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The multireference driven similarity renormalization group (MRDSRG) approach [C. Li and F. A.
Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)] is generalized to treat quasi-degenerate elec-
tronic excited states. The new scheme, termed state-averaged (SA) MRDSRG, is a state-universal
approach that considers an ensemble of quasi-degenerate states on an equal footing. Using the SA-
MRDSRG framework, we implement second- (SA-DSRG-PT2) and third-order (SA-DSRG-PT3)
perturbation theories. These perturbation theories can treat a manifold of near-degenerate states at
the cost of a single state-specific computation. At the same time, they have several desirable prop-
erties: (1) they are intruder-free and size-extensive, (2) their energy expressions can be evaluated
non-iteratively and require at most the three-body density cumulant of the reference states, and (3) the
reference states are allowed to relax in the presence of dynamical correlation effects. Numerical bench-
marks on the potential energy surfaces of lithium fluoride, ammonia, and the penta-2,4-dieniminium
cation reveal that the SA-DSRG-PT2 method yields results with accuracy similar to that of other
second-order quasi-degenerate perturbation theories. The SA-DSRG-PT3 results are instead consis-
tent with those from multireference configuration interaction with singles and doubles (MRCISD).
Finally, we compute the vertical excitation energies of (E,E)-1,3,5,7-octatetraene. The ordering of
the lowest three states is predicted to be 2 1A−g < 1 1B+

u < 1 1B−u by both SA-DSRG-PT2 and SA-
DSRG-PT3, in accordance with MRCISD plus Davidson correction. Published by AIP Publishing.
https://doi.org/10.1063/1.5019793

I. INTRODUCTION

Multireference (MR) theories are perhaps the most
general methods to study electronic excited states. These
approaches can be classified into three broad categories: (1)
MR perturbation theory (MRPT),1–7 (2) MR configuration
interaction (MRCI),8–10 and (3) MR coupled cluster (MRCC)
methods.11–22 Among these schemes, second-order MRPT
(MRPT2) approaches are the most widely applied because
of their low cost. Multireference perturbation theories are
also sufficiently accurate to treat many excited states that are
incorrectly described by single-reference methods.23,24

State-specific formulations of MRPT2 target a collec-
tion of excited states independently. However, it has long
been realized that they yield qualitatively incorrect poten-
tial energy surfaces (PESs) in the vicinity of near-degenerate
electronic states.25 A solution to this problem is offered by
quasi-degenerate (QD) perturbation theories (PTs) or multi-
state (MS) approaches. These methods are based—to var-
ious degrees—on the formalism of effective Hamiltonian
theory.25–30 Numerous realizations of MS and QD theories
have been suggested.31–36 Some of the most popular second-
order schemes include multi-configurational QDPT (MC-
QDPT2)31 and its extended version (XMCQDPT2),37 MS

a)Electronic mail: cli62@emory.edu
b)Electronic mail: francesco.evangelista@emory.edu

complete-active-space (CAS) PT (MS-CASPT2),32 and QD
n-electron valence state PT (QD-NEVPT2).33

These methods differ in several aspects. In Nakano’s MC-
QDPT2,31 the perturbers are uncontracted singly and dou-
bly excited configuration state functions (CSFs). The ener-
gies of a manifold of states are obtained by diagonalizing a
state-universal effective Hamiltonian built using second-order
perturbation theory. On the contrary, MS-CASPT2 and QD-
NEVPT2 first perform a series of state-specific computations
using contracted perturbers. Subsequently, a second-order
effective Hamiltonian is built using the basis of state-specific
wave functions and diagonalized to obtain the energies of all
states. Because the MC-QDPT2 uses uncontracted perturbers,
its computational cost is proportional to the number of model
space CSFs, that is, exponential scaling with respect to the
number of active orbitals. By contrast, MS-CASPT2 and QD-
NEVPT2 scale polynomially with respect to the number of
active orbitals although this estimate does not account for the
cost of computing complete-active-space references and their
density matrices.

Another distinction lies in the choice of the zeroth-order
Hamiltonian [Ĥ (0)]. This operator is normally defined by pro-
jecting a simple model Hamiltonian onto individual CAS
configuration interaction (CASCI) eigenvectors and excited
configurations. In MS-CASPT2, the model Hamiltonian is
the generalized Fock operator (F̂), while MC-QDPT2 only
exploits the diagonal blocks of F̂. QD-NEVPT2 uses a more
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sophisticated model Hamiltonian suggested by Dyall,38 where
diagonal blocks of F̂ are augmented by two-electron interac-
tions within the active orbitals. Choosing an appropriate set of
projectors requires extra caution since some choices have been
shown to violate important formal properties of the Hamilto-
nian like size consistency.37,39 Moreover, Granovsky37 points
out that a zeroth-order Hamiltonian with a diagonal projector
is not invariant with respect to unitary rotations of the model
space. As a result, the PES may be erratic in the degenerate
region where the CASCI vectors are not uniquely defined. In
XMCQDPT2,37 this problem is solved by using a more gen-
eral projector that is invariant to unitary rotations of the model
space. An extended version of MS-CASPT2 has also been
developed.40

Both MS-CASPT232 and QD-NEVPT233 computations
proceed via a two-step approach. In the first step, state-specific
perturbed wave functions are obtained for all states of interest.
These state-specific computations use a zeroth-order Hamil-
tonian partitioned differently for each state (multipartition-
ing scheme).41 In the second step, the second-order effective
Hamiltonian is formed and diagonalized.32,33,42 As a conse-
quence, MS-CASPT2 and QD-NEVPT2 inherit some of the
difficulties of their parent state-specific methods. Such limi-
tations include, for example, the intruder-state problem43–45

in CASPT2,46,47 the presence of the four-particle density
matrix,48,49 and the need to remove linear dependencies in
the excitation manifold.2,5 The latter two aspects are impor-
tant because they restrict the number of active orbitals that can
be used in CASPT2 and NEVPT2 applications.

In our previous work,50–53 we have shown that the
MRPT2 based on driven similarity renormalization group54,55

(DSRG) provides a viable alternative to state-specific CASPT2
and NEVPT2. The DSRG-MRPT2 method addresses both
the intruder-state problem and the limitations resulting from
high-order density matrices without sacrificing much of the
accuracy. In analogy to the in-medium similarity renormal-
ization group,56–62 the DSRG performs a continuous unitary
transformation of the Hamiltonian that depends on a time-
like quantity—the flow parameter s. This parameter controls
the extent to which dynamic correlation effects are folded
into the transformed Hamiltonian. Specifically, for a given
value of s, excitations that correspond to energy denomina-
tors larger than a cutoff energy Λ = s�1/2 are folded into
an effective Hamiltonian. Configurations that have energy
denominators smaller than Λ are not decoupled from the
reference. Excitations that cause the intruder-state problem
have small energy denominators and are avoided by the
DSRG transformation. As a consequence, the DSRG effec-
tive Hamiltonian generated with a finite value of s is free from
intruders.

Expensive contractions that involve higher-order density
matrices are removed by formulating the DSRG as a set
of Fock-space many-body conditions30,63–65 in combination
with Mukherjee and Kutzelnigg’s generalized normal order-
ing (MK-GNO).66–72 This choice has two important conse-
quences. On the one hand, the use of many-body conditions
avoids the need to orthogonalize the internally contracted exci-
tation manifold.19,73 On the other hand, the DSRG-MRPT2
equations require at most three-body density cumulants, which

directly arise from contractions of second quantized opera-
tors in the MK-GNO algebra. The combination of these two
advantages makes the DSRG-MRPT2 applicable to systems
with more than 30 active orbitals.53 This aspect is also true in
the case of higher-level MR-DSRG theories, such as third-
order MRPT (DSRG-MRPT3),52 which still need at most
the three-body cumulant in the linear recursive commutator
approximation.74,75

In this work, we adapt the MR-DSRG framework to treat
degenerate electronic states. To this end, we propose a novel
approach in which a single state-averaged (SA) DSRG trans-
formation is performed on the Hamiltonian. The equations
that determine this transformation are many-body equations
normal ordered with respect to a vacuum chosen to be a sta-
tistical ensemble of model space solutions. One consequence
of redefining the vacuum in such a way is that contractions of
operators depend on SA density matrices and cumulants.67

Like in the state-specific version, the state-averaged MR-
DSRG transformation uses one unitary transformation. How-
ever, the latter decouples the ensemble of reference states
from their corresponding internally contracted excited con-
figurations in an averaged way. Once the DSRG equations are
solved, an effective Hamiltonian is formed and diagonalized
to obtain the model states dressed with correlation effects.
This procedure can be performed once or it can be iterated
until the solutions reach stationarity. Due to the use of state-
averaged density in this QD formulation of MR-DSRG, we
term it state-averaged MRDSRG (SA-MRDSRG).

Herein, we focus on second- and third-order perturbation
theories derived from the SA-MRDSRG, which are denoted as
SA-DSRG-PT2 and SA-DSRG-PT3, respectively. The zeroth-
order Hamiltonian contains only the diagonal blocks of F̂,
defined using the SA one-particle density matrix of the model
space. As a consequence, the transformed Hamiltonian can
be obtained in a single non-iterative procedure that does not
depend on the number of model states. Another major advan-
tage of this formalism is that the dominant cost to compute SA-
DSRG-PT2/3 energy corrections is identical to that of a single
state-specific DSRG-MRPT2/3 calculation. The SA theories
also share several nice properties of the state-specific coun-
terparts as they are intruder-free, size extensive,76 and they
require only the one-, two-, and three-body density cumulants
of the reference.

This article is organized as follows. In Sec. II, we
first review the MK-GNO formalism for an ensemble of
states (Sec. II A) and then introduce the SA-DSRG-PT2 and
SA-DSRG-PT3 methods (Sec. II B). Numerical applications
of the SA-DSRG-PT2 and SA-DSRG-PT3 schemes to lithium
fluoride, ammonia, the penta-2,4-dieniminium cation, and
(E,E)-1,3,5,7-octatetraene are presented in Sec. III. Finally,
we end this work by considering some future extensions of the
current state-averaged perturbation theories (Sec. IV).

II. THEORY
A. Generalized normal ordering
for an ensemble of states

We first review the theory of generalized normal ordering
of Mukherjee and Kutzelnigg (MK-GNO)67 for a statistical
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ensemble (E) of n electronic states E ≡ {Ψα, α = 1, 2, . . . , n}.
The ensemble is characterized by a density operator ( ρ̂),

ρ̂ =

n∑
α=1

ωα |Ψ
α〉〈
Ψ
α |, (1)

where ωα ≥ 0 is the weight of state Ψα in the ensemble,
and the sum of the weights is equal to one,

∑n
α=1 ωα = 1.

In this work, we will assume that states have equal weights
(ωα = 1/n), but the formalism presented is applicable to
more general situations. For brevity, the following discussion
concentrates only on particle-number-conserving operators.

If we use the notation {Â} to indicate the operator Â
normal ordered with respect to a single electronic state Ψ,
the normal order condition is 〈Ψ|{Â}|Ψ〉 = 0. In the case of
an ensemble, this condition is replaced by an analogous one,
where the average of the ensemble normal-ordered Â ({Â}ρ)
vanishes

〈{Â}ρ〉ρ = Tr( ρ̂ {Â}ρ) =
n∑
α=1

ωα〈Ψ
α |{Â}ρ |Ψ

α〉 = 0. (2)

Using the MK Wick theorem, we may identify the rel-
evant contractions by imposing the normal-ordered condi-
tion [Eq. (2)] on a hierarchy of operators with increasing
rank. Starting from a general one-body operator, âp

q = â†pâq,

defined in terms of bare creation (â†p) and annihilation (âq)
operators, the MK Wick theorem allows us to rewrite this
quantity as the sum of a normal-ordered pair plus a single
contraction

(3)

Taking the ensemble average of this expression and employing
the definition of normal ordering [Eq. (2)], we can derive the
value of the contraction in Eq. (3),

(4)

where γ̄
p
q = [γ̄]q

p is the state-averaged one-particle density
matrix and

[
γαα

]p
q = 〈Ψ

α |âp
q |Ψ

α〉 is the density matrix for
state Ψα in the ensemble. In general, the expectation value of
an arbitrary second-quantized operator âpq...

rs... = â†pâ†q . . . âsâr

is given by the corresponding SA density matrix element

〈âpq...
rs... 〉ρ = γ̄

pq...
rs... =

n∑
α=1

ωα[γαα]pq...
rs... . (5)

In the case of a two-body operator (âpq
rs ), the MK Wick

theorem yields

(6)

where
∑

P(−1)Pγ̄q
s {â

p
r }ρ implies the sum of all partitions of

upper and lower indices of the SA density and the normal-
ordered operator with an appropriate sign factor. Note that
for a general reference, we also introduce four- and higher-
leg contractions that involve more than two operators. Taking
the ensemble average of Eq. (6), we can identify the four-leg
contraction with a state-averaged two-body density cumulant
(λ̄pq

rs )

(7)

This procedure may be repeated for higher body operators.
In general, one finds that multi-leg contractions correspond to
density cumulants defined in terms of state averaged density
matrices.

From the ensemble normal ordering condition [Eq. (2)]
also follows a generalization of Wick’s theorem for products
of normal-ordered operators of the form {Â}ρ{B̂}ρ where multi-
leg contractions appear (e.g., see Refs. 67 and 55 and the
supplementary material in Ref. 50).

B. The SA-DSRG-PT2 and SA-DSRG-PT3 methods
1. Reference CAS ensemble

The vacuum used in SA-MRDSRG is an ensemble of n
zeroth-order electronic states, E0 ≡ {Ψ

α
0 , α = 1, 2, . . . , n},

obtained from a CASCI or SA-CASSCF procedure.9,77–79

Each state in the ensemble is expanded using a common set of
determinants that forms a CAS {ΦI , I = 1, 2, . . ., NCAS}

|Ψα0
〉
=

NCAS∑
I=1

cαI |Φ
I〉. (8)

To define an active space ensemble, we partition the set of spin
orbitals G≡ {φp, p = 1, 2, . . ., N} into core (C), active (A), and
virtual (V) subsets of dimension NC, NA, and NV, respectively.
As usual, we introduce the hole (H = C ∪ A) and particle
(P = A ∪ V) composite sets with size NH = NC + NA and NP
= NA + NV, respectively. An important consequence of this
orbital partitioning is that the density cumulants (for example,
λ̄

pq
rs ) can be nonzero if and only if all the indices belong to the

set of active orbitals (∀ p, q, r, s ∈ A).
Using the MK-GNO, we may write the bare Hamiltonian

(Ĥ) in a normal-ordered form with respect to the ensemble

Ĥ = E0 +
G∑
pq

f̄ q
p {â

p
q}ρ +

1
4

G∑
pqrs

vrs
pq{â

pq
rs }ρ, (9)

where E0 = 〈Ĥ〉ρ =
∑n
α=1 ωα〈Ψ

α
0 |Ĥ |Ψ

α
0 〉 is the SA reference

energy and f̄ q
p is the SA Fock matrix

f̄ q
p = hq

p +
H∑
ij

v
qj
pi γ̄

i
j , (10)

defined by the one-electron (hq
p) and antisymmetrized two-

electron (vrs
pq = 〈φpφq | |φ

rφs〉) integrals and the SA density
[γ̄i

j , see Eq. (4)].

2. State-averaged transformation of the Hamiltonian

Our previous formulations of the DSRG50,54,55 are based
on a state-specific transformation of the Hamiltonian via a
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unitary operator [Û(s)]

Ĥ → H̄(s) = Û†(s)ĤÛ(s), s ≥ 0, (11)

where Û(s) is a continuous function of the time-like flow
parameter s. To extend the DSRG to a state-averaged formal-
ism, we propose to fold dynamic correlation energy for all
the states in the ensemble via one unitary transformation of
the Hamiltonian, as in Eq. (11). The resulting DSRG trans-
formed Hamiltonian [H̄(s)] written in a normal-ordered form
with respect to the ensemble density is an operator that includes
three- and higher-body terms

H̄(s) = Ē0(s) +
G∑
pq

H̄q
p (s){âp

q}ρ +
1
4

G∑
pqrs

H̄rs
pq(s){âpq

rs }ρ + . . . ,

(12)
where Ē0(s) = 〈H̄(s)〉ρ, the quantities H̄rs · · ·

pq · · ·(s) are tensors,
and the second quantized operators are normal ordered with
respect to the ensemble of states. It is convenient to write Û(s)
in terms of an s-dependent cluster operator T̂ (s),

Û(s) = exp[T̂ (s) − T̂†(s)] = exp[Â(s)], (13)

where Â(s) ≡ T̂ (s) − T̂†(s) is an anti-Hermitian opera-
tor. The cluster operator is a sum of many-body operators,
T̂ (s) = T̂1(s) + T̂2(s) + . . . + T̂n(s), truncated up to n-body
terms, where the generic k-body term T̂k(s) is written in terms
of s-dependent cluster amplitudes tij · · ·

ab· · ·(s),

T̂k(s) =
1

(k!)2

H∑
ij · · ·

P∑
ab· · ·

tij · · ·
ab· · ·(s){âab· · ·

ij · · · }ρ. (14)

We further require that T̂ (s) does not include internal excita-
tions (involving only active indices). This condition is enforced
by imposing txy · · ·

uv · · ·(s) = 0, ∀u, v , x, y, · · · ∈ A.
In the state-specific DSRG, the unitary transformation

folds dynamic correlation effects into H̄(s) by achieving a par-
tial decoupling of a reference wave functionΨ0 from its excited
configurations. This goal is attained by solving a nonlinear
equation in which the non-diagonal part of H̄(s) (indicated
with the superscript “N” and responsible for the coupling) is
driven to zero by an Hermitian operator, R̂(s), termed the source
operator

[H̄(s)]N = R̂(s). (15)

The source operator is chosen in such a way that for s = 0
then H̄(0) = Ĥ, and as s increases, the transformed Hamilto-
nian smoothly transitions from the original Hamiltonian to one
with no coupling between the reference and its excited con-
figurations, that is, lims→∞[H̄(s)]N = 0. In the state-averaged
extension of the DSRG, the operator Û(s) is determined by
the flow equation [Eq. (15)], but contrary to the state-specific
approach, we impose many-body conditions on operators nor-
mal ordered with respect to the ensemble of states. Therefore,
the source operator R̂(s) in Eq. (15) is expressed as a sum
of many-body operators, with the k-body (k = 1, 2, . . ., n)
component given by

R̂k(s) =
1

(k!)2

H∑
ij...

P∑
ab...

rij...
ab...(s)({âab...

ij... }ρ + {âij...
ab...}ρ). (16)

Here, rij...
ab... is a rank 2k tensor (assumed to be real) whose

explicit expression will be given later in Sec. II B 3. Note

also that the source operator is a nondiagonal operator, that is,
[R̂(s)]N = R̂(s) with rxy...

uv...(s) = 0,∀u, v , x, y, · · · ∈ A.
The DSRG equation [Eq. (15)] should be interpreted as

an operator equation that leads to a set of many-body con-
ditions19,30,54,65 that implicitly determine Û(s). This means
that if we define the operator Ô(s) = [H̄(s)]N − R̂(s), whose
many-body expansion is

Ô(s) =
H∑
i

P∑
a

oi
a(s)({âa

i }ρ + {âi
a}ρ)

+
1
4

H∑
ij

P∑
ab

oij
ab(s)({âab

ij }ρ + {âij
ab}ρ) + . . . , (17)

we interpret the DSRG equation, Ô(s) = 0, as the set of
conditions

oij · · ·
ab· · ·(s) = oab· · ·

ij · · · (s) = 0, (18)

for all combinations of indices but excluding internal excita-
tions.

Note that the SA-DSRG formalism is in many ways sig-
nificantly different from that of traditional MRPTs based on
a projective scheme. In the latter, one introduces a basis of
perturber functions and defines corresponding subspaces and
projectors. The many-body formalism presented here instead
emphasizes the transformation of the Hamiltonian and there-
fore does not require defining a set of perturbers. In place of
subspaces and their corresponding projectors, the many-body
version introduces a partitioning of operators into diagonal and
non-diagonal components.

3. SA-MRDSRG perturbative analysis

In this work, we consider second- and third-order per-
turbation theories based on the SA-MRDSRG framework,
namely, SA-DSRG-PT2 and SA-DSRG-PT3. The bare Hamil-
tonian is partitioned into a zeroth-order contribution Ĥ (0) and
a first-order perturbation Ĥ (1). The zeroth-order term is chosen
to contain the SA reference energy and the diagonal blocks of
the SA Fock matrix

Ĥ (0) = E0 + F̂(0), (19)

F̂(0) =

C∑
mn

f̄ n,(0)
m {âm

n }ρ +
A∑
uv

f̄ v,(0)
u {âu

v }ρ +
V∑
ef

f̄ f ,(0)
e {âe

f }ρ

=

G∑
p

εp{â
p
p}ρ, (20)

where εp = f̄ p,(0)
p . The last line of Eq. (20) implies the use of

semicanonical molecular orbitals.50,80 This basis is obtained
by separately rotating the core, active, and virtual orbitals
so that the corresponding blocks of the SA Fock matrix are
diagonal.

We then perform an order-by-order expansion of the
cluster amplitudes, the source operator, the DSRG trans-
formed Hamiltonian, and DSRG equations.50,52 The zeroth-
till third-order transformed Hamiltonian are given by
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H̄ (0)(s) = Ĥ (0), (21)

H̄ (1)(s) = Ĥ (1) + [Ĥ (0), Â(1)(s)], (22)

H̄ (2)(s) = [Ĥ (0), Â(2)(s)] +
1
2

[H̃ (1)(s), Â(1)(s)], (23)

H̄ (3)(s) ≈ [Ĥ (0), Â(3)(s)] +
1
2

[H̃ (1)(s), Â(2)(s)]

+
1
2

[H̃ (2)
1,2(s), Â(1)(s)], (24)

where we introduced modified first-order H̃ (1)(s) = Ĥ (1)

+ H̄ (1)(s) and second-order H̃ (2)(s) = H̄ (2)(s)− 1
6 [[Ĥ (0), Â(1)(s)],

Â(1)(s)] operators. For convenience, we approximate the equa-
tion for the third-order transformed Hamiltonian by neglecting
three-body terms in the operator H̃ (2)(s).52 This approximation
is indicated with the subscript “1,2.”55,74

For a source operator [Eq. (16)] with matrix elements
defined as54

ri
a(s) = [ f i

a +
A∑
uv

∆
u
v γ̄

u
v tiv

au(s)] exp[−s(∆i
a)2], (25)

rij
ab(s) = v ij

ab exp[−s(∆ij
ab)2], (26)

the kth-order (k = 1, 2) DSRG flow equation, [H̄ (k)(s)]N

= R̂(k)(s), yields the following amplitude equations:

ti,(k)
a (s) = [f̄ i,(k)

a (s) +
A∑
ux

∆
x
uγ̄

x
utiu,(k)

ax (s)]
1 − e−s(∆i

a)2

∆i
a

, (27)

tij,(k)
ab (s) = v ij,(k)

ab (s)
1 − e−s(∆ij

ab)2

∆
ij
ab

. (28)

The quantities f̄ i,(k)
a and v

ij,(k)
ab are the non-diagonal compo-

nents of H̄ (k)(s)− [Ĥ (0), Â(k)(s)], and ∆ij
ab = ε i + ε j − εa − εb is

a Møller–Plesset denominator. Equations (27) and (28) show
that, for finite value of s, when a denominator approaches zero,
then the cluster amplitude smoothly goes to zero (rather than
diverge). We emphasize that computing the scalar term of the
second- and third-order energy [Eqs. (23) and (24)] requires
one-, two-, and three-body cumulants of the reference.50,51

Consequently, if we exclude the cost to evaluate the state-
averaged one-, two-, and three-body density cumulants, the
scaling with respect to the number of active orbitals of the
SA-DSRG-PT2/3 is at worst O(NVN6

A).

4. Ground- and excited-state energies

The SA-DSRG-PTX (X = 2, 3) energies are obtained
by diagonalizing the DSRG Hamiltonian summed up to
Xth-order

H̄ [X](s) = H̄ (0) +
X∑

i=1

H̄ (i)(s). (29)

Here we consider two diagonalization methods. The first one
is a contracted scheme, which we indicate with the name
SA-DSRG-PTXc. In this approach, we diagonalize H̄ [X](s)
within the space of basis states in the ensemble E0,

n∑
β

〈Ψα0 |H̄
[X](s)|Ψβ0 〉C

ξ
β = Cξ

αEξ (s), ξ = 1, . . . , n, (30)

which yields the energy of state ξ [Eξ (s)] and the correspond-
ing zeroth-order wave function

|Ψ
ξ
0′
〉
=

n∑
α

Cξ
α |Ψ

α
0
〉
=

NCAS∑
I=1

( n∑
α

Cξ
αcαI

)
|ΦI〉. (31)

This may be considered an unrelaxed state averaged approach
since the weights of determinants in the final wave function are
partially constrained by the coefficients in the configuration-
interaction expansion of the reference states.

The second option is an uncontracted scheme in which
we diagonalize H̄(s) in the space of CAS determinants
{ΦI , I = 1, 2, . . ., NCAS},

NCAS∑
J

〈ΦI |H̄
[X](s)|ΦJ〉C̃ξ

J = C̃ξ
I Ẽξ (s), ξ = 1, . . . , n. (32)

The corresponding wave function is

|Ψ̃
ξ
0′
〉
=

NCAS∑
I

C̃ξ
I |Φ

I〉, (33)

which is more flexible since each determinant has an associated
coefficient that is optimized.

In this work, we truncate the H̄ [X](s) operator after two-
body terms, but more accurate schemes that include three- and
higher-body terms are possible. The H̄ [X](s) operator is then
completely specified by a scalar term and quantities analogous
to the one- and two-electron integrals of the bare Hamiltonian
[H̄q,[X]

p (s) and H̄rs,[X]
pq (s)]. In practice, to diagonalize the oper-

ator H̄ [X](s) in the basis of CASCI determinants or CASCI
solutions, we first rewrite it in a normal-ordered form with
respect to the true vacuum. In this form, H̄ [X](s) may be
diagonalized using a standard full CI code.

When the ensemble contains only one state, the uncon-
tracted diagonalization approach [Eq. (32)] is equivalent to
the partially relaxed state-specific DSRG-MRPT2 method
discussed in Ref. 52. Both the contracted and uncontracted
SA-DSRG-MRPTX schemes are computational advantageous
because they have a cost that is nearly identical to that of one
state-specific unrelaxed DSRG-MRPTX computation. The
additional cost of the SA-DSRG-MRPTX comes from com-
puting the active one- and two-body components of H̄ [X](s)
[H̄v,[X]

u (s) and H̄xy,[X]
uv (s) with u, v, x, y ∈ A] and diagonaliz-

ing this operator in the basis of the contracted or uncontracted
determinant basis. Generating H̄ [X](s) has a small computa-
tional cost that scales as O(N2

VN4
A). The costs to diagonalize

H̄ [X](s) depends on the type of reference used. In the case
of CASCI, the computational complexity for diagonalization
is a factorial of the number of active orbitals. However, the
SA-DSRG-PT methods may also use approximate references
that have polynomial scaling with respect to the number of
active orbitals. Moreover, it is found that computing the Xth-
order energy does not require evaluating the Xth-order ampli-
tudes.52 More complex schemes that treat relaxation effects via
the iterative solution of the DSRG amplitude and eigenvalue
equations are not considered here.

It is easy to see that both the contracted and uncontracted
SA-DSRG-PT approaches avoid the intruder-state problem.
In these methods, the energy is obtained by diagonalizing the
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DSRG Hamiltonian H̄ [X](s), computed by contracting the one-
and two-electron integrals, the cluster amplitudes, and the SA
density cumulants. As mentioned in Sec. II B 3 (see Sec.
2.4 in Ref. 50 for more details), the SA-DSRG-PT ampli-
tudes are bounded [see Eqs. (27) and (28)] for any finite
value of s. Moreover, the one- and two-electron integrals and
the SA density cumulants are also bounded and independent
of s. As a consequence, for finite values of s, the DSRG
Hamiltonian H̄ [X](s) is bounded and its eigenvalues cannot
diverge.

The SA-DSRG-PTX amplitude equations and the matrix
elements of the H̄ [X](s) Hamiltonian are diagrammatically
connected. This is a consequence of the fact that the DSRG
Hamiltonian can be expressed as a series of commutators of
Ĥ and the operator Â(s).53 If the reference wave function
is chosen appropriately, then the SA-DSRG-PTX energy is
size extensive, and the energy of noninteracting fragments
is the sum of fragment energies. We tested size consistency
for a pair of noninteracting ethylene molecules, studying the
π → π∗ transition. Both size consistency and size intensiv-
ity of the excitation energies were verified within numerical
accuracy.81

The SA-DSRG-PTX (X = 2, 3) approach can be easily
implemented by modifying a state-specific DSRG-MRPTX
code. Specifically, the Fock matrix and cumulants of DSRG-
MRPTX for individual reference states are replaced by
the corresponding state-averaged quantities. As a result,
SA-DSRG-PTX is as computationally efficient as the state-
specific version of DSRG-MRPTX.50–52 The SA-DSRG-PT2
method is also simpler than other internally contracted multi-
state MRPT2 approaches. For instance, both MS-CASPT2 and
QD-NEVPT2 need to solve for each root either separately32,33

or in a coupled way.40 In SA-DSRG-PT2 (and SA-DSRG-
PT3), however, cluster amplitudes are solved only once for
all states and this procedure requires only the one-, two-,
and three-body SA density cumulants. As such, SA-DSRG-
PTX is easily applicable to systems with more than 30 active
orbitals.

5. Static properties

Static properties can also be conveniently evaluated under
the state-averaged MRDSRG framework. Taking the dipole
operator (µ̂) as an example, we start by writing it in a normal-
ordered form as

µ̂ = µ0 +
G∑
pq

µq
p{â

p
q}ρ. (34)

Here µq
p = −〈φp |r|φq〉 are the dipole integrals in the molecular

orbital basis and the vector µ0 =
∑H

ij µ
j
i γ̄

i
j is the ensemble

expectation value of the dipole operator. Dynamic correlation
effects are folded in the dipole operator like in the case of the
Hamiltonian. The resulting effective dipole operator [µ̄(s)] is
given by

µ̄(s) = Û†(s)µ̂Û(s). (35)

Considering the bare dipole operator as a zeroth-order quantity,
we can derive an order-by-order expansion of the transformed
dipole operator

µ̄(0)(s) = µ̂, (36)

µ̄(1)(s) = [µ̂, Â(1)(s)], (37)

µ̄(2)(s) = [µ̂, Â(2)(s)] +
1
2

[µ̄(1)(s), Â(1)(s)], (38)

µ̄(3)(s) ≈ [µ̂, Â(3)(s)] +
1
2

[µ̄(1)(s), Â(2)(s)]

+
1
2

[µ̃(2)
1,2(s), Â(1)(s)], (39)

where µ̃(2)
1,2(s) = µ̄(2)

1,2(s)− 1
6 [µ̄(1)(s), Â(1)(s)]1,2 and, consistently

with the treatment of the energy, we discard three- and higher-
body operators.

Accordingly, the SA-DSRG-PTX (X = 2, 3) transformed
dipole operator is given by

µ̄[2](s) = µ + µ̄(1)(s) +
1
2

[µ̄(1)(s), Â(1)(s)], (40)

µ̄[3](s) = µ + µ̄(1)(s) + µ̄(2)(s) +
1
2

[µ̄(1)(s), Â(2)(s)]

+
1
2

[µ̃(2)
1,2(s), Â(1)(s)]. (41)

Notice that we ignore the [µ̂, Â(X)(s)] term in µ̄[X](s) because
µ is partitioned differently than Ĥ. In the case of the Hamil-
tonian, contributions from the commutator [Ĥ (0), Â(X )(s)] will
not enter the SA-DSRG-PTX energy expression.52 Hence, we
discard the analogous contribution from the dipole operator.
Moreover, we do not consider the orbital response with respect
to the external field. This approach to evaluate the dipole
moment operator requires the transformation of each com-
ponent of the dipole operator. Generally, it is more efficient to
generate the SA-DSRG density and then contract it with the
MO dipole integrals. However, to evaluate the density, explicit
expressions are required that involve doubly and triply nested
commutators. As such, the explicit evaluation of the density is
not explored in this work.

Permanent and transition dipole moments can be com-
puted as matrix elements of the effective dipole operator with
respect to the basis of eigenstates of H̄ [X]. For example, if the
energies are obtained by Eq. (32), the dipole moment will be
given by µ̄[X]

αβ (s) = 〈Ψ̃α0′ | µ̄
[X](s)|Ψ̃β0′〉. This expression can be

explicitly written as

µ̄[X]
αβ (s) = δ

β
α

[
µ̄[X]

0 (s) −
A∑
uv

(µ̄[X])
v
u(s)γ̄u

v

−

A∑
uvxy

(µ̄[X])
xy
uv(s)(

1
4
λ̄uv

xy −
1
2
γ̄u

x γ̄
v
y )
]

+
A∑
uv

[
(µ̄[X])

v
u(s) −

A∑
xy

(µ̄[X])
vy
ux(s)γ̄y

x
]
[γ′αβ]u

v

+
1
4

A∑
uvxy

(µ̄[X])
xy
uv(s)[γ′αβ]uv

xy
, (42)

where we have introduced the Kronecker delta δ
β
α and

the one- and two-body transition density matrices [γ′αβ]u
v

= 〈Ψ̃α0′ |â
u
v |Ψ̃

β
0′〉 and [γ′αβ]uv

xy
= 〈Ψ̃α0′ |â

uv
xy |Ψ̃

β
0′〉. Note that the

averaged densities in Eq. (42) result from writing µ̄ in a
normal-ordered form with respect to the true vacuum and are
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computed from the density matrices of the CASCI/CASSCF
zeroth-order states [Eq. (8)].

III. RESULTS

We tested the SA-DSRG-PT2 and SA-DSRG-PT3 meth-
ods on several benchmark systems: lithium fluoride, ammo-
nia, the penta-2,4-dieniminium cation, and (E,E)-1,3,5,7-
octatetraene. The results are compared to those obtained
with extended MS-CASPT2 (XMS-CASPT2),2,32,40,82

quasi-degenerate strongly contracted NEVPT2 (QD-sc-
NEVPT2),5,33 extended MC-QDPT2 (XMCQDPT2),31,37

complete active space third-order perturbation theory
(CASPT3),82 internally contracted MRCI with singles and
doubles (ic-MRCISD) as formulated by Knowles and
Werner,8,83 and ic-MRCISD with Davidson correction (ic-
MRCISD+Q).84,85 The DSRG flow parameter was set to 0.5
E−2

h , a value that previous studies50,55 showed to yield good
agreement with benchmark results. Unless noted, the XMS-
CASPT2 level shift46 was set to 0.1 Eh. We also used a
0.02 E2

h intruder-state-avoidance shift86 in all XMCQDPT2
computations. The 1s-like orbitals of second-period elements
were excluded from all post-CASSCF treatment of electron
correlation.

The SA-DSRG perturbation theories were implemented
in Forte,87 an open-source plugin to Psi488 for develop-
ing novel multireference methods. The QD-sc-NEVPT2 and
XMCQDPT2 energies were obtained using the Orca 4.089 and
Gamess 201690 packages, respectively. The XMS-CASPT2,
CASPT3, and ic-MRCISD computations were carried out
using the Molpro 2015.1 package.91

A. Lithium fluoride

We first consider the lowest two 1Σ+ states of lithium
fluoride. This system is a classic example of ionic-neutral
avoided crossing and a testbed for many quasi-degenerate
and multi-state perturbation theories.31–33,35,37,40,92 The com-
puted distance of the avoided crossing is sensitive to many
factors, including the active space,93 the basis set, the frozen-
core approximation,94 and the relative energy of the first two

states.95 Going from the equilibrium geometry to the dis-
sociation limit, the ground state wave function reduces its
ionic character (due to the |1σ22σ23σ21π44σ2〉 configura-
tion) and becomes dominated by the covalent configuration
|1σ22σ23σ21π44σ15σ1〉. Thus, the minimal active space
required to describe the dissociation of LiF consists of the
4σ and 5σ orbitals. However, a state-averaged CASSCF(2,2)
wave function underestimates the electron affinity of fluo-
rine93 and it is an inadequate starting point for perturba-
tion theories.33 In accordance with Varandas,94 we employ a
larger active space consisting of six electrons in seven orbitals
(three a1, two b1, and two b2 orbitals in C2v symmetry). A
mixed aug(F)-cc-pVTZ basis set was used, which was built
from the cc-pVTZ and aug-cc-pVTZ basis sets for Li96 and
F,97 respectively. The reference wavefunctions and molecular
orbitals were obtained by a SA-CASSCF procedure, aver-
aging over the lowest two 1Σ+ states, which we denote as
SA2-CASSCF(6e,7o).

The potential energy curves (PECs) for the lowest two
1Σ+ states of LiF near the avoid crossing region are shown in
Fig. 1. It is well-known that the state-specific MRPTs cannot
correctly describe the avoided crossing of LiF.25,31,32 Indeed,
an unphysical double crossing is observed between the lowest
two 1Σ+ states of the state-specific unrelaxed DSRG-MRPT2
(u-DSRG-MRPT2).50,52 Contrarily, all SA-DSRG perturba-
tion theories correctly predict an avoided crossing. As expected
from our discussion in Sec. II B 4, in the weak-mixing region,
we see good correspondence between the state-specific (u-
DSRG-MRPT2) and state-averaged theory with constrained
coefficients (SA-DSRG-PT2c). We also note that the larger
diagonalization space used in the uncontracted approach (SA-
DSRG-PT2) helps recover more electron correlation but shifts
the avoided crossing point towards a shorter distance.

Results for a number of MRPT2 methods are shown in
the right panel of Fig. 1. When compared to SA-DSRG-PT2,
other multi-state second-order perturbation theories recover
more correlation energy. The energy gap and the position
of the avoided crossing (minimum energy gap) predicted
by SA-DSRG-PT2 are similar to those of QD-sc-NEVPT2.
In comparison, based on these criteria, XMS-CASPT2 and

FIG. 1. Potential energy curves for the lowest two 1Σ+ states of lithium fluoride computed using various methods and the aug(F)-cc-pVTZ basis set. For each
method, a circle marks the average energy of the two states at the bond length with the smallest energy gap.
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FIG. 2. Dipole moment for the lowest two 1Σ+ states of lithium fluoride com-
puted using various methods and the aug(F)-cc-pVTZ basis set. The circles
on the rLi–F axis indicate the crossing points.

XMCQDPT2 show better agreement with ic-MRCISD. Note
that on the PECs of QD-sc-NEVPT2, there are small humps
around 5.5 Å due to the model-space invariance problem of
the zeroth-order Hamiltonian.37,40 These artificial humps are
cured by the extended multi-state methods like XMCQDPT2
and XMS-CASPT2.

Going from second- to third-order, we observe a sig-
nificant improvement of the agreement between DSRG per-
turbation theory and ic-MRCISD. To highlight the avoided
crossing point, in Fig. 2 we report the SA-DSRG-PT2
and -PT3 dipole moment of the two lowest 1Σ+ states of LiF.
The SA2-CASSCF(6e,7o) reference yields a flawed crossing
point, at a bond distance that is 1.5 Å too short with respect to
the ic-MRCISD result. This defect is corrected by the inclusion
of dynamic correlation; however, a third-order SA-MRDSRG
treatment is required to achieve very good agreement with
ic-MRCISD.

B. Ammonia

Next, we study the ground (X̃, 1A1) and first singlet
excited (Ã, 1A′′2 ) states of ammonia, which are important in
understanding the photodissociation process NH3 → NH2

+ H.99–104 This is a classical example of systems with a
conical intersection between the ground and first excited
state, which are notoriously difficult for excited state methods
like time-dependent density functional theory (TD-DFT)105

and equation-of-motion coupled cluster theory.106–108 On the
ground-state PES, two C3v minima can be interconverted via
a planar D3h transition state (TS). The PES of the Ã state
has a D3h symmetry minimum and a C2v transition state for
hydrogen dissociation. Several conical intersections (CIs) that
connect these surfaces at C2v or Cs geometries have been
located.103 Here we consider the C2v CI using the coordi-
nate system introduced by Truhlar and co-workers.104,108,109

As shown in Fig. 3, the geometry of NH3 is specified by two
coordinates: the bond length of N−−H1 (rN–H1 ) and the pyra-
midalization angle β. The other two N−−H bonds are set equal
to 1.039 Å. The geometry is such that for each bond N−−Hi

(i = 1, 2, 3), the corresponding angle ∠HiNN′ is equal to β.
When β = 90◦, the geometry is planar, while other values of β
give pyramidal geometries. Moreover, the angle between any

FIG. 3. The coordinate system of NH3. The bond length of N−−H1 (rN−H1 )
and the pyramidalization angleβ are the varying coordinates. The bond lengths
of N−−H2 and N−−H3 are fixed at 1.039 Å, and all projected bond angles
(∠H′iN

′H′j , i, j ∈ [1, 2, 3], i , j) are equal to 120◦. The NH3 molecule is drawn

using cheMVP.98

two N−−Hi bonds projected onto the plane is constrained to
120◦. For more details, we refer the readers to Refs. 104, 108,
and 109.

To assess the accuracy of SA-MRDSRG perturbation the-
ories, we employed a full-valence SA2-CASSCF(8e,7o) ref-
erence and the aug-cc-pVTZ basis set.97 We also carried out
TD-DFT computations (Tamm-Dancoff approximation) with
the Becke’s three-parameter exchange110 and Lee-Yang-Parr
correlation111 (B3LYP) functional as implemented in Orca
4.0.89

Figure 4 displays adiabatic PESs of the lowest two sin-
glet states of NH3 near the CI region. In accordance to
previous work,104,108,109 all MR theories predict a double-
cone CI except for TD-B3LYP. Among these MR theories,
those accounting for dynamic electron correlation yield a
noticeably lower barrier for the ground state interconversion
of the two equivalent pyramidalized geometries at shorter
N−−H1 bond lengths. For example, when rN–H1 = 1.8 Å,
the SA2-CASSCF(8e,7o) energy difference between β = 90◦

and β = 60◦ is 1.45 eV, which is 0.30 and 0.26 eV higher
than the SA-DSRG-PT2 and ic-MRCISD values, respectively.
The inclusion of dynamic correlation also moves the location
of the CI to larger N−−H1 bond distances. In comparison to
ic-MRCISD, both SA-DSRG-PT2 and XMS-CASPT2 slightly
underestimate the energetics in the vicinity of the CI, as visible
in the ground-state contour plots shown in Fig. 4. Quantitative
agreement with ic-MRCISD for the energetics and position of
the CI is instead achieved by the SA-DSRG-PT3 method.

C. Penta-2,4-dieniminium cation

The third system examined here is the penta-2,
4-dieniminium cation [PSB3, +NH2(CH)4CH2], a prototype
of the retinal protonated Schiff base (PSB) chromophore that
has been studied extensively.112–116 In particular, we test the
SA-DSRG-PT2 and SA-DSRG-PT3 methods on the three
pathways introduced by Olivucci and co-workers112 using
ground-state SA2-CASSCF(6,6)/6-31G∗ optimized geome-
tries. As shown in Fig. 5, two pathways directly connect the cis
and trans isomers of PSB3 and correspond to (i) the charge-
transfer minimum-energy path (MEPCT) via a TS (TSCT) with
enhanced electron density on the N==C1 bond and (ii) the
diradical MEP (MEPDIR) with a TS (TSDIR) that has two
unpaired electrons on the π orbitals of the C5–C4–C3 and
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FIG. 4. Potential energy surfaces (relative to the ground-state NH3 with rN–H1 = 1.80 Å and β = 60.0◦) for the lowest two singlet states of ammonia computed
using various methods and the aug-cc-pVTZ basis set. Contour lines (0.25 eV interval) are also used to represent the ground-state potential energy surface.

C2–C1–N backbones. The third pathway connects the charge-
transfer TSCT and diradical TSDIR via a conical intersection.

FIG. 5. Schematic potential energy surface and ground-state CASSCF(6,6)/
6-31G∗ equilibrium geometries of PSB3 from Ref. 112. The bond lengths are
in Ångstrom. Molecules are drawn using cheMVP.98

This pathway is characterized by the bond length alternation
coordinate [BLA, defined as 1

2 (rC1−C2 + rC3−C4 ) − 1
3 (rN=C1

+ rC2=C3 +rC4=C5 )]. To allow direct comparison with the results
of Ref. 112, we use a SA2-CASSCF(6,6) reference and the
6-31G∗ basis set.117

Previous work112 showed that SA2-CASSCF(6,6) over-
estimates the energy of PSB3 charge-transfer states and yields
an incorrect location of the conical intersection. Including
dynamic correlation improves the description of these states
and moves the CI closer to TSDIR. As such, TSDIR becomes a
minimum on the excited potential energy surface. As shown
in the potential energy profiles in Fig. 6, both the SA-DSRG-
PT2 and SA-DSRG-PT3 correctly reproduce these features.
For example, along the BLA coordinate [Fig. 6(a)], both
SA-DSRG perturbation theories predict the CI at large BLA
values, in agreement with results from XMS-CASPT2, ic-
MRCISD, and ic-MRCISD+Q. In Fig. 6(b), we see a drastic
decrease of the ground-state barrier height along the MEPCT

coordinate when including dynamic correlation. For instance,
the SA2-CASSCF(6,6) barrier (58.7 kcal mol�1) is reduced
by 9.8, 12.1, 7.2, 6.3, and 10.0 kcal mol�1 for SA-DSRG-
PT2, XMS-CASPT2, SA-DSRG-PT3, ic-MRCISD, and ic-
MRCISD+Q, respectively. We also notice that the SA-DSRG-
PT3 results for PSB3 are generally consistent with those from
ic-MRCISD, while, fortuitously, the SA-DSRG-PT2 curves
closely follow those computed with ic-MRCISD+Q.

D. (E,E)-1,3,5,7-octatetraene

Our final example is the (E,E)-1,3,5,7-octatetraene (OTE)
molecule. An accurate description for the low-lying excited
states of OTE has long been a difficult problem for
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FIG. 6. Energy (relative to cis-PSB3) profiles for the lowest two singlet states of PSB3 along the (a) bond length alternation (BLA), (b) charge-transfer
minimum-energy path (MEPCT), and (c) diradical minimum-energy path (MEPDIR) coordinates computed using various methods with the 6-31G∗ basis set. The
CASSCF(6,6)/6-31G∗ optimized geometries (taken from Ref. 112) of TSCT, TSDIR, and CI are indicated by vertical dashed lines.

theory.23,24,118–126 For instance, the 2 1A−g state possesses
strong double-excitation character and it is poorly described by
single-reference linear response methods.123 Another example
is the 1 1B+

u state, which can be considered as an intramolecular
charge-transfer state, and, as such, it requires careful consid-
erations of dynamic correlation effects.120,123,125 Here, states
are labeled with Mulliken symbols for the irreducible repre-
sentations of the C2h point group plus a superscript “+/−”
to indicate the particle-hole symmetry (i.e., +/− state shows
mainly ionic/covalent character, respectively).118,119,121,127

We computed the vertical excitation energies of several
low-lying singlet valence excited states of OTE. A series of
SA-CASSCF references were considered and they are gener-
ally denoted as SA8-CASSCF(8e,no) with n = 8, 10, 12, 14,
16. The smallest active space, CASSCF(8e,8o), involves all
π and π∗ (four bg and four au) orbitals. Then, more active
orbitals were included in a step-by-step manner where two
more orbitals (one bg and one au) were considered in each
step until the “double-π” active space (eight bg and eight
au) is reached.123 In all cases, the CASSCF orbitals were
optimized by averaging over eight states (five 1Ag and three
1Bu). Since only valence excited states were of interests, the
basis sets were chosen not to include any diffuse functions.
Specifically, we employed the def2-TZVP128 and cc-pVQZ129

basis sets. In all DSRG computations, the two-electron inte-
grals were factorized using the pivoted incomplete Cholesky
decomposition51,130–133 with a 10�6 a.u. threshold for def2-
TZVP and 10�4 a.u. for cc-pVQZ. The geometry of OTE,
optimized at the MP2/6-31G∗ level of theory, was taken from
Ref. 23.

To help identify the “+/−” character of a state, we local-
ized the SA-CASSCF active orbitals using the Pipek–Mezey

FIG. 7. The set of Pipek–Mezey localized active orbitals computed at the
SA8-CASSCF(8e,8o)/def2-TZVP level of theory. Orbitals are drawn using
VMD.134

scheme based on Mulliken charges.135 The resulting localized
molecular orbitals (LMOs) are shown in Fig. 7. A state is then
labeled as “+” (ionic) if two electrons share a common LMO
in its dominant configurations. Conversely, for a “�” (cova-
lent) state, there is at most one electron occupying each of the
LMOs in those important configurations.

The excitation energy (ωα←0) is obtained by subtracting
the ground-state energy (E0) from the energy of an excited
state α (Eα),

ωα←0 = Eα − E0, (43)

and the corresponding oscillator strength f α←0 is computed
as

fα←0 =
2
3
|µα←0 |

2ωα←0, (44)

where µα←0 = µ̄[X]
α0 (s) is the transition dipole moment. In

CASPT2, it is often the case that E0 is chosen to come from
a multistate computation if the excited state has the same
symmetry as the ground state, otherwise, the value from state-
specific computation is used. In practice, the difference that
arises from these two choices is small (0.04 eV for OTE).24

Since the ensemble formalism at the basis of the SA-MRDSRG
approach allows us to consider states with different sym-
metries, we always compute excitation energies from the
SA-DSRG-PTX (X = 2, 3) eigenvalues of the DSRG Hamil-
tonian, a treatment that is consistent with the definition of
transition dipole moment [Eq. (42)].

Table I presents the vertical excitation energies of OTE
along with the oscillator strengths of several valence excited
states computed with SA8-CASSCF(8e,8o) reference using
the def2-TZVP basis set. It is well-known that dynamic corre-
lation effects are essential to account for σ polarization of
ionic states.136,137 Indeed, all post-CASSCF methods yield
significantly lower excitation energies than the correspond-
ing CASSCF values for the ionic 1 1B+

u and 1 1A+
g states.

For example, the SA-DSRG-PT2 excitation energy for the
1 1B+

u state (4.85 eV) is 1.8 eV lower than that of CASSCF
(6.65 eV). Both SA-DSRG-PT2 and SA-DSRG-PT3 predict
the following ordering:

2 1A−g < 1 1B+
u < 1 1B−u < 3 1A−g < 1 1A+

g < 4 1A−g ,

which agrees with that of ic-MRCISD+Q but differs slightly
from the ic-MRCISD ordering (4 1A−g < 1 1A+

g). Compared
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TABLE I. Vertical excitation energies (in eV) of several low-lying valence excited states of octatetraene based on the SA8-CASSCF(8e,8o)/def2-TZVP reference.
The oscillator strengths (in a.u.) are given in parentheses. All excitation energies are from this work. The geometry was optimized using MP2/6-31G∗, taken
from Ref. 23.

SA-DSRG

State CASSCFa NEVPT2b QD-NEVPT2b XMCQDPT2 XMS-CASPT2c CASPT3d PT2c PT2 PT3 ic-MRCISDe ic-MRCISD+Qf

2 1A−g 4.68 4.75 4.74 4.48 4.42 4.62 4.60 4.57 4.75 4.72 4.71
1 1B+

u 6.65 (1.861) 4.02 4.02 (1.127) 4.26 4.18 4.85 4.69 4.85(1.742) 5.41(1.789) 5.76(1.605) 5.29
1 1B−u 5.86 (0.000) 5.99 5.99 (0.001) 5.69 5.40 5.82 5.80 5.77(0.001) 5.98(0.002) 5.92(0.015) 5.92
3 1A−g 6.59 6.73 6.73 6.48 6.55 6.52 6.73 6.64 6.62
1 1A+

g 8.94 6.08 6.08 5.77 6.83 6.92 7.58 7.91 7.27
4 1A−g 7.49 7.75 7.76 7.38 7.48 7.44 7.70 7.59 7.61
2 1B−u 8.26 (0.000) 8.54 8.54 (0.000) 8.21 8.27 8.25 (0.002) 8.50 (0.000) 8.37 (0.000) 8.38

aComputed using Molpro and exact two-electron integrals.
bStrongly contracted variant computed in this work. Oscillator strengths are approximated using CASSCF transition dipole moments but QD-sc-NEVPT2 energies.
cOnly two 1Ag and two 1Bu states are considered in XMS-CASPT2 with a 0.2 level shift.
dObtained using a 0.2 Eh level shift.
eExcitation energies are computed in C2h symmetry. Oscillator strengths are obtained by a separate computation in Cs symmetry.
fRotated reference coefficients and energies are used to compute cluster corrections. Coefficients of rotated reference functions are all ≥0.893.

to ic-MRCISD+Q, SA-DSRG-PT2 consistently underesti-
mates the excitation energies on average by 0.21 eV, while
the SA-DSRG-PT3 overestimates excitation energies on aver-
age by 0.12 eV. Interestingly, the excitation energy for the
1 1B+

u state obtained at the SA-DSRG-PT3 (5.41 eV) or
ic-MRCISD+Q (5.29 eV) level is notably higher than other
reported estimates, including CC3/TZVP (4.94 eV),23 MS-
CASPT2/TZVP (4.70 eV),23 and QD-sc-NEVPT2/ANO1
(4.22 eV),123 yet consistent with the results of state-specific
strongly contracted third-order NEVPT (sc-NEVPT3)/ANO1
(5.14 eV), naı̈ve QD-sc-NEVPT3/ANO1 (5.14 eV),123,138 and
linear response internally contracted MRCC with singles and
doubles (ic-MRCCSD-LR)/TZVP (5.05 eV).124 Note that we
used rotated reference wave functions to compute the cluster
corrections of ic-MRCISD,85 and the rotated reference energy
deviates from the corresponding fixed reference energy by at
most 0.01 eV.139

In Table II, we show the vertical excitation energies com-
puted using different SA8-CASSCF references and the cc-
pVQZ basis set. As more orbitals are added to the CAS(8e,8o)
space, it is possible to find SA-CASSCF solutions that cor-
respond to local minima, especially for the enlarged active
spaces CAS(8e,no) with n = 10, 12, 14, 16. However, since
the additional orbitals introduced are weakly occupied, these

local minima are expected to be close in energy to the mini-
mum energy solution. Indeed, for the CAS(8e,12o) space, we
were able to locate a second solution with average CASSCF
energy ca. 0.4 mEh above the optimal solution. Semicanon-
ical orbitals for all active spaces considered here computed
using the cc-pVQZ basis set are reported in the supplementary
material.

Comparing the CAS(8e,8o) results in Tables I and II, we
see almost no changes in the excitation energies when increas-
ing the size of the basis set. This observation also agrees with
previous studies.120,123 As expected, increasing the size of the
active-space leads to better agreement between SA-DSRG-
PT3 and ic-MRCISD+Q excitation energies. We also find that
the ionic states benefit most from doubling the size of the
active space. Focusing on the first three states of SA-DSRG-
PT3, the excitation energy of the ionic state 1 1B+

u is lowered
by 0.23 eV, while the 2 1A−g and 1 1B−u states are stabilized by
less than 0.05 eV. The incomplete active spaces CAS(8e,10o)–
CAS(8e,12o) give an unbalanced description of the eight elec-
tronic states. For example, going from a CAS(8e,12o) to a
CAS(8e,14o) reference, the additional bg and au orbitals stabi-
lize the 3 1A−g and 2 1B−u states, causing their excitation energy
at the SA-DSRG-PT3 level to drop by 0.25 and 0.22 eV, respec-
tively. The CAS(8e,14o) reference instead yields excitation

TABLE II. Vertical excitation energies (in eV) of several low-lying valence excited states of octatetraene obtained using SA-DSRG-PT2 and SA-DSRG-PT3
methods with various SA8-CASSCF references and the cc-pVQZ basis set.

CAS(8e,8o) CAS(8e,10o) CAS(8e,12o) CAS(8e,14o) CAS(8e,16o)

SA-DSRG SA-DSRG SA-DSRG SA-DSRG SA-DSRG

State CASSCF PT2c PT2 PT3 CASSCF PT2c PT2 PT3 CASSCF PT2c PT2 PT3 CASSCF PT2c PT2 PT3 CASSCF PT2c PT2 PT3

2 1A−g 4.68 4.60 4.56 4.75 4.70 4.56 4.52 4.74 4.71 4.57 4.54 4.74 4.72 4.55 4.54 4.71 4.71 4.55 4.54 4.71
1 1B+

u 6.65 4.67 4.83 5.40 6.37 4.80 4.82 5.30 6.19 4.87 4.85 5.24 6.13 4.89 4.86 5.19 6.00 4.93 4.89 5.17
1 1B−u 5.86 5.80 5.76 5.97 5.86 5.75 5.71 5.96 5.87 5.75 5.73 5.96 5.88 5.74 5.73 5.94 5.86 5.73 5.72 5.94
3 1A−g 6.59 6.54 6.51 6.73 6.57 6.47 6.44 6.69 6.57 6.48 6.47 6.70 6.36 6.25 6.26 6.45 6.36 6.24 6.25 6.45
1 1A+

g 8.94 6.79 6.89 7.57 8.29 7.03 6.83 7.34 8.21 6.97 6.83 7.29 8.21 6.94 6.83 7.26 8.12 6.94 6.85 7.22
4 1A−g 7.49 7.48 7.43 7.70 7.51 7.41 7.36 7.68 7.51 7.41 7.38 7.68 7.53 7.39 7.38 7.66 7.52 7.37 7.36 7.65
2 1B−u 8.25 8.26 8.24 8.50 8.24 8.18 8.16 8.45 8.25 8.19 8.18 8.47 8.07 7.98 7.99 8.25 8.07 7.97 7.98 8.25

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-038811
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-038811
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energies that are consistent with those from the full double-π
space.

Finally, we comment on the vertical excitation energy of
the 2 1A−g , 11B+

u , and 11B−u states. Recent MS-CASPT2,123

QD strongly contracted (sc) and partially contracted (pc)
NEVPT2,123 and state-specific time-dependent NEVPT2
(t-NEVPT2)125 studies suggest the ordering 1 1B+

u < 2 1A−g
< 11B−u . The energy difference between 11B+

u and 21A−g
states is predicted to be around 0.7 eV by QD-sc-NEVPT2,
QD-pc-NEVPT2, and t-NEVPT2 based on the CAS(8e,8o)
reference.123,125 This energy gap is perfectly reproduced by
our sc-NEVPT2 and QD-sc-NEVPT2 computations reported
in Table I. The same ordering is also obtained by XMS-
CASPT2 and XMCQDPT2, but both methods predict that
the 2 1A−g state lies only 0.2 eV above the 11B+

u state. It is
well-documented that NEVPT2 overestimates dynamic cor-
relation for ionic states when the zeroth-order wave func-
tion does not capture enough dynamic σ polarization.123,140

Indeed, the energy gap between the 2 1A−g and 1 1B+
u states is

reduced by more than 0.6 eV for QD-sc-NEVPT2 and QD-
pc-NEVPT2 if the CAS(8e,16o) is employed.123 By contrast,
both second- and third-order SA-DSRG-PT yield the ordering
of 2 1A−g < 1 1B+

u < 1 1B−u for all the SA-CASSCF references
considered here. This ordering was also found in previous
studies that used CASPT2,120 multireference Møller-Plesset
perturbation theory,121 and recently third-order algebraic dia-
grammatic construction method.141 Moreover, it is also consis-
tent with the ordering of state-specific CASPT3, ic-MRCISD,
and ic-MRCISD+Q presented in Table I. Our best estimates
for the vertical excitation energies of the 2 1A−g , 1 1B+

u , and
1 1B−u states are 4.7, 5.2, and 5.9 eV, respectively, at the
SA-DSRG-PT3/SA8-CASSCF(8e,16o)/cc-pVQZ level of the-
ory. These values are also in good agreement with those from
ic-MRCCSD-LR/CASSCF(8e,8o)/TZVP (4.65 eV for 2 1A−g
and 5.05 eV for 1 1B+

u)124 although it is expected that the ver-
tical excitation energy of the 11B+

u state will be lowered if the
basis set includes diffuse functions.

IV. CONCLUSIONS

In this work, we introduced a state-average approach
to electronic excited states based on the multireference
driven similarity renormalization group (MRDSRG) frame-
work. Both MRDSRG and SA-MRDSRG are built upon the
operator algebra of Mukherjee and Kutzelnigg’s (MK) gener-
alized normal ordering.66–72 Like in our previous state-specific
scheme based on a single multi-configurational state, we per-
form one unitary transformation of the Hamiltonian.50,52,55

However, in the present work, we average dynamic correla-
tion effects over a manifold of excited states by generalizing
the MRDSRG equation to an ensemble of reference states.
This subtle but profound difference leads to a state-universal
scheme in which dynamic correlations is folded into a trans-
formed Hamiltonian. This Hamiltonian is then diagonalized to
obtain excited state energies and properties. This effectively
amounts to mixing and relaxing the model space functions
in the presence of effective interactions that include dynamic
correlation effects. As such, the SA-MRDSRG is capable to

handle quasi-degenerate states, such as avoided crossings and
conical intersections.

The SA-MRDSRG scheme is closely related to the mul-
tireference equation-of-motion coupled cluster (MR-EOM-
CC) method of Nooijen and co-workers,19,73 and the density-
averaged MS internally contracted MRCC (γ̄-MS-icMRCC)
theory of Aoto and Köhn.142 All methods share the “transform-
then-diagonalize” philosophy, where the transformed Hamil-
tonian is obtained by solving a set of state-averaged cluster
amplitudes. Note that only the SA-MRDSRG Hamiltonian
remains Hermitian after the transformation. The major differ-
ence between the SA-MRDSRG and other methods resides in
the definition of the amplitude equations. The SA-MRDSRG
uses many-body conditions for all amplitudes, while the
γ̄-MS-icMRCC equations are obtained by left-projecting the
Schrödinger equation onto excited configurations. Instead,
MR-EOM-CC is a hybrid method that combines a projec-
tive scheme for singles and many-body conditions for higher
excitations.

We have implemented the second- and third-order pertur-
bation theories based on the SA-MRDSRG (SA-DSRG-PT2
and SA-DSRG-PT3). Due to the state-universal character of
SA-MRDSRG, the cost of the SA-DSRG-PT2 and SA-DSRG-
PT3 methods does not depend on the number of targeted states.
This is a major advantage of our formalism because it means
that the cost to compute the energy and properties of n excited
states is comparable to that of a single state-specific DSRG-
PT computation. In comparison, other multi-state approaches
require computing n energies and n(n� 1)/2 couplings between
states to evaluate the energy of n electronic states.

To simplify the SA-DSRG-PT equations, we adopted
a zeroth-order Hamiltonian that contains only the diagonal
blocks of the state-averaged Fock operator and applied the
linear recursive commutator approximation74,75 to the Hamil-
tonian. Consequently, only one-, two-, and three-body state-
averaged density cumulants appear in the energy expressions
of SA-DSRG-PT2 and SA-DSRG-PT3, evaluating which
require non-iterative procedures that scale as O[(N2

C + NCN2
A

+ N4
A)N2

V] and O(N2
CN4

V), respectively (these estimates do not
include the integral transformation, which scales as NCN4, and
the cost to diagonalize the CASCI Hamiltonian and build the
density cumulants).

To demonstrate the ability of SA-MRDSRG perturba-
tion theories to accurately treat near-degenerate electronic
states, we studied the avoided crossing of lithium fluo-
ride, the C2v conical intersection of ammonia, the cis–
trans isomerization pathways of the penta-2,4-dieniminium
cation, and eight valence excited states of (E,E)-1,3,5,7-
octatetraene. The LiF and NH3 examples demonstrate that
the accuracy of SA-DSRG-PT2 is similar to that of other
quasi-degenerate second-order perturbation theories. More-
over, the SA-DSRG-PT3 results are found to be in very
good agreement with those from ic-MRCISD. In the other
two test cases, dynamic correlation effects are found crit-
ical to correctly predict the energetics of ionic states, a
point already noticed in previous studies.112,120,123 For the
challenging octatetraene molecule, the SA-DSRG-PT3 com-
putations based on the SA8-CASSCF(8e,16o)/cc-pVQZ refer-
ence predict the relative ordering of lowest two excited states
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to be 2 1A−g (4.7 eV) < 1 1B+
u(5.2 eV), in accordance with

ic-MRCISD+Q and ic-MRCCSD-LR results.
In summary, we have proposed a general and economi-

cal state-average approach for computing excited states based
on the MRDSRG framework. The ensemble-based formalism
presented here has been explored only in the context of valence
excitation energies and several other areas of application are
possible. In this work, states that enter the ensemble aver-
age were equally weighted; however, by modification of the
weights is it possible to extend this treatment to other situa-
tions, like finite-temperature computations. While economical
and general, the inherent averaging of dynamic correlation
effects assumed by the SA-MRDSRG scheme may lead to a
loss of accuracy when computing numerous electronic states.
This deterioration of the accuracy should be expected when
treating states with different character (e.g., ionic/diradical),
larger molecules, and a significantly larger number of states.
Work is in progress to create a method that combines some
of the features of the state-averaged formalism (robustness,
ability to treat conical intersections) with the accuracy of
state-specific methods.

SUPPLEMENTARY MATERIAL

See supplementary material for the energies of LiF, NH3,
PSB3, and octatetraene, a Python function for generating the
xyz coordinates of NH3, and the active orbitals of octatetraene
optimized using several CAS(8e,no) references (n = 8, 10, 12,
14, 16).
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Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura,
A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer,
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