADC generalized eigenvalue problem is solved in
the symmetrically-orthogonalized form (M̃ Ỹ =
Ỹ Ω, M̃ = S−1/2 M S−1/2, Ỹ = S1/2 Y) using the
multiroot Davidson algorithm75,76 that iteratively
optimizes the eigenvectors Ỹ until convergence by
forming the matrix-vector products σ = M̃Ỹ.
Equations and computer code for the calculation
of the σ vectors were generated using a modi-
fied version of the SecondQuantizationAlge-
bra program (SQA) developed by Neuscamman
and co-workers.77 To optimize computational effi-
ciency, our code generator implements the tensor
contractions by automatically splitting them into
the efficient tensor intermediates, which are reused
throughout the calculation.

For a fixed active space, the MR-ADC(2) and
MR-ADC(2)-X implementations have the O(M5)
and O(M6) computational scaling with the ba-
sis set size M , respectively, which is equivalent to
the scaling of their single-reference counterparts.9

Both methods have the formal O(NdetN
8
act) scal-

ing with the number of active orbitals (Nact) and
Slater determinants (Ndet), similar to that of the
conventional second-order multireference perturba-
tion theories. The active-space scaling can be fur-
ther lowered to O(NdetN

6
act) using a technique de-

scribed in our previous work,62,63 which forms ef-
ficient intermediates to avoid computation of the
four-particle RDMs, although we did not employ
this approach in our current implementation.

6



4 Computational Details

The MR-ADC(2) and MR-ADC(2)-X methods
were implemented in Prism, a standalone pro-
gram that is being developed in our group. The
Prism program interfaces with PySCF78 to obtain
integrals and CASSCF/CASCI reference wave-
functions. The MR-ADC results were bench-
marked against excitation energies obtained from
the semi-stochastic heat-bath configuration in-
teraction (SHCI)79–81 calculations extrapolated
to the full configuration interaction limit. The
SHCI method was implemented in the Dice pro-
gram.79–81 We also compare the MR-ADC re-
sults to those computed using strongly-contracted
N -electron valence second-order perturbation
theory (sc-NEVPT2),33,34 single-reference ADC
(ADC(n), n = 2, 3),5,9 and equation-of-motion
coupled cluster theory with single and double ex-
citations (EOM-CCSD).82–85 We used PySCF to
obtain the sc-NEVPT2 energies. The ADC(2),
ADC(3), and EOM-CCSD results were computed
using Q-Chem.86

Performance of the MR-ADC(2) and MR-
ADC(2)-X methods was tested for a benchmark
set of five small molecules (HF, F2, CO, N2, and
H2O), a carbon dimer (C2), and two alkenes: ethy-
lene and butadiene. As in our earlier work,62,63

computations of the five small molecules were per-
formed using two geometries: equilibrium and
stretched. The equilibrium geometries were taken
from Ref. 13. The stretched geometries of all
molecules were obtained by increasing their bond
lengths by a factor of two. The C−C bond distance
in the carbon dimer was set to 2.4 a0, which is close
to its equilibrium bond length.87 The geometries of
the alkenes were obtained as described in Ref. 88
and are reported in the Supporting Information.
Calculations of HF, F2, CO, N2, and H2O em-
ployed the aug-cc-pVDZ basis set.89 Carbon dimer
calculations were performed using cc-pVDZ.90 For
the ethylene and butadiene molecules we used the
ANO-L-PVTZ and ANO-L-PVDZ basis sets, re-
spectively.91

The active spaces used in the MR-ADC and sc-
NEVPT2 computations (Section 5.1) were chosen
as follows:

HF : (3σ)2(1π)4

(4σ)0(5σ)0(2π)0(3π)0

CO : (1π)4(5σ)2

(2π)0(6σ)0(7σ)0(3π)0

N2 : (3σg)
2(1πu)4

(3σu)0(1πg)
0(4σg)

0(2πu)0

F2 : (1πu)4(3σg)
2(1πg)

4

(3σu)0(2πu)0

H2O : (1b2)2(3a1)2(1b1)2

(4a1)0(2b2)0(5a1)0(2b1)0(6a1)0(3b2)0

C2 : (2σg)
2(2σu)2(1πu)4

(3σg)
0(1πg)

0(3σu)0

where the molecular orbital occupations shown cor-
respond to the those in the Hartree–Fock Slater
determinant. The active spaces used in the cal-
culations of the alkene molecules ranged from the
full valence π-orbital space up to the triple-π space
for ethylene and up to double-π for butadiene, as
described in the Supporting Information. The sc-
NEVPT2 computations were performed using the
state-averaged CASSCF reference wavefunctions,
where the ground and all excited states of interest
were averaged with equal weights. All MR-ADC
calculations were performed using the state-specific
(ground-state) CASSCF reference wavefunctions.
The MR-ADC calculations were converged with
the number of CASCI states by including at least
15 excited singlet CASCI states and no less than
10 excited triplet CASCI states. The ηs = 10−5

and ηd = 10−10 truncation parameters were used
to eliminate redundant excitations in the solution
of the MR-ADC equations.62,63 As in our previ-
ous work,62,63 we have confirmed that the com-
puted MR-ADC excitation energies and oscillator
strengths are size-consistent (see the Supporting
Information for details).

5 Results

5.1 Excited States in HF, CO, N2, F2,
and H2O

We begin our discussion of results by benchmark-
ing the MR-ADC(2) and MR-ADC(2)-X excitation
energies against the accurate excited-state ener-
gies computed using the semi-stochastic heat-bath
CI algorithm (SHCI)79–81 for five small molecules
(HF, CO, N2, H2O, and F2) at equilibrium and
stretched geometries. In addition to SHCI, we
compare the performance of our MR-ADC meth-
ods with the conventional (single-reference) ADC
approximations (ADC(n), n = 2, 3), equation-of-
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Table 1: Vertical excitation energies (Ω, eV) and oscillator strengths (f) of molecules with equilibrium
geometries. See Section 4 for details of the calculations. Also shown are mean absolute errors (∆MAE),
standard deviations (∆STD), and maximum absolute errors (∆MAX) of the energies, relative to SHCI. Only
orbitals participating in excitations are listed in the electron configuration of each excited state.

System Configuration Term ADC(2) ADC(3) EOM-CCSD sc-NEVPT2 MR-ADC(2) MR-ADC(2)-X SHCI

Ω (f) Ω (f) Ω Ω Ω (f) Ω (f) Ω

HF (3σ)2(1π)3(4σ)1 3Π 9.30 10.50 9.89 10.09 10.40 10.21 10.05

(3σ)2(1π)3(4σ)1 1Π 9.63 (0.039) 10.96 (0.042) 10.30 10.46 10.80 (0.036) 10.58 (0.035) 10.44

(3σ)1(1π)4(4σ)1 3Σ+ 13.05 13.80 13.41 13.60 13.91 13.67 13.54

(3σ)2(1π)3(5σ)1 3Π 13.14 14.53 13.86 14.06 14.17 13.96 14.02

(3σ)2(1π)3(5σ)1 1Π 13.35 (0.006) 14.74 (0.019) 14.06 14.27 14.38 (0.010) 14.17 (0.009) 14.21

(3σ)2(1π)3(2π)1 3Σ+ 13.80 14.83 14.26 14.52 14.70 14.52 14.47

(3σ)1(1π)4(4σ)1 1Σ+ 13.91 (0.149) 15.01 (0.178) 14.47 14.66 15.08 (0.172) 14.77 (0.167) 14.58

(3σ)2(1π)3(2π)1 3∆ 14.22 15.33 14.74 14.93 15.18 14.99 14.93

(3σ)2(1π)3(2π)1 1∆ 14.46 15.66 15.03 15.20 15.49 15.29 15.20

(3σ)2(1π)3(2π)1 3Σ− 14.51 15.69 15.07 15.26 15.53 15.31 15.25

(3σ)1(1π)3(2π)1 1Σ− 14.54 15.72 15.10 15.28 15.56 15.36 15.28

CO (1π)4(5σ)1(2π)1 3Π 6.49 6.00 6.42 6.57 6.51 6.02 6.33

(1π)3(5σ)2(2π)1 3Σ+ 8.60 8.38 8.44 8.67 8.94 8.81 8.54

(1π)4(5σ)1(2π)1 1Π 8.82 (0.072) 8.36 (0.093) 8.72 9.55 9.03 (0.140) 8.42 (0.134) 8.60

(1π)3(5σ)2(2π)1 3∆ 9.46 9.27 9.40 9.57 9.84 9.71 9.44

(1π)3(5σ)2(2π)1 3Σ− 10.15 9.77 9.98 10.16 10.47 9.68 9.95

(1π)3(5σ)2(2π)1 1Σ− 10.21 10.02 10.21 10.32 10.58 10.43 10.17

(1π)3(5σ)2(2π)1 1∆ 10.47 10.10 10.32 10.52 10.89 10.71 10.28

N2 (3σg)2(1πu)3(1πg)1 3Σ+
u 8.20 7.36 7.74 7.86 7.93 7.86 7.74

(3σg)1(1πu)4(1πg)1 3Πg 8.25 7.85 8.15 8.14 8.82 8.38 8.09

(3σg)1(1πu)4(1πg)1 3∆u 9.37 8.57 9.09 9.12 9.17 9.08 9.03

(3σg)1(1πu)4(1πg)1 1Πg 9.60 9.32 9.53 9.41 10.04 9.59 9.45

(3σg)2(1πu)3(1πg)1 3Σ−
u 10.36 9.36 10.00 10.16 10.29 10.14 9.82

(3σg)2(1πu)3(1πg)1 1Σ−
u 10.43 9.62 10.25 10.22 10.23 10.14 10.12

(3σg)1(1πu)4(1πg)1 1∆u 10.95 10.00 10.66 10.81 10.90 10.77 10.49

F2 (1πu)4(1πg)3(3σu)1 3Πu 3.43 2.95 3.32 3.38 3.35 3.26 3.26

(1πu)4(1πg)3(3σu)1 1Πu 4.76 (< 0.001) 4.18 (< 0.001) 4.61 4.58 4.57 (< 0.001) 4.49 (< 0.001) 4.52

(1πu)3(1πg)4(3σu)1 3Πg 7.28 6.50 7.05 7.07 6.96 6.81 6.84

(1πu)3(1πg)4(3σu)1 3Σ+
u 7.42 6.62 7.07 7.41 7.35 7.27 7.12

(1πu)3(1πg)4(3σu)1 1Πg 8.29 6.93 7.74 7.53 7.46 7.31 7.35

(1πu)4(1πg)2(3σu)2 3Σ−
g

a a a 8.43 8.82 8.29 8.81

H2O (3a1)2(1b1)1(4a1)1 3B1 6.63 7.40 7.04 7.11 7.40 7.17 7.14

(3a1)2(1b1)1(4a1)1 1B1 6.96 (0.055) 7.84 (0.059) 7.44 7.50 7.78 (0.053) 7.51 (0.052) 7.53

(3a1)2(1b1)1(2b2)1 3A2 8.50 9.43 9.04 9.12 9.35 9.09 9.12

(3a1)2(1b1)1(2b2)1 1A2 8.62 9.64 9.21 9.30 9.50 9.22 9.27

(3a1)1(1b1)2(4a1)1 3A1 8.98 9.72 9.37 9.44 9.79 9.40 9.38

(3a1)1(1b1)2(4a1)1 1A1 9.35 (0.099) 10.26 (0.112) 9.85 9.95 10.43 (0.120) 9.99 (0.112) 9.69

(3a1)2(1b1)1(2b1)1 3A1 10.47 11.06 10.77 10.87 11.14 10.93 10.87

(3a1)2(1b1)1(5a1)1 3B1 10.44 11.31 10.93 11.00 11.33 11.08 11.01

(3a1)2(1b1)1(5a1)1 1B1 10.59 (< 0.001) 11.47 (0.003) 11.09 11.16 11.57 (0.002) 11.32 (0.002) 11.12

∆MAE 0.464 0.353 0.114 0.130 0.315 0.146

∆STD 0.501 0.375 0.136 0.186 0.174 0.182

∆MAX 0.942 0.571 0.392 0.949 0.738 0.521

a Excited state with a highly-excited configuration, not present in single-reference calculations.

motion coupled cluster theory with single and dou-
ble excitations (EOM-CCSD), as well as strongly-
contracted second-order N-electron valence pertur-
bation theory (sc-NEVPT2).

Table 1 compares vertical excitation energies
of molecules at their near-equilibrium geometries
computed using six approximate methods with the
reference results from SHCI. EOM-CCSD shows
the best performance for this benchmark set, with
the mean absolute error ∆MAE = 0.11 eV and a
standard deviation (∆STD) of 0.14 eV. The single-
reference ADC(2) method shows the largest ∆MAE

= 0.46 eV and ∆STD = 0.50 eV, while ADC(3) ex-
hibits only a modest improvement lowering those

values to 0.35 eV (∆MAE) and 0.38 eV (∆STD).
MR-ADC(2) outperforms ADC(3) with smaller
∆MAE = 0.31 eV and ∆STD = 0.17 eV, due to
the high-order description of electron correlation
effects in the active space. Incorporating the third-
order terms in MR-ADC(2)-X reduces ∆MAE by
a factor of two (∆MAE = 0.15 eV, ∆STD = 0.18
eV). While the MR-ADC(2)-X ∆MAE and ∆STD

are quite similar to those of sc-NEVPT2 (∆MAE

= 0.13 eV, ∆STD = 0.19 eV), its maximum error
(∆MAX = 0.52 eV) is almost a factor of two smaller
(∆MAX = 0.94 eV for sc-NEVPT2). Table 1 also
reports the oscillator strengths (f) computed using
the single- and multireference ADC methods. The
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Table 2: Vertical excitation energies (Ω, eV) and oscillator strengths (f) of molecules with stretched
geometries. See Section 4 for details of the calculations. Also shown are mean absolute errors (∆MAE),
standard deviations (∆STD), and maximum absolute errors (∆MAX) of the energies, relative to SHCI. Only
orbitals participating in excitations are listed in the electron configuration of each excited state.

System Configuration Term ADC(2) ADC(3) EOM-CCSD sc-NEVPT2 MR-ADC(2) MR-ADC(2)-X SHCI

Ω (f) Ω (f) Ω Ω Ω (f) Ω (f) Ω

HF (1π)3(3σ)2(4σ)1 3Π 1.12 1.38 1.80 1.49 1.60 1.55 1.59

(1π)3(3σ)2(4σ)1 1Π 1.35 (0.001) 1.59 (< 0.001) 1.98 1.62 1.74 (< 0.001) 1.69 (< 0.001) 1.72

(1π)4(3σ)1(4σ)1 3Σ+ 1.38 1.14 1.51 1.72 1.74 1.72 1.77

(1π)4(3σ)1(4σ)1 1Σ+ 5.98 (0.555) 4.14 (0.289) 6.48 6.38 6.31 (0.343) 6.24 (0.335) 6.03

(1π)3(3σ)2(5σ)1 3Π 7.68 13.32 10.73 10.40 11.25 10.16 10.50

(1π)3(3σ)2(5σ)1 1Π 7.68 (0.019) 13.13 (0.008) 10.80 10.49 11.37 (0.022) 10.22 (0.015) 10.59

(1π)4(3σ)1(5σ)1 3Σ+ 10.67 11.46 11.57 11.58 11.66 11.51 11.62

(1π)4(3σ)1(5σ)1 1Σ+ 10.85 (0.074) 11.52 (0.011) 11.65 11.61 11.73 (< 0.001) 11.56 (0.001) 11.66

CO (5σ)2(1π)3(2π)1 3Σ+ 2.57 −3.43 −1.74 0.42 0.43 0.42 0.42

(5σ)2(1π)3(2π)1 1∆ 2.49 −3.25 −1.95 0.77 0.79 0.77 0.76

(5σ)2(1π)3(2π)1 1Σ− 2.53 −3.23 −1.89 0.78 0.80 0.78 0.77

(5σ)2(1π)3(2π)1 3∆ 2.52 −3.45 −1.71 0.81 0.83 0.81 0.80

(5σ)2(1π)3(2π)1 3Σ− 2.53 −3.42 −1.71 0.90 0.93 0.90 0.88

(1π)2(2π)2(6σ)2 5Σ+ a a a 1.28 1.44 1.41 1.35

(1π)3(2π)2(6σ)1 3Π a a a 1.44 1.52 1.45 1.44

N2 (3σg)2(1πu)3(1πg)1 3Σ+
u 6.26 −22.30 −2.92 0.15 0.15 0.14 0.15

(3σg)2(1πu)2(1πg)2 5Σ+
g

a a a 0.46 0.54 0.53 0.47

(3σg)1(1πu)2(1πg)2(3σu)1 7Σ+
u

a a a 1.10 1.43 1.43 1.09

(3σg)2(1πu)3(1πg)1 3∆u 8.08 −20.88 3.45 2.40 2.41 2.37 2.46

(3σg)2(1πu)2(1πg)2 3∆g
a a a 2.60 2.62 2.58 2.72

(3σg)1(1πu)4(1πg)1 3Πg 7.80 −19.35 3.72 2.97 2.98 2.93 2.95

(3σg)1(1πu)4(3σu)1 3Σ+
u 8.12 −16.99 3.83 3.22 3.24 3.21 3.24

F2 (1πu)4(1πg)3(3σg)2(3σu)1 3Πg 10.37 −4.60 0.14 0.01 0.10 −0.17 −0.02

(1πu)3(1πg)4(3σg)2(3σu)1 3Πu 1.24 −4.55 0.06 0.05 0.12 −0.16 0.01

(1πu)3(1πg)4(3σg)2(3σu)1 1Πu 1.45 −4.29 0.17 0.03 0.07 −0.13 0.01

(1πu)4(1πg)3(3σg)2(3σu)1 1Πg 10.45 −4.35 0.19 0.04 0.06 −0.16 0.02

(1πu)4(1πg)4(3σg)1(3σu)1 3Σ+
u 11.90 −8.31 −1.31 0.03 0.03 −0.02 0.03

H2O (1b1)1(1b2)2(3a1)2(4a1)1 3B1 0.73 −0.32 1.12 0.88 0.94 0.89 0.87

(1b1)1(1b2)2(3a1)2(4a1)1 1B1 1.23 (0.001) −0.22 (< 0.001) 1.33 1.02 1.08 (< 0.001) 1.05 (< 0.001) 1.04

(1b1)2(1b2)2(3a1)1(4a1)1 3A1 1.12 −0.13 0.50 1.08 1.09 1.07 1.10

(1b1)1(1b2)2(3a1)2(2b2)1 3A2 1.46 −0.23 1.70 1.24 1.30 1.25 1.24

(1b1)2(1b2)1(3a1)2(4a1)1 3B2 1.78 0.94 1.84 1.52 1.54 1.51 1.54

(1b1)1(1b2)2(3a1)2(2b2)1 1A2 1.87 0.37 1.88 1.54 1.58 1.54 1.55

(1b1)1(1b2)2(3a1)1(4a1)1(2b2)1 5A2
a a a 2.14 2.39 2.33 2.16

(1b1)1(1b2)1(3a1)2(4a1)1(2b2)1 5B1
a a a 2.25 2.50 2.44 2.28

(1b1)1(1b2)2(3a1)1(4a1)2 3B1
a a a 2.34 2.54 2.45 2.38

∆MAE 2.705 5.368 0.850 0.042 0.114 0.091

∆STD 3.815 7.499 1.239 0.074 0.187 0.133

∆MAX 11.870 23.338 3.068 0.348 0.782 0.367

a Excited state with a highly-excited configuration, not present in single-reference calculations.

f values computed with different approximations
generally agree well with each other, with a couple
of exceptions for the 1Π state of HF and 1Π state of
CO where the computed oscillator strengths vary
by up to a factor of two.

Table 2 shows results for electronic excitations
of molecules with stretched geometries where the
description of multireference effects is important.
Unsurprisingly, the accuracy of results produced
by the single-reference methods decreases dramat-
ically. In particular, the errors of the single-
reference ADC(n) methods become larger with in-
creasing perturbation order (n) as ∆MAE roughly
doubles from ADC(2) (2.71 eV) to ADC(3) (5.37
eV), while ∆MAE for the EOM-CCSD method in-
creases eightfold. The best agreement with SHCI
is demonstrated by sc-NEVPT2 (∆MAE = 0.04 eV,

∆STD = 0.07 eV). The MR-ADC methods per-
form similarly well with ∆MAE of 0.11 and 0.09
eV for MR-ADC(2) and MR-ADC(2)-X, respec-
tively. The MR-ADC(2)-X approximation shows
a smaller ∆MAX error (0.37 eV) than that of MR-
ADC(2) (0.78 eV), close to ∆MAX of sc-NEVPT2
(0.35 eV).

The performance of all methods for this bench-
mark set is summarized in Figure 4. Overall,
our results demonstrate that MR-ADC(2) and
MR-ADC(2)-X produce accurate results for many
electronic transitions outperforming the single-
reference ADC(2) and ADC(3) methods at near-
equilibrium geometries and showing accuracy sim-
ilar to sc-NEVPT2 near dissociation. In contrast
to sc-NEVPT2, the MR-ADC methods allow for a
straightforward calculation of transition properties
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Figure 4: Mean absolute errors (MAE, eV) and standard deviations from the mean signed error (STD,
eV) for vertical electron excitation energies of molecules with (a) equilibrium and (b) stretched
geometries, relative to SHCI. MAE is represented as a height of each colored bar, while STD is depicted
as a radius of the black vertical line. See Tables 1 and 2 for data on individual molecules with all
methods.

(such as oscillator strengths) and do not require
using state-averaged CASSCF reference wavefunc-
tions.

5.2 Carbon Dimer

Next, we consider the C2 molecule, known for
the multireference nature of its ground and ex-
cited states, which also require accurate descrip-
tion of dynamic correlation.81,87,92–95 In our ear-
lier work,26 we demonstrated that the first-order
MR-ADC approximation (MR-ADC(1)) captures
the strongly correlated nature of the C2 excited
states, but produces large errors in vertical exci-
tation energies due to the missing description of
the two-electron dynamic correlation effects. Here,
we reinvestigate C2 using MR-ADC(2) and MR-
ADC(2)-X that provide a more balanced descrip-
tion of static and dynamic correlation.

Table 3 reports the MR-ADC(2), MR-ADC(2)-
X, and sc-NEVPT2 vertical excitation energies
for C2 at a near equilibrium bond distance
(r = 2.4 a0) computed using the cc-pVDZ basis
set and (8e, 8o) active space. The results of these
multireference methods are compared to the accu-
rate excitation energies from density matrix renor-
malization group (DMRG) computed by Wouters
et al.87 Figure 5 summarizes the performance of
each method for predicting the vertical excitation
energies of C2. The best agreement with DMRG
is shown by MR-ADC(2)-X that reproduces the

reference energies with ∆MAE and ∆STD of ∼ 0.05
eV. The sc-NEVPT2 method (∆MAE and ∆STD

of 0.08 eV) exhibits significantly worse accuracy
than MR-ADC(2)-X, but performs slightly bet-
ter than MR-ADC(2) (∆MAE = 0.11 eV, ∆STD =
0.09). The MR-ADC(2) and MR-ADC(2)-X mean
absolute errors are reduced tenfold compared to
that of MR-ADC(1),26 indicating that the second-
order contributions to the MR-ADC propagator
are absolutely critical for quantitive predictions
of the C2 excited-state energies. As illustrated in
Figure 5a, MR-ADC(2)-X has a fairly consistent
performance for all excited states resulting in a
small ∆STD, while MR-ADC(2) shows significantly
larger errors (∼ 0.2 eV) for the 3Σ+

u , 1∆g, and
1Σ+

g states. The errors of sc-NEVPT2 gradually
increase reaching ∼ 0.3 eV for the highest-energy
3∆u state. The MR-ADC methods predict only
one dipole-allowed transition (1Πu) with an os-
cillator strength of 0.003, in agreement with the
selection rules of optical spectroscopy.

5.3 Alkenes: Ethylene and Butadiene

Finally, we benchmark MR-ADC(2) and MR-
ADC(2)-X for the low-lying excited states of ethy-
lene (C2H4) and butadiene (C4H6). Both molecules
have a low-lying triplet state (3B1u or 3Bu), as
well as a dipole-allowed π − π∗ transition to the
singlet state (1B1u or 1Bu) that requires a very ac-
curate description of dynamic correlation between
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Table 3: Carbon dimer vertical excitation energies (Ω, eV) and oscillator strengths (f) computed using
the cc-pVDZ basis set with r(C−C) = 2.4 a0. The MR-ADC and sc-NEVPT2 calculations were performed
using the state-specific and state-averaged CASSCF reference wavefunctions, respectively, with the same
(8e, 8o) active space. Also shown are mean absolute errors (∆MAE), standard deviations (∆STD), and
maximum absolute errors (∆MAX) in the computed excitation energies, relative to the DMRG results from
Ref. 87.

System Configuration Term sc-NEVPT2 MR-ADC(2) MR-ADC(2)-X DMRG

Ω Ω (f) Ω (f) Ω

C2 (2σu)2(1πu)3(3σg)
1 3Πu 0.24 0.23 0.19 0.21

(2σu)2(1πu)3(3σg)
1 1Πu 1.36 1.31 (0.003) 1.28 (0.003) 1.29

(2σu)2(1πu)2(3σg)
2 3Σ−g 1.33 1.27 1.25 1.29

(2σu)1(1πu)4(3σg)
1 3Σ+

u 1.33 1.53 1.38 1.29

(2σu)2(1πu)2(3σg)
2 1∆g 2.22 2.38 2.24 2.17

(2σu)2(1πu)2(3σg)
2 1Σ+

g 2.49 2.64 2.51 2.45

(2σu)1(1πu)3(3σg)
2 3Πg 2.71 2.74 2.61 2.65

(2σu)1(1πu)3(3σg)
2 1Πg 4.72 4.71 4.61 4.61

(2σu)2(1πu)3(1πg)
1 3∆u 6.96 6.79 6.60 6.66

∆MAE 0.082 0.114 0.045

∆STD 0.084 0.093 0.055

∆MAX 0.297 0.239 0.086
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Figure 5: Absolute errors for vertical excitation energies of C2 (plot (a)), as well as mean absolute errors
(MAE) and standard deviations (STD) (plot (b)), relative to DMRG.87 In plot (b), the MAE is
represented as the height of each colored bar, while STD is depicted as a radius of the black vertical line.
See Table 3 for vertical excitation energies.

the σ and π electrons.96–100 In addition, the bu-
tadiene molecule features a dipole-forbidden tran-
sition to the 1Ag state with a substantial double-
excitation character, requiring an accurate descrip-
tion of static correlation in the π and π∗ orbitals.
For this reason, excitation energies of the butadiene
1Bu and 1Ag states are very sensitive to the level of
electron correlation treatment and have been a sub-
ject of many theoretical studies.42,88,98–111 In this
work, we compute the ethylene and butadiene ex-

cited states using MR-ADC(2) and MR-ADC(2)-X
and compare their excitation energies to accurate
reference results from SHCI obtained by Chien et
al.100 for the same molecular geometries and basis
set (see Section 4 for details).

Table 4 reports vertical excitation energies for
the 3Bu and 1Bu excited states of ethylene com-
puted using MR-ADC(2), MR-ADC(2)-X, sc-
NEVPT2, and EOM-CCSD, along with the ref-
erence results from SHCI. For the multireference
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Table 4: Vertical excitation energies (eV) of the
ethylene molecule (C2H4) for the lowest-energy
triplet state (3B1u) and the lowest-energy dipole-
allowed singlet state (1B1u). The MR-ADC results
also show the oscillator strength strengths (f) in
parentheses. See Section 4 for details of the calcu-
lations.

Method Active Space States
3B1u

1B1u

EOM-CCSDa 4.46 8.14

sc-NEVPT2 (2e, 2o) 4.84 7.68

(2e, 4o) 4.64 8.28

(2e, 6o) 4.60 8.34

MR-ADC(2) (2e, 2o) 4.85 8.19 (0.365)

(2e, 4o) 4.71 8.17 (0.363)

(2e, 6o) 4.66 8.27 (0.363)

MR-ADC(2)-X (2e, 2o) 4.68 7.82 (0.338)

(2e, 4o) 4.56 7.92 (0.343)

(2e, 6o) 4.51 8.03 (0.344)

SHCIb 4.59 8.05

a From Ref. 99
b From Ref. 100

methods we employ three different active spaces
ranging from the full-π (2e, 2o) to the triple-π
(2e, 6o) active space (see the Supporting Infor-
mation for details). The EOM-CCSD excitation
energies are in a good agreement with SHCI with
errors less than 0.15 eV, indicating that a high-
level description of dynamic correlation is suffi-
cient for accurate description of the 3Bu and 1Bu
excited states. Using the minimal (2e, 2o) active
space, all three multireference methods overesti-
mate the relative energy of the 3Bu state with
errors ranging from 0.09 eV (MR-ADC(2)-X) to
0.26 eV (MR-ADC(2)). Increasing the active space
lowers the computed 3Bu excitation energy reduc-
ing the errors of all three methods to less than 0.1
eV. In contrast, including more π-orbitals in the
active space increases the computed energies of
the 1Bu state. Out of all multireference methods,
sc-NEVPT2 shows the strongest active-space de-
pendence of the 1Bu excitation energy that changes
from 7.68 (2e, 2o) to 8.34 eV (2e, 6o) and has the
worst agreement with SHCI for the largest active
space with 0.29 eV error. MR-ADC(2)-X combined
with the (2e, 6o) active space shows the best agree-
ment with the SHCI for the 1Bu state with a small
0.02 eV error. The performance of MR-ADC(2) is
similar to that of sc-NEVPT2, although the former
method shows a weaker active-space dependence.

Table 5: Vertical excitation energies (eV) of the
butadiene (C4H6) molecule for the lowest-energy
triplet state (3Bu), as well as the lowest-energy
dipole-allowed (1Bu) and dipole-forbidden (1Ag)
singlet states. The MR-ADC results also show
the oscillator strength strengths (f) in parenthe-
ses. See Section 4 for details of the calculations.

Method Active Space States
3Bu

1Bu
1Ag

EOM-CCSDa 3.20 6.53 7.28

sc-NEVPT2 (4e, 4o) 3.48 5.91 6.90

(4e, 6o) 3.45 6.40 6.86

(4e, 8o) 3.43 6.54 6.77

MR-ADC(2) (4e, 4o) 3.42 6.13 (0.619) 6.64

(4e, 6o) 3.56 6.46 (0.684) 6.84

(4e, 8o) 3.60 6.61 (0.700) 6.99

MR-ADC(2)-X (4e, 4o) 3.26 5.77 (0.590) 6.20

(4e, 6o) 3.50 6.38 (0.670) 6.68

(4e, 8o) 3.54 6.50 (0.683) 6.82

SHCIb 3.37 6.45 6.58

a From Ref. 99
b From Ref. 100

The 1Bu oscillator strengths computed using the
two MR-ADC methods do not change significantly
with increasing active space and agree well with
each other.

Vertical excitation energies of butadiene are
shown in Table 5. As in our study of ethylene,
we employ three active spaces for the multirefer-
ence methods ranging from the full-π (4e, 4o) to
the double-π (4e, 8o) space. Notably, for this sys-
tem the EOM-CCSD method shows a large 0.7 eV
error for the dipole-forbidden 1Ag state, which is
known to have a double-excitation character and
requires a multireference treatment. The active-
space dependence of the multireference methods for
the 1Ag and 1Bu excited states is illustrated in Fig-
ure 6. When combined with the smallest (4e, 4o)
active space, all three multireference methods out-
perform EOM-CCSD for the 1Ag excitation en-
ergy with errors less than 0.4 eV. Using the largest
(4e, 8o) active space, the best results are shown by
sc-NEVPT2 and MR-ADC(2)-X with errors of 0.19
eV and 0.24 eV, respectively. A stronger active-
space dependence is observed for the dipole-allowed
1Bu state with the sc-NEVPT2 and MR-ADC(2)-X
excitation energies varying by ∼ 0.6-0.7 eV. Em-
ploying the (4e, 8o) active space, the best results
are shown by MR-ADC(2)-X that outperforms sc-
NEVPT2 and EOM-CCSD with a of 0.05 eV error
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Figure 6: Vertical excitation energies for the butadiene dipole-allowed 1Bu (plot (a)) and
dipole-forbidden 1Ag (plot (b)) electronic states computed using MR-ADC(2), MR-ADC(2)-X, and
sc-NEVPT2 as a function of the number of active π-orbitals (n) with 4 active electrons (4e, no). The
reference excitation energies computed using SHCI100 are shown as dashed horizontal lines.

in the 1Bu relative energy. sc-NEVPT2 and MR-
ADC(2) overestimate the 1Bu energy by 0.09 and
0.16 eV, respectively. The MR-ADC methods also
show a significant active-space dependence in the
computed 1Bu oscillator strength that changes by
∼ 15 % from (4e, 4o) to (4e, 8o). A weaker de-
pendence on the active space is observed for the
3Bu state, where the best agreement with SHCI is
shown by sc-NEVPT2. Overall, the presented re-
sults demonstrate that the MR-ADC methods are
competitive in accuracy with sc-NEVPT2 for all
three electronic states of butadiene while capable
in describing the multireference nature of the 1Ag
state that is not captured by EOM-CCSD.

6 Conclusions

In this work, we presented an implementation and
benchmark of the strict and extended second-order
multireference algebraic diagrammatic construc-
tion theory for neutral electronic excitations (MR-
ADC(2) and MR-ADC(2)-X). The MR-ADC(2)
approximation incorporates all contributions to the
polarization propagator up to the second order
in its time-independent multireference perturba-
tive expansion, while the MR-ADC(2)-X method
includes additional third-order terms in the de-
scription of double excitations outside of the active
space. We benchmarked the performance of MR-
ADC(2) and MR-ADC(2)-X for the excited states
in five small molecules (HF, CO, N2, F2, and H2O)
at equilibrium and stretched geometries, a carbon

dimer (C2), as well as ethylene (C2H4) and buta-
diene (C4H6).

Our results demonstrate that the MR-ADC
methods provide accurate predictions of excited-
state energies for the weakly- and strongly-
correlated electronic states, at geometric equi-
librium or near dissociation. For the weakly-
correlated systems, we find that the MR-
ADC(2) and MR-ADC(2)-X methods outper-
form third-order single-reference ADC approxi-
mation (ADC(3)) and are often competitive with
the results from equation-of-motion coupled clus-
ter theory (EOM-CCSD). For the multireference
problems, the performance of MR-ADC(2) and
MR-ADC(2)-X is similar to that of strongly-
contracted N-electron valence perturbation the-
ory (sc-NEVPT2). The MR-ADC methods have
a number of added benefits, such as a straight-
forward and efficient calculation of excited-state
properties, a direct access to excitations outside of
the active space, and an ability to calculate mul-
tireference excited states without state-averaged
reference wavefunctions.

Our current work can be extended in many pos-
sible directions. One important direction is an effi-
cient implementation of the MR-ADC(2) and MR-
ADC(2)-X methods that will enable calculations
of larger molecular systems with more orbitals and
electrons in the active space. Another extension is
to take advantage of the MR-ADC ability to calcu-
late excitations outside of the active space, which
can be used for efficient calculations of the X-ray
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absorption spectra of multireference systems. Fi-
nally, the methods presented in the current work
can be extended to account for relativistic effects,
such as spin-orbit and spin-spin coupling, which
will enable calculations of magnetic systems with
heavy elements. Work along these directions is on-
going in our group.

7 Appendix: Equations for the
t
y(2)
x Amplitudes

As discussed in Section 2.2.2, the MR-ADC(2) and
MR-ADC(2)-X second-order effective Hamiltonian
H̃(2) incorporates terms that depend on the inter-

nal second-order amplitudes t
y(2)
x (x > y) that en-

sure Hermiticity of the effective Hamiltonian ma-

trix M. The t
y(2)
x (x > y) amplitudes parametrize

a contribution to the second-order excitation oper-
ator T (2) (Eq. (6)) that has the form

T (2) ⇐
∑
x>y

ty(2)
x a†yax (29)

Following our previous work,26,62,63 the amplitudes

t
y(2)
x (x > y) are obtained by solving the projected

linear equations (20) that can be written as:

〈Ψ0|a†xayH̃(2)|Ψ0〉 = 0 (x > y) (30)

Eq. (30) can be simplified and converted to a tensor
form:

K T(2) = −V(2) (31)

where T(2) contains t
y(2)
x (x > y) and the elements

of K and V(2) are defined as follows:

Kxy,wz = 〈Ψ0|(a†xay − a†yax)[H(0), a†zaw − a†waz]|Ψ0〉
(32)

V (2)
xy = 〈Ψ0|(a†xay − a†yax)V (2)|Ψ0〉 (33)

Expression for V (2) can be found in Eq. (38) of
Ref. 62.

Eq. (31) has the form of the Newton-Raphson

equation for the second-order parameters t
y(2)
x (x >

y) that describe relaxation of the active-space or-
bitals in response to dynamical correlation from
outside of the active space. It can be solved by
diagonalizing the K matrix according to the gen-
eralized eigenvalue problem

K Z = S Z ε (34)

and inverting the amplitude equation (31) to ob-
tain:

T(2) = −S−1/2 Z̃ ε−1 Z̃† S−1/2 V(2) (x > y)
(35)

In Eqs. (34) and (35) the elements of S are defined
as

Sxy,wz = 〈Ψ0|(a†xay − a†yax)(a†zaw − a†waz)|Ψ0〉
(36)

and Z̃ = S1/2 Z.

Supporting Information Available

Benchmark of the approximation for the second-
order amplitudes in Eq. (28). Size-intensivity tests
for MR-ADC(2) and MR-ADC(2)-X. Cartesian ge-
ometries of the ethylene and butadiene molecules.
Active space orbitals in the ethylene and butadiene
calculations.
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Chalupský, J.; Kurashige, Y.; Guo, S.;
Sharma, S. Multistate Complete-Active-
Space Second-Order Perturbation Theory
Based on Density Matrix Renormalization
Group Reference States. J. Chem. Theory
Comput. 2017, 13, 4829–4840.

(42) Sokolov, A. Y.; Guo, S.; Ronca, E.; Chan, G.
K.-L. Time-dependent N-electron valence
perturbation theory with matrix product
state reference wavefunctions for large ac-
tive spaces and basis sets: Applications to
the chromium dimer and all-trans polyenes.
J. Chem. Phys. 2017, 146, 244102.

(43) Chattopadhyay, S.; Mahapatra, U. S.;
Mukherjee, D. Development of a linear re-
sponse theory based on a state-specific mul-
tireference coupled cluster formalism. J.
Chem. Phys. 2000, 112, 7939–7952.

(44) Chattopadhyay, S.; Mukhopadhyay, D. Ap-
plications of linear response theories to com-
pute the low-lying potential energy surfaces:
state-specific MRCEPA-based approach. J.
Phys. B: At. Mol. Opt. Phys. 2007, 40,
1787–1799.

(45) Jagau, T.-C.; Gauss, J. Linear-response the-
ory for Mukherjee’s multireference coupled-
cluster method: Excitation energies. J.
Chem. Phys. 2012, 137, 044116.

(46) Samanta, P. K.; Mukherjee, D.;
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Graphical TOC Entry

Second-order MR-ADC, errors in excitation energy, eV
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