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A third-order multireference perturbation theory based on the driven similarity renormalization group
(DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features:
(a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm withO(N6) scaling,
and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the
potential energy curves of F2, H2O2, C2H6, and N2 along the F−−F, O−−O, C−−C, and N−−N bond
dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent
with those of complete active space third-order perturbation theory and multireference configuration
interaction with singles and doubles and show significant improvements over those obtained from
DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-
MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell
organic compounds. This point is demonstrated with computations of the singlet-triplet splitting
(∆ST = ET − ES) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the
adiabatic ∆ST is 3.9 kcal mol�1, a value that is within 0.1 kcal mol�1 from multireference coupled
cluster results. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979016]

I. INTRODUCTION

Multireference perturbation theory (MRPT) based on a
complete active space (CAS)1–3 wave function is one of the
simplest and most popular quantum chemistry approaches
for studying near-degenerate electronic states. A number of
MRPTs have been proposed, among which the second-order
complete active space perturbation theory (CASPT2) by Roos
and co-workers is perhaps the most successful one.4,5 The
partially and strongly contracted variants of second-order n-
electron perturbation theory (pc- and sc-NEVPT2), introduced
more recently, are also growing in popularity.6–9 One of the
advantages of CASPT2 and pc- and sc-NEVPT2 is that they
employ an internally contracted formalism, whereby the first-
order correction to the wave function is generated by excitation
operators acting on the entire reference wave function. There-
fore, the computational cost of these methods scales only
polynomially with the number of active space orbitals—a
reduction in cost compared to uncontracted multireference
formalisms.10,11

Despite their success, CASPT2 and NEVPT2 have some
crucial limitations. Perhaps the most unsettling feature of
CASPT2—and most other MRPT methods—is the intruder-
state problem.12–15 Intruder states are encountered when the
zeroth-order energy of the reference and excited configura-
tions is near degenerate. Intruder states introduce singulari-
ties in the energy denominators and yield excitation ampli-
tudes with unphysically large values. Several approaches
have been proposed to address intruders,6,16–20 yet the most

a)Electronic mail: cli62@emory.edu
b)Electronic mail: francesco.evangelista@emory.edu

straightforward is level (denominator) shifting.15,21 When
intruder states are weakly coupled to the reference, level shift-
ing works well for both ground and excited states. However, in
computations on multiple excited states, finding a ubiquitous
level shift that removes intruders for all states may be challeng-
ing.22 In addition, level shifting introduces some arbitrariness
in CASPT2 results.20,23 Another less severe problem is the
small size-consistency error carried by CASPT2 due to the
use of projectors in the zeroth-order Hamiltonian [Ĥ (0)].24–27

These projectors are introduced because the reference is not
an eigenfunction of the average Fock operator.

In NEVPT2, the above two issues are neatly solved
by employing a zeroth-order Hamiltonian that includes two-
electron interactions within the active orbitals.7–9 However,
both CASPT2 and NEVPT2 have computational bottlenecks
that prevent computations with large active spaces. For a com-
plete active space, the energy expressions of CASPT2 and
NEVPT2 demand the four-particle reduced density matrix
(4RDM) of the reference. The memory cost of storing this
quantity grows as the eighth power of the number of active
orbitals (NA) and quickly becomes the Achilles’ heel of
these methods when NA > 16. The computational cost of
CASPT2 and NEVPT2 is then dominated by tensor contrac-
tions that scale as O(N8

A) and O(N9
A), respectively. Several

attempts have been made to avoid the 4RDM via cumu-
lant decompositions,28–30 and encouraging results have been
obtained for CASPT2.31 Further approximations to the three-
particle density matrix are less promising as “false intruders”
appear on the potential energy curves.31,32 Unfortunately, even
when the 4RDM is neglected, CASPT2 and pc-NEVPT2 still
require removing linear dependencies in the excitation man-
ifold by diagonalizing the overlap metric.5,7 This step also
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has computational costs proportional to O(N9
A) and restricts

state-of-the-art CASPT2 computations to NA ≈ 30.31

Multireference perturbation theories based on the driven
similarity renormalization group33 (DSRG) provide a solu-
tion to both the intruder-state problem and the computational
scaling limitations of CASPT2 and NEVPT2. The DSRG is
a many-body approach closely related to the in-medium sim-
ilarity renormalization group (IM-SRG),34–38 coupled clus-
ter,39–42 and canonical transformation theories.30,43,44 Like in
the IM-SRG, the DSRG separates excitation energy scales
via a continuous unitary transformation of the Hamiltonian
controlled by a flow parameter s. A perturbative analysis of
the DSRG shows that this transformation folds in correla-
tion effects from excited configurations that correspond to
energy denominators larger than a cutoff Λ= s−1/2, while it
leaves untouched those excitations for which the denomi-
nators are smaller than Λ.45,46 As such, the DSRG avoids
intruders for finite values of s and yields a transformed (renor-
malized) Hamiltonian with modified many-body interactions.
Nonetheless, the DSRG is distinct from the IM-SRG. While
the IM-SRG directly determines the renormalized Hamilto-
nian by solving a collection of ordinary differential equa-
tions, the DSRG obtains it from a set of coupled nonlinear
equations. Another critical ingredient of the DSRG is the
use of Fock-space many-body conditions,47–50 which lead to
equations in terms of normal-ordered second-quantized oper-
ators. For multireference theories, the many-body approach
effectively avoids the need to orthogonalize the excitation
manifold.51–54

In our previous work, we have explored the multireference
DSRG53,54 (MR-DSRG) and its second-order perturbation the-
ory (DSRG-MRPT2).53,55 The MR-DSRG formalism is built
upon the algebra of Mukherjee and Kutzelnigg’s generalized
normal ordering and Wick’s theorem,28,56–61 where operator
contractions lead to density cumulants.28,60,62 The advantage
of this scheme is that the DSRG-MRPT2 energy requires at
most the three-particle density cumulant. Consequently, the
DSRG-MRPT2 approach has a scaling that is proportional to
O(N6

A) and could potentially be applied to systems with large
active spaces.

Our previous work has shown that the accuracy of
the DSRG-MRPT2 is similar to that of other second-order
MRPTs.53 Furthermore, the linearized MR-DSRG with one-
and two-body operators [MR-LDSRG(2)] greatly improves
the accuracy of DSRG-MRPT2 but requires a recursive eval-
uation of the Hamiltonian and an iterative update of the
cluster amplitudes.54 The cost of MR-LDSRG(2) computa-
tions currently limits applications of this method to systems
with 200–300 orbitals. In this work, we propose to over-
come this limitation by developing a third-order multireference
perturbation theory (MRPT3) based on the DSRG. A nonit-
erative DSRG-MRPT3 would be less expensive than the MR-
LDSRG(2) scheme and likely to be more accurate than second-
order perturbation theory. Indeed, several third-order MRPTs
have been formulated and they were found to be superior
with respect to the corresponding second-order MRPTs.63–68

For example, the third-order complete active space perturba-
tion theory (CASPT3) implementation of Werner provides
geometries and harmonic frequencies of small molecules

that are as accurate as those of multireference configuration
interaction with singles and doubles (MRCISD) but only costs
as one iteration of MRCISD.64

In this work, we derive and implement a third-order
DSRG-MRPT (DSRG-MRPT3). The zeroth-order Hamilto-
nian is chosen to contain only the diagonal blocks of the
Fock operator, an identical choice made in the “diagonal”
CASPT2 approach.4 When applied to the DSRG-MRPT3, this
choice of Ĥ (0) leads to an efficient non-iterative formalism
that is free from the intruder-state problem,53 is rigorously
size extensive,40 and may be interfaced with any reference
wave function for which the one-, two-, and three-body density
cumulants are computed. In this study, we also develop relaxed
DSRG-MRPT2 and MRPT3 approaches in which the refer-
ence wave function is optimized under the effects of dynamic
electron correlation. Most state-specific MRPT2 approaches,
including CASPT2 and NEVPT2, do not account for reference
relaxation effects, with the notable exception of Mukherjee’s
state-specific MRPT2,69–73 generalized Van Vleck PT2,74–77

and multiconfigurational PT2.72,78,79

We begin our discussion of DSRG-MRPT3 by providing
a brief overview of the general MR-DSRG ansatz in Sec. II A,
followed in Sec. II B by a detailed perturbative analysis.
Then, in Sec. III, we provide details of the DSRG-MRPT3
implementation in our open-source code Forte.80 Section V
consists of two parts. In the first one, we study the poten-
tial energy curves of F2, HO−−OH, H3C−−CH3, and N2 to
assess the accuracy of the DSRG-MRPT3 method and com-
pare its performance with that of the DSRG-MRPT2 and the
MR-LDSRG(2) approaches. In the second part, we compute
the singlet-triplet gap of 9,10-anthracyne and compare DSRG-
MRPT3 results with other multireference methods including
CASPT2,81 MRCISD,82–84 and Mukherjee’s multireference
coupled cluster theory.57,85–88 Finally, in Sec. VI we conclude
and discuss future applications of the DSRG-MRPT3 scheme.

II. THEORY
A. An overview of MR-DSRG

In this section, we briefly review the MR-DSRG formal-
ism. Readers who are interested in the details regarding the
operator parameterization should refer to the original DSRG
(Ref. 33) and MR-DSRG (Refs. 53 and 54) papers. In MR-
DSRG theory, we employ the generalized normal ordering of
Mukherjee and Kutzelnigg (MK-GNO) to deal with the algebra
of second-quantized operators.28,56–61 Under MK-GNO, oper-
ator contractions are associated with density cumulants,28,60,62

which embody all information of the reference wave func-
tion. The reference wave function used to define the MK-GNO
Fermi vacuum is a multideterminantal wave function

|Ψ0〉 =

d∑
µ=1

cµ |Φ
µ〉 , (1)

where each determinant Φµ is weighted by the coefficient cµ.
In this work, we further assume that the set of determinants
{Φµ, µ = 1, 2, . . ., d} forms a complete active space (CAS),
although this is not generally required by the MR-DSRG
formalism. The coefficients cµ and the molecular orbitals are
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determined by the CAS configuration interaction (CASCI)
self-consistent field (CASSCF) procedure.1,2 The set of spin
orbitals {φp, p = 1, 2, . . ., N } then falls into three subsets: core
(C, with indices m, n), active (A, with indices u, 3, w, x, y, z),
and virtual (V, with indices e, f, g, h) of dimension NC, NA, and
NV, respectively. Two composite orbital sets are introduced:
hole (H = C∪A, with indices i, j, k, l) and particle (P = A∪V,
with indices a, b, c, d) of size NH = NC + NA and NP = NA +
NV, respectively. General orbitals (G) are denoted by indices
p, q, r, s.

The philosophy of the DSRG ansatz is to define a contin-
uous (s-dependent) unitary operator Û(s) that transforms the
bare Hamiltonian Ĥ to a band-diagonal operator H̄(s), namely,

Ĥ → H̄(s) = Û†(s)ĤÛ(s), s ≥ 0. (2)

When the flow parameter s approaches infinity, we require this
transformation to exactly zero the couplings between the refer-
ence state and its internally contracted excited configurations.
In the many-body formalism,49–52,89 this coupling is conve-
niently represented by the non-diagonal terms of the Hamil-
tonian [H̄N(s)]. The DSRG assumes that the unitary trans-
formation is controlled by a Hermitian source operator R̂(s).
The corresponding many-body DSRG flow equation33,53,54

realizes this idea by equating the non-diagonal terms of the
Hamiltonian to the source operator

H̄N(s) = R̂(s). (3)

The source operator is a sum of operators R̂(s) = R̂1(s)
+ R̂2(s) + . . ., where the k-body component R̂k(s) is defined as

R̂k(s) =
1

(k!)2

H∑
ij · · ·

P∑
ab· · ·

rij · · ·
ab· · ·(s)

[
{âab· · ·

ij · · · } + {âij · · ·
ab· · ·}

]
, (4)

and we assume that the rank 2k tensor rij · · ·
ab· · ·(s) is real. The

source operator R̂(s) renormalizes the Hamiltonian in such a
way that excited configurations that are energetically sepa-
rated from the reference by at least Λ = s−1/2 are decoupled
from it.33,45 The parametrization of R̂(s) that can achieve this
renormalization transformation is not unique. In this work,
we use a source operator (see Ref. 33) that reproduces the
transformation of second-order perturbation theory based on
the single-reference similarity renormalization group36,38 with
matrix elements defined as

rij · · ·
ab· · ·(s) = [H̄ ij · · ·

ab· · ·(s) + tij · · ·
ab· · ·(s)∆ij · · ·

ab· · ·]e
−s(∆ij···

ab···)
2
. (5)

In Eq. (5), the quantity H̄ ij · · ·
ab· · ·(s) is a rank 2k tensor associ-

ated with the k-body operator of H̄N(s) and tij · · ·
ab· · ·(s) is the

cluster amplitudes that correspond to excitations from orbitals
φiφj · · · to φaφb · · · . In Eq. (5), we have also introduced the
Møller–Plesset denominator∆ij ...

ab ... = ε i +ε j + · · ·−εa−εb−· · ·

expressed in terms of semicanonical orbital energies εp (for
more details see Sec. II B). When |∆ij · · ·

ab· · · | � s−1/2, the source
operator is effectively zero and the corresponding excitation
is fully decoupled from the reference. On the contrary, in the
limit of small denominators (|∆ij · · ·

ab· · · | � s−1/2), the amplitudes

tij · · ·
ab· · ·(s) smoothly go to zero.

Once R̂(s) is defined, the unitary operator Û(s) can be
determined via Eqs. (2) and (3). In order to set up Eq. (3), we

need to write the DSRG transformed Hamiltonian H̄(s) as a
sum of second-quantized operators. The unitary operator Û(s)
is expressed as the exponential of an anti-Hermitian operator
Â(s), and Â(s) is further related to the coupled cluster excitation
operator T̂ (s),

Û(s) = exp[Â(s)] = exp[T̂ (s) − T̂†(s)]. (6)

Note that internal amplitudes txy · · ·
uv · · ·(s) with u, 3, · · · , x, y, · · · ∈

A are redundant and hence set to zero. Using the Baker–
Campbell–Hausdorff (BCH) expansion, we write the renor-
malized Hamiltonian H̄(s) as a series of commutators of Ĥ
and Â(s),

H̄(s) = Ĥ +
∞∑

k=1

1
k!

[· · · [[Ĥ, Â(s)], Â(s)], · · · ]︸                          ︷︷                          ︸
k nested commutators

. (7)

The many-body expression of H̄(s) is obtained by evaluat-
ing the commutators using the MK-GNO Wick’s theorem and
subsequently collecting the same rank of normal-ordered oper-
ators.33,53,54 Because the BCH formula in Eq. (7) does not
terminate, we truncate each commutator [Ĥ, Â(s)] to contain
at most two-body operators30,43,54 and consider the series con-
verged when the Frobenius norm of the k-nested commutator
is less than 10�12 Eh.33,54,90 We shall use the subscript “1,2”
whenever the operator is truncated to contain at most two-body
terms.

The MR-DSRG energy can be computed in two ways. The
first approach consists in evaluating the expectation value of
H̄(s) using the reference wave function Ψ0,

Eu(s) = 〈Ψ0 |H̄(s)|Ψ0〉 . (8)

The energy obtained via Eq. (8) is unrelaxed because the
weight of each reference determinant (cµ) is fixed and equal to
the reference CASCI/CASSCF wave function. Alternatively,
the coefficient cµ may be optimized by diagonalizing H̄(s)
within the set of reference determinants {Φµ},

d∑
µ

〈Φν |H̄(s)|Φµ〉 cµ = Er(s)cν . (9)

The reference relaxation effects are fully captured by the iter-
ative solutions of Eqs. (9) and (3) until both the coefficients
{cµ} and amplitudes reach convergence.54 Achieving self-
consistency of the amplitude and eigenvalue equations is a nec-
essary condition to guarantee that when Â(s) is not truncated,
the BCH expansion of H̄(s) is not approximated, and s→∞,
then the full MR-DSRG is equivalent to full configuration
interaction.

B. The DSRG-MRPT3 method

We first partition the normal-ordered bare Hamiltonian
into a zeroth-order term Ĥ (0) and a first-order fluctuation poten-
tial Ĥ (1). The DSRG perturbation theory is derived from an
order-by-order expansion of the source operator R̂(s), the anti-
Hermitian operator Â(s), and the unrelaxed energy Eu(s), while
the coefficients cµ in Eq. (9) are not treated perturbatively.53

The zeroth-till third-order DSRG transformed Hamiltonian are
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given by

H̄ (0)(s) = Ĥ (0), (10)

H̄ (1)(s) = [Ĥ (0), Â(1)(s)] + Ĥ (1), (11)

H̄ (2)(s) = [Ĥ (0), Â(2)(s)] +
1
2

[H̃ (1)(s), Â(1)(s)], (12)

H̄ (3)(s) = [Ĥ (0), Â(3)(s)] +
1
2

[H̃ (1)(s), Â(2)(s)]

+
1
2

[H̃ (2)(s), Â(1)(s)], (13)

where we have introduced the combined first-order Hamilto-
nian H̃ (1)(s) = Ĥ (1) + H̄ (1)(s) and the second-order counterpart
H̃ (2)(s) = H̄ (2)(s) − 1

6 [[Ĥ (0), Â(1)(s)], Â(1)(s)]. The first- and
second-order cluster amplitudes are determined by

R̂(1)(s) = [H̄ (1)]N(s), (14)

R̂(2)(s) = [H̄ (2)]N(s). (15)

To simplify the structure of Eqs. (10)–(13), the zeroth-
order Hamiltonian Ĥ (0) is chosen to include the reference
energy and the diagonal blocks of the Fock operator

Ĥ (0) = E0 + F̂(0), (16)

where

F̂(0) =

C∑
mn

f n
m{â

m
n } +

A∑
u3

f 3u {â
u
3 } +

V∑
ef

f f
e {â

e
f }

=

G∑
p

εp{â
p
p}. (17)

Here the string of normal-ordered creation (â†) and anni-
hilation (â) operators is compactly written as {âpq · · ·

rs · · · }

= {â†pâ†q · · · âsâr }. The generalized Fock matrix element f q
p is

expressed in terms of one-electron (hq
p) and antisymmetrized

two-electron (3rs
pq) integrals as well as the one-particle density

matrix γp
q = 〈Ψ0 |â

†
pâq |Ψ0〉,

f q
p = hq

p +
H∑
ij

3
qj
piγ

i
j . (18)

As indicated by the last line of Eq. (17), molecular orbitals
are semicanonicalized such that the core, active, and virtual
blocks of the generalized Fock matrix are diagonal (εp = f p

p ).
With this zeroth-order Hamiltonian, the commutator

[Ĥ (0), Â(n)(s)] yields only one- and two-body non-diagonal
terms (that is, {âa

i }, {â
ab
ij }, {â

i
a}, and {âij

ab}). As a result, expec-

tation values of the form 〈Ψ0 |[Ĥ (0), Â(n)(s)]|Ψ0〉 = 0 for any n.
The unrelaxed zeroth-to third-order energies written in terms
of the cluster operators are thus

E(0)
u (s) = E0, (19)

E(1)
u (s) = 0, (20)

E(2)
u (s) = 〈Ψ0 |[H̃

(1)(s), T̂ (1)(s)]|Ψ0〉, (21)

E(3)
u (s) = 〈Ψ0 |[H̃

(1)(s), T̂ (2)(s)]|Ψ0〉

+ 〈Ψ0 |[H̃
(2)(s), T̂ (1)(s)]|Ψ0〉, (22)

where the prefactors that enter in Eqs. (12) and (13) cancel
since 〈Ψ0 |[Ĥ, Â(s)]|Ψ0〉 = 2 〈Ψ0 |[Ĥ, T̂ (s)]|Ψ0〉.

Note that the third-order contribution 〈Ψ0 |[H̃ (2)(s),
T̂ (1)(s)]|Ψ0〉 to E(3)

u (s) reported in Eq. (22) contains
contractions that involve the four-body cumulant of the refer-
ence. To avoid the cost of computing and storing the four-body
cumulant, we neglect the three-body component of the opera-
tor H̃ (2)(s). This approximation gives the following third-order
transformed Hamiltonian:

H̄ (3)(s) ≈ [Ĥ (0), Â(3)(s)] +
1
2

[H̃ (1)(s), Â(2)(s)]

+
1
2

[H̃ (2)
1,2(s), Â(1)(s)], (23)

where the subscript “1,2” indicates truncation of the operator
component to the one- and two-body terms. The evaluation of
the commutators that enter in Eq. (23) still requires the one-
particle density matrix and the two- and three-body cumulants
of the reference, as it is the case for the DSRG-MRPT2.53

This approximation is consistent with the linear MR-DSRG
truncated to two-body operators [MR-LDSRG(2)].54 By this
we mean that if the perturbative series for H̄ (n) were to be
resummed to infinite order, consistently truncating all commu-
tators to one- and two-body operators, it would yield (if conver-
gent) the unrelaxed MR-LDSRG(2) transformed Hamiltonian.

Of course, other more sophisticated zeroth-order Hamil-
tonians such as the one proposed by Dyall6 or the retaining-
excitation Hamiltonian91,92 can also be straightforwardly
applied to the DSRG perturbation theory. However as dis-
cussed in Appendix A, using these Hamiltonians mostly lead to
unnecessary complications and bring only small advantages.

From Eq. (14), we can derive the explicit expressions of
the first-order amplitudes53

ti,(1)
a (s) = [ f i,(1)

a +
A∑
ux

∆
x
utiu,(1)

ax (s)γx
u]

1 − e−s(∆i
a)

2

∆i
a

, (24)

tij,(1)
ab (s) = 3ij,(1)

ab

1 − e−s(∆ij
ab)

2

∆
ij
ab

. (25)

Analogous expressions for the second-order amplitudes can
be derived from Eq. (15),

ti,(2)
a (s) = [ f i,(2)

a (s) +
A∑
ux

∆
x
utiu,(2)

ax (s)γx
u]

1 − e−s(∆i
a)

2

∆i
a

, (26)

tij,(2)
ab (s) = 3ij,(2)

ab (s)
1 − e−s(∆ij

ab)
2

∆
ij
ab

. (27)

Here f i,(2)
a (s) and 3ij,(2)

ab (s) are one- and two-body non-diagonal
elements of 1

2 [H̃ (1)(s), Â(1)(s)], respectively. The renormal-
ization effects introduced by the source operator are clearly
visible in Eqs. (24)–(27). Amplitudes are functions of the flow
parameter and energy denominators are replaced by the func-
tion f (∆)= (1−e−s∆2

)/∆, which, for finite values of s, is smooth
and does not diverge when ∆→ 0.

Once the first- and second-order amplitudes are known,
the unrelaxed DSRG-MRPT3 energy [E[3]

u (s)] is obtained
by summing the zeroth-to third-order scalar terms of
Eqs. (19)–(22),

E[3]
u (s) =

3∑
n=0

E(n)
u (s). (28)



124132-5 C. Li and F. A. Evangelista J. Chem. Phys. 146, 124132 (2017)

Using the approximate third-order transformed Hamiltonian
reported in Eq. (23), the equations for E(2)

u (s) and E(3)
u (s)

have the same structure but involve different intermediates and
amplitudes. Therefore, we evaluate E(3)

u (s) using the same set
of equations for E(2)

u (s) reported in Ref. 53.

C. Partial vs. full reference relaxation

In this subsection, we discuss several approaches to intro-
duce reference relaxation effects in MR-DSRG. To make our
notation more explicit, we introduce the superscript{k}, which
indicates the kth iteration of the reference relaxation pro-
cedure. The CASSCF reference will be denoted as |Ψ {0}0 〉,
while H̄ {0} will indicate the transformed Hamiltonian com-
puted using the cumulants of |Ψ {0}0 〉. Here we shall keep the
discussion general such that the DSRG transformed Hamil-
tonian can either be second- or third-order or nonperturba-
tive. Using this notation, the unrelaxed energy is written as
Eu(s) = 〈Ψ {0}0 |H̄

{0}(s)|Ψ {0}0 〉. Diagonalization of H̄ {0}(s) in the

CAS yields a partially relaxed reference [Ψ {1}0 (s)] and energy
[Epr(s)]

Epr(s) = 〈Ψ {1}0 (s)|H̄ {0}(s)|Ψ {1}0 (s)〉. (29)

By solving the MR-DSRG equations using Ψ {1}0 (s) as a refer-
ence, we can obtain an improved transformed Hamiltonian,
denoted as H̄ {1}(s). The expectation value of H̄ {1}(s) with
respect to Ψ {1}0 (s) defines the relaxed energy Er(s),

Er(s) = 〈Ψ {1}0 (s)|H̄ {1}(s)|Ψ {1}0 (s)〉. (30)

Finally, if the solution of the amplitudes and CI equations
is iterated until self-consistency, we obtain the fully relaxed
energy given by Efr(s) = 〈Ψ {∞}0 (s)|H̄ {∞}(s)|Ψ {∞}0 (s)〉. We gen-
erally find that the fully relaxed energy can be converged to
10�8 Eh within 10 iterations.54 These four approaches will be
compared and benchmarked in Sec. V A.

Note that both unrelaxed and partially relaxed energies
contain three-body effects. As pointed previously, in the unre-
laxed formalism, there are contractions that involve the three-
body cumulant. In the partially relaxed approach, contribu-
tions from three-body cumulants are included in the diagonal
matrix elements 〈Φµ |H̄ {0}(s)|Φµ〉 and they come from the
scalar term of H̄ {0}(s), which is equal to Eu(s). As indicated by
the superscript, these three-body contributions are evaluated
using cumulants of the unrelaxed reference. In contrast, the
relaxed energy is evaluated in a consistent way using the ref-
erence H̄ {1}(s) both to compute the transformed Hamiltonian
and its expectation value. Hence, when compared to the relaxed
energy, the partially relaxed procedure introduces an error pro-
portional to the difference between the partially relaxed and
unrelaxed three-body density matrices. In a fully relaxed pro-
cedure, where the amplitudes and the eigenvalue problem [Eq.
(9)] are solved iteratively until self-consistency, the expecta-
tion value 〈Ψ {∞}0 (s)|H̄ {∞}(s)|Ψ {∞}0 (s)〉 and the eigenvalue of
〈Φν |H̄ {∞}(s)|Φµ〉 are identical. This point is confirmed by
numerical results from DSRG-MRPT2/3 and MR-LDSRG(2)
computations.

In this work, we take the partially relaxed energy [Eq.
(29)] as the DSRG-MRPT3 or MRPT2 energy, since there
is no need to re-evaluate fully contracted terms of the trans-
formed Hamiltonian. In Appendix B, we show that obtaining

the useful components of H̄ {0}(s) for the eigenvalue equation
[Eq. (9)] only requires minuscule amount of work comparing
to computing Eq. (8) [or Eq. (28)]. When referring to the unre-
laxed energy, we will use the prefix “u” in front of the name
of a method, for example, u-DSRG-MRPT3.

III. IMPLEMENTATION

To obtain the DSRG-MRPT3 working equations, the core
task is to evaluate the commutators in Eqs. (11)–(13). Essen-
tially the kth nested commutator [Ĉk(s)] is computed from the
following recursive relation:

Ĉk(s) =
1
k

[Ĉk−1(s), Â(s)]1,2, k = 1, 2, 3, · · · , (31)

where Ĉ0(s) = Ĥ. In Ref. 54, we have reported all terms of
Ĉ1(s) = [Ĥ, Â(s)]1,2 and we shall not repeat them here. Instead,
we would like to discuss those terms that are necessary to
implement the DSRG-MRPT3 scheme.

Computing the scalar term of commutator [Ĥ , T̂ (s)], for
example, requires only the non-diagonal terms of Ĥ (f a

i and
3ab

ij ). This statement suggests that we need elements such as

[H̃ (n)(s)]
a
i and [H̃ (n)(s)]

ab
ij for n = 1, 2 to compute the second-

and third-order energies. For n = 1, we are able to write out
explicit expressions due to the simple structure of Ĥ (0),

[H̃ (1)(s)]
a
i = f i,(1)

a + [f i,(1)
a +

∑
ux

∆
x
utiu,(1)

ax (s)γx
u]e−s(∆i

a)
2

, (32)

[H̃ (1)(s)]
ab
ij = 3

ij,(1)
ab + 3ij,(1)

ab e−s(∆ij
ab)

2

. (33)

When n = 2, we call for the non-diagonal elements of
1
2 [H̃ (1)(s), Â(1)(s)]1,2, computing which necessitate all ele-
ments of H̃ (1)(s). Fortunately except for non-diagonal terms of
H̃ (1)(s), the remainders are equivalent to those in the first-order
bare Hamiltonian. We therefore factorize the two-electron
integrals using density fitting (DF) or Cholesky decomposi-
tion (CD) technique55,93–101 to avoid storing the four-index
tensor of size N4. Specifically two-electron integrals are
approximated as a contraction of two three-index tensors

(pq|rs) ≈
M∑
Q

BQ
pqBQ

rs, (34)

where Q is the auxiliary index. The quantity M is the maximum
value of Q and it is roughly three times as large as the regular
basis set (M ≈ 3N).

For small active spaces (NA � NC), the asymptotic scal-
ing of the DSRG-MRPT3 method isO(N4

VN2
C), resulting from

the contraction

H̄ ij,(2)
ef (s)←

V∑
gh

3
gh,(1)
ef tij,(1)

gh (s). (35)

This tensor contraction is also contained in the coupled cluster
equations and it is a scourge because its computational cost
cannot be reduced by factorizing the two-electron integrals
3

gh,(1)
ef via DF or Cholesky decomposition,102 instead it requires

the use of alternative factorizations.103 As a compromise, we
form 3

gh,(1)
ef in batches of compound indices gh according to Eq.

(34), with the size of each batch automatically determined by
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available memory. For large active spaces, the computational
cost of the DSRG-MRPT3 is constrained by terms such as

E(2)
u ←

1
4

A∑
xyz
u34

V∑
e

3
4e,(1)
xy (s)tu3,(1)

ez (s)λxyz
u34, (36)

where λxyz
uv4 is the three-particle density cumulant of the refer-

ence. Although the term given in Eq. (36) scales as O(N6
AN V),

the effort made to compute it is still significantly less than the
most expensive step in CASPT2 or NEVPT2 [O(N9

A)].
The DSRG-MRPT3 method is implemented in our open-

source code Forte,80 a plugin to the Psi4 package104 that
specializes on multireference methods. All tensor contrac-
tions are written using the syntax provided by the open-source
tensor library Ambit.105 The three-index DF integrals gener-
ated by Psi4 are read using a general interface developed by
Hannon et al.55 The DSRG-MRPT3 equations are spin inte-
grated such that one-body terms are decomposed into α and β
blocks and two-body terms are divided into αα, αβ, and β β
contributions. For convenience, the current implementation
constantly stores nine tensors of size N2

HN2
P/16 coming from

the spin integration of the t2 amplitudes (either first- or second-
order) and two two-body intermediates. This storage require-
ment limits practical applications to about 650 basis func-
tions of 100 correlated electrons on a computer with 120 GB
of memory.

IV. COMPUTATIONAL DETAILS

We tested the DSRG-MRPT3 method on the ground-
state potential energy curves (PECs) of F2, H2O2, C2H6,
and N2 by breaking the respective F–F, O–O, C–C, and N–
N bonds. The DSRG-MRPT3 PECs were compared to those
of other multireference methods including DSRG-MRPT2,53

MR-LDSRG(2),54 NEVPT2,7–9 CASPT2,5,64 CASPT3,64

MRCISD,82,83 and MRCISD with Davidson correction
(MRCISD + Q).106 All multireference computations are based
on minimal CASSCF references, specifically, CAS(2,2) for
F2, H2O2, and C2H6, while CAS(6,6) for N2. Full config-
uration interaction (FCI) data served as the benchmark for
F2 and N2.54,107 For H2O2 and C2H6, we took the reference
data from Ref. 108, which were computed using coupled clus-
ter singles, doubles, and triples augmented with second-order
perturbative quadruples corrections [CCSDT(2)Q].109 Dun-
ning’s correlation-consistent double-ζ (cc-pVDZ) basis set110

was used and the molecular orbitals constructed mainly from
the 1s orbitals of C, N, O, and F atoms were frozen in all
post-CASSCF computations.

To measure the quality of the potential energy curves, we
use the nonparallelism error (NPE) computed with respect to
a reference method [FCI or CCSDT(2)Q] over a range of bond
lengths R, defined as

NPE = max
r∈R

∆E(r) −min
r∈R

∆E(r), (37)

where ∆E(r) is the error with respect to the reference energy
at bond length r.

As an application to medium-sized molecules, we stud-
ied the singlet-triplet splitting (∆ST = ET − ES) of 9,10-
anthracyne (9,10-didehydroanthracene, see Fig. 1), which is

FIG. 1. Optimized geometries (in Ångströms and degrees) of the singlet
and triplet 9,10-anthracyne using DSRG-MRPT3 (s = 0.5 E−2

h ) with the
CASSCF(2,2) reference and the cc-pVDZ basis set. This figure was made
using the cheMVP package, see Ref. 111.

recently found capable of retro-Bergman cyclization on a
NaCl/Cu(111) surface when manipulated with the CO tip of an
atomic force microscope.112 We first optimized the geometries
of singlet and triplet 9,10-anthracyne at the CASSCF(2,2)-
DSRG-MRPT3/cc-pVDZ level of theory using gradients
from 3-point finite-difference computations. These geometries
were characterized as minima by finite-difference harmonic
vibrational analyses. Then we computed the ∆ST of 9,10-
anthracyne using various multireference methods including
DSRG-MRPT2/3, NEVPT2, CASPT2,81 and MRCISD84 as
implemented in the RS2C and CIC modules of MOLPRO,113

Mukherjee multireference coupled cluster theory with sin-
gles and doubles (Mk-MRCCSD),57,85–87 and Mk-MRCCSD
with perturbative triples [Mk-MRCCSD(T)]88 based on a
CASSCF reference. Both cc-pVDZ and cc-pVTZ basis sets
were adopted and the 1s-like orbitals on carbon atoms were
excluded for dynamic correlations. The two-electron inte-
grals in DSRG-MRPT2/3 computations were approximated
by Cholesky decomposition96–99 with a threshold of 10�8 a.u.
for geometry optimizations and 10�6 a.u. for single points.

The NEVPT2, CASPT2, CASPT3, and MRCISD ener-
gies were computed using the Molpro 2015.1 program113,114

and the remaining were obtained from Psi4.104 The xyz coordi-
nates of the optimized 9,10-anthracyne, as well as all energies
on the PECs of F2, H2O2, C2H6, and N2 are available in the
supplementary material. For convenience, the supplementary
material also includes the internal coordinates of H2O2 and
C2H6, which are taken from Refs. 108 and 115, respectively.

V. RESULTS
A. Potential energy curves

In this section, we assess the accuracy of DSRG-MRPT3
by investigating four bond breaking processes. We use a recent
benchmark set by Yang, Jalan, Green, and Truhlar (YJGT) that
was used to compare the performance of numerous single-
reference coupled cluster and multireference methods.108 The
YJGT set contains F2, H2O2, and C2H6 scanned along the
F−−F, O−−O, and C−−C bonds, respectively. To test a multiple-
bond breaking process, we consider the dissociation curve of
N2, a routine benchmark for multireference methods.30,116–118

The errors in the computed ground-state potential energy
curves of F2, H2O2, C2H6, and N2 are shown in Fig. 2 and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
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FIG. 2. Energy deviations of various multireference methods for the ground-state potential energy curves of: (A) F2, (B) H2O2, (C) C2H6, and (D) N2 relative
to FCI, CCSDT(2)Q, CCSDT(2)Q, and FCI, respectively. The DSRG-MRPT2, DSRG-MRPT3, and pr-MR-LDSRG(2) methods take the partially relaxed energy
according to Eq. (29). All DSRG methods employ s = 0.5 E−2

h .

Table I. Figure 2 shows that third-order MRPTs recover a
larger fraction of electron correlation than the correspond-
ing second-order methods. For example, going from DSRG-
MRPT2 to DSRG-MRPT3, the maximum error is reduced by
an amount between one third (F2) and one half (H2O2). Despite
the fact that the DSRG-MRPT3 does not always yield the
curve with the smallest absolute error, we find that the aver-
age NPE of the DSRG-MRPT3 (3.87 mEh) is smaller than
that of CASPT3 (4.93 mEh), MRCISD (4.22 mEh), and the
MR-LDSRG(2) (4.17 mEh). Interestingly, the DSRG-MRPT3
significantly improves upon the PEC of N2 computed with
DSRG-MRPT2. For this molecule, the DSRG-MRPT3 gives
a NPE equal to 4.80 mEh vs. 18.39 mEh for the DSRG-
MRPT2. Overall, a comparison of the various MR-DSRG
methods considered here suggests that the accuracy of these
methods follows the trend: DSRG-MRPT2�DSRG-MRPT3
< MR-LDSRG(2).

We now compare different reference relaxation schemes
introduced in Sec. II C. DSRG-MRPT2, DSRG-MRPT3,
and MR-LDSRG(2) results using the unrelaxed, partially
relaxed, relaxed, and fully relaxed approaches are shown in
Figure 3 and Table I. For all combinations of molecules
and theories, the relaxed curves are more accurate than the
corresponding unrelaxed curves. For example, the average
NPE of the u-DSRG-MRPT3 is 1.10 mEh higher than that

of DSRG-MRPT3. In Figure 3 we see that the partially
relaxed approach [Epr(s) = 〈Ψ {1}0 (s)|H̄ {0}(s)|Ψ {1}0 (s)〉] shows
energy errors that are halfway between those from unrelaxed
and fully relaxed computations. Importantly, curves obtained
by the relaxed energy [Er(s) = 〈Ψ {1}0 (s)|H̄ {1}(s)|Ψ {1}0 (s)〉]
are almost indistinguishable to the corresponding fully
relaxed curves. This observation suggests that the reference
Ψ
{1}
0 (s) is a good approximation to the fully relaxed refer-

ence Ψ {∞}0 (s). It also highlights the importance of comput-
ing the expectation value of the energy using the relaxed
cumulants.

These findings suggest that at the perturbative level,
it is generally advantageous to introduce reference relax-
ation effects. Interestingly, due to fortuitous error cance-
lation, curves obtained using the partially relaxed scheme
(Epr) show smaller NPEs than other reference relaxation
schemes. As pointed out already, this scheme is only slightly
more expensive than the unrelaxed approach. Therefore,
since partial reference relaxation offers a good compromise
between accuracy and cost, we think that it could be the
most appealing relaxation scheme. Analogous trends are
observed for the DSRG-MRPT2 and MR-LDSRG(2) meth-
ods, where full relaxation does in certain cases give results
inferior to partial reference relaxation (see the F2 and H2O2

curves).



124132-8 C. Li and F. A. Evangelista J. Chem. Phys. 146, 124132 (2017)

TABLE I. Maximum error (MAX) and nonparallelism error (NPE) for the ground-state potential energy curves of F−−F, HO−−OH, H3C−−CH3, and N≡≡N
computed with various methods (reported in units of mEh). All DSRG methods employ a value of the flow parameter s = 0.5 E−2

h . The last column shows the
average NPE.

F2 H2O2 C2H6 N2 Average

Method MAX NPE MAX NPE MAX NPE MAX NPE NPE

pc-NEVPT2 23.20 8.08 32.21 7.71 51.37 2.97 34.17 1.32 5.02
CASPT2 16.46 1.69 24.69 1.66 46.25 3.22 22.87 9.49 4.01
u-DSRG-MRPT2a 25.23 10.24 31.15 7.23 52.14 5.50 32.91 18.93 10.47
DSRG-MRPT2b 20.33 5.34 29.38 5.47 51.06 4.42 32.35 18.39 8.40
r-DSRG-MRPT2c 17.36 3.03 28.96 7.78 50.72 4.08 32.14 18.24 8.28
fr-DSRG-MRPT2d 17.39 3.50 28.96 8.22 50.72 4.08 32.14 18.24 8.51

CASPT3 9.29 5.38 12.51 5.23 13.76 3.08 7.77 6.03 4.93
u-DSRG-MRPT3a 9.46 5.03 15.50 6.04 19.15 2.73 15.19 6.09 4.97
DSRG-MRPT3b 6.81 2.39 15.04 5.59 19.13 2.71 13.88 4.80 3.87
r-DSRG-MRPT3c 4.73 3.59 14.58 6.79 19.12 3.22 13.12 4.09 4.42
fr-DSRG-MRPT3d 4.72 3.80 14.58 7.09 19.12 3.27 13.11 4.09 4.56

MRCISD 20.53 4.47 30.73 5.25 35.40 3.89 10.67 3.27 4.22
MRCISD + Q 1.60 1.35 3.02 1.94 4.29 2.27 1.96 1.50 1.77
u-MR-LDSRG(2)a 3.83 4.86 3.89 3.95 6.08 3.43 9.30 6.50 4.68
pr-MR-LDSRG(2)b

�1.03 1.34 0.78 0.86 5.28 2.87 8.25 5.90 2.74
r-MR-LDSRG(2)c

�4.79 3.86 �3.53 3.42 4.94 3.13 7.62 5.57 3.99
MR-LDSRG(2)d

�5.19 4.24 �3.87 3.75 4.92 3.12 7.61 5.56 4.17

aUnrelaxed energy: Eu(s) = 〈Ψ{0}0 |H̄
{0}(s) |Ψ{0}0 〉.

bPartially relaxed energy: Epr(s) = 〈Ψ{1}0 (s) |H̄ {0}(s) |Ψ{1}0 (s)〉.
cRelaxed energy: Er(s) = 〈Ψ{1}0 (s) |H̄ {1}(s) |Ψ{1}0 (s)〉.
dFully relaxed energy: Efr(s) = 〈Ψ{∞}0 (s) |H̄ {∞}(s) |Ψ{∞}0 (s)〉.

B. Singlet-triplet splittings of 9,10-anthracyne

The simplest active space for 9,10-anthracyne is a
CAS(2,2) that consists of two electrons in two σ orbitals that
belong to the dehydrogenated carbon atoms. From our previ-
ous experience with p-benzyne,53,54 adding six π-type orbitals
to the active space increases the singlet-triplet splitting (∆ST

= ET−ES) by up to 2 kcal mol�1. As noted before,54 this energy
shift likely results from an improved treatment of static correla-
tion effects by the larger active space, since both the CASSCF
and DSRG-MRPT2 singlet-triplet splittings are shifted by a
similar amount. For 9,10-anthracyne, there are fourteen π
orbitals so that a full treatment of the σ and π orbitals leads to
a CAS(16,16) reference wave function. The sixteen orbitals of
the CAS(16,16) space are shown in Figure 4 along with their
corresponding occupation numbers (ONs). The ON for each
of the sixteen orbitals lies in the range of 0.02–1.98, justifying
the inclusion of all π orbitals to the active space.119,120 Since—
with the exception of the DSRG-MRPT2/3 approaches—the
CAS(16,16) is too large for the methods considered here, we
also report results for three smaller active spaces that include a
subset of the π space: CAS(4,4), CAS(8,8), and CAS(12,12).
Specifically, the CAS(4,4) active space includes the 2b1g and
3b3u orbitals, while the CAS(8,8) further adds 1au,2b2g,2au,
and 3b2g orbitals. The CAS(12,12) active space is obtained by
augmenting the CAS(8,8) reference with the 2b3u,1b1g,4b3u,
and 3b1g orbitals.

The CASSCF(2,2)-DSRG-MRPT3/cc-pVDZ optimized
geometries of singlet and triplet 9,10-anthracyne are shown
in Fig. 1. All C−−C bond lengths are consistent with those

predicted by density functional theory (DFT) except for the
C4a−−C9a bond of the singlet ground state.112 Interestingly, the
singlet C4a−−C9a bond length reported in Ref. 112 (1.578 Å) is
not only 0.11 Å longer than our prediction (1.466 Å) but also
larger than a typical sp3 hybridized C−−C single bond like in
ethane (1.536 Å, from Ref. 121).

In Table II, we list the singlet-triplet splittings (∆ST

= ET − ES) of 9,10-anthracyne computed using numerous
multireference methods and the cc-pVTZ basis set. All val-
ues are adjusted by +0.264 kcal mol�1 to account for zero-
point harmonic vibrational energy corrections computed at
the CASSCF(2,2)-DSRG-MRPT3/cc-pVDZ level of theory.
Because the singlet-triplet splitting computed with the cc-
pVDZ and cc-pVTZ basis are in very good agreement (within
0.5 kcal mol�1), we report results only for the latter basis
set and provide data for the former in the supplementary
material. Benchmark computations on p-benzyne show that
Mk-MRCCSD(T) yields an accurate singlet-triplet split-
ting;88,122 therefore, in the absence of an experimental value
for 9,10-anthracyne, we take the ∆ST from Mk-MRCCSD(T)
as our reference.

In contrast to the DFT prediction of a triplet ground
state,112 all methods reported in Table II favor a singlet
ground state. For the minimal active space, the CASPT2
∆ST (4.1 kcal mol�1) is in excellent agreement with our
reference value [4.0 kcal mol�1 from Mk-MRCCSD(T)],
while the remaining methods underestimate the ∆ST by
1–2 kcal mol�1. As the active-space size increases, better
agreements to the Mk-MRCCSD(T) value are observed for
all methods. For example, when using a CASSCF(16,16)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
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FIG. 3. Energy deviations of various multireference DSRG (s = 0.5 E−2
h ) methods for the ground-state potential energy curves of: (A) F2, (B) H2O2, (C) C2H6,

and (D) N2 relative to FCI, CCSDT(2)Q, CCSDT(2)Q, and FCI, respectively.

reference, singlet-triplet splittings of DSRG-MRPT2 and
-MRPT3 (s = 0.5 E−2

h ) are 3.8 and 3.6 kcal mol�1, respectively.
For both DSRG-MRPT2 and -MRPT3 approaches, reference
relaxation shifts the∆ST to higher values, improving the agree-
ment with the Mk-MRCCSD(T) result. The effect of reference
relaxation is largest for the minimal active space, where in
the case of the DSRG-MRPT2 (s = 0.5 E−2

h ), it amounts to
an increase in the singlet-triplet splitting by 0.4 kcal mol�1.

We also observe that ∆ST obtained from DSRG-MRPT2 and
-MRPT3 approaches does not depend significantly on the
value of the flow parameter: as s increases from 0.5 to 1.0 E−2

h ,
the largest variation in ∆ST is less than 0.4 kcal mol�1.

It is instructive to compare the ∆ST between 9,10-
anthracyne and p-benzyne. The ∆ST of p-benzyne is measured
to be 3.8 ± 0.4 kcal mol�1 by photoelectron spectroscopy,123

and Mk-MRCCSD(T)/cc-pVTZ with a CASSCF(2,2) predicts

FIG. 4. The σ and π active orbitals of
singlet 9,10-anthracyne computed at the
CASSCF(16,16)/cc-pVDZ level of the-
ory. These orbitals were canonicalized
by diagonalization of the active block
of the active Fock matrix. Orbital occu-
pation numbers (ONs) are reported for
both the singlet and triplet states and are
given in the format: singlet ON/triplet
ON.
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TABLE II. Adiabatic singlet-triplet splitting (∆ST = ET −ES, in kcal mol�1)
of 9,10-anthracyne computed using various methods with the cc-pVTZ
basis set. All values are corrected by the zero-point vibrational energy
(+0.264 kcal mol�1) obtained at the CASSCF(2,2)-DSRG-MRPT3/cc-pVDZ
level of theory.

CAS

Method (2,2) (4,4) (8,8) (12,12) (16,16)

CASSCF 0.61 2.99 2.93 2.64 2.42
CASPT2 4.08 5.47 5.35 4.78
sc-NEVPT2 2.90 3.79 4.23 4.02
pc-NEVPT2 3.08 3.86 4.21 4.01
u-DSRG-MRPT2a 2.15 3.82 3.99 3.72 3.66
DSRG-MRPT2a 2.58 3.89 4.04 3.86 3.78
DSRG-MRPT2b 3.19 4.00 4.17 3.96 3.85
u-DSRG-MRPT3a 1.74 3.50 3.67 3.46 3.41
DSRG-MRPT3a 1.98 3.70 3.86 3.66 3.61
DSRG-MRPT3b 2.38 3.86 4.04 3.93 3.90
MRCISD 1.23 3.23 3.27 3.00
MRCISD + Q 1.71 3.41 3.50 3.25
Mk-MRCCSD 4.44
Mk-MRCCSD(T) 3.98

aComputed using s = 0.5 E−2
h .

bComputed using s = 1.0 E−2
h .

∆ST = 4.45 kcal mol�1.122 Therefore, we would expect the
experimental ∆ST of 9,10-anthracyne to fall in the range 2.9–
3.7 kcal mol�1. The predictions of NEVPT2 and DSRG-
MRPT2 always fall in this range for all the active spaces
considered here, while CASPT2 constantly overestimates the
∆ST of 9,10-anthracyne. The DSRG-MRPT3 results are always
in line with those of MRCISD, and the minimal active space
seems to be insufficient in this case.

VI. CONCLUSIONS

We have introduced the DSRG-MRPT3 scheme, a renor-
malized third-order multireference perturbation theory derived
from the MR-DSRG approach.53–55 By working in a semi-
canonical basis and using a zeroth-order Hamiltonian [Ĥ (0)]
that contains only the diagonal blocks of the Fock matrix, the
DSRG-MRPT3 energy may be obtained by a non-iterative pro-
cedure that scales as O(N2

CN4
V). The cost of evaluating the

DSRG-MRPT3 energy is reduced by truncating each commu-
tator in the effective Hamiltonian with only one- and two-body
operators.30,43 As a result, the DSRG-MRPT3 energy and
amplitude equations require up to three-body density cumu-
lants. Furthermore, we show that the third-order effective
Hamiltonian may be easily formed from the first- and second-
order amplitudes, and that it may be diagonalized to obtain a
relaxed model space.

We have benchmarked the DSRG-MRPT3 method on the
ground-statepotential energycurvesofF2,H2O2,C2H6, andN2

and found that, on average, the DSRG-MRPT3 nonparallelism
error (3.9 mEh) is comparable to that of CASPT3 (4.9 mEh)
and MRCISD (4.2 mEh). We have also shown that accounting
for reference relaxation effects with a one step diagonalization
of the effective Hamiltonian does generally improve the qual-
ity of DSRG-MRPT2 and -MRPT3 results. For example, in the
case of DSRG-MRPT3, the partially relaxed approach reduces

the average NPE by 1.1 mEh. Since the cost of evaluating the
partially relaxed energy is a small fraction of the cost of an unre-
laxed DSRG-MRPT3 computation, we recommend the former
approach as the default method.

In our opinion, the DSRG-MRPT3 is best viewed as an
economical multireference method that offers a good com-
promise between accuracy and computational cost. Compared
to more expensive nonperturbative (i.e., coupled cluster like)
multireference methods, the DSRG-MRPT3 has the advantage
that it does not rely on an iterative procedure and has reduced
I/O costs. In its current implementation, the DSRG-MRPT3
may be routinely applied in computations with a hundred cor-
related electrons and 500–600 basis functions. This point is
illustrated with computations of the singlet-triplet splitting
(∆ST) of 9,10-anthracyne (C14H8). The DSRG-MRPT3 based
on a CASSCF(16,16) reference with s = 1.0 E−2

h predicts
the ∆ST to be 3.9 kcal mol�1, only 0.1 kcal mol�1 smaller
than our best estimate from Mk-MRCCSD(T). In our expe-
rience, the CAS(16,16) is too large for practical CASPT2
and NEVPT2 computations on a single computer node. With
Cholesky decomposed integrals (using a 10�6 a.u. threshold),
the CAS(16,16) DSRG-MRPT3 energy of 9,10-anthracyne
may be computed in about 12.5 hours using 16 threads on two
Intel Xeon E5-2650 v2 processors and 128 GB of memory.

In conclusion, we have shown that the DSRG framework
may be used to formulate a third-order multireference pertur-
bation theory that avoids some of the major limitations of other
MRPT approaches and has a favorable accuracy/cost ratio.
These results suggest that it might be worthwhile to explore
multi-state generalizations of the DSRG-MRPT2 and DSRG-
MRPT3 methods to compute excited state energies and their
analytic gradients. This work also presents additional bench-
mark results that validate the accuracy of perturbative and non-
perturbative computational methods based on the MR-DSRG
formalism.

SUPPLEMENTARY MATERIAL

See supplementary material for the optimized geometries
of 9,10-anthracyne, H2O2, and C2H6; all single-point energies
on the potential energy curves of F2, H2O2, C2H6, and N2;
and the singlet-triplet splittings of 9,10-anthracyne computed
using the cc-pVDZ and cc-pVTZ basis sets.
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APPENDIX A: OTHER CHOICES OF ZEROTH-ORDER
HAMILTONIAN

The DSRG-MRPT3 approach proposed in this work uses
a diagonal one-body zeroth-order Hamiltonian. However, par-
titioning schemes that include two-body operators may also
be used with the DSRG-MRPT3, including the Dyall Hamil-
tonian6 and the retaining-excitation (RE) Hamiltonian.91,92 In

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-050712
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this section, we analyze the implications of including two-
body operators in the zeroth-order Hamiltonian, focusing on
the computational efficiency and the avoidance of intrud-
ers in the DSRG-MRPT3. If these partitionings led to an
intruder-free DSRG-MRPT approach, then one could avoid the
s-dependence of the energy by taking the limit s→ ∞. Unfor-
tunately, our analysis shows that even when two-body interac-
tions are included in the zeroth-order Hamiltonian, some form
of renormalization is necessary to avoid intruders.

When written in normal-ordered form with respect to
the reference wave function, the zeroth-order Hamiltonian of
Dyall may be written as

Ĥ (0)
Dyall = E0 + F̂(0) +

1
4

A∑
u3xy

3
xy,(0)
u3 {âuv

xy }, (A1)

where F̂(0) is defined as in Eq. (17). A first important conse-
quence of the presence of the two-body term is the fact that
already at first-order the commutator [Ĥ (0), Â(1)(s)] produces
three-body terms. Consequently, evaluating the second-order
energy requires computing a subset of the three-body oper-
ators. This problem may be avoided by invoking the “1,2”
operator approximation, which introduces truncation errors
already in the second-order energy.

Another complication resulting from the two-body terms
in Ĥ (0) is the need for an iterative solution of the amplitudes.
Again, we take the zeroth-order Hamiltonian to be Ĥ (0)

Dyall and
consider the limit s → ∞. The first-order amplitudes corre-
sponding to the promotion of two electrons from active to
virtual orbitals [tu3,(1)

ef (s)] are determined by the equation

0 = 3u3,(1)
ef − ∆u3

ef tu3,(1)
ef −

1
2

A∑
xy

3
u3,(0)
xy txy,(1)

ef +
A∑

xyz

3
u3,(0)
xy txz,(1)

ef γ
y
z ,

(A2)

where for clarity we dropped the symbol “(s)” from the ampli-
tudes. In Eq. (A2) the amplitude tuv,(1)

ef is coupled to all ampli-

tudes of the form txy,(1)
ef where x, y ∈ A. Consequently, the

DSRG-MRPT based on the Dyall Hamiltonian requires an
iterative solution of a set of linear equations for certain classes
of amplitudes. Nevertheless, the most numerous amplitudes,
double excitations from core orbitals to virtual orbitals, tmn,(1)

ef ,
may still be computed via a noniterative procedure.

Last, we consider whether the use of Dyall’s Hamilto-
nian in the DSRG-MRPT formalism may avoid the intruder
state problem, as it is know to be the case in NEVPT.7,9,66 To
this end, we evaluate the diagonal preconditioner or “shifted”
denominator corresponding to certain classes of excitations
prone to give small denominators and determine if extra terms
that arise from Dyall’s Hamiltonian may help avoid diver-
gences. We first go back to Eq. (A2) and identify the shifted
denominator (Du3

ef ) for the tu3,(1)
ef amplitudes with the expression

Du3
ef = εu + ε 3 − εe − ε f +

1
2

A∑
xz

[γx
uγ

z
33

u3,(0)
xz − ηx

uη
z
33

u3,(0)
xz ].

(A3)

The analysis of this expression is simpler in the basis of
natural orbitals. Defining the natural occupation of orbital φu as

nu = γ
u
u and assuming a natural orbital basis, we may simplify

Eq. (A3) to

Du3
ef = εu + ε 3 − εe − ε f +

1
2
3

u3,(0)
u3 (1 − nu − n3). (A4)

The term εu+ε 3−εe−ε f is the standard Møller–Plesset denom-
inator, and in general it is negative since virtual orbitals are
assumed to lie higher in energy than active orbitals. The term
1
2 3

u3,(0)
u3 (1 − nu − n3) arises from the two-body active part of

the Hamiltonian and may be positive (when nu + n3 < 1),
negative (when nu + n3 > 1), or zero. Consequently, the
additional terms that arise from the active part of the two-
body operator cannot guarantee that Du3

ef , 0. Excitations most
prone to small denominators are singles coupled with a spec-
tator excitation (from active to active orbitals), for example,
tu3,(1)
ex (s). In this case, we also find that the shifted denom-

inators may accidentally be zero since the contribution of
the two-body Hamiltonian does not have a well defined
sign.

Next, we consider single excitations. Interestingly, in this
case, we find that the Dyall Hamiltonian does not lead to
modified energy denominators. Hence, intruder states may
still arise when singles denominators that involve one active
orbital approach zero. This is in contrast with NEVPT2,
where single denominators are shifted by two-body integrals.
This difference arises from the use of many-body conditions
in DSRG-MRPT and projective conditions in the case of
NEVPT2.

In summary, our analysis shows that the use of Dyall’s
partitioning of the Hamiltonian cannot avoid the intruder state
problem in perturbation theories like the DSRG-MRPT, which
are derived from a set of many-body conditions. In other
words, renormalization of small denominators is necessary
even when the zeroth-order Hamiltonian contains two-electron
terms. From another perspective, the difficulty in converg-
ing the nonperturbative MR-LDSRG(2) equations54 when
s→∞ also suggests that using other zeroth-order Hamilto-
nians with two-body contributions is unlikely solution to the
intruder state problem in DSRG multireference perturbation
theory.

APPENDIX B: REFERENCE RELAXATION

In this section, we provide details of the reference
relaxation procedure used in the DSRG-MRPT2/3 and MR-
LDSRG(2) methods. We first introduce the many-body expres-
sion of the DSRG transformed Hamiltonian

H̄(s) = H̄0(s) +
n∑

k=1

H̄k(s), (B1)

where H̄0(s) is the scalar term obtained by summing the refer-
ence energy (E0) and all the fully contracted contributions from
H̄(s). The quantity H̄k(s) contains the k-body contributions to
H̄(s),

H̄k(s) =
1

(k!)2

G∑
pqrs · · ·

H̄rs · · ·
pq · · ·(s){âpq · · ·

rs · · · }. (B2)

The approximated Hamiltonian H̄0,1,2(s) is thus obtained
when setting n = 2 in Eq. (B1).
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In order to solve the eigenvalue problem of Eq. (9), we
express the transformed Hamiltonian using operators normal
ordered with respect to the true vacuum. Defining the two-
particle density matrix γpq

rs = 〈Ψ0 |â
†
pâ†qâsâr |Ψ0〉, the H̄0,1,2(s)

operator is written as [“(s)” is dropped for brevity]54

H̄0,1,2 = H̄0 −

A∑
u3

H̄3
uγ

u
3 −

A∑
u3xy

H̄xy
u3 (

1
4
γu3

xy − γ
u
xγ

3
y)

−

C∑
m

H̄m
m +

1
2

C∑
mn

H̄mn
mn +

C∑
m

A∑
uv

H̄m3
muγ

u
3

+
G∑
pq

[
H̄q

p −

H∑
ij

H̄qj
pi γ

i
j

]
âp

q +
1
4

G∑
pqrs

H̄rs
pqâpq

rs . (B3)

The quantities [oq
p = H̄q

p −
∑H

ij H̄qj
pi γ

i
j ] and [4rs

pq = H̄rs
pq] may

be considered as MR-DSRG dressed one- and two-electron
integrals, respectively.

A common strategy to compute the CASCI energy is to
fold the contribution of core orbitals into a scalar term (c0) and
the one-body term labeled by all active indices (c3u). Using the
dressed integrals (oq

p,4rs
pq), the additional scalar term coming

from the core orbitals is given by

c0 =

C∑
m

om
m +

1
2

C∑
mn

4
mn
mn

=

C∑
m

H̄m
m −

C∑
m

A∑
u3

H̄m3
muγ

u
3 −

1
2

C∑
mn

H̄mn
mn , (B4)

and the corresponding modified one-body operator is

c3u = ou3 +
C∑
m

4
3m
um = H̄3

u −

A∑
xy

H̄3y
uxγ

x
y . (B5)

Obviously, Eq. (B4) cancels the second line of Eq. (B3). Thus
we prove that only those elements of H̄(s) labeled by active
indices are necessary to solve the eigenvalue equation [Eq.
(9)]. The cost to evaluate H̄xy

u3 scales as O(N2
VN4

A) and is sig-
nificantly smaller than the cost to evaluate the DSRG-MRPT3
energy, which scales as O(N4

VN2
C).
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