(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 247290, 4790] NotebookOptionsPosition[ 244516, 4730] NotebookOutlinePosition[ 244912, 4746] CellTagsIndexPosition[ 244869, 4743] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Initialization", "Title", CellChangeTimes->{{3.72080320888133*^9, 3.72080321309881*^9}},ExpressionUUID->"b3a1f32d-84aa-450f-9469-\ c14711d3ca52"], Cell[BoxData[ RowBox[{ RowBox[{"HaToeV", "=", "27.21138602"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.7208031947801647`*^9, 3.7208032000677156`*^9}, { 3.7208034541742477`*^9, 3.720803455246439*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"5695e463-2d83-4840-b4cb-cf89fb9a3729"], Cell[BoxData[ RowBox[{ RowBox[{ "SetDirectory", "[", "\"\<~/Dropbox/Manuscripts/CASPT3/Data\>\"", "]"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.727109326220275*^9, 3.7271093336928377`*^9}, { 3.739897263620181*^9, 3.739897264594913*^9}, {3.742537460346127*^9, 3.74253746199249*^9}, {3.745337457365486*^9, 3.745337461494843*^9}, { 3.759165019260251*^9, 3.7591650205826883`*^9}, {3.759724285782976*^9, 3.759724288096609*^9}, {3.790237549098773*^9, 3.790237550346134*^9}, { 3.811322484247343*^9, 3.81132248561255*^9}, {3.822479549885055*^9, 3.8224795516059837`*^9}, {3.8271532122845078`*^9, 3.827153212418984*^9}, { 3.8417400605364723`*^9, 3.841740079592175*^9}, {3.8419851183906727`*^9, 3.841985119590111*^9}, {3.8566600295137777`*^9, 3.856660029558735*^9}, { 3.8566608900330772`*^9, 3.856660891911209*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"5a741cfd-e21a-46f1-b0b2-c292f9a72811"], Cell[BoxData[{ RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SetOptions", "[", RowBox[{"MaTeX", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{ "{", "\"\<\\\\usepackage{amssymb,amsmath,latexsym,amsfonts,amsthm,\ mathpazo,xcolor,bm,mhchem}\>\"", "}"}]}]}], "]"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, { 3.733131339213026*^9, 3.733131352923026*^9}}, CellLabel->"In[17]:=",ExpressionUUID->"f2aa5eeb-491e-4712-8186-cd8ae4c8f880"] }, Closed]], Cell[CellGroupData[{ Cell["Error histograms ", "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a301789d5f95"], Cell[BoxData[ RowBox[{ RowBox[{"Sheet", "=", "4"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.856660154016405*^9, 3.8566601628895607`*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"WFT", "=", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MAE", "=", RowBox[{ RowBox[{"Import", "[", "\"\\"", "]"}], "\[LeftDoubleBracket]", RowBox[{"Sheet", ",", RowBox[{"3", ";;", "286"}], ",", RowBox[{"39", "+", RowBox[{"{", RowBox[{"19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}]}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"graph", "=", RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Histogram", "[", RowBox[{ RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{";;", ",", "m"}], "\[RightDoubleBracket]"}], ",", "20", ",", "\"\\"", ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"BaseStyle", "\[Rule]", "14"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"+", "1"}]}], "}"}], ",", "Automatic"}], "}"}]}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "None"}], "}"}]}], ",", RowBox[{"ChartStyle", "\[Rule]", RowBox[{"{", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "0.5", "]"}], ",", RowBox[{ RowBox[{"ColorData", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "\[LeftDoubleBracket]", "m", "\[RightDoubleBracket]"}]}], "]"}], "}"}]}], ",", RowBox[{"FrameTicks", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "None"}], "}"}]}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Thick", ",", "20", ",", "Black"}], "]"}]}], ",", RowBox[{"PlotLabel", "\[Rule]", RowBox[{"Style", "[", RowBox[{ RowBox[{ RowBox[{ "WFT", "\[LeftDoubleBracket]", "m", "\[RightDoubleBracket]"}], "<>", "\"\< MAE: \>\"", "<>", RowBox[{"ToString", "[", RowBox[{"SetAccuracy", "[", RowBox[{ RowBox[{"Mean", "[", RowBox[{"Abs", "[", RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{";;", ",", "m"}], "\[RightDoubleBracket]"}], ",", "\"\<\>\""}], "]"}], "]"}], "]"}], ",", "3"}], "]"}], "]"}], "<>", "\"\< eV\>\""}], ",", "20"}], "]"}]}]}], "]"}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", RowBox[{"SmoothHistogram", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{";;", ",", "m"}], "\[RightDoubleBracket]"}], ",", "\"\<\>\""}], "]"}], ",", "Automatic", ",", "\"\\"", ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", "Automatic"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{ RowBox[{ RowBox[{"ColorData", "[", RowBox[{"1", ",", "\"\\""}], "]"}], "\[LeftDoubleBracket]", "m", "\[RightDoubleBracket]"}], ",", RowBox[{"Thickness", "[", "0.01", "]"}]}], "]"}]}], ",", RowBox[{"Filling", "\[Rule]", "Bottom"}], ",", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{"m", ",", "6"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"graph", "\[LeftDoubleBracket]", RowBox[{"1", ";;", "2"}], "\[RightDoubleBracket]"}], ",", RowBox[{"graph", "\[LeftDoubleBracket]", RowBox[{"3", ";;", "4"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}], ";"}]}], "Input", CellChangeTimes->{ 3.856660128032843*^9, 3.85666021224992*^9, {3.8566602476840343`*^9, 3.8566602853799067`*^9}, {3.8566607744483757`*^9, 3.8566608027725983`*^9}, {3.8566608694395113`*^9, 3.85666086948899*^9}, { 3.8566609083038397`*^9, 3.856660913835145*^9}, {3.85666105111029*^9, 3.856661110546945*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], Cell[BoxData[ TagBox[GridBox[{ { GraphicsBox[{{ {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.5319999999999999], Thickness[Small]}], {}, {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[ 0.5319999999999999], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.35, 0}, {-0.3, 0.07547169811320754}, "RoundingRadius" -> 0]}, ImageSizeCache->{{105.6875, 112.875}, {66.44564249996361, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.07547169811320754]& , TagBoxNote->"0.07547169811320754"], StyleBox[ "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.3, 0}, {-0.25, 0.07547169811320754}, "RoundingRadius" -> 0]}, ImageSizeCache->{{112.375, 119.5625}, {66.44564249996361, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.07547169811320754]& , TagBoxNote->"0.07547169811320754"], StyleBox[ "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.25, 0}, {-0.2, 0.22641509433962265`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{119.0625, 126.25}, {61.41173585281403, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.22641509433962265`]& , TagBoxNote->"0.22641509433962265"], StyleBox[ "0.22641509433962265`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.22641509433962265`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.2, 0}, {-0.15, 0.5283018867924528}, "RoundingRadius" -> 0]}, ImageSizeCache->{{125.75, 132.9375}, {51.34392255851486, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.5283018867924528]& , TagBoxNote->"0.5283018867924528"], StyleBox[ "0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.15, 0}, {-0.1, 0.7547169811320755}, "RoundingRadius" -> 0]}, ImageSizeCache->{{132.4375, 139.625}, {43.79306258779049, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.7547169811320755]& , TagBoxNote->"0.7547169811320755"], StyleBox[ "0.7547169811320755`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.7547169811320755, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.1, 0}, {-0.05, 1.5849056603773586`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{139.125, 146.3125}, {16.10657602846777, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 1.5849056603773586`]& , TagBoxNote->"1.5849056603773586"], StyleBox[ "1.5849056603773586`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[1.5849056603773586`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.05, 0}, {0., 2.0377358490566038`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{145.8125, 153.}, {1.0048560870190215`, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 2.0377358490566038`]& , TagBoxNote->"2.0377358490566038"], StyleBox[ "2.0377358490566038`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[2.0377358490566038`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, {0.05, 4.90566037735849}, "RoundingRadius" -> 0]}, ImageSizeCache->{{152.5, 159.6875}, {-94.63937020882307, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 4.90566037735849]& , TagBoxNote->"4.90566037735849"], StyleBox[ "4.90566037735849`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[4.90566037735849, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.05, 0}, {0.1, 3.018867924528302}, "RoundingRadius" -> 0]}, ImageSizeCache->{{159.1875, 166.375}, {-31.715537119453273`, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 3.018867924528302]& , TagBoxNote->"3.018867924528302"], StyleBox[ "3.018867924528302`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[3.018867924528302, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.1, 0}, {0.15, 2.4150943396226414`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{165.875, 173.0625}, {-11.579910530854931`, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 2.4150943396226414`]& , TagBoxNote->"2.4150943396226414"], StyleBox[ "2.4150943396226414`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[2.4150943396226414`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.15, 0}, {0.2, 1.4339622641509433`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{172.5625, 179.75}, {21.140482675617363`, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 1.4339622641509433`]& , TagBoxNote->"1.4339622641509433"], StyleBox[ "1.4339622641509433`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[1.4339622641509433`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.2, 0}, {0.25, 1.0566037735849056`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{179.25, 186.4375}, {33.72524929349132, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 1.0566037735849056`]& , TagBoxNote->"1.0566037735849056"], StyleBox[ "1.0566037735849056`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[1.0566037735849056`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.25, 0}, {0.3, 0.6037735849056604}, "RoundingRadius" -> 0]}, ImageSizeCache->{{185.9375, 193.125}, {48.82696923494007, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.6037735849056604]& , TagBoxNote->"0.6037735849056604"], StyleBox[ "0.6037735849056604`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.6037735849056604, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.3, 0}, {0.35, 0.5283018867924528}, "RoundingRadius" -> 0]}, ImageSizeCache->{{192.625, 199.8125}, {51.34392255851486, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.5283018867924528]& , TagBoxNote->"0.5283018867924528"], StyleBox[ "0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.35, 0}, {0.4, 0.22641509433962265`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{199.3125, 206.5}, {61.41173585281403, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.22641509433962265`]& , TagBoxNote->"0.22641509433962265"], StyleBox[ "0.22641509433962265`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.22641509433962265`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.4, 0}, {0.45, 0.1509433962264151}, "RoundingRadius" -> 0]}, ImageSizeCache->{{206., 213.1875}, {63.92868917638883, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.1509433962264151]& , TagBoxNote->"0.1509433962264151"], StyleBox[ "0.1509433962264151`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.1509433962264151, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, {0.55, 0.22641509433962265`}, "RoundingRadius" -> 0]}, ImageSizeCache->{{219.375, 226.56250000000003`}, { 61.41173585281403, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.22641509433962265`]& , TagBoxNote->"0.22641509433962265"], StyleBox[ "0.22641509433962265`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.22641509433962265`, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.65, 0}, {0.7, 0.07547169811320754}, "RoundingRadius" -> 0]}, ImageSizeCache->{{239.43750000000003`, 246.625}, { 66.44564249996361, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.07547169811320754]& , TagBoxNote->"0.07547169811320754"], StyleBox[ "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.5], TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.7, 0}, {0.75, 0.07547169811320754}, "RoundingRadius" -> 0]}, ImageSizeCache->{{246.125, 253.31250000000003`}, { 66.44564249996361, 69.46259582353841}}], "DelayedMouseEffectStyle"]}, StatusArea[#, 0.07547169811320754]& , TagBoxNote->"0.07547169811320754"], StyleBox[ "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> False]], Annotation[#, Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJzt2/k3V18YL3AZSmRIKtIgUZpVFJL3qTRQSoqQOYQkREklhJA5RZIp8zxn yjHP8zzP8/Q1h9B11133rnXvf3DXcn75fJ6z9zlnn7322fvZP7wOqj+X1qSk oKA4vIWC4n/+/q9jivzf/3bpOl6UDWn5P7GKrrrIsGsLebRMavtzPiWE6Qpe MnvTQgY0Ua3J3FTFlC6j6DatFpL+5sTSdS51CD3tF/WVaiFvjGtaMBzVgNXT dPBdbCHzfe1pK1W0UPrUlcjlaSEnWs/82lGqjR16WpcfMLeQcobc+vq6T6Go J3JlcLmZDNMQ67YV00ewHstV04FmkuA3keyINsCk3vBVuupmcnLHbtMUeSOc f5Yl5pPeTNKz5vRbHDHG+2ce104FN5MMZy2oxtleoviZ7vVsl2byvDG1U/pp UzDrEzekzZrJgWU3GatnZpDX33WzX6OZ3OG1ypZY9xaB+uM3X95df/65o3Pj j99jTD9XnFa4mUwuqz1ew2QJ/udeEt7czWTpbVJyt7UV3j7Xv3WCqZk8bTPI qsNkjYLnYrezlprIjvqgew8TbMBosEdSqr+JfEvScZg++whZgynJ3som8o+b 0+zOy/bwMyi8Y5zWRPYr/KhyOfkJwwY+dzcHNZHd4Xu1jp9zwhlDIykv5yaS q8aYfbu0C8wMb9479rqJvGFunHCkwBW5hvulMx83kX8fzpHjE26gN5qTvnOn iTRmfbX76qHPeGBUer9bsImkvTn1eIumB3yM/B8YHWoif1JXXNiS+AUDRi9l qBmbSKuerlIKBk+cenFb9utiI8nRUtgSaOSFVy+4HvL2NZJfjEvCHPu+IfvF 4sP0ikZy5XnV8Tsq30FrXCl3O7WRpH4W+kB7wAf3jIPkOwMbSV0HpX51E194 G5spGDg1kgUSDIfEt/ij11jqEaVpI3nFg+bV3mZ/HDc5rOihvl7/a+pkS1QA jE1WFA9LNpLGd0xTDtoE4rdJrVLqhfXrLw5ucVH9ic0vw5QluBrJVCO9xlTR INx5aa7Svq2RfLxH9tPZA8HwfPlAVf9PA1mz/dWo+6YQdL88pkbR20C+0+Zc Ux4IAe8rCnX38gZyzSnb80hpKAxfNapz/2ogPXf/It7EhiH9VdTjlIAGMsBG 3XTYIxxUplYaNx0bSGORWpt/ryNw21ROs/VlA9mxePrZfeVIeJie0tJTayDH wxX7zS5HocOU+snarQbyb42m2PZD0Tj8uvWJ6/kGUtTJ2uQXZQz0X8dpcx1s IPXLn9axdsfg12tbnST6BpK3vWhLc3osKMwUda8v1JNmtmbjj8TjIG529mlz dz2ZVeY8n5YYB3czWj3dsnpyxyWmNN298Wg169RbSa4nlZwejzz8EI9Db5Ke OfvXk7ZiB74ZDMdD742DPuenevIbm/jr8FsJSHqj+jzBpJ7UiWxgWI1KwOqb 8wZiqvWkRRpz89Ntibj+dptho0Q9eeNk2csVnUS4vO011BaoJyefiGZmFCSi +W2q0fKBenKqLiot80ASON85v3Ckqyd1ZbI9uUyToPNOw3j/fB05flDu6Upl EhLeCZvEddWRf0+O3n3JnYzld8wvr5TWkbFxw22Zpsm4aj74sj6pjlzl2Fy7 qTwZjuaZr7T86kh7/abEt/tT0GDubrpoX0eeYOZz0jVIwf732q8djOtI1nLL GMbcFGi9FzXbq1JHrlR90Yrf8Qux71nfxIjXkaPvNf95a/7C4vvRNwR/Hek/ l3J6f+ovEBbZb2v315EMXf+CXOhTYW/x9Z3G1jpygOpK/g3VVNRa6JkvzNaS SfcDrgWmpILD8sp7u85a8rnv2dJVxjRoWLJZ7CmpJVc9bQ/m6qQhynLSIiqx llTq5feVKErDvGW+pahvLRnNekhk+Ug6RK28rartakknOl9mYcd02FoZfFB/ UUsKRDw2NphLR5XVdes5pVqyzXlPHpVaBtg+7LWxvVlLWhyfqJSvzYDahxkb tnO1pNuLc1JNNzMR8aHYNmJfLUmT7CUzmJ+JmQ++H0Voa0mhRE2dtuu/cdHa 2K5ypobcFb5thL3qN6ytJexVO2rItxYfX60oZaHcmtNhpqiGzPUirVtms7DT ZsHBOqGGHBSWqaV0I6FsU/5p148ackKFR693TzZCbQIdwz7WkPs9g7r4DbMx ZWPqJGxUQxpXHyW+lWVD0PaOc7liDekZnHDuyLEcWNpyuyjfqCFnald1lx1z UGq77DJ1pobUtuQKPDKXA5aP1a5We2tIZhoNCVIlF48+hrixblm/v+O0VEVV LoI+vnUPma4m5zzUxuTE8jDxUfqzYHs1qay0PUTzdx7O2/F6lBZWk9f89h77 Tzgf5nZrHorx1eQrml/fJjLzUWRX/2XyezX5vPPEnQdXC8BsH/HVwraanPR+ 1sdcWQA5ewtPFsNq0sVpRwS9UiEC7GW9gh5Vk+0zSrFHpgoxan/i2/nr1WR8 Fv2Vqx+LcM6B0ruYr5q0FoxJILiK8dah2VuBo5qkHvOi6c0uRr5DzPdxmmqS wpumcU29BHt2bRVa7a4iJyL45tVoSxG1K1n4YEoVqVrdwVgbV4pLu9VErn2q Ig0T9SlYFMtQuZtBVEe1iqT/b1S4Z2s5VNnS4CRQRWby0dxbSyvHDJvm5Xi6 KpL/iWQol14FPrBvv9rQVUle2Uqxj5KzEqx7fostJVWSLyjVs2QaKhGyR+f6 PodK8gyLOG3dpyoIcuy8eVmlkow7cNPV82A1SjhyxDX5K8m6EIs0l3fVUNj7 7Jb91kry627Fo9Et1Rjfyy4Z3VlB7g3uO1ElUAPzfQV3ahIryDh3s6UKtxow 7TeUmrerIGU3PS+zm6iB//590uzKFeTXwxfLum/W4uyBkvuXzlWQT+uYJVN/ 1iL/gImMGm0FeWXCnHZutRYynAcf2nSUk5o19ppvHtZhkLNCLjyhnGwSUF4Q jKuD6cHXChUfy8nFyfAADtp60HHxKE4rlpPMbOXN21Xq4cNVo7TzbDk58XIh f3tyPU4ceqcitKWcLL349TQrXQOyDh1VU2ovI+ulcpZ3KjdAirtB3TK+jOzg PniNLb4B3dyWGsG2ZaSS1xUbTqpGGPGc1Cp5VEZa1UpFCj9oBPXhlicTfGXk PN+FuhdBjfh62EZn++Yy8gaN3dH22UbwHjnzVKCtlFzcwt/qeKUJqUc69OTj SkmePLtnAa5NkOC1139nU0q+OXTXV6izCe28AgYBCqWkjkjc6dfHm6F3tMew 4HQp+ayOMu2jaTPWjjq9GKEuJUUnf3S4FTTD9ZiQCUNrCfkyl7otj6UFXMcH Xp6JLSGre5WL7qq2IOm4m6mMdQn5LXwno25MC8ROXDJ7LV9C8iec2Se+2oLG EyNvfpwqIZPuGYjxSLZC++SXdzlUJeRqUJm4oG8rFk9efj/QXEySH9t7fk+1 wuHUhMXWmGKSy/rgrTmxNuw9/c3q5IdiMnurWCvT9zbEnL5mfU+umGwSZ1C9 O9sGgm/axuRkMQkthasTku2o5vvx8RtlMdnJfSKKK7Id6mfE7X83FZESZhw7 jtB3YO7MvENPVBGZH7214bR+B6zPBjjSWBWRuxVP0BjXd2DXOUnnow+LyCLt 6rUDop0IO7fkInmiiBSOfcKjFNkJYf5gN8NNReSU1XTLw71dKOe/9/lLYyEZ MVjlKuDWBUWBVY+0yEKyU+N8Cz1NNyYFwr92WBSS2PIlyelqNyzOy3htki0k EzTZfp+w7gbzhU3ePMcLyZbYo4bzhd0IvBD9XZyikMzwYqkdo+8Bv6D8j2cN BSQf2/HCXfd7UChI4+cWUUA6J6a1vfbpgZxQvH/y+wLyefAfjl3DPRgWUgps eVBAUi4oXRsV6IWZ8Nag1aMF5JSB7dyMTS+2XUwOPvgvn5x5EZlyvLkXPhfV Qq/V55Oa7i/snE704ZQIQ7hOeD55zSeUl+FDH7JF0iKczPPJV/Sf6/3b+iB9 STMq/n4+mTR0ZofI+X70X9oe08CbT7J/TZyrdu+Hsejv2KXVPPLO7jABqel+ bIZO/L66PPJJmb16+L0BeGFn4uWwPDLOMlqrMnEAvEROkua7PPLQEebz4bsH kU48S7GXziPjLVmO8rwbxO3L7KnRR/JIuZoqLb7+QXReLkirWckl+c4SPim3 h2BwxTBjviaX5LjURv8zZQgUV/f9Zg/NJT8YrIZ2HxyG+9WSrEtvc8mvYtPH FJyHwS1mkq12L5eUl5KwpFgZRpLYwVybw+vlWfy6ibojuH6tIi/8bw5Zz2A9 ptY6guZrrwsqqnNI9t2F1H8kRqF7nadoOjiHtN9Db6OUOYqV6zXFO9/kkKK7 27QtTo3B8ca7UiGpHFIonm9AImAM+28eLVfiySFRIf4znHUccTcbKiyXs0nz HuFD9nbjIMQtq4KrsknG8UbjmpVx1IqfrCkJyiYn9pK6hoYT0JBoqZ14nU2m 0nksyQxOYEHCpn773WySJavXTe/RJOxunWkU4M4m48mx6cDqSfB5pccmzpDk 667LbMPX/sODbyyJf31I0m7kH9+pjP9g6q2bcvUGSUrPixbxsU3B63tu2qfp LDLi6g7lNOkpZPrs+V33PYvcn5H4+pjTFLp/GGVzXM8id1gHBL4rmgK1X2ne 46nfpIKqK0X0pmnw+nMVRXr/JucOpuklXpzGzQCz0lmx36TdVlkHR5Np6AXW Vlz8L5OkZjcpF4ydhuvPYzUfvmWSvIMRNjHD04gLsqovu5pJagye1v3v4Azq g1ubdkxmkHuYYun+KsxgMeRs2yOvDJLT5u6x2s8z2Bvm0PnzSgapFWBc/7J8 BkR4b8/YeDp58HGS4Tj1LFQjhAfOeaaTp5ZtsgQvzcI60n34zeV0UpH+NYe6 ySzCokbH8sbSyOMyx7T1o2dRHH3lP/qvaWSO7MoH7YFZjMd4z9wn0sjv20SS H+2bA3PczPz30VQyzmxt8YHMHPjjJZb6PFJJtvQ3tI+d5iCXELhyHKmk2pEh ha8FczBNXP73YuQXOffsngfl2hx8kqSpMj//Ih0GikLSzs8jOzliM7XoLzJS k/FezfN5dKdQ0t0eTiG9Y/LF1MLnQZ2qwODhnkJ+WvQUt+qbB29aAnO7SAr5 Wkf2+539C7idTsfKPZRMMhJWST3yCzDIUN+t55ZMrnp8+U/u6wJcM9P3JF1M JuP3ZP2qq1tA0m+W/SsDSaQ2fX/VM5Y/aM7SPSjmmkRW5co53ZT+g0Uyl9tR OIls335I1/rzH+zN2cNb359Iut7gUr7S+AdErtHxvS6J5KH6Pp+fexahkVd6 SkMokaxgp/QvUV2EXT7X2ai+BNKIddSwMWwRYQVmAnNOCWSQ2uXK0ZlFlBfW CooIJpCcwS8ND2MJU0XHRKx740nnM3EUEU5LYC6xQrljPPn9uFu0R+cS+Etb r7BeiCe/XToSRn12GXJlZ68r9sSRcpUr5bvslvG23EE86FMcOSfeRzvUvQz/ it7b4wJxZOjj29ddRf7C4oeJv3Z2LPmvxijk6Pe/KPbjCV1kjSX1rVt3la78 BXNgQ7SdTgwpHUBrbau2AqkgmyS2rGgyjFnwq2HJCrxCBDLCWKLJ3/E+xd/5 V9EdNpAj+CSKnDmYd3fHz1XwRn4pLs6IJINp26/3s67BIPpalRxzJOkdx/qI 3WENcbHzDcMaEeSeLX+dUij/YTE+uN00LZzcJb7DN8f8H4gkmT5axnBy/t8+ QmTtHyxSaEa91MPI4/fNSHeCgihOTZ7i/RVKDvyLSMn8QEEwZ2j+SaUPJbm1 6Ve9iikIud87126qhpDOI2o2h5g2Ef5kAXVLUjC5WCszJvNwE9GdY0KvszWY 9G3IMeAN2ETw5vOwLCkFkeeHjKPdxzcRBoUNbPYJP0mf9k/vHYQoibhimwPs W36SK2WGytR2lMRiqcDh8EeBZGwi1Y3ZJkqCqBg4IRQXQNo5ctOLH6Ui7Kq+ nCuhDiBZ8gtEF95QEdU114Tl5f3J8OPW3CNVVARn2Jhl7SM/UumTnxYTDzUR F3XLZYbal3zMkHpK5g01QcRH+rDE+JCbT7wSDK6lJrKT6SPOPvxOXnJ/0jd8 jIaQSn/6S5rCm1Qhis7TWtMQ3Vll+UbhXqSV8luG0Q4awiDveK27tCfJd0v2 qLHgZoKi+FNXwt8vpIKGfKT9582ERfnYeG2QBzlymv4Pw3+bCeaaW8szkp9J 6cr7v3olthD+DZFbdvxxIy2JvqfDIVsIzlb6nef8XUnxjIcma5S0hOrvJrEQ d2dyE8cyF5UKLWFR6Kky2P+JfPti+/b6dFrCv+qh2eEL9iSt3+V7kru2EtnN u79o2duSHQk+fBKG63FPU2xI2wcyUHfmW3DZVqJ71LN08KQlmZVwwE2Ih46g GI4tlaR4R0aeffm+6916vHyaojLoFSnxbJLBoIGOILbFCdwRNyKbHqVfyz9O T1BcUm30adMhRf3Z7JMs1uO8bCthcWVS6HDBebb69ZjNKv5lymWyi/bFtyKe bQSF3LvAjzziGPxO0+5tso2wOOP3To1CDdGd9Qq6eevlDH4sar+ewmV/UAkj EwNhYVx1n+/CC/gFLqmqyTEQhPrd/XHupmCT0pcU8WMgKKSqhk9PvkNuioC8 WR8D0e0b2tIUZAmP0ptPFrgZiewvQ1me0tZI3Czq6fR4PXY8EvSQ4iOYBdG5 z4+R8P/wxH53jD1uNX/4bNvESFiYheo3PXLEfeFInbBtTISF4dB9z60u4PD1 PaUlykTwJX32iWxzRdWWBtUgPSbCP/acy6ez7vh60uXfTU8mgjmyzvKp/Wcs 7GSRF8lavz7khfGtbg/otcTT6vQwERSBO54cv/AV2rMtM0oUzITBj0R5emdP GIe8ZGNhZCa6ve7fHuv3gqnXi+wSdmZC1WNWtOyiN2LDhW69P8RMZLt8PhPp /h3VD+hNTx1nJohP57g/jfjgymG2H3V86+W2dbueEr7IWGMUf8bPTHBavdh6 y9MP5YsqIn8FmInqrK3mO1/5Q88hJ9R8PbbIlH9lwxUAPpZXPMtn1++XHm4w XxGAo6sGdYanmAmK1CUdzdeBOPiu/unYEWYiLln8cQP3TyxtN2p8dmC9/Ynf FK9V/4TarSWTTTuZCb74EZnkN0Ew9fTljaNdf58Yobs8R4LxyGvyKt38en9F 2d/8UhuMH4FFVewNTIRqRMtlGvMQKNgQbyLi1/sv7OhFk6OhmPlKaLY6MBHV wa/5B+pDMVba/qJUdb0/f5aclLEIg8f4R3Gfc0wEEcB+pOB4OFgc99w3plrv Xz8dToGmcDT6ejC9rmYk4nzS2IOtIuBFI/q41puRMPDeumPnqUgYnEn5Hq7O SHB6yW+zaYmEejxLJS8vI9H9JZxm3joKHwJHw9+OMRD+n5fWNPiioTNbN1wd xUBIuYkv1rdFI0VS+Y20HgPB7PJtWuxjDLSbk8JPHWMgqh1HRpPOxuJ9yVyz ++D6+HYQ6ufujIVuZ7BUVMA2gjM/X79ULA7f14QHQh+tj/c8vadW3nF4yllL m8C6jWjOYdUWnoqD5+LWbwvl9ERqdqbGzLV4HFNv+OtnTU+4khpqEd/jsbfy 08emi/SEQdY2ZfXpeKRvy31YMENHSP1OUthzIwE3mBkmXcLpCN5MxYe1PglQ /2u0W1GVjqDNoH7gMJMAV18Tg9u76YjutCipKzcT0SxZ52FVuT4/pD6QXP6R iKnGM0/22W4l/H+tiCfMJmLh1RtRIdGthGlK0HVd8SRwJfd+m1qgJeSSb1/l 8kuCjldkzKM4WkIwaQ6tc0n46X3hrqsuLcGc6CPiLpGMtnT2yQAeWmIqXkxI wj8ZkRwB9gE9W4jquHEByoVkaKuI3/D13UKExXqcTb+VgkccZ+OCFLcQdjEi p40CUiDvu2yRxbGFUI3uP37sTwpori9vm2vbTBBRjry9t39Bk4Na+taPzQRn JD+Pd+AvUNjM3S1W2UwshrcflF78BQhlTeod2kw0h1nvp7uTim2FF38LDdMQ caEnOHJ/psIl+lr+yRgawjWkfrfZUipObp/svmayPp8Hv2U9ezcN51x46t5d oiFuBnFvHw1Kg5nSV5HqzTQE789yhsDlNFx4k/DtfA01QRtoTKcglY5AyUij cB9qott/7xaWkHTwq5vLc+qsryd++VSlf9MhVfk30P08NeHvq0dhdS8D9RZK iwvU1ITpD9ZVodAMUApR/L1ST0XI+WQuTa9k4I7CZVe9ICqC77vGQrh0JjpG DB7rmFARzN7bZtXCMsE5x0tx+gYVMeWV9B/7Wiayz0T0JLBTEcWeiuM193/j oaye6eg4JRH2lXrEPvw3cs9pO5VnUxIWX6IGLv/7DaFpk9I7XyjX55sHvUsP shBqaWLzRHd9ff280hkfkQWH7U2xDAQlweYe1KZDQWL49IK74K719dj1dvNB WRLq+lljXevrd7PLXH1LJIkcpgMf/uZtIuRuVA4XU2TDxviql/X3TUTxda6h oOPZaOff1mH8YhMheP3lgIVsNqq2d6gX3NpEBF0r7VO0zEZiTfdpA+5NBOu1 /b2CUdl4mstNZ7BKQViIGXWzNmUjpmBqS3YjBTF1tbBzalMOykcZIx/FURCq V/d0lJ/Igbh9g7KoAwVRfkW/LexhDk5lH1XR1KAgRK7ktlhb5YBGZE9luSgF EXZ5V7NqdA4OSgYYGbJTEGyXdRtFmnMwkxha4T/8D3ZEVj0bVS5sJB9MV/j+ wxxY6uZO5mLKogyaMv+gAa2aarlc8Mhc+q227R/qRdOroj7k4ldY6pesvDUQ ooyVdjG5+MGYKGX6Zj3/uqRertGSCxUjt0b7c2vgvJRSSlDnYZHaWXVybBWO InQle0/nYf/OdPOAoFWsXFQuWpTPw3OJuve+SqvQvphQUG+dB3mWp47du1bR LLw5Py42DzS3touqVa/gprBCrmNrHo7a+unvc1hBklBMtjZNPvhZHO2ZxVbA LURJivHlg3LzE+Vza3/hKij7m/NRPsIojZfep/4FhWBExopNPvqUdkVMGf2F wYW1tOa4fLCbN2u8P/kX7eelU5Pa8rGpRWPr4eFl3D4fkuK6uQCZQSe62wKX kSmwnKR3pgC8O6Iv+Sstg1fgTuJNxQIoaf2x1mVbhhd/YDz3x/X6k83S/HVL oOVfiKVIKEDHyqDA4nq+bXxOIqa9vQAXP96ajru5hP6zvlGpWwrRp3M9Xp5q CVJnZyI8zhbiz93S8Infi+vj/Hq4gVIhKE74M+iYLoLvjHfobbtC7NsWP1h6 dhE+fJPBvImF8BMtDmWa+INtfFeCqDsLkR5gZy4Q+gemp78GdtMW4eC1+Ssi an8wfGrUP/NcEQ5keDlzc/yB3ClRPy/lIkRvv880Vb+A/JPuP4zti+By2vSJ v/MC+E8OfpdKKkID+4jdxZsLCDoh7H2iqwiuIte+FW5aAPMJZy9aumLsX9h+ 9UbGPCyO937t5y9GrdPd8wXG85g6dv5LtkoxQhW3KYufmofiMYfPPg7F6NCd b+0YmkP50U430+RiHPFkXXAKmIPg0bOuD7qLEXygq1/90RzCeG2d+ehLIPJV 6JLhzjns4m113Ha+BNIadS/zqmZhc+TUp2HVEihXkpPaDrOYO2xln/+pBCvV csWG12ahfrjxo39KCabeilRNUsyimueY7dueErgkuctOZ84APObWcttKQVeq qezwegYx3LVW/BdKwbV3irf8/Pp+l/uwJbN6Keg/niwsnZuGwyGz9+OOpbjg qx32NXEaS1yV74p/lSLi3Junl19MQ5uL621QbymqIpu+t5+bRuPBl2YWDGXY 62TG+Xp+CmIHS00VBcsgcFHx7JHUKSRy7n8l+LgM0i1Z2+bfTIGL08iE1bkM EcaMArPEFFwPFL6YSi3DuPmb3FNbprC2f49ReV8ZUgeu7NP68R+e7dc3CGMs x7F4446dp/9D+75cfWuhchxl3p30Pm8SEvt2PVPVKIfnIw+zRIVJpO7VfSri Uo5wrR2pv+cmcGRvlg5bejms1I2fB7tN4CsHi/ZcfznCljiVX52ZADWHllY1 UwWquX4InKsfh9GedI0o4Qro2TEyNr8eRw8742M7zQr0qhS2qnONQ4pdXU3D tQKXmy/urKgYQxZbigqRUQH2cxp8DG/HcIKNTnnvYAUcaOSqd54cw/fdyoqL zJXgnaZ2ae4eBd3uBIX6i5W4e2KHwjXPUZju2iwfp1UJRdnLP69LjWJwp8JD R7dKCOx5I1VIPwqZnTEy2pmVKIz00IsqGUE+K+UDsaFK6LlLaHfZj+Asq6w0 J0sVlA8eVhK7PQL/HRFSKyJVSJS5PfybeQRMO9buND+pwoGO+KkzTcMwZ5GW THKvgjfXnJ+V3zDGt4fccv1dBUb9Xw/ddIahsH1ZXG+4CkS0iy0hMAwN2iPc QVur8VPUpsiIchh7ae8dYjlQjT+cXzbT1wyhbssbLgv+aow8HFcY9x+Cw5bg g5Pi1fhQXHhyyXAIV7ZUcSqqVEM+ek13r9gQljYvHSg1rgbpTjUkuHsIcZsP HRB0qAZrnB33+bFBPNksuT/Erxq1GrtHV8hB7N/8ah9rcjUupnNJv/oyiEaa gL1WpdXod5usd306CCeaMo6prmrIbj3GLHBlEGI083uU56tBqawefJ99ECvU B/aU09Ug/UiCecfUABKpxdmFOWsgesGuL6d4ALrUL9jCBGrAV682O+M/gIPU P3bvulUD50PU849fD6CZqmiXtWoNXnOxYqv0AFyppnfOmNRg+z2O/c3HBnCD imOn6qcamPmetSigGsAa5TXWSv8a7PJrTC9t70cK5fMdIik1mAzeldCZ3I9n lN9YIspqoE972mXRuR/clHnb2Xpq4Pr96yizdj/aNk0w2y7U4MznhU+cl/vh vmk38xx9Le41TChy7umHxKbLTOoHa8H8UKuPdrYPmzY9Zaw+X4tsBQ/B2rI+ pFJ8YRC9XYuyz5yXXwf1wYCC3BalVoumoUr9ubd9OEIxQr/nVS0SS6V9RWT6 0PmPhd7OsRZuBd5OEif78OWfCN1CQC3SnhW276Lpw+1/Wls1ftWC+qTSDu/2 XlD/c6WtLa+F3MdzEWWJvev7lPQtRG8tbvOWvAx26IXRWv/mmD+1sD9Z48yp 1otja4yb9zLUAX07fPgv9KJnVZDGgasODq9srVu39cJrVZ168UIdnu7PtKTv 7cHdVUcqLck6jFlqi+Sk9GDzagplvXodinfxjMw79CBrpXvTFdM63FQu2vlT uQcmK3Sb4pzqcFZYgbvoTA9OrPBT7P9ZBxX5VUkl6h70/1X+9ym1DqqzP6fU G7vx/a/d2lLFenumlWIaQ7sh/Tdh9Unf+vVvS+VSTbux9W/7SsNiHdYmxWm2 incje3nzylXGenjlCDqVsnXDdJnvb/yheij066RQVHfh9LLC8gGheiRLay9o POvC4JL1ktOdegzp/uQt29oF36WYxb+P6/GecpP+1eBOyCw1/9F5XY+law/j u9GJbUuUf5qc6zE+ssMttaUDeYsnFq4F1aNCvEu0z6gDZouy84lp9djaYGNo Rt+Bs4sWcwer6qF1qF/J52c7Rv5EzLr014P5aM/Uk4vt8P9TP7O6VI8ff8m/ K7VtkPuzNv2UqQFRb3yfvtNtA9Mf3ukW7gYwkfdvbKNsQ+GC9NQN4QZIHByQ r/jWincLb/9LvtuAPH3dlv4zreBfCJk8pNmAP7au9UalLRifr55wM2uAlXuL ctDjFvycXx7/59KARR7+Ec/VZijMc48/C26AltC4z3OvZrDM3xlrS2/AwsC/ F7f5m1EyZzoqXt2A/rjkdMmaJljMBY78GmiA+7bnua7Pm3BhrnyY528DeGQZ VfiYmjA5uzD0mbkRz1pleK7FNSJklnNo0+FGtJoy/RqQboTSrMTg84vr54sf 63H/aQDrrPFAh1QjdDzOnN7+owHlM779t7QaoUEvU5Aq1oAPM8V9aW8a8S7r azb3ZD2EZ2Z6j7g14uKROtNH3+oxPb2390tII47QlR9UvF6PsOnrPVSZjXBR ZzY5Ob8+jqYNug1rGlETPXapPLgOu6e9u7oGG3HS463+abk6VE7ld0quNGJs 64zQnW11sJ2a7MjY3oRUaxfrfbm1uDTF1nH0SBP8HkZ8dnldi7n/rrR7ijRB 3T3vo8fZWkT+p9dGI92EfQ3qP/ZM1ED9v6+tL540gfU/NUPG8Brs+S+7pedt E6a3fbnxSKsGNZOjzXfdm3B8KV16jLsGdpOszb9Dm0BYBq+E9leDmBRtOv67 CeMXP580C16ftye0G7/VNsFZIcdN4kk1YibcG7YMN4EiwcFj07FqaE5k1pus NiHrwOVk5rYq7J0YrOtjaQbXC8ZN7o+rUD/OXHePtxlmaXsUFCYq8WlcuJa8 1AzfdzcWYVqJK+MaNSfvN2Nlea8wB3Ullsecq79rN+Oras5k4fq6GT+WWrXV vBlZWo8/c+6vgPZYb+Wrz824mWeltDmqHAfGtlUOhDXj+gPpQBXhcjSOnq+4 n9WMvlGhd6wlZXAeVS3PqWtGLyvb361yZbg26lB2eqQZlLORCieHSrEyklT6 Y60ZlvOc8s9fliJppLOEnrUFSZ9Yl3NpSvF0hLbk9dEWpErQlO37UgKukbPF Q6ItKLXLcjHhLkHLsGKRzIMWpHWEdVUkFsN12LYwT6cFz3jpOg9cLcbN4biC M+9bwHiqveNpbRH+DbXm+3m0gFvE636SWhFShqjzGSJa1u8jH7Q6VQj9oVN5 b8gW7Dj8aF7SohA8Q3K5I/Xr9XUSZaKYCtE+aJXzcLQFuuIzllx+Bfg8GJVd 8G+9PQzMuRmnCiAx2Eie29mKj58e21plref9gxRkwLFWaNyTOv3hTj7SBo5l MRGtKFCwmyvtzIPBwIPf72RaIbyHvfLJ8zzwDphnjum24ueHOnVtijx09Ydl yFu0Qt7I8k2zWy6+9temF31pRQJbaHXloVxI9q+kCUS2Yk+9iaF8Sg6o+w+n /cxuhdBPfyM78Rxk9kmlbm9sxZ9DM57POrLxos/s1/uxVvBdMbvHYZSNY31B KRMUbfCXZSoJ2pKN3t7K5Ee72pBu9efZRRES33oXk0qOt8EiMkiD/2kWpHq5 ki5cboPeS58kDZ/f2NJ7OzFYtg1WotE1C1WZyOp5mbBDrw2V/IT0ns2ZeNnj H29p2Yabd5jpNiEDJ3tK4/772oZT2t7cXWbp6O+ei1WKasPxm65CY2lp8One H1uW0waT9Hc98iupuN99M0aoqQ0c9WkieldSQddtFB063gYzIT9ODcdfyOny idpJ2Q6n1NKGt60pMO0qjPywux3H+HFm6UQK+LqmIqZPtIPj0nv+/dbJGOrc E6FypR2zyqmdZ7uT4NspFl7xsB2Syt9n3l9OgmynftjFZ+0IvkMXfzcsEQyd XqHhVu04fmrGboI1EfkduSG7vdpx82h1ZvDHBLzpGA+2iW7H31n7tXyKBJzt 2BU8m9uO63IalF4W8RhtJ4LUmtsxVkJJ93RLPALadX9WTbQjgeqltv2XOMi1 ewReourA9XP7HokcjwNze1ZAJFsHCOH3E1/cYlHUNuzPfqoD3ZYXfVbbY2De xuL/8WoH5rLZ/pwSioFAm4jfvFwH/GeH3UJDojHequX7WL8DKi47E9t5ohHU 6vqj5kMHTnRfFxX+FYVHrek++NaBy0dygw4+igJLa//36JgOwE6wpnN7FEpb GL9z5HdA7YP8ZElbJCxbBL3t19e5Y+KXe7nSIiHYov7tz2QHVuTY3jNGROK/ ZkcvTepO6Fhuc4mMiURIc4pnHXsnnG/uWKYtioRyc/fXy6c7seX2bnae2Ujs bKb7GivWiby2p/smzkahvIn/yz6FTrxiFua5YBsF6yZlj0/PO3H8ShFr83gU LjbZfV6y7sShrYtHLLWiMdOY4P7EuxMZNyWJxplohDe2uzXEdmJTo8iItlsM VBs3u10t6ESoIWXFr8uxYGvkc41v7YSwd42K56Y4VDUouByY6oR2xt5iN904 2DZYOzvRdGGnw7W5Z21xEG2Icfq7pwv+TQ38FffjMV/f7KjD14Xtv827L9bF I6qe0rHpWhdu0azUXZFPwOP6E5+uPeqCZ+lMgPpAwvp3KOuQaNCF0YnciR2v ElFbZ2F/0LYLNqena4oYkmBfF2Hn8r0LJc8X7g2HJYGoq/+4GtcFslKoqflG MhZr12yfFnZBsWo2dWEkGbG1vLYtbV0Ae1zlN+cUaNVK29yY7kK9JzvDToFf YNQRzVWg6oayVPyJX+2/MKpdl7OdsRtue6kUyqxTUaitnVO8ngeJP2uf/HYi DYHaq9nvD3UjjXfxnE5dGt5pu2efP9WNiIT3x8xN0yGvfSR7QnA9j7oQpbiP IwP82plk0NVueHlnJn1KzwCz9j3y0Z1u2O5TlGeSzcT4k8EsFvlu7Hry1nlq PBNFT95klTzuxsejn76Zmf/GzyfMWRb63Tjc9ffn361ZMH8S/PvC627s0wig KHbOgsIT4d+TH7pBmdl0TWQbifNPqjKDnbuxKqdnkGJJguWJRqbit25kyY3e 9p0kMaG1lLEjaP35XUf+nTmajWIt54zSmG48LnilQ8hmI0jrUIZlWjfepInR iphnw0IrNV0wvxu/Tl9rGPXPhqKWZPp/ld1gFLSX5cjKxgWt3rSQlm6U1T27 GNCQjR1ar9KU+rsh8POt/v2hbExqbktj/a8bj6o9Y7bPZqNUMyC1bKkbyXEs 87mL2QjRPJ9qtZ63uqkvlD5Yjy01y34JMfVgH5VfccZ0NpQ0VX9NsffAPHoq cqY/G4Ka8ymh3D2ofPbI+V9NNlg1HVKUT/dgZ+LY5bHUbExpHEjZKdyD1tzH NkXfslGukZRcLtaDIT8b4WjjbIRqiCd/uNsDKpN0ZIpnw0qjM0lYoQe+C1sv cbBnQ1njRdK0Rg/+5kmXTBaQENagTQp73oPyGxx3ae+S2KXxI1HFrAerFw/8 nq/IwvTjs4m7bHrA2hZaw381CxWPixIqXHowmOtqIRn7G2GPFROsvXtg2nOX roblN6wfT8dfDO7BTNshKnn9TKg+to2fie1BT0/ibdvcDFx8zBEfnt4DLedd patMGdj9OC5OtaAHn7jppp8/TMeM+rW43dU9KKbc+tr5Wxoq1VtjK1t78OT5 6bwtTamIUH8eazPQA50LjOpuzKmwVaeOFZnqwb3Fceee67+gpv4tZna5B9kH I6SizVIgon4qJoKmFwyqN/aGRSWDTT0vWo25F7n6R8utOpIwpyYXzcbRi9sG B4NG17+/arWJqCqeXsgOG2rYiSYiUs0qypavF/aTZc/+PU/AR7XdUZcu9iLT hmZxPDAe6mpRkXPXesGttlVpqGl9flC7HBkp1YsTYRdfv2OKwx61xgj1R714 9spFTM8jBvOqTyPYtXpx8g6V7oHt0ahRpYioNujF27FXJv++RCJK9Uv4xze9 UH4ofXvgUATsVI+Fi9r2gvM9313PjDBoqJJh8669YL92gq9EKRSE6oOwqO+9 +MP/ep6DPgQcqiOhj0N6oeJodHh/fhAWVMxD98T3wiXiquQN+5+oVdkRWpPR i9kj6gn0jwIRoxIWYle4vo/78PNojlAAHFQuhaCmFyMCh8tjefyhqVIbvNDW i7SLIRVcor64rPIkOHqwFxoXLmlx3fbBXpWVII3pXiy5FsV/M/HGorJbEMdK L1hZxP9FpHuhXvlwUO3mPkTKiTeqcXgiVjnjp/32PvzclyGa7PkFn5SlfhJ7 1/e99SlMDqc9oKU8EPjncB/mRHUuJfe644qyWWDMmT7wSIzuX4tzw35lpkBN kT5Yr+4K5vR2xbJSUMDeG32gbdu06HvRBQ1KQgF19/pwgGM3l94rJ8QpVfo7 KPbh1Jb8qbnBT3BUeux/+UkfqCzYFMztHaCttOi3aNgH9QCOu+LK9hBTcvKL Xd9XU49ddfmiYYcDSlx+Wh/7MBAZvjfo+0f8Vfzlu8+9Dx7mlbfTKD+iUfG2 b71PH2wNT73Y/80WCYo9Pz6F9qHnOTf3IWVbOCu+/HEloQ9d9otM++/ZQkeR /sdSZh8CgvlePTO0xTVFf5+4oj6IZBsIv8qyBaeigM+T2j6oEor2YRc+YuVR 6ff9HX3Y/GqF36T9I5ofqXxvGOqDWdepSNkoOyQ9mvN2nOnDtmjbgNIQe7g8 sve+utqHixJdL++VOUD30X7v5S39CDvpeV+P3RHXHyV+i2fpx4W/dNu/uzqB 69HNb9r7+lH28fm0PJ8L1hQ6vA7w9oPSstSL6a0rWhSMvBrP9mOZ4gKiXrgh WWGLl9OlfuSfFDiRZO4OVwUfT7Gb/bh0/8mvGp/P0FM44/lXuh+y3p5rIRUe uKlQ+DVBqR9UyZ+8y5m/4pDCo6862v14MdCoXK3piX/yU184X/Tj0wWdo/zl XmiVt/nS9K4fCfEahXpXvZEiv+eLs10/VJ69H+8u/Q53+ViPa5/7sWvPuMyw 2g/oy4t5rPzox1C37lLpFj+Iy7d8TgzrR1GG2rluJX9wy+t/1k3sh08DGfRK NAAU8lSfD2b1I8rxsMN5nkC0y3m5Nxf3w/74mzHf7T+RKnfS3aWuf31e5ec8 RhWEz3K5btc7+3FVqmvw5lIQnss9dFsdXm+vgfrnx7PBkJAbd02a7ccC49/7 rVMhOCxn6fp0rR+5txIcaaZDQSm3y5Vr6wBU2ktunp8NQ8fDSJeWHQO4JamZ k7IQjrSHhIvr/gH8efx2sXQ5Ah4PG5xvHB0ArdekVvxaJAwe6jqvnRuAFatK 5s9N0bj98J9TsugASveIVtVRxoD3oYeTnvgAdvBklpttigXVw6NOhx4MIMfZ y7t4JRadslmOrcoDyNSKpJt/HYd02fuObjoDaAmw59wyG4evssOfbhoPQPZQ ysuzOvEwkn336Z/5AO5I3e1mao+HpCzLpxT7AfDUeQcK3UrAUdlQh2ceA0im YV+5lZIAalkRB26/AeQvFkUM7E1Et0yNfVv4AFbUXAzCzBORKaNl7540ALGl Bg+htkR4yvy1EycHYL4mrn7lbBJeyLjaUZQO4IfXtJ/BhyTckeGx+1U/gKET QdSvKpNwTCb9o37XADQcOYIYdiRjs8zdjzyjA2D1an0wI5WM3gf9tu1z6/3z 4zzjyMdk/H7w2vbzv/X+mey+lPkrGV4PGG0l6AaxNq/Meqk7GcYPftps2jkI fdapoqubUiD1QNAm9cAgNIYMK2L3pODEgwrr58cGUTjSv1l7fX+w5YG69WGB QcizJoTJnk9B3/0/69nyIMiLz51fC6Yg677jBw+JQVy6uCe3/GwKvO8f/HBL ZhAcpWL/3edJwcv7KVaUqoNYeWenspc5Bffu37JK0x3EHT2jJeHZZJy8321p YDII5yusXOWVyaC9b2J5xGIQbNLRn2cDk9EvTWfZ6TAIzvaIo+3Pk5Et7Wfx 5csg8sfvBv4SSMZ3aX6L2/6DKGfVks2aS8Ir6ZL3VJGDKObVGToVnYT70srv 05MHoTsU1y+pkoRT0rPmhtmDyC49rq1JnwQ6aTtz3rJBFEjeicyPT8TgvX3m XQ2DqJUb8SClE5FzL+Hd1+5BHBYOJ2ImE/Dj3o13kmOD6JTcZjlukwDTe+1v qRcG8YU1WrGFLQEP7hm+zaAYwumUwo+NofHgu7f5rRH9EO5+6W+9cS4e9Pe+ vzm6awjVJslF7hlxGJLie9PNOYQHnhQV+y7HIVeqwMzz+BCo7N41+NnFwldK wezO+SFIqiSf4vwUAzOp/17TXB7CqIWAvr1DNGSkrF9n3hqCiqDmyZCPUTgj xf76hewQxmOH6y59iASDVIzpMbUhuLBy+u0wj8Dw3aumPU+H0GJgnzxgGo78 u82vvF4O4Yh5zA094zD433326q7lEGrZDmfLGYbizV3KV5sdh7D2Hx21jEEI Ht71fPn76xDMKvcXUBoF4+zdEy+NA4agfiBocPllEBjv5pgcjxqCuV3hfPn7 nxi9I2vSmzIEraeCKWuOgSi4M2b8LWcI33Rf5tH7BSDgjoWxVPkQJq3Gr2um +OPtnZ3GW5qGEM9PY9sX4ge5OxEvsnqGkJqXO8A+8QP8d/DCZHwINO/Z3zER PmC6U2904s/6+0+Y20j5e2NMUseob9MwQhkcmu4zfkOR5Jqh97ZhFPcXir1x 8ESg5GfDe7uHUeRivoN151eYS/Ia0nINg72d0vthjAcUJH8bkCeGkaFavfBU 9jMEJKUNXl4YBpTDejUY3LFdcuj5ySvDyIrw+SZW54rx22+f998ehlNeU+zS XRcU397+/PvDYdBuW6js2uWEoNsh+tLqw7Bq1zLpW3bA+9sX9bc+G0YuL+ch 9792eHS7+ln2q2Fc3vPklhrbR5y/rfnsldUwIismk+KkbMBye1nvlNMwFn3p 28t/fsDkLRe9Ac9h/Nisd2+a2Qolt7j1fAKHceMAD/MtTwsE30p7ej96GFWU 7o7zT81heevOU7rUYZiyKu0+1fwGirf6dHNyh/GPb+dmJcPXELxlqmtaMYxZ tqm8zwKvwHqLQfd08zBOxu9Ob+MywX8SgTqDvcOIoT88JnThBcokLuj8mBiG pTvfnQQDQ4RIlGs/WBxGsOPxii/ez2EloaZNTzWC85PqJ/d91YOyxMKTXIYR qL1ZlTtQrQMhiU9PXrONYG2NVqpe7Al2SnA+4Ts0gg9fFE0/TWlgSjxZa+jk CMQTynfFVqmjXFxCy1dwBKZJpVeLOlURJt6lKXN1BNrufdmL/Mr4IG6sue3O CN4J9x86+08BKuJbNfPkRkDxfx1T/2+84SU3vOSGl9zwkhtecsNLbnjJDS+5 4SU3vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS+54SU3 vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS+54SU3vOSG l9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS/5/62X/B+waIFE "], {{{}, {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwl12O3IIYOBdA7tm3btm3btm3bNtqx7WnHtm0b7Vhvz+uHvZIfkJWcJGrc oXL7wAEBAYGYFCQg4Hc/Och//UQmMJ5xjGUMoxnFSEYwnGEMZQiDGcRABtCf fvSlD73pRU960J1udKULnelERzrQnna0pQ2taUVLWtCcZjSlCY1pREMaUJ96 1KUOtalFTWpQnWpUpQqVqURFKlCecpSlDKUpRUlKUJxiFKUIhSlEQQqQn3zk JQ+5yUVOcpCdbGQlC5nJREYykJ50pCUNqUlFSlKQnGQkJQmJSURCEhCfeMQl DrGJRUxiEJ1oRCUKkYlERCIQnnCEJQyhCUVIQhCcYAQlCIEJRAC/DNRPfvCd b3zlC5/5xEc+8C//8J53vOUNr3nFS17wnGc85QmPecRDHnCfe9zlDre5xU1u cJ1rXOUKl7nERS5wnnOc5QynOcVJTnCcYxzlCIc5xEEOsJ997GUPf/MXu9nF TnawnW1sZQub2cRGNrCedaxlDatZxUpWsJxlLGUJi1nEn/zBQhYwn3nMZQ6z mcVMZjCdaUxlCpOZxEQmMJ5xjGUMoxnFSEYwnGEMZQiDGcRABtCffvSlD73p RU960J1udKULnelERzrwe0G1oy1taE0rWtKC5jSjKU1oTCMa0oD61KMudahN LWpSg+pUoypVqEwlKlKB8pSjLGUoTSlKUoLiFKMoRShMIQpSgPzkIy95yE0u cpKD7GQjK1nITCYykoH0pCMtaUhNKlKSguQkIylJSEwiEpKA+MQjLnGITSxi EoPoRCMqUYhMJCISgfCEIyxhCE0oQhKC4AQjKEEITCB+H5NfDstPfvCdb3zl C5/5xEc+8C//8J53vOUNr3nFS17wnGc85QmPecRDHnCfe9zlDre5xU1ucJ1r XOUKl7nERS5wnnOc5QynOcVJTnCcYxzlCIc5xEEOsJ997GUPf/MXu9nFTnaw nW1sZQub2cRGNrCedaxlDatZxUpWsJxlLGUJi1nEn/zBQhYwn3nMZQ6zmcVM ZjCdaUxlCpOZxEQmMJ5xjGUMoxnFSEYwnGEMZQiDGcRABtCffvSlD73pRU96 0J1udKULnelERzrQnna0pQ2taUVLWtCcZjSlCY1pREMaUJ961KUOtalFTWpQ nWpUpQqVqURFKlCecpSlDKUpRUlKUJxiFKUIhSlEQQqQn3zkJQ+5yUVOcpCd bGQlC5nJREYykJ50pCUNqUlFSlKQnGQkJQmJSURCEhCfeMQlDrGJRUxiEJ1o RCUKkYlERCIQnnCEJQyhCUVIQhCcYAQlCIEJFOi/UPlL+ckPvvONr3zhM5/4 yAf+5R/e8463vOE1r3jJC57zjKc84TGPeMgD7nOPu9zhNre4yQ2uc42rXOEy l7jIBc5zjrOc4TSnOMkJjnOMoxzhMIc4yAH2s4+97OFv/mI3u9jJDrazja1s YTOb2MgG1rOOtaxhNatYyQqWs4ylLGExi/iTP1jIAuYzj7nMYTazmMkMpjON qUz5nf9//wJMZALjGcdYxjCaUYxkBMMZxlCGMJhBDGQA/elHX/rQm170pAfd 6UZXutCZTnSkA+1pR1va0JpWtKQFzWlGU5rQmEY0pAH1qUdd6lCbWtSkBtWp RlWqUJlKVKQC5SlHWcpQmlKUpATFKUZRilCYQhSkAPnJR17ykJtc5CQH2clG VrKQmUxkJAPpSUda0pCaVKQkBclJRlKSkJhEJCQB8YlHXOIQm1jEJAbRiUZU ohCZSEQkAuEJR1jCEJpQhCQEwQlG0ID/R/6A/wHHNq98 "]]]}, {}, {}}, {{}, {}, {RGBColor[0.24720000000000014`, 0.24, 0.6], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl12O3GIYSBdAb27Zt27Zt27ZttWEb27Zt27aN5u2s92GvmT9wBokad6jc PlBAQMCUIAEBf2pgtAFBCUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jE Jg5xiUd8EpCQRCQmCUlJRnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQm D3nJR34KUJBCFKYIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYO dalHfRrQkEY0pglNaUZzWtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg99 6Ud/BjCQQQxmCEMZxnBGMJJRjGYMYxnHeCYwkUlMZgpTmcZf/M10ZjCTWcxm Dv/wL3OZx3wWsJBFLGYJS1nGclawklWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd 7GYPe9nHfg5wkEMc5ghHOcZxTnCSU5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc 5g53ucd9HvCQRzzmCU95xnNe8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zH b/6EPxCBCUJQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGf BCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8C FKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0 pBGNaUJTmtGcFrSkFa1pQ1va8Wd4d6AjnehMF7rSje70oCe96E0f+tKP/gxg IIMYzBCGMozhjGAkoxjNGMYyjvFMYCKTmMwUpjKNv/ib6cxgJrOYzRz+4V/m Mo/5LGAhi1jMEpayjOWsYCWrWM0a1rKO9WxgI5vYzBa2so3t7GAnu9jNHvay j/0c4CCHOMwRjnKM45zgJKc4zRnOco7zXOAil7jMFa5yjevc4Ca3uM0d7nKP +zzgIY94zBOe8oznvOAlr3jNG97yjvd84COf+MwXvvKN7/zgJ7/4j9/8WfyB CEwQghKM4IQgJKEITRjCEo7wRCAikYhMFKISjejEICaxiE0c4hKP+CQgIYlI TBKSkozkpCAlqUhNGtKSjvRkICOZyEwWspKN7OQgJ7nITR7yko/8FKAghShM EYpSjOKUoCSlKE0ZylKO8lSgIpWoTBWqUo3q1KAmtahNHepSj/o0oCGNaEwT mtKM5rSgJa1oTRva0o72dKAjnehMF7rSje70oCe96E0f+tKP/gxgIIMYzBCG MozhjGAkoxjNGMYyjvFMYCKTmMwUpjKNv/ib6cxgJrOYzRz+4V/mMo/5LGAh i1jMEpayjOWsYCWrWM0a1rKO9WxgI5vYzBa2so3t7GAnu9jNHvayj/0c4CCH OMwRjnKM45zgJKc4zRnOco7zXOAil7jMFa5yjevc4Ca3uM0d7nKP+zzgIY94 zBOe8oznvOAlr3jNG97yjvd84COf+MwXvvKN7/zgJ7/4j9/8OfoDEZggBCUY wQlBSEIRmjCEJRzhiUBEIhGZKEQlGtGJQUxiEZs4xCUe8UlAQhKRmCQkJRnJ SUFKUpGaNKQlHenJQEYykZksZCUb2clBTnKRmzzkJR/5KUBBClGYIhSlGMUp QUlKUZoylKUc5alARSpRmSpUpRrVqUFNalGbOtSlHvVpQEMa0ZgmNKUZzWlB S1rRmja0pR3t6UBHOtGZLnSlG93pQU960Zs+9KUf/RnAQAYxmCEMZRjDGcFI RjGaMYxlHOOZwEQmMTnI/3/J/wH0z7AT "]]}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{-1.04, 0}, BaseStyle->14, Frame->True, FrameLabel->{{None, None}, { FormBox["\"Error (eV)\"", TraditionalForm], None}}, FrameStyle->Directive[ Thickness[Large], 20, GrayLevel[0]], FrameTicks->{{None, None}, {Automatic, Automatic}}, GridLines->{{0}, {0}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->300, LabelStyle->{FontFamily -> "Times"}, PlotLabel->FormBox[ StyleBox["\"CASPT2(IPEA) MAE: 0.11 eV\"", 20, StripOnInput -> False], TraditionalForm], PlotRange->{{-1, 1}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {None, Scaled[0.05]}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{ {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[ 0.49699999999999994`], Thickness[Small]}], {}, {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[ 0.49699999999999994`], Thickness[Small]}], {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-1.05, 0}, {-1., 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.95, 0}, {-0.9, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.85, 0}, {-0.8, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.8, 0}, {-0.75, 0.1509433962264151}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.75, 0}, {-0.7, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.7, 0}, {-0.65, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.65, 0}, {-0.6, 0.37735849056603776}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.6, 0}, {-0.55, 0.37735849056603776}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.55, 0}, {-0.5, 0.5283018867924528}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.5, 0}, {-0.45, 0.7547169811320755}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.45, 0}, {-0.4, 0.9811320754716981}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.4, 0}, {-0.35, 2.339622641509434}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.35, 0}, {-0.3, 1.6603773584905661}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.3, 0}, {-0.25, 1.5849056603773586}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.25, 0}, {-0.2, 2.188679245283019}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.2, 0}, {-0.15, 2.4150943396226414}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.15, 0}, {-0.1, 1.3584905660377358}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.1, 0}, {-0.05, 0.9056603773584906}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{-0.05, 0}, {0., 1.1320754716981132}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{0., 0}, {0.05, 1.2830188679245282}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{0.05, 0}, {0.1, 0.6037735849056604}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{0.1, 0}, {0.15, 0.4528301886792453}, RoundingRadius->0]}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.5], RectangleBox[{0.3, 0}, {0.35, 0.07547169811320754}, RoundingRadius-> 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJzt2/k31V/4KPBoUIZQSogkichHUUrymCpJIiVUhoxFEZGKklSGQhlCyHQM GTPPj3mex2Oe53nMdJyvu+66P9z7H9y1vH8551nP3vvs8z77vc+zf3gdf2x6 R59yx44dXHt27Phfr//7msX/865TpJhiY3kG3+0USHpPDgPXRfp7lKMzeGDH jYtUHASQTtaI3Ns2g3n/TevsFCPAogVhfX/FDBJpuxQsVQgQITyreChrBpdj Wpg1nhJAY0EshC1mBj9k5TtmvyMAbdKnpeMBM0gRtLEU4k6APPM6OV7XGRTi 6/JgCiKA+Tk2f8H3Mzh4iv0FSywBeOb1Z0TMZvDJpKxlZhoBiH8TpC/rzGCW F58ORR4BXF6se0ndmUGlZ1/rV4oJIHH22th1mRkUsO+RiSknwOysu7iiyAw2 vDvNzltJgLCEDre7J2cwzoQi6XUFAVTNeAY0Ds+gRY+lanwpAfYJvbigQzWD sv/6tIkFBMieyXIyXJlGoRld6d3ZBDCN39P1bGwaBfP3hl9PIgCXqbLQy/Zp 3FDvakiJJECToP/HN5XTaBerqvXInwCO08MtdtnTeEQNmlVdCSAWd/b0l9hp rDU15czYuh9Tz2xsvwVOY5Rj2V//ZwQIOlNa5+E2jQETf3+wPSCAyhQjt5/d NL6Tp7NWvk6APbEPXwW9mMYLf242PThHgHSTiIrwx9PoP39jVP0oAUwE5tlj VaaxRzWgwWQ3ATgmxV8kyW7lT6d+SJ8Kg/roL0UZ56dxUq3549PmMHAwbmDO 45nGzfdijD7ZYSDKz25cwjyNylI2beahYTA+bphbtXca6Q6yLZ90DgP/P4mM jatT+IgxzanbLAyUnpL02sancFnvenbl/TCgPC2X3tMxhe6Uf5I4IAxSxn7Q DFdN4XGmp47Up8LAKKpLczJnCg/wEy4U0YcB2xPexPm4KVT3pHCxXw2FGl6L 3au/p9CCbYf7u8FQsBvNUSO7T+HTny/DF+tCQSRyb8xu+ynMZCazsWEoDBuq kGksptBR/W7E2fhQ8D0VeOeA3hRWHKr5bBUcCgojo4Qj96bwtrsJFZ93KGyG C69yXNsaX/tyvcu3UEg0eKdwUnQKOz8Jvev8Egp6POW/+XmnMETpusrDT6Fw ZPjgwlmWKTw4EEmr+DkUKgia1y5STyF7lYDlgnMo2OpH+UqsT+L3724Lrh6h IHRycVJ2chJzrIetdINCoX9QQvJm1ySedrbeiPkbCt5hTh7KNZPoTJW+Hlsa CnJ6TcP3cRL3Oa3pE/pDYf3EMTHNhEk88Mx4uo4yDOIGnnzTC55EK43DDSa8 YaATmtz79MckRr64H5ykEgZMumThFx8nkZLmCE23QxiUcMl/efVyEi/7i/3h 2vo93/R7ttvqT2LDEY/mlNUwEAjpOeOgOok/rX0eVF4hQI/O6Q/O1ydRnP7W Z09HAvw4btnkfnESIwoffznfToCrfXjqJ98kKu5Oi+s8Fw4rQdRvA1gnUeum XUTCj3D4o32vJpRmEqPfh+1oXg0HTc6g4382JtDt2qdRU6MIYOgdf5kwNYFr pfnPvbojoPD3+bLU7gm0cDtoqfMwEqy07Nhyaidwd0tOwURfJPAdq3xemDeB GoKjz66bRkFn96GC8r8TqHthTOPTrj/gGqh9qC5kAl8OMtxIDP4D0prRRi0e E+hB4otrvBYNi+zLWZ0OE6j9kd5qbiEaIrok6QcsJ3Cpl/78/qgY0AhweTxm MIGXslge8RnEAt2jlpSZ+xPIafGfpTR/HOQdPb5vWW4CK9pFa26txIF5p/HD jUsTyB4xGyFTHQ88/qnxlPwTONVMcY72XgIQH1Ds3Hd0AjseZ0ZqliaAC5uC Kj3dBN7SWgl1v/IXJDq8ow5tjmO1G6u+T9pfmPXr22CbGcdfHr5MxucTIUxD QImrdxzPM5c1bqQmgirrq1De+nEMJHrUSIonAXV7/rJgwTj+PsR2i684CbJ9 aeXPJ43jyn82L6KUk8FU/X7A5bBxTMCr9PF9ycDFEjIr5TWONtbCV/ktU6CJ OCkj93kc9Z9/96OjTQVHH9Gfiq/GUWFHb5dseCqIqdmP3zUaR//fIyfzZNJg irn6ygP1cWR+f7PJZDANglqZv+vIj+Od/G9Moo7poPLz8aDh5XEcMOssof0v A/bcjxV9LjCOb+lWXNuJGZB+eMX5Jfs4qvvq5Xz9lAkmLdLdb/aPo9j9VxyM 57OAw/vb2Q/kMYyg5wOlkSyov0d0+DI7hmET1eQL/tngcOgE8VvfGNI9dIlM UMkB0eZn/J4NY5jzu+R8JF0ujHumv/MrHEMSgaS0ryIX/O/ubAhKHkMKxSnM cURQYlI8GUEYQzf2+89bufOAssnHOtZ7DJOpbmXrfs6DFI+ByqQvYyj2+EXs ymgeGKkIHsu0HsOV9ZPULgr5wHbwtXnekzH0/hB+i+FvPtQ0FBaXaIxhVMRl 1beHC8Dux36W6ptjyPPSDPJtCkD4jrpJo/gYSokxiLcMFMAwYxi2nRnDxJBL anE3C8G3fvpAL8cY5kmeo4TkQlD4fslgmH4MJ+ha9N+wFwFZySFjcscYasVw 8al8KYJEhlrahblRLKaYKc2ZKwK9Ohbt1f5R7HRK+Br7sBiY3fWSyI2jqBI1 SjxUVgwVt+P37CkeRba+6fIJ4RKwpV9Tp00dRa0j5Bb2oBIQqpWNPRAxig7T ZhNBtKUw4Oq2g8VnFA8O9SYavi4Fb8V2lWNOo8if+61Ab7gU5PafjDj5ZhTp rK7kuaiUwXq16Rq/8Sg699OXVeeVQdy3zFvnHo7i4V/li0cFy0Hn1u7gi7dG cXG5R8nkVzkw0SktSkiM4rt9Q8pxeyugtMrv+tX/RhFWAl43W1bA669Dfjc5 t/KXOB819VeAgILQtDLjKA7eEIoJuF0JPTRvpdQoR/HIx/qL3NmV8KOy2FNz YQQ9m5Y2NXir4KoLw6je4AhSvbgscN6zClbkH1w2bh7BHnPL1XByFURTh7u+ KBlBXRX/hZCn1fCoYrbvVdoIMusNXWNvrgYG58vn30WO4Nn99LeooQYKb3x2 dPAdwWY9mSDNyBqw2lff4ew8gqmPzMroGWuBr5ztv+9vR/COicBtpte10Olo YP/TZASNrWTMNHtrwU3ub3PAoxHUIKtyWpyoA6m9G7xhiiM44fL+vLJqHSyW XrP5AyPYYNKwt9ixDiK+fK9NEBrBh/llWJFZBxrXO7nSjo9gzAbP+KPJOqCj OmWVc2AE79tLDr9hr4e8khflhTtH8AH7WU0OxXow/5x9tGJxGOOfxnNdfVcP J69RmdUNDaP+sV69ydh6IO6+U9jSMoyZa37ejF314FLsf7irdBi/WPmX/qVp AIlPI08G0ofxsmHPocpLDTAney5nLGoYZ3hMPR8YNkDYLluGWb9hfHW630PH swFUi0p1l12GUURPlbkrrwH2ORxI27AZxkU+qcCKyQbIlnlEvfP5MFJbvEvm O9IIpjsjH+3TGkazvaNDq9KNwFU4n0CvNIx74qyDxJ41QrP9lV2HpYbRK/Bn /YR3IzhKO94/em4YqToTdejyGkGMsvEP14lh1MgxNQscbYSpfPZNXqZh1PyP Ie03QxMEfTBS/m/3MOqJD3owXmwCFamksPPLQ2j5KMp9UbMJ9lBs/rs8MoRn Kf3Vbn5qgow8uZvSxCGssGX/djC6CYztPALlyodQqbxM6nZdE3BIds8pZg5h e/jzBfJiE9STea/eix7CyL8ymzwszeCAFj4P/Ifw8Ud67lLxZhB9nzuh820I D5CrW/u0mmFcYh8YvduKZbK0reybIWBT5cdz0yHkCHhg5xjWDLdzA4deag/h 0K4D1qwlzUD5buziW+UhLBrblyM40gwpV0S+fpAeQv7Atw5lVC1gRHrX80V4 CGOvtzWOnWoBtpzyc67cQ/jXoEvY+3oL1NgwffY8NIRf+Rh31Ru0wAdxrTa/ PUOY2h01H/CpBYQ3ogSC/w3iw5mjXhRhLTCctfg+YnQQR+P0usn5LeD7Fhpj 2waxpf2ho39PCyhcduZJrhjEnyEbwl0bLUBea3qdmTWIL36KXSplaYXEzGPV eTGDSJLrVtG+0Ap6b55ylgYMov1VVa+kO63ALJZiUe06iAvfz+TmPm+FilVy SeP7QZTq6cz+6twKthnyrO1mg2jroXn2ZHgrCL32etarM4jj5nDIPb8VBi72 5g3fGURKXqb01s5W8F45zTQlM4gfLtz5tnOlFeTSLQ0XRAaRhldPlu0gEdZf 5WWunhzE6AcHTU8LEiFOlGb/DuZB7Ijc73n5BhF0/t3T2bN3EEXteJvU9YjA lBaUTLs6gHZkuhse74lQajVBdXB8AE/IXhae8SPCmwsXHrB0DODVm1ymNqlE EFi2iztWNYDiwnX0cg1E6EmppODJGcA3d1iCtaaJ8MPy8D2BuAEs988yaaBu g6vndSLP/R7As2dknGNPtcHKYvT6RfcBrGn9R0OWbYPo5GVF+DCAl2TUKFsf t8Gjl1IhV80HMO2x5j/ZD23AIPJ16abuAHr0W0+oBbVB4UKL3J27A0g+eU6d O68NrJKO+6tdHcAQId2w5N424LMwmdG8MIC/su6msVG2Q+e5NGn9UwO4v7zv v6fc7eA2T+FtfGQAqwrKMOF6O0glKoy92LfVv8tKlsKkHRZf/BS3XuvHsvlY RuPv7RBxtt/t3UQ/dj1seL2Z1g4acwIDDp39yL6Q7FfV0w50f19dcKnux3sH SmqG9nZAnlmB0/fcfjTMvfFcQ7gDzIXoun7G92Np1BLvZa0OODl7XygwaKs/ t7mf19cOIMaHfAz73o9P2e5RvMnqABfTqZY/9v2YxeAk/m+iAyT+u3j6r0U/ 2pi2FLBxdMLctL1tml4/ZhyS71xW7oSwuOq6nHv92DGRZuL5pRNUnx/hLrrW jym8Bk4U2An7BHVfVYj2I6/J6p2bK52QPRVbUcfbj5TyMxO2wl1gGrvC3srS j1fkxGUIZl3A9UzmRRd1P3rEVx+qju+CZgHXooH1Phx6sfPe5mwXOE4Smccn +/APy93/ZEW6QSzmhPFsVx9WqIm/jnzdDVPGz3OXa/ow5oxyqEh+NwTxZzCS sA/XQvxqFqh7QGVip/7Ov31YkGVdPKHaA3uiFdP3hfSh65l6q5OEHsh46kvD 4NGHV6x1m6KWesD49KDmYYc+fGHy/bMkdy9wjAsmHrXsw70//xW3KfZCfdTr 3ScM+vAHs35B2JtecHhSpMZ3vw+Lyg9wECJ6QZSPPuY/uT48+rv0fE9zL4yP qpPPX+pDHf9Rmfu7+yAgMuyO+Ok+PMP7JozxQh/cNpohSLP1Yaa5QvlBoz6g 5BVblaPtw7B/Q+vav/ogZcRB4TapF+9sPPi6WdsHRhG1v+9N96KEju3I3O5+ YDNkXXjQ04v1bb3fJa/0Qw2P/rXHdb1oQOOdP2vZDx+G432N8nvx6gVC5t6E fhAOX5t8ntiLFHmfJ79N9MOw/lVJy9BelH8ZPfKFdwB8T7p7vPXsxWmn20sk gwFQGGof/vCpF8UpqfL/hQ8AOeykmKNVLzKcjz7zfnQAEvXMvrka9mLu6DLB l38Q9Lizej3VevHmjNOaktkgMA/uFvl1oxczsyQc41IHoSJU6UuwWC9y5b0s ztocBFvdX+0R/L1Ypnj8t73cEAidGD4Td7QXW/ge7qPzHIKBfqEPyXS9+Ina hKjXNwQCV/9FWpJ6cHK1MthTaBjci77etu/pwfpLl5vCPwzDsgzXsmt+D1pr WQ4SmobhYWGa/6/QHjzOIZcSwDcCBdK3ZCI/9SD/PhoKb7sR4C3oH0s27MFd LzI6fdtGwFXK2j3/Rg+Or6FgksgoLObRidbw96BbjNrDie+joCYZ2tVO14O9 VNwFN+dGIRcvOozMdKO3urph550x4Iaa04v1W3GujHFY6hg45+rW70juxiCL vL3RR8dh9srqKzrvbkxN8jq77DAOqjmuHKzW3ajmeqLZeWYcMsW5i3k0urHM UfL784cTwJmdYSws3o3MBqaFQZUT8Pny7QOSHN0ox7XIyX1lEiYzB9MVdnTj nl9fnVcSJuGO2Bst9f4uPDpiqnj01BSkZ9DvMSjqwuciRa1ff08BxyVCjHl4 F/4aYbGSZZ0G+3QxlfeOXUiV9Czz8s9pGBWtW3V52oXczN9ePj08A4pp+kE+ Cl0oJfrtX/HPGUi+sH6NINiFSp/Ya4LoZoE11X3qL0MX+k1dbDZUmgW78zye ufOdWHmcI1jQcxaGk7PEKps6USX2x6lJ4izIiyj3taZ2IvVD1VovjjlISBr+ MujTiZ0VWiPH9OfgsLCN4NybTny980ubbcwc2CQyNpMeduJnUqZz8OIc9J+N eEsNnXjQ4Bq9zZV5kPsrzsV8vBNL6Taekj7PQ4xQQ9mJnZ3oy8/gxVQ/DwcS DE2FhjrQsonwM55tAaz/Ix26UtqBNXZPabINFqA77kf2jagOvMBxK487cQFk BXl1VV06MHHl1ddm0gL8ic3Zp/usA39f/dGafmMRGM6oJJje7sCg2+E30r0W 4WXMqKrN2Q6kH3CkyOlbhHb+dyTHgx2YFx96Nv7MEkhGHwzzWmpH+S9yUVav lyD8dJR8SGs7xq+pD6wVLQHtH4m5uIx2LBabnuJiWAZzvqafWb/asdTUN7xZ YxmIkU8kymzbkZvHqHM1bBnEecmDTVrtWBTEn2A5vQwhEZ4ufVLt+PafwOp/ ov9g76nT56ZPtOPjmn829O//wfNwJK7tbsdphxjp9eJ/0HTy3nuq0TZk2XWN 3E6zAmKE8ZNMFW1oaH3khLfSCgRy21VxxrSh0KUwzkOeK7Ar7JDFGdc2rNeY FJNqWYGnJ6JZxMzacFQgV3sX8yrUhUjmXbvThqZ1h9/cUF2FC1wtBioibejP Xaqy4bEK/sHGdNqH2/BX0pPmfXWrQHmcItlkhYgGr2qPalOvgUGQt8brdiJS tNv8mJZeg6pjAhSfs4mIyT83CK/X4Nzv/IgfgUQ8Nu84bh23Bj4c9xV/2xHx Hcvdnxp9a7AZMLkY/ZiIFSK+BpIH1kGP3f5XuiwRP/HQGx6XWocKf2bpYh4i SvvSSSw/WwfBo7Gj9XuJWJadpJbhsw6ev6TdusdbMSzUtMMgfx3WWInnJ6pa MZv/ReDGyDpo+z3r/BfXiiw+Z5++od2AEpadH3d9b0UfB4GqPsENEPD14WO0 aMX+IIXjF25vgPsRwTr2e604PJTVa/NsA5Z/FlqdFm3FU8tjH7KdNuAhszq7 KEsr8lTtJpJCN6DAe7pQZr0Fa37fvXMzewN4Dzs8VepqQZu4D5sJDRvwzYuF 8RG24O6ENkfxkQ1YYIpPexLcgpX531lJqxug7imrafWxBaViY3V30pAg92D7 ro/6LfhQeFxPh5UE3B6m0W7XW1D07B6z07wkcD6w+44/Xwu+E5PYayFCgtnv fiuRNC2oUCbLpAwkuMco9DtlqhnNjjRFt8uRIMu9+GpBbTMWy1c9O6VMguMM DyZr/jbj0cfMfrfVSPDZbfZHh0czhhBNqUw0STC5//OlUctmPO5Mc8RblwR3 XNl6F+83Y1Feq+WIIQnS6f5+phBrxiBBLYE3xiRg/3btzP6jzRgX++qa0XMS fKTtbGTdbMIdVlltlWYkGHN58eZUbxPq1QsSc81JoEhDdVykoAlLGT+yPHhJ gmRn/1LJsCb84rcRmmFJAlbqc89vfW7CCK9LjxasSPDeqZRJw6gJmbt0dTit STC091GWgXwTstz3PKD2mgQ3Hed1LASasPaZxd6/b0iQQOW4125/E1p4SOdJ 2pDg8Bf2+K+zjXjbvSya7R0JbPYk3fNtaMTHuZMn7tmRoP+T3AYhuRGvO/de ItuT4Pru7pBE70ak2rEZdfozCWIdLG6gdSNerLCSHXEiwcFd+2YrNRqRPDxL I+1KAuuPgd5E8UY0oVzNvO5Bgm5KkStDHI14fkL94E5fEsjalw/M7WhEcwu4 bPubBH8otJw3+xvw5D6JgpxwEtB/WBSiKW7A9D+fzCriSGC5w7mVOaIBNakZ NSPSSND+/tg7bqcGFOpeo7mfTwJJcjL3WeMGPOxCkGivJEH4O/nKK7casPUV D6NQKwloN3teyP/XgPohtTKqAyR4YWt55D5jA66W8++WmyVB6wY16i7UY6Np cD2ZRIIrNkH6Zs31eFub9YYV7SaErJ+ntU2rxzKGSy4hbJuw921lopNvPRo+ 5/N/w78Jz9e01b3f1mM0U4LW/OVNaHq9TA55VI8zzPbBGwqbcGnVJTwe6vF+ kpaki+Ym/LY+fiv7eD1yUg1kuZptwu6V1IWynfVocqnNYdl+E56+UvBrHqrD 8Euml/56bULdcp9kf2kd/p1pLYmO3IQLVq9GpqPq0MDWe29j1ib4L9G6rrvU 4UUXnfYDtZtAYRkisvd5Hb6XpjJX7d8Ew0XRDialOnwseznEcWkTqiyqPxw/ V4eB0pcNPfaS4dzCY15Bpjrk/vTdW5uNDEJDswGWk7XIovSsru0MGTYG2CZc E2qxtdnNdhTIUNJ/7WLky1pUjTq6aqlMhh99Lz7lX6xFv7HPfsaPyaDZ69/Q vlGDNSYjo4nmZODrKT22mFeDSWcb3c7bk2Gxa96E7lMNLrjluHW5kyGvkz2T 50YNxpDeK3gFksGlQ45Kkq4GaS8spVyPJoNqu8Vd9fpqrJMtZetNJQNXW2Cw uVc1xlYZBsvnk2GqtXzaRb0aJenZ/llUkCGjZfEygb0a/5MjhtxoIIND8zGn 3L4q/FTgQpVJJMPtJvmWVkIVOh5gkUvuIgNbo+WJuSdV+KFkvpu3jwzD9UFm 1IJVyPhRtXPvABkS6ypzTsxX4m/T347XtmLb2mXqK6mV6PtH52rzVnu5muNq qm8qUfGGbWZUNxmYqhUIphKVqCt8UT+jjQw9la/mHSkr0Z1jTXx9az7RFSEQ UlKB6PZEw3Brvlbl1V+znCuwWS6A+R+SQapspa1JsQJZ1FQ5CUlkoCs9cWr6 QAXOsZ/WeUYgA7FY8SVVazmKp73PVfAiQ1jR63zOX+UoEhteIvWRDKaFYfvF tMqRY458SsGUDGIFtQ9UTpRjBotAo4k6Gfbkr0WajJTh9YDVKYIUeWtlnlz+ FF2GalL9S2unyBCQqyTz27QM9RwI7ma0ZDDKeeueLlyGfbGv7WhnNkE4O7yr /l8pMlcU5jZvrTdyZv3piaxSHHUPVW2K24SKjI1Xu+xKMXuOrMX4dRO8008V s8uWolHNW5efhpugk3bngOjeUrQf/tP2QmoTBFJttZSqSlD18p6vMSybsJIc GfPEvQT7Ag413t16PguTGlft75Zgs4nGgHUxCdwSN6/5HylBuv2OFqe29hON v3yeKZ3FyCB6V9Fsa/89mXC3ryaoGJNOKQ7pipNgLu694KheMZarz2ocpCVB duyftxR8xdgQfvOZe/sGOMY0l7FOFSHPq02zqYgNUInecVjkbxFe7GHXv/Jy Azj+8OvesixCqVpGFw/YgPFI1QSDS0X4/Fdm6E7qDUiJ+EB6TyrEHtb7lcGN 6/AhPEbeN78QrZYERe3910GB0Poz8VMhspiMLGXorQNzGOVQ5Y1CJJl5FTwS WIeBkDPnhugKUSJov739whrEBau936wvQIl1PtkrmWvwJuhjFbN3Ad6jeSQa arcGV3/HsZzVKMDoUUGV8mtrwBDYZiDPUYAWzV4/imjXoNN/V7Jufz5ufHlS F9WwChG//qOwDc/Hz4SVtG8+q2Dhp6Ho/TQf61g0Mxw0V0HC99OveMF87Hns /yOEexX2+SSMls3noVLxm4n18RVo9u4435+ah7/rSAOhf1cgyGvPx/U3eTjO Iv4i1noFTDzP1jFBHj6K5+Tll1wBUY+H7II789B5z3Kb4N6teoubvtnVFfGG PJVwRd0/8D+ub5p/GHG97Hn+fr9/cO5Y1r7FwFw0dzmtQav3DyqOMobxnMpF BR/nqAbBf6DNaiihHp+DHpWKf8zWlmGZOYfoIpqDbnKvTRdLlsH10EGLXMzG f8XLTcaey8B98And3PVs9KTIeTzweBmyGTDiRF0WlrdzLRucWwal/YekVdWy MCSR35di5zKM0hh3OvZmIi3E3stpWgK7fflWWUaZ6FIZ4hoasQRHqJgZp2cz UM3kVUP22yWI2fUsmvN1BtaHjWswKC+BLGXhVRWKDFT2yQ8MO7UEneQjvZ+c 0rHwEc/R9+RFMCM9f5POmI5SPLzyocRF2LtexDThm4Z3qGP7DyctQtAKazw7 Vxr6FHpJdLgugsiy2Q2lP6koQe/UOGe8CFULJQP251LRt/LZ0Qfyi6A3d/Rd SmbK1nlFif/w6UXYmDY/MiqdgpKXLw4dp1kE98myRNbKZHzuP8hiM7UAvOMc t26pJOOFB7vzOOsXIG/k5cj7jiRkix2UpUldgLtDFR8SdZNQ4NmuQxf8F2Cy n/Po0EQiLjAvcfp9XACHXqtU5peJ6CPFz3XWZAGOdFcpyW/8xfmSS7vm7y1A QgfXhI3DX5zS7LNqlFwAuTbrT/G0f/GklvSNSoEF6G2pOdbvmYBWVzr4a1gW 4GUTdyYTewIWENPD6qi2xgtbinSVj8c94dcvlixvnX9+B3ctaMShN1fWjeDh eTDzu3VA3TgWS84cqVJpnd9af6vXct/GYG3lzM7asnmocye8PfE1Gln/eT3a mTUPKy7KCY7+f1CI9mBWX+w88H4hDU7FRGFTcY2GevA8qNlHsajkRGJryQsr da95cLS9p5heHYHN4ktDdU7zkGBN8ZG9Oxw1O/pmY9/NQ69FbJr9NAFfclVe 7LGYBwZT9cmRzTB0PiXXcufJPFx8uvv4LfowPMHX4risOQ9G+n/vJR4LxSz1 86fT786Dj/YjZ2ahEJw8FfH5k/w85D3YhzaSwRh8MeWBguQ8zKqmLPQpBWGQ xjLf+vl5kAwrUHItCETaQpa29/xb39ePNVNtwB8dVi91lHFutXc3P3Fi1y+8 0i8zV3RoHpS+VHyd4vbFLMao5cfUW/O35VpOu/oT96TuHP+xOQc7Xr7Rsjfw QvvDseWy83Og/bShTOGLB84YVFM+GZqDPO3T55gjv+Mg/b682dY54IzbJVr4 3Q1dJX7kVZfPQa9f8j61RhcsFrr3ZD5zDoK+6HVOMjliBjXd4zvRW+O9ZIr/ oOqAXsHcen1+W5+nU/ThsI8dBu3ruOLpNAd2v0YjVZNe4yUTTU/tV1t5SzlF uwvmmDpuaSOut5X3VxpRsdBHhbpFbk6lrbyEVJn/8A2sURBO3Hl5K17X2kOz QxmyeH3O93JvxTfNLia+NoQ9V3p64um2YgWiVfwlCxBZMM17trR1Xje3rv+U +gZ0bHT6D3VuxQq0h+NYPkCjcnscIX8WerUeyrAQHWAPx70+1vBZ4LSIMXPw dtw6Vxfqv3SaBe3PGwEzd7+CaPZZpkTjrfYK4fqx+9zhK2ueXJPC1niqihv9 o9/BuCf2cZfAVn/t5R9HyjxAnCsruJZmFuqeBPIpRnjBm40Zq4eNM2BmcS3v 4+efQGu9O3jt6www2E6rZuj7QpoS872PsjOQ8Nl7alr2F5Q5XS+nWJsGbXcJ B27uAPj6Ue/Lx9hp2OE3zKqx8zdoMXA0HdKahjrlUuL1F0Fw4h13a+n+aYhU ZQvr1w6GcfXvxKjsKbB+YGpqqxQCdbs0bCuNpkBOu1DsiGQo8Fd3qEsfnAJO feY9Sf+FQXGklQBn9iTMPjGuv3WMADXCZBtr3UnIe47+o/vDQS91oFZr3yS4 Wxw0+rgZDqruS4wTsRNgZG0ozDEdASU/O/r/U56Ai7ZZm+ldkRBzS9VedmEc 9trTV6hUR0GLMi1RwnMcej/rek1n/wHnriey50XGIcElTdspJhoeXauSkmgc Azt3GgFu/xggifvuN30xBmpeWv9yXWKhWP5GXO/+MeD1SypQfxsH1IPj5yKj R2ElkMp18Wk8KPU0unVcH4XB+tiY62cSoO7LkIf7wAgoNd0/cIiQABqVbNc7 341AeguFdf/Rv+AQSHOsiWUEONuiu+I9/4J0lK/2t+Rh+NpxT8aWNhFEXpz5 xHZ7eKs+JUfKOySC/uwgx4+xIXjYG7X/yEYipPMe5d/lMARl/SovhyySYPWH vIM9x9BWvUxqS5xIAubygye5MgbBZyQC7HSTYYcyg8m8yiDsGFcm3OpIBkju St45MwAmk+vUbCopoPyxLlXfeQCapglmoxUpYJSXU8LDMwDic7dbUqRTQfE/ 2T2qBf0QubB6+WNmKgSt92ZTaPUDw3JosNK5NKi5Qs9wYaMPrFduUXH8SYPa nwOyZN8+GFz7ZzJxPB0CyBemjS72gQIpuCHdNx2E/3pz2bb2QjL55sXPjBkg s+F1Qe5VLxylXA5QccoAn7If5Q3MveC4K2jncYpMmJ6b2atg3gOze+SfTFtn giopYY9Xajeo7VusyZrNhEXXnN9uG11QRBMo4mSUBSltts4Ksl0gsF/OT7U3 CygVjX62f+sET4Z58gm1bJgRfiV0ra0Ddhz015+rzYbbeglLv3g6wOjQtcrc 6znApSToPGLZDnXMs0JfMQcY3pWInittA3FWP2910VxQWqENd2Ftg7Cjshs8 8VvxV9eVNVMi0B6b1lnkQVhUcsp3Km2Fl8d9SvMDEbhWvY9LHW+FWcZg7+s0 edAt2Xqfz7Zlqz6wuiF4PQ+iAue+3OxoBjWmmxtMH/Og4vTVlvjLzVv1BGf8 em4erJ6WynwU2AQFh5d0+tfywIVKsezhzqat+qOCqfxCPoQWb3IlP20EAZbf pfHm+dATq8n/tKlhq155+cY7Lh9K98u8dZRsAE+2G2dsx/MhoUhNjym+HsqO cvTq8hQAh31RGBNnPWywL/yQf1wAHTp1rW4edSByrOzq2cACuDxF0nPZVwdG nAErzO0FwFyk0MGxq3arfjKP3jxUCJXPhftl1qqhjuu65pByIRx4GYnuS1Vb 9dZRxqpvhbDznyAP43IlXDw5V5hYXgikjAOZtesVYMJTYuW7uwiEcnhvt+yp gLBTv/jspIogUGa1Wpi5HIi8Zp0GtkVA2dXIMyNQBrSnr7rdyiiCB2FXfRnl SkGSn1VaZKkI7s/5ZIUalcBLgZlF1rPFwPdAkyXatRgizxRFUDwrBkZZ9qVz mUXQKeirMRpZDGduX3KRnCgEJqHndLWDxSD9U+Ai8XghyJ2VyUvhLIEwCzXl zUcFYHPuiIX/wxIwjZNOTvm9dd+Ep05+9CkB/xN8qjtG8mBQpID4pKkEeFKq z/YJ58GRCz9dlBhKIV/f7F0sLYKSqImEqEIpKP23+zBm54DDRak5dsdSEH7r Hzb3KhvSLx0O21VUurW/HZwRlciCSbEJ1QlyKRw+YGTnTp8JnOJ5+xoul8HS hsTt8Yl0uHvFKzv9VRlY3/tPWLgxDRwlnpr+TioD47uy3+8Xp0IeANfnmTJY j5xRkyxIgUVJpmYT/nLYvCnJ2lSeDLzSY19UDMshfo24e6UjCR7K5IqJhZaD PjH6jctKIrjLekxx9pSDYaown8mxRCi6ahRExVYBx6497n2p9BdWrl1RmVat gFexT76/dkkAIbkDe5p/VEDi6qXZuKB40Lsxkp5VUwEl4vG2WVfiwEc+2ziE uhJSdhL2pE3FQNXN7xxO1yrhBN9LKfGEaNhxy6De1L4SSkmBXt0Of0BE8bKD am4lHLUzChYyjgKT2wyiV9YqIeyMuX3R40gIUhoaO3GhCj79mb7DYRwBTcqZ /tTmVRAlp1pY8DEc9qq43Z6LrYKpIcvuczEEEL+rR0kcq4Jns0aJAwNhYHbv UkruyWpgOzYRrXM6DMJU9xsRdKphWID26NH3odB5f4D1a0A1dKSFfPrSFwIM 6unV5m3VcGxqiZdZOQRkNb7ZqR+qgXKevuBL1cFb/2+PhSWVa2Aua+6Fzr1g iHkoOszzrQam73g+pxgLgt5HtL505TXAJhJv8PFLEDBp9d1c3Hpuur8NJdwV CgIF7dTNdslaiG1g6Cgq/g12Oi5/821qwWfqFuuhK78h+bG2XmR6LdiJyqSm FgfCqO55ZrfFWqDvObGsqxkIrud2D4kdqYPBh2un1ncHAm+SqYTghToo8A85 rpkVAEXC7T+P362Db5kPhp7bBoBmsuwck3kdnKKxfcB6MwBWROLl97rXAT3l bQblEwHwI4UlbD22DiS0qPgpdweAwAUH0nRlHTh1Sx7hmfGHktRp1f6xOkin HbLJ7PUHbVH1hGaqelhJt/WNI/rDRlrhvvKT9bCjws9TqsUfvC8K6mbL1IPM sQ/8xlt5oQyf7HideqA+Iv7jerc/VFzaeTj0fT2IW+63WB/2B73MZ6beAfXw IW3v7t9z/rApRixzyqoH0uepsM8kf/DJkuaybauH0vP5Zhv7AkBEPPat2b96 MLhkbyZ6OABqspmbdQ81gMvqxwGX4wFgdMVe8L5wA5yPpRy8xx8AlLmTX+SV GyBqt/ixqXMB4C9xv++KaQNcKt+9c0E0AC5gvtjZbw0Q/eGGYeWlAGgAAU/u 6AZQeBYZTN7Km+R5TzGXN8C53b0jJ7b675GiuE4z0gB+jGpulacCICjfOGhz VyM8/Znbm3gkAMSkW1bnuBphycynyW1XADQVSKoMSTbCcc0PoSwT/vBcJjqG qNkIXocblFmr/IG66NCeKptG2M9UJaMf4Q9hsnZa6NcI+9xn65tt/EGieDw9 Mb0RWOt8fTQV/IF49d6B8JZGCKL4bjBxyB/MS9DYd7ERgg2Jbq/afgHt9dPF Xw80gfKdBw+ofv6C8FJPDjuhJrifTl3kp/gLpOXIrywUm0A+bS7q4Y5f0Fn2 pN7ApAkyjl16ZBjjB1Y3mk5rODfB9MKvg8Q7fsBQIeFwK7IJVs+LVbUt+MIf +aguyZImmDTkFPzl5guylQdFRQaboOnBM/PbPL7Qe/Od+ynKZogyLz16Nd0H 3lSNjrFyNkPd55N0iVd9gOmWisx+iWZ4QltJ1VnzE+Kqc/wpHjbDguaIH+3d nyCnyLu8+LoZNOf2+9s3e0N/zY/boz+b4W0paSlcxRtsbpMiO1KaoV77+tXi Gi84UmdIWdvYDFpr1a/5r3tBolLDg4K5Zrh8JfqhYI4nKNSLp6TQt0Dh60s7 OM96wrByxP6oMy0w7eHy8W6oB9g1MBr532yBG59+LAoxeQCrik2+25MWgNvS v8kff0Bq4zDrxy8tMJZZbc208B2U7iq/tCK0wAEnub0FOt9hvCmr+klhCxwv Pktxt84dHO7xnHrUtxXnJfpzgTtwtLjbKZFbIJ+LbDr10A3SVdfbZNhbIYho GCN0xRXutOoLi15uBU7W112/jn2D6ft1X0+rt4Ir4YlDyq6v4EgUG2Z/1Qr9 5v2KpEln4FInAKNXK2Sv/MEJohNkt9H77kpqhZ2BDUNzZY6gqvFm/l9dK+xm 5eZ6nfMFZtsHb05Mt8KvHT5r/amfwfnBbUI3LRFWBWYfWaR8Ap7OjM3600Rg 73y/HJ7hAHkPudWK5YjApDTFlFL4ETS6XP+mGxDhbt7Q2Y5Ge1h8tEod40CE Y+zRNXfGP4Brt67e7xAi6PTdc7tF9QF4tWpyfuQRYePansdLp+2gqOci8+du IvDKa2q2/XkHmtqhZq83iBA9p84dQGcLK710FSZbddV3jD2n+e4t/NCxPqF9 sQ3cBo1YREmvQaC/30ZFtQ3qbUoecDhbQ8njWy3XXraBU9xp9qsnX4H2QNp/ Yj+26jKPtAWnGkvY0OVyOpPQBmOqL/SbP70E78Gv/Zw1bXAmvW+d6qYFCOn/ u8w02Qa96YezW9jNoWJIx4uKuh2u3F9hEdo0Az2Dqum1U+3AWJSqeohoCpvD F+Smr7bDXGuN6nj1M/AxDA7u022HGbXAx0pdxiAySrPe9KEd6C9+n4jZ/RRq jKzulv1uBy9hqwMPrhmB0VhvbFbOVl6Uhjo20AAon96kiu9oh3e0bM+n6PTB fzxFO2S1HTjD8Zu2hy5cMObM9GLuAL6+rxFXBR9Dw4TzQafzHWBW5XOY2KUN JiZLJjYqHXDIl7onSFoL9kxplZi+6ABVySyWypmHEPSs4piu21ad+39ds/9v vO0htj3EtofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0Pse0h tj3EtofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0Pse0htj3E tofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0P8f+Nh/gfn4nG iQ== "], {{{}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJxF1kO0GAgSBdAf27Zt2+jYSce2bdtJJ+mObXds27Zt23Mzs5jFPW9VtapT VYkatqvUNnBAQEAgIgb5f0YgPOEISxhCE4qQhCA4wQhKEAL/rieAX5r+5Aff +cZXvvCZT3zkA+95x1ve8JpXvOQFz3nGU57wmEc85AH3ucdd7nCbW9zkBte5 xlWucJlLXOQC5znHWc5wmlOc5ATHOcZRjnCYQxzkAPvZx172sJtd7GQH29nG VrawmU1sZAPrWcda1vAvq1nFSlawnGUsZQmLWcRCFjCfecxlDrOZxUxmMJ1p TGUKk/mHv5nERCbwF+MZx1jGMJpRjGQEwxnGUIYwmEEMZAD96Udf+tCbXvSk B93pRle60JlOdKQD7WnH78FsQ2ta0ZIWNKcZTWlCYxrRkAbUpx51qUNtalGT GlTnT6pRlSpUphIVqUB5ylGWMpSmFCUpwR8UpxhFKUJhClGQAuQnH3nJQ25y kZMcZCcbWclCZjKRkQykJx1pSUNqUpGSFCQnGUlJQmISkZAExCcecYlDbGIR kxhEJxpRiUJkIhGRCIQnHGEJQ2hCEZIQBCcYQQlCYAIRwC+L5Cc/+M43vvKF z3ziIx94zzve8obXvOIlL3jOM57yhMc84iEPuM897nKH29ziJje4zjWucoXL XOIiFzjPOc5yhtOc4iQnOM4xjnKEwxziIAfYzz72sofd7GInO9jONrayhc1s YiMbWM861rKGf1nNKlayguUsYylLWMwiFrKA+cxjLnOYzSxmMoPpTGMqU5jM P/zNJCYygb8YzzjGMobRjGIkIxjOMIYyhMEMYiAD6E8/+tKH3vSiJz3oTje6 0oXOdKIjHWhPO9rShta0oiUtaE4zmtKExjSiIQ2oTz3qUofa1KImNajOn1Sj KlWoTCUqUoHylKMsZShNKUpSgj8oTjGKUoTCFKIgBchPPvKSh9zkIic5yE42 spKFzGQiIxlITzrSkobUpCIlKUhOMpKShMQkIiEJiE884hKH2MQiJjGITjSi EoXIRCIiEQhPOMIShtCEIiQhCE4wghKEwAQK9L9n4pf4yQ++842vfOEzn/jI B97zjre84TWveMkLnvOMpzzhMY94yAPuc4+73OE2t7jJDa5zjatc4TKXuMgF znOOs5zhNKc4yQmOc4yjHOEwhzjIAfazj73sYTe72MkOtrONrWxhM5vYyAbW s461rOFfVrOKlaxgOctYyhIWs4iFLGA+85jLHGYzi5nMYDrTmMoUJvMPfzOJ iUzgL8YzjrGMYTSjGMkIhjOMoQxhMIMYyAD604++9KE3vehJD7rTja50oTOd 6EgH2tOOtrShNa1oSQua04ymNKExjWhIA+pTj7rUoTa1qEkNqvMn1ahKFSpT iYpUoDzlKEsZSlOKkpTgD4pTjKIUoTCFKEgB8pOPvOQhN7nISQ6yk42sZCEz mchIBtKTjrSkITWpSEkKkpOMpCQhMYlISALiE4+4xCE2sYhJDKITjahEITKR iEgEwhOOsIQhNKEISQiCE4ygAf99+X+f/YD/AG3IhBM= "]]]}, {}, {}}, {{}, {}, {RGBColor[0.6, 0.24, 0.4428931686004542], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl10O0GIYSANAX21Zj204a27ZtWw3a2LZt27Zt29a/OX9xz8xqdqOEDdtV bBsoICAgUpCAgD8xMNKAoAQjOCEISShCE4awhCM8EYj4pwaRiUJUohGdGMQk FrGJQ1zi8RfxSUBCEpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFO cpGbPOQlH/n5mwIUpBCFKUJRilGcEpSkFKUpQ1nKUZ4KVKQSlalCVapRnRrU pBa1qUNd6lGfBjSkEY1pQlOa0ZwWtKQVrWlDW9rRng50pBOd6UJXutGdHvSk F73pQ1/60Z8B/MNABjGYIfzLfwxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrT mcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZ wU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nB TW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFP fvGbP80fiMAEISjBCE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jEIS7x +Iv4JCAhiUhMEpKSjOSkICWpSE0a0pKO9GQgI5nITBayko3s5CAnuchNHvKS j/z8TQEKUojCFKEoxShOCUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu 9ahPAxrSiMY0oSnNaE4LWtKK1rThz/BuR3s60JFOdKYLXelGd3rQk170pg99 6Ud/BvAPAxnEYIbwL/8xlGEMZwQjGcVoxjCWcYxnAhOZxGSmMJVpTGcGM5nF bOYwl3nMZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nEZrawlW1sZwc72cVu 9rCXfeznAAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRlrnCVa1znBje5xW3u cJd73OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+8JVvfOcHP/nFb/4s /kAEJghBCUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xicdfxCcB CUlEYpKQlGQkJwUpSUVq0pCWdKQnAxnJRGaykJVsZCcHOclFbvKQl3zk528K UJBCFKYIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQ kEY0pglNaUZzWtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BvAP AxnEYIbwL/8xlGEMZwQjGcVoxjCWcYxnAhOZxGSmMJVpTGcGM5nFbOYwl3nM ZwELWcRilrCUZSxnBStZxWrWsJZ1rGcDG9nEZrawlW1sZwc72cVu9rCXfezn AAc5xGGOcJRjHOcEJznFac5wlnOc5wIXucRlrnCVa1znBje5xW3ucJd73OcB D3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+8JVvfOcHP/nFb/4c/YEITBCC EozghCAkoQhNGMISjvBEIGKQ//8Q/wPvaoQm "]]}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{-1.04, 0}, BaseStyle->14, Frame->True, FrameLabel->{{None, None}, { FormBox["\"Error (eV)\"", TraditionalForm], None}}, FrameStyle->Directive[ Thickness[Large], 20, GrayLevel[0]], FrameTicks->{{None, None}, {Automatic, Automatic}}, GridLines->{{0}, {0}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->300, LabelStyle->{FontFamily -> "Times"}, PlotLabel->FormBox[ StyleBox[ "\"CASPT2(NOIPEA) MAE: 0.27 eV\"", 20, StripOnInput -> False], TraditionalForm], PlotRange->{{-1, 1}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {None, Scaled[0.05]}}, Ticks->{Automatic, Automatic}]}, { GraphicsBox[{{ {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.511], Thickness[ Small]}], {}, {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.511], Thickness[ Small]}], {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{-0.3, 0}, {-0.25, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{-0.15, 0}, {-0.1, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{-0.1, 0}, {-0.05, 0.5283018867924528}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{-0.05, 0}, {0., 2.2641509433962264}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0., 0}, {0.05, 4.150943396226415}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.05, 0}, {0.1, 4.90566037735849}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.1, 0}, {0.15, 3.018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.15, 0}, {0.2, 1.5849056603773586}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.2, 0}, {0.25, 1.1320754716981132}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.25, 0}, {0.3, 0.6037735849056604}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.3, 0}, {0.35, 0.37735849056603776}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.35, 0}, {0.4, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.4, 0}, {0.45, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.45, 0}, {0.5, 0.22641509433962265}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.5, 0}, {0.55, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.65, 0}, {0.7, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.5], RectangleBox[{0.9, 0}, {0.95, 0.07547169811320754}, RoundingRadius-> 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJzt2/c/1f8fP36yy06RFEmFVBoa1u1UFC+SMlJSmihlpIwSiUgKGdlERvbK ztPKHsfee+89ivT1vXh/v5fL50/4XC6ev5xzv5xzHus8n4/H/f7Ddc9dg6sP NlFQUDyko6D4f1/Xryni/3tnWzl3Tkag8f+PL59nSYhgbCS4K94Znk0+h51p QrxM8w2E5lRcdS3DBQyIyHw0am8gBhOvB1f2yiPx663l+l8NRGG+kMfCVSVY bjfXE49tIJYWqLLzkq9A7oNbY4BnAzGqzLXli78qOChiZamsGojdRLD4x4lr 6DQpTtLRaSCsl4IYZxI1ETXcs6f8cgNx+DCHUd7Cbby49ddZ9HQDkXgscfXy vbs4V8u56s7XQCjey7Do4nwAJrlj+r/pG4hyCtmCcV5dNGUptmhN1xO8l80X 7Wwe49tRHbm85nqio2WXW8sFAxiEvUnZn1dP/DoUR8eZYQSJnX4CHyLridp6 3yud9CagdUn5PPm5nmD8+Wn3NbcXqKGuplB9WU8YuM92z940h7/56NO0e/WE YodPL4XeK+hO0LTzKNYT9/6jeuKcYYUT9/gU3pyoJ8Jrv/8+FvkG/xrF0/t5 6gnqObbTpn5vUaaoduA/mnpCwa6Nnf2HHTxzDTxix+uI7vFix5w5e9w96Ui1 taGOcLHpzJrXdMShqG9Gptl1REsMR0X1iBOWeInO1rA6gvsy/5EdX51R4N58 ieRcRzBOaZC2wxXODHOZ30zriFWzIXfrnM/QfM0szKBdR4SJJ71iUnXH/llB rydydcToGX3z/CUPzOicp60RrSOSaThzHsd8wc82LZOTO+qIRjkVHldDbzhc MevxoawjzH5aJFmRfKFa+Fn533AtEdu+OUN2pz94JWKy79XUEkLbqIR/rAZg NK5IpDijlnh9Q+zccZMgpAj0+IiE1BInIz2udDz6ChvvFXrXD7WEROuLirk7 wbjEzGk6/6yW8BzUUflzLQRcb4/2X79ZS0QFdjhoK3xD36KCSrZMLdEp6ETz QTwUcfoPc/kP1RIy/aLhtXvD8LLb+oj9tlpiPHcEzjThuKDu6z/6t4ZIP67+ kb0jHOxlP7YoD9QQFZve3U+NikA7yObJlTUE3/m+lW7974hIHhnkSq0hFgdd ztHyRcJEiEbdMrCGOKLQyBmTHwkE8BZ029cQzuMD+ubqUdi8VfzYBcMa4qq2 wLZDjVFosFcNitSoIYbTBM/FyEQjeOUpM8vZGkKeu/MjbUA0nhi9f/VMqIbw y+C2MuyJxumBkJFGthoi4YjxC2W2GFBrZmtI/qkmWDdzzUkIx6CqqqkwqKea mPPKEP4jEgMfmdkTNGXVRKIKZ6Ptjhg8TGcK0UuqJnz8Sq7RT0Xj2GFBtkrf aoJZoYG6Nz4af4PPWR2zrSZ2WBqXhtyMRjGn1rinfjVh/USPmX4uCu5OpprL qtXEZ5bTo0umUbhN+bnktlQ14ceqVWU/HAnhF9GnCvZVEx0P7n4ekY/Ewkhh qCBzNVF1MXWrqc935N3u3vpxgUzMb7YyD2iLwMe65TfTHWRimn9x/xBbBDTk t0+pFZGJtL6/NmMS4RDIFr2VEUcm6kdcwy/fDMPkMYXy3V5kglGnmT3LJBQZ 4Q/E31qTib1FOkbt777hHY91xKAumbhzZoeXpnsIrrr6bFe8QiYuTFLn1QcE YxftD9v4M2TCWK9EoCP8K4YsqmY4+MnE1rJXEpQJQUieHNY230wmhs8b1mmZ BmK1mD4gs7+KwJl/v6Q++8MjUcrCNqWKoHn9fbfED1+I+BmrX7KvInR17pxy 7/FGvl34se0aVUQB32NxRR4v3DBoY+4UrCLUKo0vCt33xJQG22j470riUsvl r0mZ7rA/d6HIsLSSyPBubxITcMNukZchZ3wriQkdi76fAa74sS3eapN+JcHL 7s3KK+ICxX99mmWSlYQLR9nDYe+P6B3acdqdqZIYUQ/kVKD6AIsaJQ6tjgoi hkh6WOXuANast1P74ioIw52OWx2V3iE8NK18wqqCsLy3l5okagtp5/GIVOUK YrPyK2OjMzaoN+O3s95TQYg/Pfzmvp419O9euyM/U06IKW/Zpf3aElSKTlLs +eVE+1mx8x+fWcBHLHdHq1s5UXdWLWRTvClEeRfmQ+6XE9JPpkN8jj5HEf3B Gn2xcuLFhNBizLwxbs3cjhWjLSdOrxxm9v9tiPlWd8fVhjJiiVtMO/rFUzj9 KnlYFF5GXGocL3Yzeoy9cavnXMzKCNUQjtlbXbrI8DrOe12+jIhV/BRyKOch lG10l/dwlxGNGs08n1geYPCxf+PISCnxVzkksLb8Hl6r1SQlZZYST5vU38Yu 3sU20Lm8ciollpJipcJc7yJaUFJfVquU8OtZ1jvtfxfn2Y3kmA+XEhVP729W 2H0PzcuhAo2rJYShsYijLPd9GPa3UARVlRD1nVnjB7wegK6KpV03qIToCNFe CAzSQUCaTPpRoxJi8/DL8Z3SjyAWbO7x52wJsdhGk9by6gnKP8Qa5bOXEJfG aLVf/TDEvee9l5x6iwmP8LEvkozP8PsWl7BacjERb1toElr2HC5yl2h32xUT O6Qq6I6umuHAMZueAbViwi5mpJ4l9hWyd6Zmx+0vJvxCSrUcn1lDjWbMx2yx iOg4XeXN3mqDsQk+07PFRcSTPusoHXc7vG1SU9nsXURkJpktJYU5YEee45Fa vSJCxIjT0mKHE+KjiC1+4kVE+YfP3ybnnHHRY27w/pYiYoRRxUSe7zM6XgsV HGorJFYZbE9p2Ljjue6toIXoQiK7biqgUeALGK+6vSIsCwkt3lKriS0+CJEo 1nBQKiQWLu6US5Xwx5l9f09c4S0knPfRKu24GQQy8zE27qlfxMPAffKR54Kh s/RwvCfnF+FZRCIpqHzDardvSZTrL4I94PLeOOcweJSRQ03u/iKi8xg4NX9H QOQHjY3U8V+Ej7jVQIBrFPICxG/RUv8iXnJ6fXe+HovrDgbiVXUFxGSZqxDF 93hMGX3b7hVaQKhn11ZWSSXCQbN5RvtFAXHf8a7OqdEk7JZlrhK6WEBwXN9n fzzhB5IPn4+a4SwgCkIOeTo5p0KRy8w+cyifmN21263FLh09lDH3bNPzCYN/ n5neuWXCYrQblxzzCYVNSlVFqT/BWr+dZ7tmPsEz3JlGniYQlq2w1HEwn0j/ tWP3br5cSEdY14Wv5BHbeD2kh5XzUOf6I96wIo/wrcrP+uSYD/2XI05nAvII o89LTGfLC7DpAa/eJoM8YkVlPIB3WyF8lFRly5BHaNE9+Sx1vwiip9/vcWfN IxrMJTVT0opRuCf7783uXOKPZKvVY7ZS3Noy27wvMZf4GeFxVu9JGebmDqRM 2OQSdubJbLFl5XDquPk5VSWXOCrv8U7yYCX4i12fWgvkEmUs7Ja8H6qQkVD4 n/x8DlHC66dw6jkZyr7L+9kLc4haCUEZEYFqDNiKUrV65hBDf4w7aWqq8frp g84QnRzi79HDw4ava8Ch4ZOpfzqH+PSmP0FAqBbRZ6u+iDHkEL3S1r6D1bWw VacfWkkiiP1+erouZnVIFjIO+qRGEBVxuXn0u+rRtdKqwbeYTbTwClKrEvVg JMuyJXplE6PBrMVPbjdAMiSu5Lx4NnFa9JW/1d8G6L7YYVPf+pMwZwyf/end CC/5t+I6lj8JsXDGN4YnmlDAMz6ztPsn8Unidcd0RRPmJtWjHHOyiM3HFMIS HjaDLz/nHs/dLCJdfMXt5L9mKHoK88RSZRFqbELXl7+04JWeex1CM4mF6zf2 RxxtRYTkqlP1hUzCeuDlweHyVjSx6MreG8ogCt3TBEwftYG6t/rv3PsMwvCM aOu2Le04kSKR8u5gBvFnp+UWz7h2aL8PfcpVkU6EXf5pUKPRAaebLAcin6YT NcnG+z3pOpF1xLxTgjWdKOaheV+a1YmhTb1fKhLSiAvfhFq/S3aBq0FR+bZK GtFykbNvS2AXZL6n0E/PpRI3S67/XKXphskrvlwbz1SijDeRYtGoG0GXHc05 TqcSx26/ntHp7UY5/9zRsOYUQhA6h3/e6MHKvNbIqZcphMQ2K33dph4IlhQF l/CkELIFLIcbbvZCw++opmb2D+Ife7iw4VAvbA18t47f/kEwP1oa93vZh+Rz NOWvKX8QVZEZQ7nb+9G1zcCWNSSZiPNm8pHO6AfjcJNksEwywW0Wqan7cACS Wefmjw8kEd9E24W9dw5C1zk65pd9EtHe797K3zIIr7vbH14TSiJCbbOErwYP oUDMevdwaSLxydDyyVOTYUzRjzRY6CcS6Zp7vmUqj4CvTcWZkTmRSNzXlWRy ahSKcT8vBsQlEHMqXS2lgmN4ZXOAQvRKAmHGrHlsUmAcEWquabkz8cTHref3 M4hMoElw2VDFPZ4ok5xOPi09CeqV+0L9YvHErrqjjGWHpqAd4J8/HhtHfJ+a bOLOm0KOjNEJtplY4kDnrA7zzWlwjcqEnhCLJZ5FnJoIXp6GmSvXdg2zGOJL pqFBfdAMyKfG3r3MjCYUry2G+CnMQrSDWAxYjSJaNotljCzPwsHWTTfvbBRx 4L2SakzCHLqEdZr7bSOJ8QCOpUr9eZCqxf9jKP5OMPmqHzp+aAFepsyZIlu+ EykZSlfSZxawtKvnoLJSBOGiNe0u/XMRygU//J65hhMnBMLlfZ2WEP/oPdOX ujDilxbX1m/av0HPpvU6gzOMqHnndUz4zB9op4pOtt8IJUqPjG9Z3baMHC1q bcqAbwTlabrxoYVlcFE3kQW6Q4iYVarDSa0rMIuMOisnEEK4WyjJ7Sv4C7Ky VeJjnWBChlGOgSZ+FaKLV/c6R34lHodP7OAM/AcH//3uieNBBNUJmlhnOQpS 1/k/1A2iQYQT39XP03kUJOs639GZwQCCfXvVL1dpSpLonvMVZ576E3h3te1K JiVp6slIrPWcLxG95/k2jjObSEEZri5FFj4EVZe8bUbqJpI23RljZkpv4vtW MfMDp6hIrKpdKmr2X4ifli+tpVKpSDlB9mJ+TJ4El4o5V9cpapL1+GHOXjd3 Qt9oeN902lqKJN6wJMTtRrCOq/upiNOQpt5ZthgGuRL1xc+sRzJpSEG1Almp +10Ipjvbr3tJ0ZJySF4Sf69/JPJnt5FA0JL4WgZWHR86Eks2dCk5JDqS9TOx PK5n9sTzoMoLq7l0JAomW7swK1siKanNp+EcPUk7rEbuhNMb4vEThm+C+fSk HKtzXLZHLQkBBiPumnMMJOvEzoDA/0yJqBIV6bhcBhKp/9W+zHtGRMkFimUf bCZZi57QiPn9kJgQTR14mrWZRCHSXlp8TZ2QfnBhier0FhKFdVekqyQHhCKO q4kmrsVSZyg0OzUQmth7r1SYkWR9usf4hZQuZn84uoZ/XYuHaxMDaYxx8svR 737bmUg5KSdFbMdMMfThpvTr92vxW+9Q3VpLpM2+pt/zh4lkLfjaeX/7G2gV 7uTW1GUmUTgfKfci22IyW/gGZR0zKWi+i35LgT1ecYQnjkqykPhufpa1THXE QHdj+GwwCykn77zNZORHFF+YDf2ziZUU727RKXrZBQG/78gNHmMlTV2s/Ttc 7Aru2Oq7ondYSaTlgzwh59zw88ZMWvFHVpJ1rK34zSx3jC4FJYWksZLId9o1 tp30RFZ/UVRqNyuJddtJ08q4L8h4+TtmhZ6NpF38ycNeyBvVzDW/9A+zkeJf DiaRQnygPidAQX2VjTR1mFTzm8cPQ16Dt3KesZFIPV5TiZ7+kNM06Pnqxkay 9phm1mcNRFJL4+T3BDaSrkCoJ7tsEDYxu9W0VrCR6F9X75uk/AonuUu8kkNr 7Tf+TS7L/orSbTXuZAp2ksZRYZmIl8HQaJ5vD+RkJy05qtfang6B1TZl1QQR dlJQn83dO/MhSC52GWIksZNI0nHTUolrde3WSuaMK+ykoS+t1twGoejwkPua c4ed5DBNx7p4MAxFzEVUgobsJFGFE4G1Q2EI+GM6vfCKndT0TftwfGg4GJoE jh53YCeZrTr9dLobgSDeOs9uV3YSn0a6oh7vd9D4NnTQ+LCTchL6W2XbvuMR 1V/m4CB2ku4W9sf83pGI+M+OLzWUnUT/QPrPqloU2OZ2Bcl8ZyfFZz9638oe jZRLet5yUWvz4/rClVYVjb542wBiLV4yyg93d4rBOet/TKGRa/MrmzxpJB8L 54Zo4dnwtfnt4ym8RBuH/7zveweHrM3vtZyacH4c3qToZUb5s5Nk9MWNqUjx oEn6y07ryU7i8ianGwXE42VXQEKEEztp7NdDyq6VeNCd133h+IadlDWzIqek mYAjc9OawSbsJBdeN5es9ASUpfxMGHzATtJWFGoS5koE5T0Djqtq7KQT5gSv 94tEeD1qPNxybm1+YWo6dPWJePzh0bj54bX1qxmNfX48CQeHRK6KcLGTov+9 Weh1TQLrH7G28X9spFciXNJXp5Ige/ZZT1Y/G0n5eqxdjlIypKlpP3mXsJH4 3slUHI5JhnyER5ZdFBtpLrGFw3/LD3Bt0Qm0+8BGKu40vLnl0Q88lJHtCNRj I3kx0n0zL/6B1q1qM22ybCT9M/6jg/tTcC0g3OkiHxtJ8uHx4+p2KXgb+iNg bGnt/nYrsSjoTcF1zymR1ipWUhdxO+/YuVT8Eeo+IhC69jyNzTN8DUqF4ztX mxYzVpLDDqcrLP9S0ZRzYZZdgZWkcYHf21IrDTP7tcJ6d7KSBJ+ldY1mpkE6 NVOtuIGFRBGkJHiDOx1DSULlN56xkMjlfQbFZun4+Lh4NYGJhRT02yL1ZGM6 cneb3N0Uxkwy3M/275tYBggri4Q3kswkOZXwC1vdM+DVtXRep5qJxGUt9enN TAaWfT1Eh+8zkYaia+snlTNxTkHMRWqRkZTTrLfrVlwm1C8kTnk7MJJcaCke lDNloZvWyu7YDkaS9nHPaHH9LDh/b/pz5vsW0mltkbmI0iwor/Jbdq3td/Qf 8yQ4hX5C/vw1hmvFm0lN6Rpv7ex/wiLOTqLk2mZSxMBE6Wz/TxgYn5G6M7i2 v261Y78rkw2DAN6+C6YMJGXSzhvk4GzY3+rlDaRjIPE9SfgqTUnghxD/BScv etKS98Xh6NsELrDEahwSpicVF7aL7swmIBIu+vVrFh2p/PeZLBnmHEisDtdu UqYjnWCl6XoplQPu3pV3en20pKD9ZKok/Rww77p4acyclkQv5XtgxDcHShaq EYGstCRDlYcKe8pyQMx/euYZQUNq0ztqoPEnB1x68nXdZ2lIMtYrn52FclFx JaHqcxs1KdqzKKVQIxdxtI3saWbUJI6Yzy1/7XPR9LNl8fb2tfMtX2v1RGou VpN77nr9oCINNQvy6w/kopnN/MZTdSqS8tSsbMi2POwzuhAwsbSJlEVL6LXI 5EH0gajAPv9NJIFdjh/ZTPIwpDsTwHd+E8npuFqCXEgeRHaOUoyNUJLm5Pnq rWrysCOtzMLNnZKkrT26lEKZj6hPGuJ7SZSk4hcpPBOi+QiRNEgMG6cgiX58 Q9qnnQ+aL98XBf0pSH4hivdvOudDtNvldLISBYk6g9PBLTsfj3JrNqltoiDp k3uiSsfzoUhwju4z/Ie6gZgqyl0FoKzjtB/rXAXpr9nsacUCyMTKzW5RXUXE VhlOw5cFkKTq7/1U/heswiwS4ZEF+O3wwPqV/F+8IrXc6mguwK6Hz+SaSlfQ px5qs43hF64/5TQJU16B4hPDMMXTvzA8QaPQ1bKM5LcSpW91fqHfVt3RUm8Z fD60Exmev1BP2hNmtPIHDvHVbDO/fuHNiYCJSLc/mCr0ExOa/4VdwX//sh/5 g5vtOte1BQqRkrJL07nyNwpmj1l+USnEjVK+JCrj3xDZvBpUaVMIuunFqwo7 fsOdr6SAJrEQI2ZHP6JgCRSn3IckuwtRQBVqlGK8BN1LtxlNWIvgEH5AzUZg CeR7wqJRKIKCWuxL4+ZFSFrMq/Q8LcLZffR71FwX8c0lx3RHQBEC2d4tLyks gjH8g69yRRFMC63z9zMswuSnOmG/UoTGY7fiIooX0FW7pzf7YDHCeqIl5R0X IDcyRrtwoxgn2PhKqy8tIJ4iTfiQYzEsIvtSGLcugIfzrdL99GKUhM9WFDbP w/aQkrHvUDHadJaUqr7OY+z8Ds8azhI4aIkPzT6ah+qNvnSGiyWQX/24k1Zs HjmGce2kFyVA9h2qln9zELS3oDQLLcGOzdEBsmVzcPGX3RdXV4K5Vopwvi9z WElilR+gKsXlq4xDcvfmcL+0VX/X8VL0EQ9OBB6ZQ3lXmIvq3VJ8buZgplqZ xYlFo+QPrqUYEP4jc714FkFMUk15OaV4v9Ts/t59FvQC9Cu/J0thqGPl+1p7 FobitbxHecvgZGibJiAyizblgPO6SmW4KMno+WRxBjI6ejqBlmXQYz5apZg3 g2jLEx8aosvAIaYZm+I0Aw73f7FMbWV4Z/yfXIj6DKwjS2tktpTj3q96MPHN YCjHY+GleDk8jmWxTQ9NQ7lRmztJrxyvvGK1FBOmkTV+UHrEqxyH9N2Y9ppP Q4B68c6e4nK4ZzusmJGm4cSdZ6exWI6vO5OPXaWbxpzox+/O+ytgv6vgcErF Wn1yUaOiUK0Ccb1RSrFuUyjW2jv917YC9CfzU2WvT0HUZIJDLLkCUiSmMvvd U/BzTD+t31uBpttmeZuL1uqdr7Y3Q9gr4b33lryf8iT0Uy9bt5ytxGRF0eO+ 5gnUVXB/YzOqhD/9mXi6exMg9fUXyQVVosaM315kbK2e+hM/alVViTvuzWMW z8fByvaKJXW1Eh3hdRk7/q3VXwcuHp84VIXZLx/oT70fQ58U+7V9WlXYak25 d2XrGBRV2y1uOlWhak5s1jVwFMmPIgLcMqvA5ehHzy8yCr43z/JKR6qwufTV XF36CAoUeGcpmMhIco7vrJYbwVIDtZ2fABmFdiPfJZqHcfjuyPbTkmTovw/Q EH88jLvjVRG1KmR0eWrTja8OwdPsh7jBYzIueTPHG7oPoZzKt3zzWzIGBaLE ug4OgcLZ+laYDxlignslVH4N4gT3w6mziWTQW2WttGuv1auhCjbtJWSEKUud cF4dQIDoUQ7zbjJsvN/tNwsYQE3m9jCO32SUce3KDiINgPbiyql41mponxNy Ye7vh2RNd4mCYDXIvxfOFXzoh6FWkeYgqkHzjXZP7ol+fBuKHre5Vo25WQoJ yq4+ND37bLXboBrKYpcYX37sA/M/U7aMd9UgdZz7KyTVh3OOWiFqAdXQ6+Zp WJ3oxYtt58Wmf1SDOiCYfiS4F9FBgkVOFdU4T1683KLRi66DzNcF+6uxz/56 ZiZrLzhSZ0fyV6rB0x1yway0B3Lnml/d5qhBWNKn8nm7HryuyGZePliDxa+7 8/nO9yBR41uQ5/kavKhq/dNC2YOB3vfHjmnWoNNnN5kurxs8BgYFFcY1cOhq o3V82w3lP6rqeo418PivcfHshW7Y2okPUQfXgLG+iJNlczfSWPksgtJrcFd6 S3ZVZRcmfGkYJatrkBry3eWeexf4D4z6Nw7VwEbbKjLsRhfUE8lHnlHUgqHS 3uf5ni44SaXkMnPVQqVkOuV6dSdyin1VIo/UQunKhX+XtTsxp/KmX/ZiLRoW frvbTXZAsPOhafetWiiMjxHxrztw65Eig+WLWgzaHH7sytSBz/NHfbk+1SLG 1HSkw7cdhdach5JDa7Fiv71IXagdK1v+Zl/+WYs3h3pep/9og+iXHuXRulo4 mCSfKCO14T5/cc+7sVoE72thVy1thVdMjAk/dR1+/FQF39VWVJ52o83eWYde 5/qLdE0t2FRg5nX9eB24T93e26XZgpOXbwnP/1eH5w6Jzh/am6Hfcj7L5W4d 9pGe9E/fbEbQAyElEYs6KPEp+1G1NKFuirmryLUO187/WkxTbQL9qzmje9/r MDPLpcNe0Qhpuhaqfzl10Dk4q7nnfCOMPxMePk11eB9GeXAhpQHhu0IPnJyq A8Eh1Bkr2IDWCMf0arp6bFPZVfbMqx6sJwwVnvDWo/rkrJkJbT1kCLV2+lP1 2KWY9WbEuA7m/0kYfFOqx5M8XOLqWFu3ej5K0sN6sH/2PKMoV4sebVq3Vst6 LMY/+9uQUAPOsVEBU496PNoXw751Zw0UTKtT2GPq0VXckHXHthrWm1LlYgvq sSqTri08QUbyR78W+ba19hzfVDVpkDHMZaPfP1uPitMDvD/fV2HXN51V6y0N kHj886Heg0pcPXLJhWdvA47b+WV/lV3bJzOO8aeJNyDPegtZ82A5MmW5klWu NsDspu/Oz5xlmCL/lZ3Ua0CHytgJiS2lELjZ2+j4pgGaz9/RXKErwfXBYr39 3mvrJJHCXMZYjE/Gscu58Q2IOSU56c9ThLy/bh+1ihuwxWNv1Y9ThVh0MOf9 3dkAfzfDnKVbv3CQ43aC+2IDgudP5sm6FUA7UOa8KEsj+mh/XX1cnw93YeH6 sv2N8Ozg7hfZn4+SHyw6OtKNoL52KETmXR5WSfNLm9QbURDMseP2Qi6Olbc4 BjxpBM/zx/JbTHOhcy2HR9yuEUqKnIOl9Lnw7QmNrfdrhOmTP59ZonNAfvKB ZJTciK2ved0E7uSA+rdhDWN5IwJY/nbIC+bgjK36/YjeRki+ffruG2UOnrJI LpxfbsTNtO8vX7UQCPbZ49DJ3gTFbR+/UDYQaNxHx/1SuAmqxhyjz+cJbEkY i9p+rgl0YU+DdvHkgCRZI5V4vQlRugeuZyrlwKQoteqSUROKeDZp0X7Owfer /neGHZpQ8fllsXp/DjrabWZtg5rwoa/+QP/FXLDr6drxpTUhdWcyS2laLi7O XeLMqmrC0jf1K9Sn8vDS6vj3a4NN4BR33W6em4f4zTskZlebsCw5c3BaPR99 Hqvln7Y3o0Hk00X+hXzs2NN3S/hwM8rC+bvj/AugFF0y9Uu2GU5D+30OKv6C zak4mztazdAMYxPeQVGI1Dx3jr8mzVgyuVYzm1qI0UsWYV5OzWBJPGx71LgI fM23T5/41oxSGT6Wi4eKoXpftrQqsxkis78uRw4W4/2k8M3Htc2Qr3/xoyOw BNkWrBO0o83Y56zkbaBaihmaBavgTS2g4eyfXqQqwwHXVjZp7haIomlGMKYM mjy5Ic1HW3CBT6a8XKkcLuFhYs/lW3CJ+v3H0sFyFBxzKmK904IUF8mbB0wr 8Pun0fVosxaM6FJlsK9U4LD8tdGLLi0Iv9X1r+15Je7WSVr2hrdAib+S519v Jb7c5mexIlqwyEFzf9eFKpSN0H3lbmxBd0GxHZ1fFShejB9LmWiBxHEr1vT+ KpygrC24QtsKzf4U2mg2MvSc0tTHd7XCO5wjwk+YjADOgCEHsVY8fy8/PypF Rk3wWwuBS63w9FD9MKpABt1hPcac+62QkTld80+VDIl0pQDNV63Y2n5QIuA6 GYYyJ0QX3VrRxlVmpnCDjG9VO/I+R7WCpsOL7HWNjOYb/1QO57fidgV9ksBV MpgH+vpLWloRdlZD1v0/Ms4ZlZo+mGnF8qeL+m5nyTBdiWOg3NyGs93KM9Wn yIiy9/D129OGRbPYUorDa3kA+8tDp8+04XkT6WXVWt7AEaBN1Cq34cmOmZoh HjLkhS5cMdBtQ3CjrMnsdjJeJx/s3WzdhnjFraWOW8lIBNvzsC9tYO2hqsNa PFi6QHsurg2Xr1Eaea59n0e9zau9cC1Wv6hFtZsM5e5cYfOONuxRYX89IkSG rX54FsdCG9oSLzb5ipORvuikFM/Ujqzcrn4NZTImbIy7FPa14zuvspT8Wp7C z6xhPCjZDukuC843H8i45i1F/Va1HZRO7sz/4slwEtjruVu/HdkZ+r1RrWTk xNELZrxtR7W23+cbW9byCPGJdLW1c6xy4j+64rU8Q6iwVmE6sR3eASm9AWbV uHUlvd2ptB33CXnxZ2t5w+e2AAPBnnbYa/0xKJqvRpGOLWXB73Z0kqXcGM/U YGVGz+02WweWuNUmQ17XQPT15X3Lgh3YlPCH3PWrBvcZxFI9SR04QClgupm5 Ft7u3PLHNDoQkM8gfEu9FpW8FK0VBh1IYBAzZguoxaaofn09+w4U6vfrqvbV 4tTJslXqwA7UBhRzqwrWQT833iUopQNqO+PmJfXqEKToyS9Z2YHp8x3cUmF1 qGt8mdzY3wGfFd/Adx11YLh358Kzvx0IF5ClUmWrh/TEhSbmbZ24ucvCYECq HsbmIo8iRTrxtTKf7cO9eoRTs6/IynRiCxe1rN+berQ5L37s1uyE9G4B07df 1s6/ne28ls864aBZ0JHxbe38C8tL4PrQiQor/uXKiHqYH404nxzcCefevc23 Q+oRm/Wx/nJGJ9Jk5Xbwu9ej5+IzndG1vMTc6kRSp0U9OGs1fr8b7oRy/VsT s2v12H8kUNaVogtnKn3P9AjVI2fOlfk2YxcYf6h2Cc7U4UaGbaMIVxfCrt2d fxJfhzkr06A/e7vAdtpq99D9OjjLPtIrPtKFszyPZHpY6iC0ReuYp0QX7uQX WGck1KKAfHn53sUu1LSU13X9V4tbnucKjqp0gXouLba+tQZLmmIf/93qgnGS mIzggxp83iOoXvGoC1KMrCUmg9UQGeTm9X3RBTFFu/d3763dD9FMQ7o2XZAX W5z82kzGHWOKhJOfuvDWt8tyZO15XDk1a07t0wXXp1lW0wZV8Pzbf64mtAuL /t0OXOcrIZrftCUooQtqj76cKWOtQKlDWd2Tn10QjOdtd2gpw32lbH+Jki6M /7M/U/a1FP+2JjxkqO9CiOyDnVS6JfBuDjnS2NWF28rH93kcXqtTAz2Xvo11 gZ3fd6RhoRCV99/nGi91wTLrzC3GvF/QFX7lSKLuxlBIpecD1wJsmnqqwsza DYYXdJMrD/Lh/+MOT9vObtR0P39TT8rDqZeq/d8PdMPbOpyihT8X1aSLsabH u2E80DLcypgDfVpxU1l0469Az+79/36CtlyEtFWhG9tNaSfEFzMR5MrL0K3e jU19Nbp/N2VA/Bp7TezdbvDvi+G+sDcN9Tw0vq+edmOwVuZ3pkYKDHoW7/1n 0Y22B+U2tSHJYIgYEeF6141tRdvtG6iT8O1J+3y/azfERfcm9b1MgPRxcnaS fzduXnr2fIE+Hk1LefZvvndDrZmpK+1aDIyzfyhf/tEN6jvyswHFkWCyjdix K7cblitbmivuRSBc3rdnpLwbCUGKq2KCYTjL8ikqrakb93nfHQzh+Ia2OmuT d33deP3pO/XPA8F44fNMSnWqG55K8Qort4PAqv2Qln+lGxzHndi/mPojct/1 qkm6Hkhvy3JneuYD2VEFr59be/DsQPiDkdgv6IyXvvOBtwfZ9N8uhxzwgPmL o8LXD/bAbZWmPKr5MzgkBWb3n+pBvVulnWmuC2IpObPmzvWA7HbUjDr1I+SK GOzylHrAIt/+MkbOET1OK5dcbvRgqX2cSvioPSyvTm6/9bAHnQ4gJvRswcnV 03nQuAfM2x/2xYy9QUJ7XcRvyx68EnmSl/XQCoohRUZF73twQUuE+63hSwzo Zoh7ePTAbtvwXOWoKawPx1Dd+9qDT5G7GO9XmoB7LrBcNKYHbE67HGKYjZGc /tljNa0HJ+3N46wuGuCyld2t8oIehLpHfkrY/BgjMmYHfMg9MFezFM26pgPb zY+ndNp6YClREfeD7z52k7XSxYZ60Kba+2BR4w7SPJRtqOZ6sCvxhtPbYS1c 1TyvUP2vBxEs9hWrddcxxneSI3BLLyKi5v9LuqMO+wHBdn3OXtjrSXG8sFIB f/TOMPG9vTDw4tumz3cFWUbMBvRHenEhx3z1tZES1E9Rnm4Q78XQ5rd/2C0V MLUyS/HtQi9qtRiszFXk4Zg3UGJ0tRcB8fan+IcuQsBh7U+51YusvMWCrqMX QVwq12R6tNa/a9NIsfBF3NhKCLQ+74X8bVshJvJFzDUljEe86cWXcr93nXvk 8SngW8qLj73AHxce1b0KELz/xUrGuxc5rZm/CpsuIU/IUY49tBfb4jadWQ5T xs3JV2xd8b0oKfq6TaDwKhaTDVpisnqxe9/7w87KavhscTfkZXEvzslaBwsp aUCEpKYvX9cLm3uOO5eKNFFIIyfG2dUL/ROlaVTFt6FdJr7aN9qLvI4FC0mR u2vDOFSUuNiL18fIL57n34e7Op+LNVUf2mmOyhjE6eAIz9brSix92OTyLCt9 4RFKu2n4eXb2wcshfgdf0FPcD18aGd7fh6wtLCry142wqj+alHqsD6rbJbSs fZ7B61jHKzvpPrzjj98avf0Fji2RZVX+6wNbRr+eUY0Zyn/mM+9R78NePm0m VfJL6LxNaZy40wcV+Ym4+1utsEn+e1DWkz5cXCl6ceryG/gx++k5mvehvJEp fvbMW5ys+3RMw64PVnuVXcb+swPZ+83yPtc+XP9Y+WrYxh6PbpsUzPr14aSk k8Kjnveg3qfzMTdirX1NVZoAPScEjlxXd07uw5bMCIobXM4Qj1fk1crpg8xU bT79ogvqnmNIuLwPivTOuwdNPuOpxLGEpca18dJLfGancQc95T6Lwt4+mGXx 0n4J80BwIed598k+fOw9b35L4wsknTYz3l3uwwGx0qBpLm80Xvlbd4SuH8aJ 5PcRAz4w5pzy/8veD19XSlZ/wg+M7T0Py3b3w/Gs3Z3orwEIC64/4i3cD4fE W4WSskEg6RYvPTzZj5e8fz+lSXxFy6HM3BPn+sHxamlg4Fgwns/GOG5S6kex /OKuy0IhYEkPUiFfX/v9iFbdg13fEPnajSfgQT+uG9iSXZhC1/LOd/2Pjfoh 7baddHApFB0M5rFnLPvh7LP7mmNrGMyqHpvSve8HjfcHiU0p4WD3uEWqd+/H GbYAoVG7CMTcuMIQEtQPKZ7AzDD577jIJ1NjGN2P04bxUqH/vqOn/6SvdFo/ 3i08mX8UFolXUUL3GQv6oWzmIuMhGYXtRjyHWqr64aRX/rEzJwrxJ1kWwlv7 4c5Tnn/gWDT+W6Ekng/2Y4f2nQ/GztHoz52zPz/bj5HYltaJxmhY2Q8qs/3r x9SuvM2/N8eA+1LLjs7NA0i25z++SzAGyewVPdHbB9DLFT/KdSQGSk1ElAX/ ABTuFZ1r443BkH+iidzhAZSFMiy//xO99tyESm0XH0DEJlU6UyIau4S8aPtk ByDAWSUnZBCN1AnHqoQrA1C8m+uhtjkaV5Mtvay0BkD59tPWdtcojJkb3rmk NwDde4XTJbRReId7wjufDyCq9dwXhUeR4KNRnx2yHkCo/opq4s/vyCiVy0px GsDPPw+TH236DjUXCTtbrwFkZuaaLZ2JwKTaYaWr3waQtbn08fSDcDju3MPJ Fz8AHolo5iX7MAh0b+0azxxA6e7uiylfQ5EdRvs9s2gAXy2G9jUlf4OG/m+j 97UDuFD/voI2PwQzR8fEr3UOYF7xbURvRTA+LnZQ7RsdQNHMnUGqxq848LO6 fGZhAHfNMh+OdQYhz6bAI2fTIJ5FmWzmqQvETbnUW5+YB9H4aXbYdtwfC0yR B25yD2LG4iKvG7MfXGr9poT2D4Jwenzv0xkfCHs7py8eHURARqzkW0Mv/Lpl Y/NLahD5Y9F1pB+euC3wXMFNfhCn376uu8bggT/DOhx31NbaV78szv3UDe5x N9oP3xmEZZsxp1+fKw4/vxS2oj8IzXA//h9PXFAsTjIoNRvE7XZNZlqOT7hL cfy0l+0gfg5xJzQ9+4C/v/ZRPnQZxN7sl7vllh3w5QNX6XG/QSQZJAzfiHyH Y1e2uFFGDGL54c3iHGtblG9f1axKGsRI+e93rZY2eNg2JeBPDCK0uA3FQdag CO4df1Q2iETrYsVqsiV8dBpSTjcOQprxgVlTmAXEDpVY0fYOIpfO2yMxxxRV M5lydRODYH/Asungzud4lBbLFvxnEL5xFUfbEo1B/fpriwHtEDZd9euUtjVE wHn3ECn2IZxfjqEw5HyC0wz2+lt2DyHWJDfvvw96qKk0F2sWGoKYTXpR9c2H eOKuvxomNgQW/Rb/Ptt7oLtxu8jk7BBOmvc9d17RRjDvVZdzl4aw5QWdxTEL LUj2y1xnvT4ENi2uw7utr6Mh8hR/x/0hRO16mO2zqgZDQ+HRKMMhhOx7ns44 chWbT+5KNn81hC/HorM+nlJG6DKL5UWHIZyJ2Vbam64A5G66sM19CLelS2rd vl5Ey7t55t7AIfCPJn0r4JCBieJQY3zUEBR2x+laU50FM3tr0OvUIVz5dTLQ IFsSEY0Veor5Qwhr+KugK3Ya5/xzjnFXDUH1yssUJtUTaL+btDzYMgSOq9Jn J6iPwlQwrODHwBAYd1qMpumJgH3C6+PbmSE8Uqg55RR6ANFJH9SvrA6BvSfl 7rbAvbhg/pqXd/MwDBNdWL5J8KFL2mhobNswlsObcj8VccOC+n5Cxp5htA8/ HVml2Y5tpeoWDoeGceMxObmPmR1xzvLn1c8MI+jxnavu75jwn5oko4DsMEzY mlz7WOnRx32kflp5GDWjdLKZn6jwumtPAHFzGFeOUqTeTfgnzRXGofNRdxgS ZNGmyz6/pRMf04lqmgyjZKdsCGfgnPSlo3+WBK2HYezk1X7NeUp6cGEsd+HD MJ52r5DzmkakbbI6HQu+DEPpceDdq+X90jw2NSqfQ4bht6IfnBXVLZ1y8ReP dtwwRJktmRh72qSVmdL6D2UOo9LYWzZ6qlF6pCYydrlwGL3qbtfVFeqk7bz8 TUtqhqHGGB33r6hamveWC+lLxzA6j9e+uShPls7Y+5bhwcgwRKilm1lfVkmr Dj+vObYwjGuNC7oXd5OlJ2J1fSk2jUC2uHjPqkG1tIOJ5v1KphFsSZLoRF6t NL+40iG/HSPoVbP5dEa0UfrnP9KC3r4R6IR+Tv3U3Sp97ddx4tTREfgrOJ8q o+mWnnHc70AjNYLuK69Ir3/3STsp77hSKzeCe9Zdcnm9w9L7tzNyf1Udwclm trZw8qR0Tutqz1PtESzw+dcmV89K3/g6HSWpP4Jy+gNu7wOWpOcf9plsNhvB eV326DTLVWlnkUapprcjmPrMV6BRuwlCMyW0Yc4jSPj31unmIToUpGZVPfMd wQOlzrRDzxhxyzLO62z4CH7p3pzI0WXD0rngOyxJI2i4ll55WHob3Og9hNuz R3CKjjRE1bQDhyrtZyNLR/DkikkP3XVeFLlZZJk1jEDojriR9xw/7lx/Yneh ZwRJA3wse1r3Y2W3thLHxAiaDG5WClkchGffVc6e3yNgoTzR/9VUFKKRsl1x NKMwpSu/MRxzHGUGp79bso2CTWn5WbzxKTwQO2issGsUGrunfy61SODfn10S O4RG4cM5O7rVigSfHFbqwROjaDq75fb2l+dx4h1VRTJpFLeO8OWSJy+gUmHB w0ZxFCqbx1jnxv6DLtvwLWWNUXyf9rUNensZVI2tB3bfX2vv88MnJ+9dhb9f 5dSowSgoRBueJd9Xw6m7uenpL0fRNslwlqlaAzUHkm3s7UdRpN6/mJ50E/rj YQpqbmvjC2TPMnTSBm2SN8fewFE4vOroCaW9hyAzp/apyFGE3/Z6Llj1ABLS VmHZKaNIeTv2qntMF/VUxgZOeaNI23dXf/ihPgxK7p++UTmKK7zHhyX4DbHZ +RqlYMsoyl0Cd+teMMY31f9K5/tHUeV44IBniAmkuaXc8qdH0U/BanNFyhRN nUduuv4dhROTUiQtpwWehfLvu80whlse0XvmjluC6fG2CZFtYzA7MiLyUcEa 4aL0qX/4xpAzknjVY48Nzi38sSoWGcPD5clE8V22aMscl/M8PYYr6QUtj9dO 9xdvutjuy4zBUV39cZ2DA1gv1rYcVR7D3lKD9trfjohiLAz5pzmGJefU1yaf P0K2Jk2/QmcMy5dz9I8KuaDzS5SY77MxNIQYthv7ucJCK2BV12oMHubC7x7z u4Fjr2vRyQ9jKJ1TalXKcEfs0FsX6i9jUDXWvsNxzxNysS+u1wSPodindf75 Ti/0PtPjD4pd6/9Vz+BEtzcsz9wcfZIxhoRn/vOZyb7g/KeULFE4BpoLI2hz 9UdiwVlLhpoxSLcsnN1qGghFxxMXGtvHwFPTNzIfH4SBywdYQofHsP/Ruhex 3sbdZDw/hvL/eZKdrYxfSZTj2C++7k1+BP3TY2YaB2Pxuke5/HDmWBvXOCh1 173KyMH+5e8C4/gwuu5ZbKcbC0xFx1HQv+5ddqeWfpSVHAeNwLqHSXv1U32r 3DgYGNe9jMq5eN5ulXHEy617mnG6kKHY2+Nr5/e6t7Gv8Eh49XgcpWzrHoff zcHiP9Nx/GZd9zpZGi/Pc70dh+/Tdc+jvvsp48CncRx4ve59pnq165N8xvFC cd0DffiuEvAmbByx/uteaJ/BBZ3LiePoU133RMSJM6K7ssdh6rPujW78Ofh7 pGQc0lvWPdIcsTsvrX4cEkfXvdInO7YP77rHUZS57pkEFahVVcfH8XrnunfK Z13k4f89jr0Z6x5Kq2G4f5J6AiF31r3Uom9b7E/WCfRPrHuqz3eqTD/wTOCj 4rq3EjmQR7ouOAHj4XWPVTiWzHDgxAQcZNa9lnZieM0cJpBDte65lk19fPMU JuB7Yt17eUh9vO9ybQJn89c92BEq60O37k1AemDdi5UWGy8cNJjAgNC6J7v/ 6QHx22IC4UHr3mxVRcOh6N0EbIfWPZrXDoUrHp8ncKZt3asd75TivhcwgX// 82wV30R7RSMn8Ehz3bvpPNobvfpjAm7b1z3cJtHtz8tzJyDSue7l/ObppX0q JuCUve7pTmYu0+o2r/X/37q3I1tPVIn1T2A33brHe3yh24tqegL2Eutej4ax 7k71ygTUJNY9X2B1oXAg/ST8zde9n/iX9Fl9jknk/88D1t2MzhLnm0Sv8roX fMofaEcvMonjseuekH7IVanh1CTGbNe9YUiMLee385M4MLHuEaWemXYZXZ7E 63frXrHx9KPv0JwEy/88o/HqTWMmnUncrFv3jowFlyVajScx+T8PGfb+HPX3 15MI/Z+XJF0Wq3jhOAktz3VP2coh6CnjOQnD/3nL5y3ct9mDJ/G+cd1jsgQx CXbFTILmyLrXjHxAMR2TPonp/3lOmYOz6S9/TaLx0rr37Jjqt5GvnsQI9boH NU9pUuBsXxvv/XUvuvVVGUf/0NrnR9Y9aczZ7PbEuUkUHln3pv/zsaD4P64N L7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vh ZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe8 7IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX 3fCyG152w8tueNkNL7vhZf/v9LL/D7bZK8Y= "], {{{}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" 1:eJwl12O3GIYSBdAb27Zt27Zt27Zt23bSOG1s204b207fzuuHvWZ+wKyZM4ka d6jcPnBAQEAg/ggSEPC73xzkv34TG9nAetaxljWsZhUrWcFylrGUJSxmEQtZ wHzmMZc5zGYWM5nBdKYxlSlMZhITmcB4xjGWMYxmFCMZwXCGMZQhDGYQAxlA f/rRlz70phc96UF3utGVLnSmEx3pQHva0ZY2tKYVLWlBc5rRlCY0phENaUB9 6lGXOtSmFjWpQXWqUZUqVKYSFalAecpRljKUphQlKUFxilGUIhSmEAUpQH7y kZc85CYXOclBdrKRlSxkJhMZyUB60pGWNKQmFSlJQXKSkZQkJCYRCUlAfOIR lzjEJhYxiUF0ohGVKEQmEhGJQHjCEZYwhCYUIQlBcIIRlCAEJhAB/Guof/GT H3znG1/5wmc+8ZEPvOcdb3nDa17xkhc85xlPecJjHvGQf/ibB9znHne5w21u cZMbXOcaV7nCZS5xkQuc5xxnOcNpTnGSExznGEc5wmEOcZAD7Gcfe9nDbv7i T3axkx1sZxtb2cJm/mATG9nAetaxljWsZhUrWcFylrGUJSxmEQtZwHzmMZc5 zGYWM5nBdKYxlSlMZhITmcB4xjGWMYxmFCMZwXCGMZQhDGYQAxlAf/rRlz70 phc96UF3utGVLnSmEx3pwO8l2Y62tKE1rWhJC5rTjKY0oTGNaEgD6lOPutSh NrWoSQ2qU42qVKEylahIBcpTjrKUoTSlKEkJilOMohShMIUoSAHyk4+85CE3 uchJDrKTjaxkITOZyEgG0pOOtKQhNalISQqSk4ykJCExiUhIAuITj7jEITax iEkMohONqEQhMpGISATCE46whCE0oQhJCIITjKAEITCB+H3Q/nXcfvGTH3zn G1/5wmc+8ZEPvOcdb3nDa17xkhc85xlPecJjHvGQf/ibB9znHne5w21ucZMb XOcaV7nCZS5xkQuc5xxnOcNpTnGSExznGEc5wmEOcZAD7Gcfe9nDbv7iT3ax kx1sZxtb2cJm/mATG9nAetaxljWsZhUrWcFylrGUJSxmEQtZwHzmMZc5zGYW M5nBdKYxlSlMZhITmcB4xjGWMYxmFCMZwXCGMZQhDGYQAxlAf/rRlz70phc9 6UF3utGVLnSmEx3pQHva0ZY2tKYVLWlBc5rRlCY0phENaUB96lGXOtSmFjWp QXWqUZUqVKYSFalAecpRljKUphQlKUFxilGUIhSmEAUpQH7ykZc85CYXOclB drKRlSxkJhMZyUB60pGWNKQmFSlJQXKSkZQkJCYRCUlAfOIRlzjEJhYxiUF0 ohGVKEQmEhGJQHjCEZYwhCYUIQlBcIIRlCAEJlCg/4Ltv8ovfvKD73zjK1/4 zCc+8oH3vOMtb3jNK17yguc84ylPeMwjHvIPf/OA+9zjLne4zS1ucoPrXOMq V7jMJS5ygfOc4yxnOM0pTnKC4xzjKEc4zCEOcoD97GMve9jNX/zJLnayg+1s Yytbfuf/378Am9jIBtazjrWsYTWrWMkKlrOMpSxhMYtYyALmM4+5zGE2s5jJ DKYzjalMYTKTmMgExjOOsYxhNKMYyQiGM4yhDGEwgxjIAPrTj770oTe96EkP utONrnShM53oSAfa0462tKE1rWhJC5rTjKY0oTGNaEgD6lOPutShNrWoSQ2q U42qVKEylahIBcpTjrKUoTSlKEkJilOMohShMIUoSAHyk4+85CE3uchJDrKT jaxkITOZyEgG0pOOtKQhNalISQqSk4ykJCExiUhIAuITj7jEITaxiEkMohON qEQhMpGISATCE46whCE0oQhJCIITjKAB/4/8Af8DvA3FAw== "]]]}, {}, {}}, {{}, {}, {RGBColor[0.6, 0.5470136627990908, 0.24], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl12O3GIYSBdAb27Zt27Zt27Zt27adtLHZxrZtNm9nvQ97zfyBM0jUuEPl 9oECAgK2BAkI+FMDow0ISjCCE4KQhCI0YQhLOMITgYhEIjJRiEo0ohODmMQi NnGISzzik4CEJCIxSUhKMpKTgpSkIjVpSEs60pOBjGQiM1nISjayk4Oc5CI3 echLPvJTgIIUojBFKEoxilOCkpSiNGUoSznKU4GKVKIyVahKNapTg5rUojZ1 qEs96tOAhjSiMU1oSjOa04KWtKI1bWhLO9rTgY50ojNd6Eo3utODnvSiN33o Sz/6M4CBDGIwQxjKMIYzgpGMYjRjGMs4xjOBiUxiMlOYyjSmM4OZzGI2c5jL POazgIUsYjFLWMoylrOClaxiNWtYyzrWs4GNbGIzW9jKNrazg53sYjd72Ms+ /uJv9nOAgxziMEc4yjGOc4KTnOI0ZzjLOc5zgX/4l4tc4jJXuMo1rnODm9zi Nne4yz3u84CHPOIxT3jKM57zgpe84jVveMs73vOBj3ziM1/4yje+84Of/OI/ fvMn/IEITBCCEozghCAkoQhNGMISjvBEICKRiEwUohKN6MQgJrGITRziEo/4 JCAhiUhMEpKSjOSkICWpSE0a0pKO9GQgI5nITBayko3s5CAnuchNHvKSj/wU oCCFKEwRilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerUoCa1qE0d6lKP+jSg IY1oTBOa0ozmtKAlrWhNG9rSjj/DuwMd6URnutCVbnSnBz3pRW/60Jd+9GcA AxnEYIYwlGEMZwQjGcVoxjCWcYxnAhOZxGSmMJVpTGcGM5nFbOYwl3nMZwEL WcRilrCUZSxnBStZxWrWsJZ1rGcDG9nEZrawlW1sZwc72cVu9rCXffzF3+zn AAc5xGGOcJRjHOcEJznFac5wlnOc5wL/8C8XucRlrnCVa1znBje5xW3ucJd7 3OcBD3nEY57wlGc85wUvecVr3vCWd7znAx/5xGe+8JVvfOcHP/nFf/zmz+IP RGCCEJRgBCcEIQlFaMIQlnCEJwIRiURkohCVaEQnBjGJRWziEJd4xCcBCUlE YpKQlGQkJwUpSUVq0pCWdKQnAxnJRGaykJVsZCcHOclFbvKQl3zkpwAFKURh ilCUYhSnBCUpRWnKUJZylKcCFalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGOa 0JRmNKcFLWlFa9rQlna0pwMd6URnutCVbnSnBz3pRW/60Jd+9GcAAxnEYIYw lGEMZwQjGcVoxjCWcYxnAhOZxGSmMJVpTGcGM5nFbOYwl3nMZwELWcRilrCU ZSxnBStZxWrWsJZ1rGcDG9nEZrawlW1sZwc72cVu9rCXffzF3+znAAc5xGGO cJRjHOcEJznFac5wlnOc5wL/8C8XucRlrnCVa1znBje5xW3ucJd73OcBD3nE Y57wlGc85wUvecVr3vCWd7znAx/5xGe+8JVvfOcHP/nFf/zmz9EfiMAEISjB CE4IQhKK0IQhLOEITwQiEonIRCEq0YhODGISi9jEIS7xiE8CEpKIxCQhKclI TgpSkorUpCEt6UhPBjKSicxkISvZyE4OcpKL3OQhL/nITwEKUojCFKEoxShO CUpSitKUoSzlKE8FKlKJylShKtWoTg1qUova1KEu9ahPAxrSiMY0oSnNaE4L WtKK1rShLe1oTwc60onOdKEr3ehOD3rSi970oS/96M8ABjKIwQxhKMMYzghG MorRjGEs4xjPBCYyiclMYSrTmM4MZjKL2cxhLvOYzwIWsojFLGEpy1jOClay itWsYS3rWM8GNrKJzUH+/8v+DxCPxQM= "]]}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{-1.04, 0}, BaseStyle->14, Frame->True, FrameLabel->{{None, None}, { FormBox["\"Error (eV)\"", TraditionalForm], None}}, FrameStyle->Directive[ Thickness[Large], 20, GrayLevel[0]], FrameTicks->{{None, None}, {Automatic, Automatic}}, GridLines->{{0}, {0}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->300, LabelStyle->{FontFamily -> "Times"}, PlotLabel->FormBox[ StyleBox["\"CASPT3(IPEA) MAE: 0.11 eV\"", 20, StripOnInput -> False], TraditionalForm], PlotRange->{{-1, 1}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {None, Scaled[0.05]}}, Ticks->{Automatic, Automatic}], GraphicsBox[{{ {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.518], Thickness[ Small]}], {}, {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.518], Thickness[ Small]}], {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{-0.4, 0}, {-0.35, 0.07547169811320754}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{-0.2, 0}, {-0.15, 0.22641509433962265}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{-0.15, 0}, {-0.1, 0.5283018867924528}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{-0.1, 0}, {-0.05, 1.8867924528301887}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{-0.05, 0}, {0., 5.3584905660377355}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0., 0}, {0.05, 3.4716981132075473}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.05, 0}, {0.1, 2.943396226415094}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.1, 0}, {0.15, 1.7358490566037736}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.15, 0}, {0.2, 1.6603773584905661}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.2, 0}, {0.25, 0.6792452830188679}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.25, 0}, {0.3, 0.3018867924528302}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.3, 0}, {0.35, 0.5283018867924528}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.35, 0}, {0.4, 0.22641509433962265}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.4, 0}, {0.45, 0.22641509433962265}, RoundingRadius->0]}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.5], RectangleBox[{0.75, 0}, {0.8, 0.1509433962264151}, RoundingRadius-> 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJztu2VUlF/4sEuXoICFDYKKhYCAgDj3I4LSgqICYoIIgoooiBISIind3d3d m+4YeoChO6RRmjPv+p/3/a11Pp4v53zg+TJzrX2vfe+aZ++91lwcrz8+eENB RkamQktG9r8+/+dZQP/7G56b75HMMPH/8FGdyUcLdUTkJBm8Zpt6F57HhTz2 ziCiAL0Ql/EFaYicevxELJCI2PV/VCj6ysPsxf0qwz+JiH721RFLgiLwv6tU sXtPRMz8zuFzZx/Ct3hTVZ7HRJQYrOkkkPYISqavq7XjiGhWVuKplr0K0F6e Uft+gYgekt89MZr2FBR0w5+yMxORw7tnjo/4XoBngqp61VovWnr89o+S7Ssg zjA/0xvqRVIr/HPGsRpw9krNM9a6XmRU+1GudvcN6Oj9eJ6bToonEI/sumpD aqLQi+cBvYjjErvh8Atd+Df75wXVz170kkinhOl/ANzVqJfxer2olieCcXFY H2zeq79SfNSLXPTG74unG0BD0sHXf2+R6nu6xTgR8wVY5+peB54n5Yt4Eh1W aQSqPFYa4gd6kZaq9/oppm8Q+kFEc/JfD8pLnhGZ+WECE8kLms6DPWjaJdjM 8Iw58MzHvBGo7UE8d5x//TCyAMNrL7R60nrQsyaJsoYVSyj8eOSthX8Pcs77 9f6AozVQpDa+PW/dg/g0E/i9RGxAeuGndoNuD6I9+n7VjswWXHnFdAyUexDl GdfP8wN20KW/rMN2qwe9Vdmhi+xygNNp8e+Kz/UggwHVqEcTTvBm8ZWu5v4e 5PBdj/znfhdI5Dumx/CvG4m/tHTDRbvC0ie8XupAN8q73xl8Fe8GIum27x/X dKMjjOI/LKk8wGIJ92ErtRtpL9/idhP3hGr+vx/C/bpRXM9Eq4+9F+z/nPRR yqobvRXZncwkeMOjDE39uXfdSOzcGZjl8YXA5ROfPB92I35D+dDzjn4wfL3t k6hYNyqP/ZfEP+sPl744GAxydSPDFpUjVYqBoJ95+/Mvpm5EM8149kdOEOSs rH2+8peAvK7L+I6fDoEdgdQvrf0EVEI+v5krHgqShm8NjasJ6GRhK1n5Sig4 ZZ02Op1KQJRmU9WFkWHQutphVOFLQBea/6o2KIXDcaHfX99ZEpD+pwMMhzbD 4aWRhDHzOwKKdXCGzJAIiMneNM5+QEC3ad49bsRFwtzf9G/qN0n1t+m7WnZF guCNd98puAjI+Iwjyz/tKDD9ymESy0hAHY9zB1WXoqAsh2CisNqFQh/fmegz iAaGNRfTlb4uxNhiOlEyFQ2KwvfM/Ku60GtqTFPucQz4GO+YYSldaM3Cx6Ar Jwb6c7PMx326UPRZ2o81TLFwbl3vh5NFF/ILlHf1fhILeiJcFvw6XcjHrFup 3jMW0r/1WhCUupCLT3oqZWUsbOS5W5qLdqFFUyGhxYlYwDakrbg4uxBnd36D 2nYs2IqSW9ft60I7VvNqp6jjoOl7rrX+SifCe6dyXtmNhcMFH38e6etE3IE9 k64zsaC+ed6msLIT3bYOwOvWxUL4zX6b18mdKNE1mmk5IBamTbx+0fl0oqIw f1mDl7HAWyhnm/yjE5lebRySZosF4y1KO2XtTvTQ5Gfzn/IYKBYrsNtQ7ESb S19sRjVigNrMwD5UpBPlnme0rFyLBrmiiw53z3YiXb6s4hvW0eC+Pegwy9CJ 0j3en1qhjIaeW76O7ssdyNpHRi/bJArYze87CRM7UES4xTnpmUjQLqb53V/R gSwnvdgsH0ZC8k7R759JHSjrU6bbjawIWMUZOl/y7kBOOsV0MiwRIPbjigve vAMl6fCe89UOB2s04mL0tgNNUuk0kBeGQd2uv+tJxQ5U0PEAe8MYBszYA7cy 4Q40Zr37MEgtFFQs6N21OTqQ5Ly50a5CCASXlLjvZyDFazxbzp4IgjEyY4/M pXbU8f3U9JxFIFy5fc1TrbcdiQrdUD97MgA+W457klW0o1OJ6RI5+X6QXxrk FZ3YjpbqZNK2nvkCGcUjbzmvdhSTJHP9Iq0PSIkz+iyZtSOOP9uxqjle4GxV 7uOr1Y5qRbEXrh89oaPsuy/ufjsysLKwz+T1gJOU/H6jN9oRv5Yek/umG2jc mfJzYG9HQkpmBZN4V4i3DvXnpW9HDymsSkxeu8BC+ZOAzsU2tFQQzMgi+huE qQ4Emva0ITkvaT+ti45gLlEVeLa8DbGK/5Rm5bOHyp9mQTUJbegT8XWJqZIt MFYKBH/wbEPBgoMfRh1s4CH1bPAhszZELsgx87LPGvwlI0Ly37Qh7MNx63Ep Kxi0UQt9qdCGuhh7t6QbLYC7iiWM5kYbGiywnLNrN4cPNLVhiWfakNU2TdEc zhSy7lqEP6BrQyOR4S2DhG+w9etGxNpCK0roBvanYV/hTvVcRHB3K+qgVhIx 8TEEB9roSImyVqQ5UjTbm/cZ8PeeRU3Ht6Jt4y9rV2kNgM3uULSrRytye6Gf 8NxcH57X1EcLmbYimmsr4T/EPkA0nXUMUbMVra9+vfiiXhdmpURjreRbkaOY o/StGB24br8Yyy3UijL+Xpi+3PQWvtfGxjWdbkWyZ4JPGeO0oIT+ZfwX2lZ0 KMx4LOOvJtDJHE04vtCCrKyoDqJVDVBwaEooIbQgSfRLvFlUA7zrbBK1SltQ B2voglHlayAy3EpijG9BF+w/xSd4vQZO2ZWkdPcWdKQa/+x94mt455iQrGLS gu48H/i+Qq8BafWvU3Y0WtBCuRCBJUUD1vYdT42Ua0FHDYOujARpAk6uJVVG kBR/oOOCK+EN/HKyS1s41YKmkP7dnFdvoaEB0r1pWtAD4w8cH8R04CDTv3Sx eTw6xRiRE6enC2ryyRnDXXgU3CI8yvr3PYT9fpNpV4JHG/FHM95+0IfJxpNZ PHF4lBHTEE930ACu7W/PanfDI2pbU4L3zGcwVHDM/v4dj/gVwwQWNwyh0Fk8 h10Dj2w1mBK5JYyBsnk9p0oWj/KzGPRq676DzIG0XD0BPDpknvSF0t0M3O5r 57GewqPaV4I1ngoWQHA5k59LjUfewQYMbGuWgAtNMiwiNiPbexcFv1VbQx37 ya/0yc0o2GX5emaxDaiEORg/+tGMNKnvj+IHbGGcY/1bmGIzWvfZN8Jy1QG+ hL81+cPRjLrfC9zVi3UCCs5OU5HlJoQbFHRrfOgCrhES5jYVTcgxIYgVsbnB aa6MHy1eTWj1Sw00h7lDfCSH5am3TcgiArt1/q4nCJ9ztdIRbkK1MzMf8DTe UBW1Y51F34Se7ssRWRn1AeXz723IexvRt8k5Cqsh0v4Y3ftLPrERfc4vknuy HQD6F2Ts/MwakdE/a0sbkWDYicm1H1NoRA9e0b0wlyXtd9wXHPnYG9FgfLHy A8cwYIvzcjJbbEB1nkUjScRwiL5I5Vxb1oDYwxRSGLFIEIg3cDns2YCUKJKY 67JI+9WlIddXbxrQhaJhPj5cDCgm3HdPEmpAO8ysEkndsdB/udhjnbYBdYlf 0PW0iwe9xCtekt31qHtTLeWGbCKsXQnwdouvR9W3pc6PcCTDryR63z6TeuSg eKvOmCYVDvEY+12Ur0e/5ntOKNCkQXjyuL/h6XpkKaE7aM2cDrzXHgWWztch ITInv9vnMqA4pTyIqbQO2Q5u1EZIZIIcL3+IqnsdejSmWVf5IQsIqaGhURp1 6N+/O6fLIrJBi+9A+KJAHXrvUitQPpIDK2lmEbdo6lDcwKkzgzx5YMU/G2nf VYtUUi3cD9nkA3OGWnRHbC068yXI22W8AIKv18ZwfK9FB4S7jn14WARXMm/E vZetRapR17ua6oshXyA6Pu9kLZJ8elB36kIJ3M06lEg9V4N62YoM2+ZLoF3Q OkkJ1aC3uxTxOUWl8Dp7MTnItQa9JiYeinQrgwWhl6lTr2pQrCWrf5ZuOZjn NKUJXq9BuobzLjRyFcAofCvDkqoGTUj5MmXyV4J/bkJmY0c1Ejh3jLf/TBWc FzmefSymGmWHUd5KP1gNmXl2OW+Mq5GdcO2Y8v4aEBf9l5smXY0ePeJq7j9Q C/j8N/nbx6tJ54eocQe2Onh+s71AerYK2Skvuztx18NsgXiRV1EV4qF6WX0C a4DvYmnFQ85V6LASJmr4ohFois6UXH1Zhb6yqMSM/moCz1vOpd/4qtDQY8mY lOxmOFu8VVZJUYXub72htP2Kh1ScbgVLeyU6PR4mc42tBXCou/JZVCUyo7+j Y1rUAg0gVR1nVImKlTw3A9+2glpJds3qvUokocP6s+xIG0xi5+puH6tEL56c uXO+vg2+lHrU/56uQCch3n33ZztQiFM0dhdUoGnDJSZziQ5wLdNvOve7Amkl GRaM0XfC6TsDzZ+eV6DRuuFpo45OSCyXbym6VoFeihk3fonpAlGJwlZ68gp0 6eAz7XMWBKipuNT+qLUcjUgfNW9/0Q3Kkn4dYRHlKLpJeqTxbg8MV9J2/flS jsyp5V+oCPaC/l0jgsjdcmR4M2a35jIRdqpGu22OlqPz4QfwBpf6wOnew96W yTLUaDl+NoGvH47XlBJP5Zehr9Ly+rW3ByBWirdfx7EMRVtThHteHQSB2uCB LPUy9KyM9/ZBNAhl0kxD5Dxl6OmDmypOj4ZAsc5kWH63FFkxHx/nXRyCfpnp ET98KbK8+26T130Y9OpVxsbCSlGARrV0kfAIbMhWj/N9LkUatUb7acdGwK5B cNJMohTtcJzzuu0zCofkI6dqD5ei7zJW/iH3xyC8kXXm8EQJatUwKlXYPw68 Cpazr3JLkIjAzxc/28ahuGn+T5J9CVrYbOf+HDIBcvefz6+rlSAaxrgWeYNJ 6GluWJC8UoI+a55Yvis3BfhQo1HOTYT2q0VvuF2dhtmwhxMFQQi9iJZxfXVk BqgieKcfYghxDPn2jdDMAnsk05+Z4WK0KcjRLrs7C2JR0/PWNsUILi1n1e7+ AZXo6qUT3MXI1aKi14luHr7ERK5m1BWh+K2V8iHGBXCNtVyTfV+EfiTdCmv0 W4DEuOebIweK0APn+c0zlxehIv7mjkl6IWp9l14wW7IIgwls5IceFSL8n2w1 qadLsJW4Spn4rwDd+y2YILmxBGzJrTQS/gWopUoc+xu0DAIpKfREsQKk18N/ 793dFVBMdWL8MpCPuAP8PFKXV0AvTecAo1U+ckvqv9UZtQo/0++yRnLlI1Sj 9GFM/S+EZnAeFqvOQ3AzymSC7R8UZpKxtevkIfbZY9vD3f+AkNV3XI8xD8V2 5tARQ9ZgJTv/FFVKLvr8+fVW27t1YM71YQ9UykVZ9/KaakU34EreF06BlRx0 KD9LN+/AJkjlK51v8M5B3OKWT3ynNuFlAc9FTZEctJImfEy9ZgtMC/dd2erN RmcDxthWE7bBt2iSx9M8G13bfhp733MHMosr+a5wZKMZyZWah5a7gEfhAhXl WajQjiXWQIQMmy35cUNdKwu5T14p/ZRJhtGVqYuu0GWhz8UGPB585Bh7ucgt p4RMRB3EmVeaSo6JVRzBuBQykdP0At0YHwWmUrksXriQgZo/b9EOZ1JgX6rw ksoeGYgYeLTFX4QSc61OkpoVzECFl340zCFKLLHGQfYnIR1dV/IOzL9HhdXU vlU4aZKOXjGx53biqbDBOgmlzFPpyIWCkf74U2psq55DWa4kDVUdAQaVcWqM rXHn8ejrNHS4svneKwMaTKCpV9WUOg3xKD/WodylwRSbc9UPxaai2OOtOvRO tJge3utFokwquiEik3nzGB3GHDFWYdeTgj4Nh5Q/j6bDpKJC6nLPpJDuH43k QtfpMeMYVfykZjKKES7esUT0WGrcwU62+CTkmLd1nFyWAZtMaOyVmk9EYhUn Cj52MGDsybZDxgKJaJfRytfu+T5MJfX2ROy3BFSNf3GAenwf5pq+OUsojkdJ kTffBOoyYjWZWUt0VPFoGp9OpJ5nxNayP64JS8ehoIb+6n8fmTDevIs72s6x qPbxNR7uOSZMu2CE0q8tBs1nNZyX19mPhRYF0deyxaATKy8UTw3txwjoyYH1 Z9GIl1znvuKjAxhzGcvhixFRKPV0xXRQ5QFMqqL+uOpkJOpsU3g0yMaMGVfZ sNtfjUTPKcnU8+WYsdQaOJ9nEIHaQ1UfipkzY5N165encsIRXvHe3N0kZoy9 MYPv2HYY2qX/+rOwmxlTaX5/Q1o8DD3489PIkpIFc225cOubbShiFsl+YnKJ xDHlNg/8QhDNTliiuwILRpZ4wy2dMxgZvfnDkv6RBXuZmhDImhyItE3twqt+ s2D4zDOxBsIBaOoT/cmSWBYMy/PIaC3zQ5PkNWRuJSxYahEt4pf3RTd8hHN5 Olgw9jKTOvcub3TH/Jmt2zgpX9V8x9IrL7S9dbwzc4WUr15j6MGsB9q/zXfc Z5eUr7lrNt3IHTkKZ02I0LJi+DbZNVZyNxQ26bQcto8Vs0j9QTt+xAV1GW0d 6mIkcd7b09GXnVD83za5UQZWDCu7L6iF2SN7VcZHXdSspPpvyJ1/9AuFeJ+/ XLpNytd+RmNcxxoVN7M4Zy2xYCVE2u/R5hZo67HVRt0oC2ZRP8DReN4EFbOH 2R1vJ8X3pdyXVzREbDSN5YjUP7L+3Q3/5Q8oVO8UkRBPYvLQxwF3NVAE87fr Nu4kdiWr/aClgEJs3EbGv5J40LzGRR6De6ma5hxPSXxp90q1xQv4tNN0UE2M xJ8GRDXe60KGyIe17BMkjgn5yPf7M+Sz/HJ9sc6MkXk1307T+AY8m0zCph3M mIX17kE+0R9AqOJXFEwllecd/axiZwU+d0+fyLQnceo1dd/PNnBuv001x2tm DIu5J0l4bge3DxBexYiQOPgFD5uMIzhK5/m9ZybV5/X1qIqgM5TrnqcSaTyA YVX3yORcXSG0wuZhjvEBbLC0bWWG2h3OKMhth3EewCyKXkw5mnjAQYr8z3ea 9pPyz/RdXvQEPgL3sRFj0nrP/Npar+UNhf7GVyo592PsqZTVukQfOPF60PBS MxNWkuBSsO+BHxQKUezeN2Eite9EakK1P+w7F0j1kZsJGwyPiZS9FQibf8Rq CzoZMYvg634z6UHwbAtVav1ixMj80W9H7hCQSyX3DrjBiOHrzpUevh8Kb19P MVpOk36/Nbqkc0cYzH0LPiYSsg97WZWWlVURBod8g70HH+3D2Cv+pdj8CIfR w7dLXfbvwxZKb8U/Eo0A8quGlqq1DFgJso48txoBSmUJLbK/GEj9rQ1eTYkE N3q27o+SDJhiwQG/yndR8Ec6/18tDQPGnPfIw+tcNORL7ZtWraPHBrMDfr8Z jIZ2/sdDx13pSeMxZCsYEAO4i6LcVCr0mH76BSvqx7HwXbHGgO4sPYalvidN axyYdOdRHJ2jw8iSM4yi6uNAR6TG6UQhHYZPWNc3/BUPWVeqvHYc6TDXONCV vJ0A39+XVEY9o8Nexti8ObyVALw2JRwrvHQYe1T9i7HsRDgWr8VcT02HLYSz qGV9SgLhp1yP6Ym0WGroE2WbK8mga7dY5ZRBSxrfIIVHE8lQTHablZ/0/lUM HJE6F54CRT4bwh1vaDG6Rs+w7zypUMIpO6uE0WIL9TnBw46pMNHvW259gpY0 /j0BMlOpAJ+iLt/7R4Pl1m77pt9NA/vfDlTf2mgw3xp27+ORaWB2RoPrXwoN ZlF9x8OKPB2MnpT3hTrRYNpVWq7Tz9PhvNXIhSc6NJhUpf3vB4XpQHepf2BL kgbjrUh0yD+WAUFO5W1GZ2kw5vJm27NfM4A7uDo0cYcaWytd+unQngELtQsc dj3UGKHksNUSXyawiSf4rWZRk+ZT+IeaSybY3+kWHHWlxmKLn5qWzWbCZLbC sqQuNWZXZP7tkkwWbKYyxh2QpMb0C8OM3GOyIDQa1y58mpo03xWfN6iyYfoj rU7hXypMOH9C//XrbLgWPpLh00SFseUxfKhD2YDGpD3roqgwstyruvyncmCp 9F3GE1MqbDJbUdv/ew6MdPDwSTwg7Z9Zn99QEHJAhiHDzOcCFZaa6f36nWAu mJ5mn1PbIu2/GXkvWt1z4fZUAuaPp8SM04nqogu5wOf3mlEjkhJTSdtVDZfP g+teDxPLv1KS1s/ZJwwJeWCmJXKyQYYS406RVDagy4epj29Ufp+ixOiStZV6 3uQD2bmbJ48tUGALiY4K4uX58HXi5kXLMgrS+kqWjWcvgEIVVTWCJwWWG98i xWpeAKOGmwN8bykw37gVye+9BdB0qvZoiAgFZhF79M6wcCEscFEE8TFSYNox opiMdyEkZF+9u9FPjklFP7uVvlwIsbNrM3Tp5BhvlIXocaUioGMjbujakGPM kRE3rJKLoHZI9hyfKjm2Fl4lML2vGK4pULBpXiXHCGFTfA90imGUatZjPwU5 VhLKeC2/qhiiBBTLhbvIsNCQa1fOciHQLWTunkwkw+yCH1x0sERAVbxEzmlN hukHGZ5f6kcQvnquZ1KVDONWaGC5eroEbNjMckX5yLDAxmfMQ3Il0Cg5ZX+U ngxjlJ/f72VSAkXaPh9XynbBosGCSTq+BEZ4T13L+7ILC7KsjNuEErBsXeJ4 f2EXNOsjGNJoS8Ex9/mXrZ4dIMgI0r8RKoWC5JcrCi47IFVXRXvsTSmMGyVx yErsQKG0Ck2jRymckG1j6Vzfhiu1U1SWZaXw4QnBtSllG0KlTCgFF0shXoj5 +0GtbWCuYaSYOlMGEbfDeKxObsPPe8FkQQpl8PT9Y5Z/rVuwVnVtV9GsDMYC 3Bnl7bdA+27pNlViGWykkZe8hC0gVj7Yyu0pAyUGpbfMq5sgJzm6oUdfDrz8 957ciN+EkgrDdXbhchiTeQ+ZzzeBV4J2rV2rHIrszPzfsm5CZLnvXzuvcjgd a8clULkBbHcurYpVlIMY+070jtEG2JUVLC8slUNBrzd/6oUN2LotvxTJUQG+ t+VfCnatg15p/4KKYgXoU5bJmNqswyCmP8/4owIsXNqZjPnXQbGEfK4kqQL+ VhhEnulfgwrwmP1CrIAy/ddHP9itgTDimuHeVwl1I085X/OtQSwue4ooUgmn ku5z7BL+wcnie5Ou2pXwpuZbhvyPf+B0q3tcwqcSZAv2nVXh+gdkRe/G1ipJ 9/T1I25Xa/6CvtjWSOJKJfz68Kdq8N1fGC34PfySswrKaJgWbRn/gsrNM0OH HlTB46W6optJq1CTnzpQY1EFGgpn1NnkV0FMVLzfNKUKdluoUnGzK5CY10bk 7a8C402G3kaHFWAXedM7ylgNlzu//prkXgHX3L/dvjerobpNvSG9ahmohO0I cu+qIb9lnaCkuQxfco51kflVQ7y23tkZ8mWYFEroyKyuBuXSRc6okCVQzxZr 1/5bDQl3ZnExt5agQbCp9eS5Gqj1eQpHiIuAZb1owT+sAYOXKiZHTRYhVWCx +adVDdioHFVoPr4IXJlWTcJpNWCRxD3xsmABPK8fapwdqAFWvFv3H/UFoMuI qg/dXwtcV7rdr+zOgyn/jTrlW7VwQnEVt3x3HmbTamro9Goh7v01x7duc/CS T6260L8WtOJ2yor7/wA+daZSv7YWWs3NL1y69gckeM0quNZqIeikzGCn1Sxk puwvJ5yvA/Ng7+g/3TPAfS201OlRHVxv/+rvITADgcl8JdjPOvBfLJqbdp8G Rp7y4pX0OihPPNl2YHWK1G7lotihOmi7LLVy4ukULFwZL1BnrofThSvfz1VO gmbi13xmqIfaRc0ncH0S2i/T51W8r4fgM/cijaMmQCrBP8c4sB4kd3bF+k9M QP6lK9lX6uvB/8TAurn3OFyNL8ocXK+HYZpVsZeHxyHk4v0MT+4GeCun7Wfn OwYscYNpUk8awJf8RNnWmTGw5jZI3bJpgNvMF1pQwij8jaFMSc1sgAi/iKHW m6OgfcErSXOkAVSvme0Xwo9AT/T5RDbWRjhk4JEwoz0Ccudz4xuwRpj+N5k4 Tz0CKEo6zuJjIzx8et8YYoaB71xvjEBwIxh/ozHokhuGiEi96MmGRjiWk304 4+8QHOHaiQzcbISsM6Y6DZFDYBfhEqF4qQmmCgflTz4Zgo2zHOFUqk2gUVU7 E8w0BHrh6aG5tk2QstmlLl0zCAMcEiF62U3gk5qxymI7CEphHUHsY03Ar2dU /Ed6EMrZ3wa2H2wGrdZ2ZTzzIAiFrvnbiTdD2Nac3+OcAYg94+An9qkZGnxO 6RKVB+B4yAnfhZBm8JToqzmy0Q9Op5O8I5uaIe2hO9YT3Q87QTgvle1mOJQU J7Wl1g+5+yelaY7g4YdS80mFI/1g0MQr/fIqHh4+W/AIJPTBZedvUvkSeBjF ieulhPXBqHzZvUPqeMCN/Dkt/akPgpj23fvwGQ9HZ9p/Xb3XB48bH96tccAD xZOKqYOcfXDgd6Dk2XA8mNmIHE+n6oMauTEJ0zw8BIk/1M2bIYIVI49EJx4P 7zJ3uzu7iHCzwegO7yQeeNM2w9NriLDiiMQddvEwh3sQvlBEhCRZOvHRIy0g cGk25kYOEbT2Kd3G8bRA1JO4S2cziXCm3g/zlWyBZ9qfdmRJTHAYhiX1FmCd nTBRIMW7y1wGuS8tULE5KlRaSARZhi+4aMcWkOoPrxapIAJVXeEtsogWMJ4W 1pFrJEKRPfUttfwWiFMvr/Mitc9IWkEss6UFmKWOtEcPE+Eavc/N/VMtMHRQ yPDoHBEmawZEtclaIfH5MQbLdSKE23GLlh1thTMHv73/Qeq/mtQnkZPXWmEt nflX2v4+OESXL2x0txXmYpzz8o72QWM1hTD+WStkeWjwYmf64Jet7I1Lhq3w OFNLcoGrD+Cep9BPp1aYbS36bMLdB2s0fYL9Ea2QeTP4ot/FPkivOicoXNAK GVGRIrSk8ne/Pgi4t7aCX4UPlQNpPrju5lyfnWoFCtPf7LMn+qCPmuz6XfI2 sJ1VnaNk6QPvSin+ULY2MBL1ZYyn6IP7Nm58G9fawDTvdHvJAhHoJHt4le+1 geSwlSp/LxFKqTh5k5+3AfW+RK2FUiJ8r9C9RmfUBsIDj4jLkUQQ+JnJ8/p3 Gxxqs1YQ/UmEP3e2rxZGtgEbhWV7+wsiRFPevXqksA0qwve3Ndwgwoty5yv6 bW1QbGmSe4ORCGzWXZfrpttgKKxul7evF1rE2S9zUbRDVuq+jO74XnCg0Llk fqwdzLqeBTwx7AWJsrSLBN52OLbLSdcm1gvblhvc/FLt8PzSjwsW5L2QffsO t9OLdqgzqaT8Xd4DH8mdLowbtYPhya3Cq9Y9wF3afh5zbodbUU5qvlgPDFmc Ou8f1Q6+VS/OU211gz+mdW6lsB2YapdaYrO6QZkshUuhvR0UPTmWC953A1PJ P87YmXZwPJU7/52rG6p+YJwUlB1wgZnTkq2HAD/A/qz68Q5oXld+VetMAOHd Fo5svg54Ft54u0ScAIvFxzmYpTvgcJ23ztW/XRBvrsH+7mUHfNk8KoWL6wJN XOKZiq8dgOdH4yfUu+Dkzsrp0y4dQHVg7Mni/i7oLLp12ji6A4yTKUwGSzvB xezXqdaiDjio/oKCwbATpG41n7zS0QEz1vR3HLk7gXz76Mlfsx3g4P3prjmx A/ILX54YpOyE7IuPR9ddSXlN446LnuiEnByVLyx3O+CK2NIxT/5OoIuOVuna bIfxTdFjc9KdsLrqrq+a3g4hBdZsUq864QWT1LlInXZQMWk4Gm7cCfumnm2X crQDy83DR7dcOkE3aWmpoKcN6jaeHXkc0wlqQsPlfp5t8DM/+nBqcSdQMTwW enW/DcS+zx9i6OyEQ9Ra907sa4O/IsKHNP90gkoSIbihuhVS1i0OFlN1wY26 RmMTm1bQzqtlZTvZBX9ttTR4JFqB4xsrq8H1Lvi2r9FwlrIVeoSfsjTIdEHx 5bGvRRUt4LkWwXz+dReIro+Ixf5qAbnc2QMW37pAxq1UIV+6BWiMBQ/0uHbB c4OA5k2mFkA3zPcLxHZB35t+RuM2PBj/q2JyRl2wtKhz9KY/HvhyDjBNdnbB 6L+aQKXXeJg2UmEUn+sC3kaFjJrLeIgUCtsXSE2ANNrFTdU/zaD+d4rh70kC BFRdGTn2qxmOZPMzKAoQ4LlM9NQkRzM0GZrQx8sSYCBFP7+/pAnsBCvoqDQI QPmgLZhZowlurzLSPf9OABrDinRXuibYyHxEm+tGAIf2H8ffpzVC5pdgGtY4 AuilmdAmP2sEPYEJar0SApxzpd5WZWqE8yvXqKu6CABnBW++L2mA/gxjKvZ5 Anz8+tCt34i0z34upfxO0w2vbh35GMTbAErXGSjbT3XDQuEpTbc/9cCw/ICC R7AbthylK/2S6qE8PYDcTq4bSvs4Djvq14OpwSjZsEY3vNCXRMJC9SDEf5VM zKQbhjlz8W926mBu0XDXy70bvD4+DWmuqYPYtOKd+bhueL/PKvCyVx28+kS7 I13aDckBpUkXNOrgOJ/idgShG4RtT9W94yedQxZ8t7bnu8FMNDHPi6IOnFKH Np/Q9sCFY29X77TVwl39S5tpp3vA2ZE3kjGyFnaufd7YJ9QDjDd/pll/qYXc +YL1N/I9cH28eF1UohY+pVCtI80eQNtfbctZa+HSR/m1Y6Y9QLFI35dMOqeN 8Hj/++zRA+Xe7JKu8TUQONf/tzGeFP9njWvHoAYeJ1/4e6GMxLozMh7CNbD/ g/6qZXcPxP4evr6wUQ01V/NWehd64M8hK/HCvGqw/EO+IkjXC0TX3eHoL9Ug miSz7HKmF1iOkftoX66GZT2PpSmhXhBtZLEv6auCxCvExTsKvaR7xccr1o5V oDXLtRj0phcO1KIRG4EqOJ34fuGfKSlegIcviVAJBN3seSXPXiC/nKc1/bUS 3C7vziUk9EJH1gWDm6yVIDNzb466vBeqQwen4mMqgDLB9c+Lnl5wD9dZuC9c AYXvumfzFnvBU0d7Xp50zzC6dHb2ID0RDiXGXG6XLQee6Xcz79mJYHEQEzjV XAaTcRnT1aT3uMMjr2sfSPeiUJ2tKY77RFC3UaE/UlcKahclp0y0iHD6wzUb PfFSODj1e7LDjAiMv7+fw+eUQENs58Q1LyIsWSwbx10qgV/aZybsE4lguTNR ViWEAMetPT5SToSHa2rrvYeKYW0idewWaR+KjtNy+rZQCKkx66M+S0Tg+T76 wqGuAN69FR8lTR3M04QSNyLygfOC44gsRx+w5EypppvlAXG8bThKuA8ETubS hKvkglf0yeHd+32gea9BJU4wBxS03gypvu0Dv6s9dhGHs4HufPJghnkfLIRM e2usZ0LJ2N8BJu8+eCCeXJU2lAHfo2DgbVIf9Fwv5pZpTofrb+z6Syv64HeY 8/GOsjSY5WrpO0Hsg51y/ae7hakQNXqsz3C5D/iTCypiTVPgeeRrYjNDP8wd lxSNcU6Co5oJvRfP9kOKcgxzb2oCtHCu9FiL9MNZnZdsVKNx4DAi1tOn2A/n 1ZtWS7hj4U6ETfcN7X7Y3tA3cfkRDVuvmwhuP/qhf3NYrXEyErLOHiXMePdD 9GYKV55mBHwYftElmdwP/IetnT8vh8GF8NjOkMp+8NtO/UvmFQpDrxY71on9 UOuecsPbPRj8OUQ7Hq70Q7OH1o4keyA8HLJqT9o3AG+k4/A2rX7AGFbfRss5 AE7LEhRhsT5Q+fJQ2yvRATByLqUoDvMCc/ZnrQVKA9BLnC8bLvSAG4NRLYd1 BqDK1e7Y+pobLIbM4T9aDED1ZCFbm7IrxL+4ga/1IdW3yOj6PPg3aJyxaOZM GYDCc7UH1Bod4ORATZNZ1QC0uucunRSwg45glqauvgFYqmDJr2m2Aefnao18 qwOQOs9ZYRlkDVwuSuOSNIOwyaBQ9NnfEsjmV8eWWAbhgV1jgL/tD+hT8B8L OTUIHj89XRyumkJ+Mm5M7uIgGJ3jNcNxfAPv/SOj6wKDcI838siLZ0Zg8MF2 NBobBLz8ddMi4me433R59KHcIHQHcFKr+n+CKzz4ETKVQXishF+uPvsR6Jy/ jCRpDMIbm8BA5++6MPaHbUTt4yDkWAYRZK5rQ5l80TCtySBQprAcNpV4A8FJ r4Yzfw2ClyWlZm30a/jORDP8yn0Q3mVvrRc/eAlP3scP7Q8eBGN1NwOilToI NCoMFcQNQn7BdeN5ggowX10e1M4ahH1zG5vDAY/gj5PP4OHSQdg+8I67uuQB 1M3eHCxrGARWHt0I1luKEC03OPCRMAg7x7Mdy5nlwCrx58DJ0UH4fFolkVJA Cl4wXhyonR8EXHNC4aF2CRDTa+w32hwE7VurWovDt4Gt4VM/J+0QiC3sD6+P wcHK5SP9eNYh6LpL7rkkJAqtjvl9ZqeHQAR7eHlEXQiSZ573Xbo0BJfb2Svf MFwHB1nKvi7BIXhqxmHNxsMLbxNiiD9vD0GhQ3VPqf5lkNgnR+STH4KM2qhQ IeELwK670NuvMgQ0HaHctwM4YavOs9dRcwhCbj2pl7Rhh55LIr3C+kMglH5w hq/mBGQ79PWMmQxB4DP2E1b3j4L7tGWPu+0QKKrnG337eRA+ypzvAQ9Se9nM jgYoMINcfF33bPAQcDBvaJ3g2wfcDB+7/eKHYHjDz8g6hAao3h3svps9BNV/ ugdxNRQwXJtDWC4dgodH4+WXTu/iii+qE0Ibh8C+5u6WZv46zt+ejCDfPQSG xtj2b5FV3NepyK6N0SFQeWWRT/VtEacsLd0VszAEJfuxE9uZszjeuD+dyluk 9m7mFEjaTeAY6d07yemGgetlQOoYjOCmtIU6kw8Ow7mzhoyM7wdwVTU9HU/P DENu25Gdg37duHDuHx10l4eB8DPY7UdTO+6HHWdHltAwmH9/1PR4EI9Tn6xu fy0+DFlGx65GKtXjhKX02g8oDINRLmJxY67CHYplbi9UHYbo8q7EXzWluEXa rDadN8NAf6Q1JvFvPq7prWrbkU/D0BrZPLnTmYmLr95uLTcdhjmHggCd7FSc 7YXwVn27YagS8Rj+geJxmrZ3W095DsMxLivrmadROGxiuqUuZBhs+e4YrlCF 4U7ec2n5mjAMyQmF/t7MAbj16OstXDnDkLf/yndTZUtcJw0B31I2DP/7/9fp WqZ486ZhuLn4+fGNmyViLlXs+Ms9/5Xrna9sJoz9x1K/dJptFv9jrnGmZv7t /5j8bnrTAN3I/+H+qMdNTodG/u/6U8XyqTcbRdj/K/d5E9I4fvk//lJ5p9Hj xn+seG6yAbvzH1+xcWr4o/Af04/xNvir/cfjEh3197T+47LIb/Urn/7jEKrT 9WFm/7GpZlmdgv1/rFKhVbfp+R8LcO2riw39j1l+ptQ+SvyP50Ye1lLk/sd1 d9ZqUsr/45iIwBr15v/4J+XtGvre//ilxlh19vh/LFZuX62x9B8f4+SpZt4Z ASZpZeXD7xRxf61aq4roR+Fe5CsVazV7XOuwUdW7w6NgHx27JTTpgksRP1F1 lGMU8okXqxvoPHFO4aiy4soooANVY0vH/XDaFJqVn4RHgccBW/2sGYKTeE1X eVpiFKIZD0hWekXgOMoSK+rvj8L7xyrXTzXE4nY4lCqMn47Cu4Oy66vy6bge y9Xyc29HYePvd8/kkmxczpBfeavBKKxUpl8dFC7Eed7Glf8wH4UeCKt687UU px82XHbFYRRuVhxiXHavxMmR25Z1e42CmWV5rb5PHe7iq8tlv8JGoVWXqdJS DY+jKW0uvZ40CgucVxlNWdtxw+xfSgdzR+EYk2B0vBcBhyzYSn9XjEJUpmib MmM/LnCwsEQUPwo/Ain+0Twcxhljr0omekeBs2zd4pP8OE45lLrEc4IUbyc5 rHJkBsdHFo9uL4+Sxpda6fK7Bdz+lwpobmcULpq/vy7Zs4ybRkvFAQxjYHj4 2Yea1X+46jM+xVJHxkD80I6wXO8WLvLHzeJVDlL5R3Ovc0/IwWJgoCj86hgU 8ZfYTtRTgTr8LLovMgYvVmUDfEboQCSEu2hLYgw+pgvwfspjgiO7DYVximNg 36ylpJrNAkvPPxU+Vh8DTpeBmN/Mh6Gp+HAhpfYYHNRJUM3fZYPE0/kFqZ/H gP9Rw6eDAafAzvx5wbMfY5B4NYjdyJwDNPspChgcx8DxCZPtrzAuuI2Lyc/x HoMa0L1qe48bTgfL5muGj8GbrbuV6tZXYGN7Po8leQw8+GnDT2TxQuczz7zi PFJ+Og7TEfvrkFkknKdbOQZzOaRXTqMQuJ7qy2VrGQOfAK57db9FQc/MMreS OAZmkZwmHb04kO47l2swScrvaFwZPXobzt+qyzmzMgZ64slO65kSQBH0Iadh dwyirdaLc6fuQf8Wa863feOgrjm7XugsC4XqOdnnj44DF02c/1zqffAtfJrd dnYcCr3eF3BfewBfTpJlW/CMw5Czgg9tmzIomUZmXRUdhxj/kwPQ8AR4iFJZ PZLj8DpCfM2H8ykwiP3JtFUaBw8732iD4ecwHuCWKfBsHBJ9zave2r+C8k3B zCHtcbj4LIosakADQp/2ZDh/GYcdpqc7Dt+0wLTAPOOmxTjwKPQYb6vrgOoJ zoxJx3F49qiE+7yrHgiZVKd7+YzDkp36SA6jPrD26qaLR4xDC+MUAe1+gjlR 5vT55HH4Rixk9eH6AvX+mWmB+eMgGctiVGxuBLEbKmnSVaT8kb5QxfINfqqR Doot46B10K3i3pAJvMoPS43oG4eFMbrX/QvmcOv43VTFqXHYOnis8cBZSzj+ fTple2UcrO2/8knPW8G/bueUeLIJCP9wqrN16Ce0iVxPecI4Ab7KHw893PwF qX5dyVRsE/C5ZTFD9ZY9OK2bJKdxTgDlsVRutThH0FFlT35+bQIcH5Q5R2HO IJlXkbTv5gSwf78rzG/lCmeP6STl3p2AOw/yrtdsuMGuMVPSmwcTcOTUy3Yj Bw/oJaQlsj6fAFZlSWkrPi/IFX6ciHQmQIBiJ5ppwRs8fTcS9Awn4GEqU/PR Kl/4tBaccMxyArQ6078ZZ/iDvMqdhCqnCbgtXfGhLycQLuVOxH/2nYBnKT4b 1a3BQMvmFM8eOQHKLRSPKy1DYeQrb3xjygTwxopnRkSGQUlXe9z3ggkIdLdc NGoJh8Ab3+IuVP+v/pViQbSR8M3nVFx76wTcO/q6X+1uFDz6Vxpr2T8B3urM FD1O0cD/RCuWZ5o0PtR8Ry/3xMCBHIbY3tUJ+KLxFSSvxsHMkZQYO/JJiA16 eZbWJh5qjB7GCDJNghyL6j7hwQSI7PwXPcw2CfgN0Sf2t5LAUigw2oVrEmbl U3l9A5LhmTcWLcY7CdHfmvzm11JA9O9o1NTNSRD1pnxJHZ8KRx/bR3nfmwQ6 /XP1CY/SYDnratSdh5OQ8Xq3K3AnDfCHWyMXnk/C54njCTSR6ZBoaBQZ9G4S qHmL3h6WzAD7juORMkaTMNKcObkymAFvBFHEP8tJ8JIXtm81ygRxL42IyN+k 9i16rfVTZ8GZVdoIJb9JyHJlP6j4Ows2lRPDdyInoXHaJv81YzYQMhXDE1In wfS+R4y6VTZkHloNUymcBFmy59ec57LB7YtfGHXNJDSdb159qJgD79tvhaW3 TQJXSI4tW0wOyAgMh74YmISPZ5o6Hy3lwAXPX6GMM5Ow06Tk7s2XC5Qrl0Lz /k4C8+r3J181c2HwYXOIFsUUsErqZMU45EJhxueQg/un4IFMN9lMRC74HWQL KTk2BU/7vFbYUnPB8HNh8PtzUyClonzydEouPGh7GXycbwq+0n6k2wrNBZ7r 1MHVYlNw61eRdK1NLuzziAv6IjUFuZ/9BdOe5cLkknwQhzKJ360aLHPnQsWD pcCmF1NA8+XEg5GJHAhL9w400Z2CGI+IxXH/HDBjvRnI/XUKiicjrxuJ54Ca wUBAh9UUGA5T2R4byAahVusAK+cp6L16x177UzYc5OcOuOY/BUcLEmzoNrJg wa3Bnxg1BZlKd7riv2VBw6K+v33aFLTQHb2+bzET4pQO+wsVTcGWUcvgn5eZ YJOW5zdSMwXUf30nTtVlwGuW536u7VPgPYQJ6l7NANwnCr9bg1NwtrqiMtYx HU60RPtOz0wBN203Pn4sDdZ4ZX19/k2B2uoxSkmxNGh3nfeRoJwGs0WGGinX VEhb8PBZ3D8N59lUH9JWpsBvRWGf4OPToCE362HyNhnepRK9Zc9PQ3Hb3LI+ fRLcZbb0XuObhrG16BHVxATg1D/nHXVrGsgo1VW8leKBDF/r9UB6GtSXaZs+ bcQC8doHr13laVit8vbmiI2BPBdWr8SX0/BDice4/Gk0eM1ne6rqkfKL1vir H4kCg/tPPWmMp0Hni0QFgRABCim7HhnW01BylGGIPjIcLh+I9HjpMg1/Jx50 xhiHAd1HKQ+mgGkQkXvur/gkFEabZt3zo6dBqofhJItlMJTyuLm/TZ8Grq/7 zhnpBEKQs6D7oeJpcD8YmWCk7Q/f57rdSmunIaQ6PtjB3BceK5i7feiYhidV /o3bCd5wPfms24mhaVjSMzJbWvAE5v3VrjWz07AbWHZDU94DZt/ruhquTUPR 34SqS6VuUNt4wPUs1QwYMxUpbcu6QtTVTJfmAzNQNsd+eqbnN1j9VnExPTED gpHcm+dkHOH5ny3nixdmIGnV4qbpqB3clA9z7uSfgTuS+3E+sb/gaJKkszVu Bn6c/Lm04/kTVhinf/PKzAD1zeb2M7FW0KLn/Lvv0QwYfa+OUBy0gKQG/t8O r2Ygv5rFNeWrOThc6XK68X4GfqLp8sFPJqDlZOI0ajwDD+5MzgclGMOd2TNO bj9ngPUIhYUshxGckatwxLnOwLDKFoVS82fYStB2nAmYgdMGsyfY0z9B9z4m R9+YGdCdVJQwdPoIWbppDpIZM/Dpz/bYR2Y9cK9/5LBUPAP6Opx/3ae04cPl DfuQuhkoiQzcMWXRAlnHYHu5zhlY//D7+X4rDbgwI26/PjQD95WvsX0QfAVU shN20X9mYC35d8lxuecwFO9o93B9Bip90lmVg9SgiIHXjox6FrSuaNaHKD8B /3fttknMs3DK7+3XdG1lMKoztlU7OQuET1XNRLwSPLx0ypaWexbc1H+dPshw H645lP7KvD4LOQh//MumDDBOv/n1CmaheexBOKX2PZiSZvi1X3b2/5y3/+dZ +H/ynr+656/u+at7/uqev7rnr+75q3v+6p6/uuev7vmre/7qnr+656/u+at7 /uqev7rnr+75q3v+6p6/uuev7vmre/7qnr+656/u+at7/uqev7rnr+75q3v+ 6p6/uuev7vmre/7qnr+656/u+at7/uqev7rnr+75q3v+6p6/+v/SX/0fnzRU 7P8v/ur/lLuK7fmre/7qnr+656/u+at7/uqev7rnr+75q3v+6p6/uuev/n/l r/5fQa770Q== "], {{{}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[{ PolygonBox[{{730, 732, 731}, {736, 738, 737}}], PolygonBox[CompressedData[" 1:eJwN0tdCiAEAQOG/IbuEIpKyqURWCqGyMrMqChEyyioRJRGSrMheoeEFPFgZ IX0X38W5P0llVQWVoUEQhPCdPvEtLAh66aGbLr7yhc908omPfOA973jLG17z ipe8oIPnPKOdpzzhMY94SBsPaOU+LdzjLndo5ja3aOImjdyggXquc406rnKF Wi5TQzWXuMgFznOOKio5yxlOc4oKTnKC45RzjKOUcYTDHKKUEg5ygGKKKGQ/ +9jLHnZTwC52soPtbGMr+WxhM5vYyAbyyCWH9axjLdmsYTWryCKTlWSwguUs YylLSGcxi0hjIamkkMwC5jOPucxhNrOYyQySSGQ6CUwjnqlMIY7JTCKWGCYy gfFEM44oIhnLGEYzipGMYDgRDCOcMEIJIeC/Zwf5x1/+MMBvfvGTH/QzBF2C Sa4= "]], PolygonBox[CompressedData[" 1:eJwl1lOUGAYQBdDsxra5sW3b3NjJxrZt27Zt27bbpA3aoA3apEjapndPPu6Z 9z/nnZmgkG7BXQPDhAkTwAMhND8M/Jbvc4+73OE2t7jJDa5zjatc4TKXuMgF znOOs5zhNKc4yQmOc4yjHOEwhzjIAfazj73sYTe72MkOtrONrWxhM5vYyAbW s461rGE1q1jJCpazjKUsYTGLWMgC5jOPucxhNrOYyQymM42pTGEyk5jIBMYz jrGMYTSjGMkIhjOMoQxhMIMYyAD604++9KE3vehJD7rTjdAFdqEznehIB9rT jra0oTWtCKElLWhOM5rShMY0oiENqE896lKH2gRTi5rUoDrVqEoVKlOJilSg POUoSxlKU4qSlKA4xShKEQpTiIIUID/5yEsecpOLnOQgO9nIShYyk4mMZCA9 6UhLGlITRCpSkoLkJCMpSUhMIhKSgPjEIy5xiE0sYhKD6EQjKlGITCQiEoHw hCMsgQQQWravivcf//IPX/jM3/zFn/zBJz7yO7/xgfe84y2/8gtveM0rXvIz P/GC5zzjKT/yA094zPd8xyMe8oD73OMud7jNLW5yg+tc4ypXuMwlLnKB85zj LGc4zSlOcoLjHOMoRzjMIQ5ygP3sYy972M0udrKD7WxjK1vYzCY2soH1rGMt a1jNKlayguUsYylLWMwiFrKA+cxjLnOYzSxmMoPpTGMqU5jMJCYygfGMYyxj GM0oRjKC4QxjKEMYzCAGMoD+9KMvfehNL3rSg+50oytd6EwnOtKB9rSjLW1o TStCaEkLmtOMpjShMY1oSAPqU4+61KE2wdSiJjWoTjWqUoXKVKIiFShPOcpS htKUoiQlKE4xilKEwhSiIAXITz7ykofc5CInOchONrKShcxkIiMZSE860pKG 1ASRipSkIDnJSEoSEpOIhCQgPvGISxxiE4uYxCA60YhKFCITiYhEIDzhCEsg AQHfju5X4z/+5R++8Jm/+Ys/+YNPfOR3fuMD73nHW37lF97wmle85Gd+4gXP ecZTfuQHnvCY7/mOR6H3P/QX4D73uMsdbnOLm9zgOte4yhUuc4mLXOA85zjL GU5zipOc4DjHOMoRDnOIgxxgP/vYyx52s4ud7GA729jKFjaziY1sYD3rWMsa VrOKlaxgOctYyhIWs4iFLGA+85jLHGYzi5nMYDrTmMoUJjOJiUxgPOMYyxhG M4qRjGA4wxjKEAYziIEMoD/96EsfetOLnvSgO93oShc604mOdKA97WhLG1rT ihBa0oLmNKMpTWhMIxrSgPrUoy51qE0wtahJDapTjapUoTKVqEgFylOOspSh NKUoSQmKU4yiFKEwhShIAfKTj7zkITe5yEkOspONrGQhM5nISAbSk460pCE1 QaQiJSlITjKSkoTEJCIhCYhPPOISh9jEIiYxiE40ohKFyEQiIhEITzjC8j9s IWGU "]]}]}, {}, {}}, {{}, {}, {RGBColor[0.24, 0.6, 0.33692049419863584`], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl12O3GIYSBdAb27Zt27Zt27Zt21YbtrFt27aN5u2s92GvmT9wBokad6jc PlBAQMDaIAEBf2pgtAFBCUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jE Jg5xiUd8EpCQRCQmCUlJRnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQm D3nJR34KUJBCFKYIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYO dalHfRrQkEY0pglNaUZzWtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg99 6Ud/BjCQQQxmCEMZxnBGMJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZ x3wWsJBFLGYJS1nGclawklWsZg1rWcdf/M16NrCRTWxmC//wL1vZxnZ2sJNd 7GYPe9nHfg5wkEMc5ghHOcZxTnCSU5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc 5g53ucd9HvCQRzzmCU95xnNe8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zH b/6EPxCBCUJQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGf BCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8C FKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0 pBGNaUJTmtGcFrSkFa1pQ1va8Wd4d6AjnehMF7rSje70oCe96E0f+tKP/gxg IIMYzBCGMozhjGAkoxjNGMYyjvFMYCKTmMwUpjKN6cxgJrOYzRzmMo/5LGAh i1jMEpayjOWsYCWrWM0a1rKOv/ib9WxgI5vYzBb+4V+2so3t7GAnu9jNHvay j/0c4CCHOMwRjnKM45zgJKc4zRnOco7zXOAil7jMFa5yjevc4Ca3uM0d7nKP +zzgIY94zBOe8oznvOAlr3jNG97yjvd84COf+MwXvvKN7/zgJ7/4j9/8WfyB CEwQghKM4IQgJKEITRjCEo7wRCAikYhMFKISjejEICaxiE0c4hKP+CQgIYlI TBKSkozkpCAlqUhNGtKSjvRkICOZyEwWspKN7OQgJ7nITR7yko/8FKAghShM EYpSjOKUoCSlKE0ZylKO8lSgIpWoTBWqUo3q1KAmtahNHepSj/o0oCGNaEwT mtKM5rSgJa1oTRva0o72dKAjnehMF7rSje70oCe96E0f+tKP/gxgIIMYzBCG MozhjGAkoxjNGMYyjvFMYCKTmMwUpjKN6cxgJrOYzRzmMo/5LGAhi1jMEpay jOWsYCWrWM0a1rKOv/ib9WxgI5vYzBb+4V+2so3t7GAnu9jNHvayj/0c4CCH OMwRjnKM45zgJKc4zRnOco7zXOAil7jMFa5yjevc4Ca3uM0d7nKP+zzgIY94 zBOe8oznvOAlr3jNG97yjvd84COf+MwXvvKN7/zgJ7/4j9/8OfoDEZggBCUY wQlBSEIRmjCEJRzhiUBEIhGZKEQlGtGJQUxiEZs4xCUe8UlAQhKRmCQkJRnJ SUFKUpGaNKQlHenJQEYykZksZCUb2clBTnKRmzzkJR/5KUBBClGYIhSlGMUp QUlKUZoylKUc5alARSpRmSpUpRrVqUFNalGbOtSlHvVpQEMa0ZgmNKUZzWlB S1rRmja0pR3t6UBHOtGZLnSlG93pQU960Zs+9KUf/RnAQAYxmCEMZRjDGcFI RjGaMYxlHOOZwEQmMZkpTGUa05nBTGYxmznMZR7zWcBCFrGYJSxlGctZwUpW sZo1Qf7/r/4PV0bAFw== "]]}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{-1.04, 0}, BaseStyle->14, Frame->True, FrameLabel->{{None, None}, { FormBox["\"Error (eV)\"", TraditionalForm], None}}, FrameStyle->Directive[ Thickness[Large], 20, GrayLevel[0]], FrameTicks->{{None, None}, {Automatic, Automatic}}, GridLines->{{0}, {0}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->300, LabelStyle->{FontFamily -> "Times"}, PlotLabel->FormBox[ StyleBox[ "\"CASPT3(NOIPEA) MAE: 0.09 eV\"", 20, StripOnInput -> False], TraditionalForm], PlotRange->{{-1, 1}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {None, Scaled[0.05]}}, Ticks->{Automatic, Automatic}]} }, AutoDelete->False, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{1}}, "Rows" -> {{2}}}], "Grid"]], "Output", CellLabel->"Out[22]=",ExpressionUUID->"3e201298-ee71-49d6-a572-3484e73e6e41"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Error wrt TBEs", "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], Cell[BoxData[ RowBox[{ RowBox[{"Sheet", "=", "4"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.856660154016405*^9, 3.8566601628895607`*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"WFT", "=", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"MAE", "=", RowBox[{ RowBox[{"Import", "[", "\"\\"", "]"}], "\[LeftDoubleBracket]", RowBox[{"Sheet", ",", RowBox[{"3", ";;", "286"}], ",", RowBox[{"39", "+", RowBox[{"{", RowBox[{"19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}]}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CASSCF", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CASPT2IPEA", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CASPT2NOIPEA", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{"k", ",", "3"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CASPT3IPEA", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{"k", ",", "4"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CASPT3NOIPEA", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"k", ",", RowBox[{"MAE", "\[LeftDoubleBracket]", RowBox[{"k", ",", "5"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"CASPT2NOIPEA", ",", "CASPT3NOIPEA"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\<# excitation\>\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotMarkers", "->", "\"\\""}], ",", RowBox[{"Joined", "->", "True"}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "->", "1500"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "6"}]}], ",", RowBox[{"PlotLegends", "\[Rule]", RowBox[{"Placed", "[", RowBox[{ RowBox[{"{", RowBox[{"(*", RowBox[{"\"\\"", ","}], "*)"}], RowBox[{"\"\\"", ",", RowBox[{"(*", RowBox[{"\"\\"", ","}], "*)"}], "\"\\""}], "}"}], ",", "Right"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"Axes", "\[Rule]", "False"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "286"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"GridLines", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"BaseStyle", "\[Rule]", "20"}], ",", RowBox[{"FrameStyle", "\[Rule]", RowBox[{"Directive", "[", RowBox[{"Thick", ",", "20", ",", "Black"}], "]"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}], ";"}], "*)"}]}]}], "Input", CellLabel-> "In[477]:=",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {{{}, {}, { RGBColor[0.9, 0.36, 0.054], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], CapForm["Butt"], LineBox[{{1., 0.13000000000000078`}, {2., 0.08999999999999941}, {3., 0.10000000000000053`}, {4., 0.17999999999999972`}, {5., 0.29000000000000004`}, {6., 0.25}, {7., 0.11000000000000032`}, {8., 0.13999999999999968`}, {9., 0.009999999999999787}, { 10., -0.11999999999999966`}, {11., 0.4899999999999993}}], LineBox[{{13., 0.1200000000000001}, {14., 0.14999999999999947`}, { 15., -0.11999999999999966`}, {16., 0.020000000000000018`}, { 17., -0.08000000000000007}}], LineBox[{{19., 0.03000000000000025}, {20., 0.21999999999999975`}, { 21., 0.040000000000000036`}, {22., -0.009999999999999787}, { 23., -0.020000000000000462`}, {24., -0.019999999999999574`}}], LineBox[CompressedData[" 1:eJxdkL8OAUEQhydK9Wn9eQYdjh/uHE7DI0jU1KoteAMNhUhoNBKJBJVL1BKJ 4lpqL2H3di45O8ll8+XbvZn5FYbjwShFRHn5qVNXCZQ5eJ/p4qa5HHNNcwUI txM7fWa2oc83cxViqerKXIOw0/LFgxmg3Pzbvxw0CyD4u1+HyEZe9xeSLdV/ x74BSvYXBlMTZCXmFzHP2DvGe8eY1wWi+yf2Lvs9+xY2yftC8kQtGLD38FS/ D1/sPbz7F7nRkX0bKKq6s2+DBknfMebrGPt3jfy6Rv4+KMpvzd6P82Tfi/Pg fCSv9H4/B7GLBQ== "]], LineBox[CompressedData[" 1:eJxdkb1LA0EQxQdLa7FU7AL+DeLrrIz3fRewEqxNnWqLWGtho5VgZXMgCEaQ uAq2opVgFWuxTO/u7VvYvYUjPCa/N29mto5OsuMVEdk2n/3tntqHRG8IWW/3 fibTZ1cfAmtW3++6+gF0Ots4/b1zWhm9HByevb6xnsQaCVTIK6Mv7Xt0WieQ zPq9kE+hjUpnc/Ip676f0V83453VB/JGd/5T8hn5d/IZPro8f+QzLML82v9/ 7uaVHAj9kff658x/Sz6P/aSAbFq/lnzh83KfBRYTG/ibfNHbfwkd+qPEdbgv VXLeC+envea9pOrtr4KY6ZeDJ/JVPI+u4vtI7fs7P9RQnV/L/DXn/SRfx/uQ Jr4Hmjivasjz3rrBedhPRr4f+RHkyvn/AwQm0RU= "]], LineBox[{{104., 0.03000000000000025}, {105., 0.10000000000000053`}, { 106., -0.03000000000000025}, {107., 0.4299999999999997}, {108., 0.13000000000000078`}, {109., 0.010000000000000675`}, { 110., -0.04999999999999982}, {110.65217391304348`, -0.2}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQBWIQLbrO/WHVlWiHWTNB4OR+BjCIcWCQb30duGMehO8A 5IuAFLbYg/kNcHkI/wAanyHWQeH64gJbru0QvkOswwE5kPw+qP5YhwaweVsg 5h+IdXDYAVJwAqo/zoEhCCSwEao/ziEBoh6qP87BwBgEDkPtj4O6bwpUfzyq exziofYtgeqPd1gA8S9UfzyqfxkSHB5UgTScgsgrJDgwyCGbB+Qj+y8hARY+ EP0NCQ4NYPXrIPIL0PgHElDD4wHMvONQ9yc6NNhyAUXOQu0H8sHuXQm1PxHV PwmJcPsBZl2OXw== "]], LineBox[{{141., 0.010000000000000675`}, {142., 0.020000000000000018`}, {143., 0.019999999999999574`}, {144., 0.009999999999999787}, {145., 0.03000000000000025}, {146., 0.}, { 147., 0.10999999999999943`}, {148., 0.019999999999999574`}, {149., 0.009999999999999787}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQA2IQDQYPkhwa5FpfB+5YZw8RSHZgAPPnQfgKyQ4NIuvc H1ZN2Q/mOwD5M0FgJYSfAOdD1DckOySA1S+ByC9IhpkP4R+AmdcC4T9IdlgA 1r8Tan+Kg8PDKqCKi1D7U1DNd0hxYAjaATRxI4SfkAK17wjU/hSoffsg/AVo 6g8A+aJg/0D4D9D0M6RC3bcEaj+MfwVqf6oDgzxS+CSkOjiAjA88AbU/Fere k/YAI8lw8A== "]], LineBox[{{176., 0.13000000000000034`}, { 177., -0.009999999999999787}, {178., 0.08000000000000007}, {179., 0.14000000000000057`}, {180., 0.05999999999999961}, { 181., -0.03000000000000025}, {182., 0.10999999999999988`}, {183., 0.1200000000000001}, {184., 0.040000000000000036`}, {185., 0.20999999999999996`}, {186., 0.11000000000000032`}, {187., 0.34999999999999964`}, {188., 0.5}, {189., 0.10000000000000009`}, { 190., 0.08999999999999986}}], LineBox[{{192., 0.0699999999999994}, {193., 0.22999999999999954`}, { 194., 0.010000000000000675`}, {195., 0.22999999999999954`}, {196., 0.41999999999999993`}, {197., 0.20999999999999996`}, {198., 0.05999999999999961}, {199., 0.10000000000000053`}, {200., 0.4800000000000004}}], LineBox[{{202., -0.009999999999999787}, {203., 0.11000000000000032`}, {204., 0.019999999999999574`}, {205., 0.04999999999999982}, {206., 0.16999999999999993`}, {207., 0.1899999999999995}, {208., 0.13999999999999968`}, {209., 0.16999999999999993`}, {210., 0.03000000000000025}, {211., 0.2400000000000002}, {212., 0.3200000000000003}, {213., 0.1899999999999995}, {214., 0.41000000000000014`}, {215., 0.11000000000000032`}}], LineBox[{{217., 0.14999999999999947`}, {218., 0.07000000000000028}, { 219., 0.040000000000000036`}, {220., 0.08000000000000007}, {221., 0.009999999999999787}, {222., 0.1900000000000004}, {223., 0.1299999999999999}, {224., 0.08999999999999986}, { 225., -0.019999999999999574`}, {226., 0.04999999999999982}, {227., 0.040000000000000036`}, {228., 0.1299999999999999}, {229., 0.15000000000000036`}, {230., 0.020000000000000462`}, {231., 0.06999999999999984}, {232., 0.08000000000000007}}], LineBox[{{234., 0.08999999999999986}, {235., 0.04999999999999982}, { 236., -0.03000000000000025}, {237., 0.2699999999999996}}], LineBox[{{239., 0.14999999999999947`}, {240., -0.1200000000000001}, { 241., 0.08999999999999986}, {242., 0.06999999999999984}, {243., 0.1200000000000001}}], LineBox[{{245., 0.08000000000000007}, {246., 0.05999999999999961}, { 247., 0.2999999999999998}}], LineBox[{{249., 0.020000000000000462`}, {250., 0.07000000000000028}, { 251., 0.08000000000000007}, {252., 0.5200000000000005}, {253., 0.020000000000000462`}, {254., -0.020000000000000462`}, {255., 0.04999999999999982}, {256., 0.029999999999999805`}, {257., 0.25}, { 258., 0.45999999999999996`}, {259., 0.020000000000000462`}, {260., 0.020000000000000462`}, {261., 0.07000000000000028}, {262., 0.019999999999999574`}, {263., -0.08999999999999986}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQYTChwaRNa5P6yash/MX1Dg4BDTf+irxh57MH9D gQODGEi+BcI/AOTLt74O3DEPwr8A1w/hP4Dxl0D4HwocPgTukGt9fRHCZyh0 cDAGgcMQvkChQ4It1/XFBWchfIVCBwZkYFDosKAApOACRN6h0OFBFciCUxB+ AJAPNv8ghJ9Q6CABsl7kGYRfADQPaLot13EIvwFo3kwQOAnhTyh0EAB5R+4q hL+gEOZ+SHhsKET17wGEfQA612KL "]]}, { RGBColor[0.365248, 0.427802, 0.758297], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], CapForm["Butt"], LineBox[{{1., 0.11000000000000032`}, {2., 0.06000000000000005}, {3., 0.03000000000000025}, {4., 0.2400000000000002}, {5., 0.2400000000000002}, {6., 0.2400000000000002}, {7., 0.17999999999999972`}, {8., 0.08999999999999986}, {9., 0.03000000000000025}, {10., 0.050000000000000266`}, { 10.806451612903224`, -0.2}}], LineBox[{{13., -0.03000000000000025}, {14., 0.45999999999999996`}, { 15., 0.}, {16., 0.1599999999999997}, {17., 0.2600000000000007}}], LineBox[{{19., 0.29000000000000004`}, {20., 0.03000000000000025}, { 21., 0.2400000000000002}, {22., 0.3200000000000003}, {23., 0.2999999999999998}, {24., 0.27000000000000135`}}], LineBox[{{26., 0.16999999999999993`}, {27., 0.09000000000000075}, { 27.935483870967744`, -0.2}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQA2IQXSRzvFCG3cZh1kwQOLmfAQxsHSD0A3sIbefgYAwC h6F8e4cPgTvkWl9fhPIdHA581YjpP3QUwm9wcFgAMQ8q7+igANEPMb/B0YEh CKR/I1TeyaFBZJ37w6ojUP1ODg/A5h+Eyjs7MIDlW6D6naHqt0DlXRwY5Ftf B+6YB9Xv4nAgENl8V4cGsHtWQuVdHRhEQfqnQOXdYOZD5d0cJqC4392hQQ5k /jqovLuDAUp4eDgIXF9cYMt1HSrvATVvCjQ8PdHs90S1j8EL6p8lUP95oYW3 N2p4NHjDzIfK+zgsANm++ABU3gcaHuvsAT4eh4Q= "]], LineBox[{{59., 0.10999999999999988`}, {60., 0.1999999999999993}, {61., 0.009999999999999787}, {62., 0.04999999999999982}, {63., 0.23000000000000043`}, {64., 0.16000000000000014`}, {65., 0.15000000000000036`}, {66., 0.16000000000000014`}, { 67., -0.17999999999999972`}, {68., 0.3100000000000005}, {69., 0.1299999999999999}, {70., 0.28000000000000025`}, {71., 0.0699999999999994}, {72., 0.27000000000000046`}, {73., 0.5300000000000011}, {73.8021978021978, -0.2}}], LineBox[CompressedData[" 1:eJxdkK0KQkEQhQejYNMm/jyDGMUDBqvef5sIZq2aNugbWDSIcM0XBEGTLmjQ ZtNqMPkS3r07wb0Dy3KY+c4cpjoYWcMMERXjp/7WJPepLyyslqruZ1IlLfSP pfm3e2smmmzo/6E1bHSS/ktrYWMzbmSfodRa2hCqfYyYd0w/OOzHJRzm2V/G /fI/70ImfifmXVSeYUwceL8LkY/a7+mVedfMQ56ZByktPN63Zt5jvy3zPqig 9EzfB745L3zzHjLu/+ejAGSpgR3vT2kRQOj7Mx9gk+Rb633U4zx75ntATdWl +QMXdYMV "]], LineBox[CompressedData[" 1:eJxdkjFIw0AUhg/Hzp01hQ4dBefgv7najskleRE669zpFmdnt4B7QRCsIHgW iigqSoeuyezcvXe5Z8ndgxD+3Pve/34ug4vLyfRACDE0j327SiCOrv/Gi/lp K5Gg3o7kzXLltDLnm7uruPfmtE6gDjv9IsV5M+vPz36ZT6GMamYPzKf+PJ0i cvNeHC9Bcc98+WJeQnv+EmKyMI73zEve55H9M8B0b0fPzGeox7b/lfnsP5/z 05nvJ3KoW1tPzAda5fix8ZoP9s+D/EXgXyBq9SfzBe+7Yb7A8YmtNfPk64jY /53nEaquJgryEXS7z7fTFfn+OuDrQIvS56PSvz+Ufj4q9//LDukps78= "]], LineBox[{{141., 0.08000000000000007}, {142., 0.08000000000000007}, { 143., 0.08000000000000007}, {144., 0.08000000000000007}, {145., 0.09999999999999964}, {146., 0.040000000000000036`}, {147., 0.1200000000000001}, {148., 0.04999999999999982}, {149., 0.040000000000000036`}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQA2IQDQYPkhwYri8usOU6bg8RSHZQMAaBwxC+QrJDg8g6 94dVLfvBfIdkBwa51teBO+ZB+AnJUP3bIeobkh0OIMsvAOoH89dB+AfQzHuQ 7CCAYn8KVH4J1P4UhweBO4AmHITwHVIcEkDcwBMQfkKKwwGw/Eao/TD9R6D2 pzhc+KoR03/oKkT+ANC8KpCCUxD+A5j6LVD7U2Huhdqf6sAAcS/U/lSo//ZB 7QeqnwkCK6H2I/gATuRwPA== "]], LineBox[{{176., 0.020000000000000018`}, {177., 0.23000000000000043`}, {178., 0.07000000000000028}, { 179., -0.1299999999999999}, {180., 0.16999999999999993`}, {181., 0.08999999999999986}, {182., 0.009999999999999787}, {183., 0.07000000000000028}, {184., 0.35000000000000053`}, {185., 0.23000000000000043`}, {186., 0.0600000000000005}, {187., 0.33999999999999986`}, {188., 0.4500000000000002}, { 189., -0.020000000000000018`}, {190., 0.05999999999999961}}], LineBox[{{192., 0.14999999999999947`}, {193., 0.2400000000000002}, { 194., 0.20000000000000018`}, {195., -0.05000000000000071}, {196., 0.17999999999999972`}, {197., 0.2400000000000002}, {198., 0.0699999999999994}, {199., 0.08999999999999986}, { 200., -0.08000000000000007}}], LineBox[{{202., 0.3200000000000003}, {203., 0.13999999999999968`}, { 204., 0.1200000000000001}, {205., 0.17999999999999972`}, {206., 0.009999999999999787}, {207., 0.1299999999999999}, {208., 0.15999999999999925`}, {209., 0.05000000000000071}, {210., 0.16999999999999993`}, {211., 0.17999999999999972`}, {212., 0.23000000000000043`}, {213., 0.1299999999999999}, {214., 0.33000000000000007`}, {215., 0.1200000000000001}}], LineBox[{{217., 0.09999999999999964}, {218., 0.08999999999999986}, { 219., 0.2699999999999996}, {220., 0.3099999999999996}, {221., 0.41999999999999993`}, {222., 0.4500000000000002}, {223., 0.28000000000000025`}, {224., -0.17999999999999972`}, {225., 0.25}, { 226., 0.27000000000000046`}, {227., 0.14999999999999947`}, {228., 0.35999999999999943`}, {229., 0.20999999999999996`}, {230., 0.10000000000000053`}, {231., -0.07000000000000028}, { 232., -0.06000000000000005}}], LineBox[{{234., 0.08999999999999986}, {235., 0.3899999999999997}, { 236., 0.22999999999999954`}, {237., 0.16999999999999993`}}], LineBox[{{239., 0.08999999999999986}, {240., -0.08000000000000007}, { 241., -0.07000000000000006}, {242., -0.040000000000000036`}, {243., 0.08999999999999986}}], LineBox[{{245., 0.09000000000000075}, {246., 0.2599999999999998}, { 247., 0.10999999999999943`}}], LineBox[{{249., 0.16999999999999993`}, {250., 0.03000000000000025}, { 251., 0.13000000000000078`}, {252., 0.5}, {253., 0.08999999999999986}, {254., -0.040000000000000036`}, {255., 0.009999999999999787}, {256., 0.029999999999999805`}, {257., 0.28000000000000025`}, {258., 0.21999999999999975`}, {259., 0.0600000000000005}, {260., 0.0600000000000005}, {261., 0.20000000000000018`}, {262., 0.22999999999999954`}, {263., 0.}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQYTChwabLmuLy44aw/mLyhwOCDX+jpwxz4If0OB A4M8iL8Owj8A5AftAKrYCOFfAOoXWef+sGoJhP8Axp8C4X8AqgfzW/ZDLCx0 SABpDzwBkRcohKo/AuErFKK6x6DQgQHIs+U6DuE7FDo4IOsPKHSYcOirRkz/ JQg/odDhxBkQeALhFxQ6KMT0A1WcgfAbgPqNQeAwhD8ByAfbvwXq/0KHB1Ug gVNQ/6PZfwCufz8Aa+tlDQ== "]]}}, {{ RGBColor[0.9, 0.36, 0.054], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], CapForm["Butt"], GeometricTransformationBox[ InsetBox[ FormBox[ StyleBox[ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}, { AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}}], StripOnInput -> False, GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.0055000000000000005`], RGBColor[0.9, 0.36, 0.054], CapForm["Butt"], AbsoluteThickness[1.6]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], CompressedData[" 1:eJxdVztsHVUQvUADVC4MSoHMghBCCCGj8BNgMiEJzgfCe/7Hfrbv83t+/89u m+oWUMcFDRRopaSAxjISEkFCcAkgPgJkAsQSCNg0NBGSG3revj0Le2ZlyZo3 O3dmzpyZO/vA1nBu+w5jzF23GTP6M7eb/Dk85sOZuw8u+2P4QZIbl0e/fAj5 TvFvpc9HkCfEHKT6ryBPys61fx6pXLoO+Yhk//ch3ydSuTR642PIgSTlq1Nv 3PoM8oNiJndnb158HfJDEo+05auffJrJD0spNa/8Cf2j4jM95MckOJo+n0N+ XNlPixuf/yb0T0D+APqjYu5P338H+iclGMf7HeSn8P4VyE/n8cL+GTH3jM+H /Cz0ufyc0j+fyzjvBZGDIt4zwC+B/KI4wv+YuLRc4feQBfHvZrITVa/j4sZ4 7Gb+3XGVz0uoJ/w7JZsTnI87oep1UtmfVPGeEsnwhv4U9O9B/7LExffdSCY+ zsp+evzBT9DPgj/vQ39apFh/d1rMXFF/RsV3RuV/VuF3VuF/TsxUgR/uXI4n 9K8wH9xIfruQn3sV5+XPeTH3Ft8/z/iY18QX83MjOW2va19CX2JZSjmf8X6J 8fcl4JH3W5n7R8qMlyszXr6s6j0H+x9gPyf743j+hv0c18fn7+f9OM98l3nl f5754edVvRe4XrKQxws8FyS5mAb8K+wXFP6L6A+cL4uKf4vMd7+o+n1J4bck pjjf3BLn45e4PmY595+dJ8uqP5eR74+wX1b9ssL1kBXVnys8X/2K7BT9mQvM X7nAfDWrPA9lleeJ+08PfFbF3Uod/gb7NaH7RNZyvsN+Lc8H9mtymOWL+Cp8 vlQ4X1fh+LySzboExK91rpdb5/nv10VS9+WvYb/B9ZMNsdRfGzJdnDd+I8cf 9psKv02eN24TfPsG9pucr7Hg77eZPrA8f8Ryf1qr5o/l+sZK9pbxSKy6z6t8 vwRV5p9UOR9bZf9xlevtq3z/JlWF1xbXN9hS+I3k4mO3VL9t8XmxOi/ZUvO6 xngGtTw+8K3G/LQ1zt/VwIcryLfG/evz84BHUuP5YuoiN9MCo7+DusK3zvyz dfj7Av7r8If6xep9X+f9IlH2ZpvrF+Tyz/C/zfjbbe4Pt414wV/TkL1ivwcN 5oM0eP7ZBt9HrqH42lDzpYF9DPVOGmr/a6p8mtw/0uT90zbFNtLnBvw3JTsH 933c5Hr5ptqHWnw/By2xxX6RFvPfKr1r8f0Utzhe32I8kpba59rI/w/4azPe ts35urbqj7a6X9u8TyRtNQ87fJ8EHbV/dBRfOrwfuA7zK+7w+X4kp/DMAI+k w/EHXd7vpav6o6vma5f5Fnd5Hviu2KL/pKv2zR7XO+jx/So9xs/2lP8enxf3 eD/1PdWfPbXf9Dl+6at531fzqM/9Evd5viR99X004H0sGPD5MuB47ID7LR5w fH6g+DrA/Yh9PRhyvjJU9Ruq/XUo747xy/tR2fshf08lQ7UfhYgHfJwIJfsd 36NBKOPjw98zeTpU8Sm5FKp4Q+6nMOT9cyfk+yQOmc97obofQ+6f/VDdlyHz 6zDM9yXkGzG/JiKeN0GE/PFMR+An8JCI508p4n63kRxJ3U/+hXwj3hdcxPvM TiQTaTpTv6B+UR5/hsdepPa3//39C4JS3bI= "]]}, { RGBColor[0.365248, 0.427802, 0.758297], PointSize[0.0055000000000000005`], AbsoluteThickness[1.6], CapForm["Butt"], GeometricTransformationBox[ InsetBox[ FormBox[ StyleBox[ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, { AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}}], StripOnInput -> False, GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.0055000000000000005`], RGBColor[0.365248, 0.427802, 0.758297], CapForm["Butt"], AbsoluteThickness[1.6]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], CompressedData[" 1:eJxdV0toXFUYPupGXWVRwYXEq4ioiETqC7Xm7zN9WWcmzyaT5GRmMu/M3Nl2 dRa6bhbd6EIu1I2bUkGwgthjrVilSnxGROEG3LnJpnvn3nxH7vcfAuGb//zv 17lP1IaVzQeMMQ/dZ8z4z9xvwtmflurlW/ee+WIaP4iffO/f8o1rwA+KeTzD HwJPgP4j8CGFH1X4MTG7V+MjD38LHAF/Bvykkv+U+Pez8zHw03J9fHv36s7N A/xcuA/8vOTk+G/cf0EMnSmJD12b2bt0G/QXgzzgw7I99r56+Wfgl5Q9Lyt/ XhGXy/sV+FWZOpydX4BfE7t3aXzjJ+DXxWfib30D/IYI+f+mRHn878KfI7A/ Bf0tkVz+18DTsl++MbYoyBeW70SSPH7fgX5UogP+A/nuqJhKxv8J6MfgD+Lj jkmay/8K9ONicvq74D+O+5+CfoLj5U6ILxflnxRXzKc7KeaRjP8K6KeCfNBP yTbZPyOuWI9uBvEO8TgtE3k8d0E/DXlXEM8zSv8Z1mfOwp+P4N9ZFe9zHA93 LsgH/bwkeT150M8jHsHet5Hf0F8XYA/8cxeUPe8oe8c4r+8fQC9xvqTE9jpF 96XQf4hHWdI8XKhXKSv7y1xfvqzyWZFSsb6lIubZzEHUq6vIUna9/MeBPl8R m+M74J+Vg//oP5mV0sF98M+yPX6W82/mWJ7MQR6OmwM/5Ps5zoeZRz9/Cf55 iYr96OZV/ObZHrPA9ojCboH7wS+E+gL/Iuof/SSLqn8WOR5+Uc3LJe5fUdgt cX35JUkmi/PyIvevXFT1vszxkmVJab4s8zz3yyo/K6o+VlifW2F5fgXxD/VZ FVusd6mq+VZlf31VxWdVaJ/Jqurf1eAf6nOV9Zk1xO9z8Cvs1mQnc2/ve+hf U/6vK/3rYb6Dfx32Yl75dbU/LOPIcj7F8ny3VvlneV8llvV7xZ8qbDaYP9pQ 9bLB/tkNrpdE3fcKpwqbGuOopuJf4/6xNe5fV+N5maj7aU29P+phH0JfHfdD P9bFFPvF1rm+XB36QU/qIf+oJyUvrWM/Bf0Nti9qcP6kwfPNNnj+usB/G/ob spP3x2+I91hesT7Thor3JtdrtMn7RzY5vnZT7SOFTRPysQ+jJu8raXK/2maY p9i3Te7vpMnx9k22L1XyTEviZnZ+h/6W0t/i+rQt6EO8XEt27mbnL+hvBX+Q z5bq77aqnzb3i7RVf7bFfJDHC/62uR4Txe/bnO+0reZbJ+QT9drh96jtqHnQ 4XwmHTW/Oyq+HbXvumKL+zDqBn/gb5fzZ7ss33U5H0lX7feuRJl5k8hH2mV7 o56aBz2Oh+2JFPeN68lO8X2T9NAPf0Jfj/Od9tR7us/vpWiM8xPeK33eb7bP 9eD6PN+TPvej7+P7Bv6k/VDP2H9b4fsL+d1S/m7Jfhbue+G9tMX7K9nifKSK 3wy4fqIB/Id+GfB72A6YPxnw94sf8HsrHd8v7odoyPbIkN87dkyn9+cQ8cZ7 MhmqeTBk+9Khej/H6FfIn4g5v1HM+3AqVu8dhUux6ueY4x3HsBdnO1b1HnM9 X1fyfczzbCdW+yvm+bof8/eYGfG+mBjx+zUasT1TI+5PGYkU+Usj/h62I7mT 98s/8Hek3jMjfj9uj3Fx3yQjrv/rSr//n//mfyP27cY= "]]}}}, {{}, {}}}, AspectRatio -> NCache[ Rational[1, 6], 0.16666666666666666`], Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, BaseStyle -> 20, DisplayFunction -> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ FormBox["\"Error (eV)\"", TraditionalForm], None}, { FormBox["\"# excitation\"", TraditionalForm], None}}, FrameStyle -> Directive[ Thickness[Large], 20, GrayLevel[0]], FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> {1993.066650390625, Automatic}, LabelStyle -> {FontFamily -> "Times"}, Method -> { "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange -> {{0., 286.}, {-0.2, 1.}}, PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}}, Ticks -> {Automatic, Automatic}], FormBox[ FormBox[ TemplateBox[{"\"CASPT2(NOIPEA)\"", "\"CASPT3(NOIPEA)\""}, "PointLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.9, 0.36, 0.054], CapForm["Butt"], AbsoluteThickness[1.6]], { LineBox[{{0, 9.75}, {20, 9.75}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.9, 0.36, 0.054], CapForm["Butt"], AbsoluteThickness[1.6]], { InsetBox[ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3, 3}]]}, AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3, 3}]]}, {DefaultBaseStyle -> {"Graphics", { AbsolutePointSize[6]}, Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.9, 0.36, 0.054], CapForm["Butt"], AbsoluteThickness[1.6]]}}], NCache[ Scaled[{ Rational[1, 2], Rational[1, 2]}], Scaled[{0.5, 0.5}]], Automatic, Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 9.75}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.09205128205128206] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.365248, 0.427802, 0.758297], CapForm["Butt"], AbsoluteThickness[1.6]], { LineBox[{{0, 9.75}, {20, 9.75}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.365248, 0.427802, 0.758297], CapForm["Butt"], AbsoluteThickness[1.6]], { InsetBox[ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}, { DefaultBaseStyle -> {"Graphics", { AbsolutePointSize[6]}, Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.365248, 0.427802, 0.758297], CapForm["Butt"], AbsoluteThickness[1.6]]}}], NCache[ Scaled[{ Rational[1, 2], Rational[1, 2]}], Scaled[{0.5, 0.5}]], Automatic, Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 9.75}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.09205128205128206] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Times"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.0055000000000000005`", "]"}], ",", TemplateBox[<|"color" -> RGBColor[0.9, 0.36, 0.054]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.0055000000000000005`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.365248, 0.427802, 0.758297]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3, 3}]]}, AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3, 3}]]}], ",", "9.75`"}], "}"}], ",", RowBox[{"{", RowBox[{ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}], ",", "9.75`"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{"True", ",", "True"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[484]=",ExpressionUUID->"f0aa608e-f12c-48f1-ba63-9aaf3960f615"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Table", "Title", CellChangeTimes->{{3.8566634519836397`*^9, 3.8566634527935467`*^9}},ExpressionUUID->"adbad97c-5cc1-459d-b662-\ b85d0910cb88"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"tab", "=", RowBox[{ RowBox[{"Import", "[", "\"\\"", "]"}], "\[LeftDoubleBracket]", RowBox[{"Sheet", ",", RowBox[{"3", ";;", "286"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "5", ",", "7", ",", "8", ",", "9", ",", "11", ",", "13", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"TableForm", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"IntegerPart", "[", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}], "]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}], ",", RowBox[{"\"\<$\>\"", "<>", RowBox[{"StringTrim", "[", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "3"}], "\[RightDoubleBracket]"}], "]"}], "<>", "\"\<(\>\"", "<>", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "5"}], "\[RightDoubleBracket]"}], "<>", "\"\<)$\>\""}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "4"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "6"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "7"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "8"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "9"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "10"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "11"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "12"}], "\[RightDoubleBracket]"}], ",", RowBox[{"tab", "\[LeftDoubleBracket]", RowBox[{"k", ",", "13"}], "\[RightDoubleBracket]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"Length", "[", "tab", "]"}]}], "}"}]}], "]"}], ",", RowBox[{"TableHeadings", "\[Rule]", RowBox[{"{", " ", RowBox[{"None", ",", RowBox[{"{", RowBox[{ "\"\<#\>\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\<$\\%T_1$\>\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.856666891048111*^9, 3.856666896702963*^9}, { 3.856666957924947*^9, 3.856667117665913*^9}, {3.856667198148486*^9, 3.85666729541502*^9}, {3.856667325566568*^9, 3.856667377328034*^9}, { 3.856667421460425*^9, 3.856667547290819*^9}, {3.856667582077704*^9, 3.8566675972309713`*^9}, {3.8566676303296022`*^9, 3.856667706669806*^9}}, CellLabel-> "In[118]:=",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], Cell[BoxData[ TagBox[ TagBox[GridBox[{ { TagBox["\<\"#\"\>", HoldForm], TagBox["\<\"Molecule\"\>", HoldForm], TagBox["\<\"Excitation\"\>", HoldForm], TagBox["\<\"Nature\"\>", HoldForm], TagBox["\<\"$\\%T_1$\"\>", HoldForm], TagBox["\<\"TBE\"\>", HoldForm], TagBox["\<\"Safe?\"\>", HoldForm], TagBox["\<\"CASSCF\"\>", HoldForm], TagBox["\<\"CASPT2(IPEA)\"\>", HoldForm], TagBox["\<\"CASPT2(NOIPEA)\"\>", HoldForm], TagBox["\<\"CASPT3(IPEA)\"\>", HoldForm], TagBox["\<\"CASPT3(NOIPEA)\"\>", HoldForm]}, {"1", "\<\"Acetaldehyde\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "91.3`", "4.31`", "\<\"Y\"\>", "4.36`", "4.31`", "4.31`", "4.32`", "4.31`"}, {"2", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.9`", "3.97`", "\<\"Y\"\>", "3.95`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.95`"}, {"3", "\<\"Acetone\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "91.1`", "4.47`", "\<\"Y\"\>", "4.54`", "4.48`", "4.48`", "4.49`", "4.48`"}, {"4", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "90.5`", "6.46`", "\<\"Y\"\>", "6.59`", "6.46`", "6.46`", "6.5`", "6.43`"}, {"5", "\<\"\"\>", "\<\"$^1A_2(n3p)$\"\>", "\<\"R\"\>", "90.9`", "7.47`", "\<\"Y\"\>", "7.57`", "7.47`", "7.47`", "7.51`", "7.45`"}, {"6", "\<\"\"\>", "\<\"$^1A_1(n3p)$\"\>", "\<\"R\"\>", "90.6`", "7.51`", "\<\"Y\"\>", "7.63`", "7.52`", "7.52`", "7.55`", "7.48`"}, {"7", "\<\"\"\>", "\<\"$^1B_2(n3p)$\"\>", "\<\"R\"\>", "91.2`", "7.62`", "\<\"Y\"\>", "7.7`", "7.61`", "7.61`", "7.65`", "7.59`"}, {"8", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "97.8`", "4.13`", "\<\"Y\"\>", "4.15`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.15`"}, {"9", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.7`", "6.25`", "\<\"Y\"\>", "6.19`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.28`"}, {"10", "\<\"Acrolein\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "87.6`", "3.78`", "\<\"Y\"\>", "3.91`", "3.8`", "3.8`", "3.78`", "3.74`"}, {"11", "\<\"\"\>", "\<\"$^1A'(ppi)$\"\>", "\<\"V\"\>", "91.2`", "6.69`", "\<\"Y\"\>", "6.87`", "6.75`", "6.69`", "6.71`", "6.65`"}, {"12", "\<\"\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "79.4`", "6.72`", "\<\"N\"\>", "7.27`", "6.96`", "6.94`", "6.89`", "6.75`"}, {"13", "\<\"\"\>", "\<\"$^1A'(n3s)$\"\>", "\<\"R\"\>", "89.4`", "7.08`", "\<\"Y\"\>", "7.24`", "7.08`", "7.12`", "7.15`", "7.07`"}, {"14", "\<\"\"\>", "\<\"$^1A'(ppi)$\"\>", "\<\"V\"\>", "75.`", "7.87`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "8.08`"}, {"15", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.`", "3.51`", "\<\"Y\"\>", "3.55`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.46`"}, {"16", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.6`", "3.94`", "\<\"Y\"\>", "3.88`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.94`"}, {"17", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.4`", "6.18`", "\<\"Y\"\>", "6.14`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.19`"}, {"18", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "92.7`", "6.54`", "\<\"N\"\>", "7.08`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.61`"}, {"19", "\<\"Benzene\"\>", "\<\"$^1B_{2u}(ppi)$\"\>", "\<\"V\"\>", "86.3`", "5.06`", "\<\"Y\"\>", "5.2`", "5.14`", "5.14`", "5.11`", "5.09`"}, {"20", "\<\"\"\>", "\<\"$^1B_{1u}(ppi)$\"\>", "\<\"V\"\>", "92.9`", "6.45`", "\<\"Y\"\>", "6.5`", "6.47`", "6.47`", "6.45`", "6.44`"}, {"21", "\<\"\"\>", "\<\"$^1E_{1g}(p3s)$\"\>", "\<\"R\"\>", "92.8`", "6.52`", "\<\"Y\"\>", "6.58`", "6.54`", "6.54`", "6.54`", "6.52`"}, {"22", "\<\"\"\>", "\<\"$^1A_{2u}(p3p)$\"\>", "\<\"R\"\>", "93.4`", "7.08`", "\<\"Y\"\>", "7.12`", "7.09`", "7.1`", "7.09`", "7.08`"}, {"23", "\<\"\"\>", "\<\"$^1E_{2u}(p3p)$\"\>", "\<\"R\"\>", "92.8`", "7.15`", "\<\"Y\"\>", "7.2`", "7.16`", "7.17`", "7.16`", "7.15`"}, {"24", "\<\"\"\>", "\<\"$^1E_{2g}(ppi)$\"\>", "\<\"V\"\>", "73.`", "8.28`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "8.38`"}, {"25", "\<\"\"\>", "\<\"$^1A_{1g}(dou)$\"\>", "\<\"V\"\>", \ "\<\"n.d.\"\>", "10.55`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", \ "\<\"\"\>"}, {"26", "\<\"\"\>", "\<\"$^3B_{1u}(ppi)$\"\>", "\<\"V\"\>", "98.6`", "4.16`", "\<\"Y\"\>", "4.`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.18`"}, {"27", "\<\"\"\>", "\<\"$^3E_{1u}(ppi)$\"\>", "\<\"V\"\>", "97.1`", "4.85`", "\<\"Y\"\>", "4.93`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.86`"}, {"28", "\<\"\"\>", "\<\"$^3B_{2u}(ppi)$\"\>", "\<\"V\"\>", "98.1`", "5.81`", "\<\"Y\"\>", "5.77`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.81`"}, {"29", "\<\"Butadiene\"\>", "\<\"$^1B_u(ppi)$\"\>", "\<\"V\"\>", "93.3`", "6.22`", "\<\"Y\"\>", "6.35`", "6.22`", "6.21`", "6.24`", "6.22`"}, {"30", "\<\"\"\>", "\<\"$^1B_g(p3s)$\"\>", "\<\"R\"\>", "94.1`", "6.33`", "\<\"Y\"\>", "6.4`", "6.33`", "6.33`", "6.34`", "6.33`"}, {"31", "\<\"\"\>", "\<\"$^1A_g(ppi)$\"\>", "\<\"V\"\>", "75.1`", "6.5`", "\<\"Y\"\>", "7.12`", "6.89`", "6.86`", "6.76`", "6.67`"}, {"32", "\<\"\"\>", "\<\"$^1A_u(p3p)$\"\>", "\<\"R\"\>", "94.1`", "6.64`", "\<\"Y\"\>", "6.71`", "6.64`", "6.65`", "6.66`", "6.64`"}, {"33", "\<\"\"\>", "\<\"$^1A_u(p3p)$\"\>", "\<\"R\"\>", "94.1`", "6.8`", "\<\"Y\"\>", "6.87`", "6.8`", "6.8`", "6.81`", "6.8`"}, {"34", "\<\"\"\>", "\<\"$^1B_u(p3p)$\"\>", "\<\"R\"\>", "93.8`", "7.68`", "\<\"Y\"\>", "7.76`", "7.68`", "7.68`", "7.69`", "7.68`"}, {"35", "\<\"\"\>", "\<\"$^3B_u(ppi)$\"\>", "\<\"V\"\>", "98.4`", "3.36`", "\<\"Y\"\>", "3.29`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.36`"}, {"36", "\<\"\"\>", "\<\"$^3A_g(ppi)$\"\>", "\<\"V\"\>", "98.7`", "5.2`", "\<\"Y\"\>", "5.17`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.2`"}, {"37", "\<\"\"\>", "\<\"$^3B_g(p3s)$\"\>", "\<\"R\"\>", "97.9`", "6.29`", "\<\"Y\"\>", "6.33`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.28`"}, {"38", "\<\"Carbon Trimer\"\>", "\<\"$^1\\\\Delta_g(dou)$\"\>", "\<\"R\"\ \>", "1.`", "5.22`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.68`"}, {"39", "\<\"\"\>", "\<\"$^1\\\\Sigma^+_g(dou)$\"\>", "\<\"R\"\>", "1.`", "5.91`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.24`"}, {"40", "\<\"Cyanoacetylene\"\>", "\<\"$^1\\\\Sigma^-(ppi)$\"\>", \ "\<\"V\"\>", "94.3`", "5.8`", "\<\"Y\"\>", "5.88`", "5.84`", "5.84`", "5.81`", "5.8`"}, {"41", "\<\"\"\>", "\<\"$^1\\\\Delta(ppi)$\"\>", "\<\"V\"\>", "94.`", "6.07`", "\<\"Y\"\>", "6.15`", "6.11`", "6.11`", "6.09`", "6.08`"}, {"42", "\<\"\"\>", "\<\"$^3\\\\Sigma^+(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.44`", "\<\"Y\"\>", "4.38`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.45`"}, {"43", "\<\"\"\>", "\<\"$^3\\\\Delta(ppi)$\"\>", "\<\"V\"\>", "98.2`", "5.21`", "\<\"Y\"\>", "5.24`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.22`"}, {"44", "\<\"\"\>", "\<\"$^1A''\[NonBreakingSpace][F](ppi)$\"\>", \ "\<\"V\"\>", "93.6`", "3.54`", "\<\"Y\"\>", "3.58`", "3.57`", "3.58`", "3.54`", "3.54`"}, {"45", "\<\"Cyanoformaldehyde\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "89.8`", "3.81`", "\<\"Y\"\>", "3.94`", "3.87`", "3.87`", "3.86`", "3.83`"}, {"46", "\<\"\"\>", "\<\"$^1A''(ppi)$\"\>", "\<\"V\"\>", "91.9`", "6.46`", "\<\"Y\"\>", "6.67`", "6.51`", "6.5`", "6.47`", "6.42`"}, {"47", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.6`", "3.44`", "\<\"Y\"\>", "3.49`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.46`"}, {"48", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.4`", "5.01`", "\<\"Y\"\>", "4.97`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.01`"}, {"49", "\<\"Cyanogen\"\>", "\<\"$^1\\\\Sigma_u^-(ppi)$\"\>", "\<\"V\"\>", "94.1`", "6.39`", "\<\"Y\"\>", "6.5`", "6.44`", "6.44`", "6.4`", "6.39`"}, {"50", "\<\"\"\>", "\<\"$^1\\\\Delta_u(ppi)$\"\>", "\<\"V\"\>", "93.4`", "6.66`", "\<\"Y\"\>", "6.78`", "6.71`", "6.72`", "6.68`", "6.66`"}, {"51", "\<\"\"\>", "\<\"$^3\\\\Sigma_u^+(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.91`", "\<\"Y\"\>", "4.84`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.9`"}, {"52", "\<\"\"\>", "\<\"$^1\\\\Sigma_u^- \ \[NonBreakingSpace][F](ppi)$\"\>", "\<\"V\"\>", "93.4`", "5.05`", "\<\"Y\"\>", "5.13`", "5.14`", "5.14`", "5.06`", "5.06`"}, {"53", "\<\"Cyclopentadiene\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "93.8`", "5.56`", "\<\"Y\"\>", "5.67`", "5.54`", "5.53`", "5.56`", "5.54`"}, {"54", "\<\"\"\>", "\<\"$^1A_2(p3s)$\"\>", "\<\"R\"\>", "94.`", "5.78`", "\<\"Y\"\>", "5.83`", "5.78`", "5.78`", "5.78`", "5.77`"}, {"55", "\<\"\"\>", "\<\"$^1B_1(p3p)$\"\>", "\<\"R\"\>", "94.2`", "6.41`", "\<\"Y\"\>", "6.45`", "6.41`", "6.41`", "6.41`", "6.4`"}, {"56", "\<\"\"\>", "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "93.8`", "6.46`", "\<\"Y\"\>", "6.5`", "6.45`", "6.46`", "6.46`", "6.45`"}, {"57", "\<\"\"\>", "\<\"$^1B_2(p3p)$\"\>", "\<\"R\"\>", "94.2`", "6.56`", "\<\"Y\"\>", "6.61`", "6.56`", "6.57`", "6.56`", "6.56`"}, {"58", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "78.9`", "6.52`", "\<\"N\"\>", "6.96`", "6.71`", "6.71`", "6.66`", "6.57`"}, {"59", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.4`", "3.31`", "\<\"Y\"\>", "3.24`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.32`"}, {"60", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.6`", "5.11`", "\<\"Y\"\>", "5.09`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.12`"}, {"61", "\<\"\"\>", "\<\"$^3A_2(p3s)$\"\>", "\<\"R\"\>", "97.9`", "5.73`", "\<\"Y\"\>", "5.78`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.73`"}, {"62", "\<\"\"\>", "\<\"$^3B_1(p3p)$\"\>", "\<\"R\"\>", "97.9`", "6.36`", "\<\"Y\"\>", "6.4`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.36`"}, {"63", "\<\"Cyclopropene \"\>", "\<\"$^1B_1(spi)$\"\>", "\<\"V\"\>", "92.8`", "6.68`", "\<\"Y\"\>", "6.76`", "6.68`", "6.68`", "6.7`", "6.68`"}, {"64", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "95.1`", "6.79`", "\<\"Y\"\>", "6.86`", "6.74`", "6.73`", "6.76`", "6.73`"}, {"65", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.`", "4.38`", "\<\"Y\"\>", "4.3`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.34`"}, {"66", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3B_1(spi)$\"\>", "\<\"V\"\>", "98.9`", "6.45`", "\<\"Y\"\>", "6.46`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.4`"}, {"67", "\<\"Cyclopropenone\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "87.7`", "4.26`", "\<\"Y\"\>", "4.53`", "4.29`", "4.28`", "4.31`", "4.21`"}, {"68", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "91.`", "5.55`", "\<\"Y\"\>", "5.63`", "5.59`", "5.59`", "5.59`", "5.57`"}, {"69", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "90.8`", "6.34`", "\<\"Y\"\>", "6.44`", "6.35`", "6.35`", "6.38`", "6.32`"}, {"70", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "86.5`", "6.54`", "\<\"Y\"\>", "6.82`", "6.61`", "6.59`", "6.61`", "6.54`"}, {"71", "\<\"\"\>", "\<\"$^1B_2(n3p)$\"\>", "\<\"R\"\>", "91.1`", "6.98`", "\<\"Y\"\>", "7.09`", "6.95`", "6.98`", "7.02`", "6.96`"}, {"72", "\<\"\"\>", "\<\"$^1A_1(n3p)$\"\>", "\<\"R\"\>", "91.2`", "7.02`", "\<\"Y\"\>", "7.12`", "7.02`", "7.02`", "7.06`", "7.`"}, {"73", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "90.8`", "8.28`", "\<\"Y\"\>", "8.35`", "8.29`", "8.29`", "8.31`", "8.28`"}, {"74", "\<\"\"\>", "\<\"$^3B_1(npi)$\"\>", "\<\"V\"\>", "96.`", "3.93`", "\<\"Y\"\>", "4.18`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.91`"}, {"75", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "97.9`", "4.88`", "\<\"Y\"\>", "4.91`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.89`"}, {"76", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "97.5`", "5.35`", "\<\"Y\"\>", "5.4`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.37`"}, {"77", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.1`", "6.79`", "\<\"Y\"\>", "6.76`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.83`"}, {"78", "\<\"Cyclopropenethione\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "89.6`", "3.41`", "\<\"Y\"\>", "3.51`", "3.43`", "3.43`", "3.46`", "3.43`"}, {"79", "\<\"\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "84.8`", "3.45`", "\<\"Y\"\>", "3.84`", "3.52`", "3.51`", "3.56`", "3.43`"}, {"80", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "83.`", "4.6`", "\<\"Y\"\>", "4.98`", "4.7`", "4.69`", "4.73`", "4.64`"}, {"81", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "91.8`", "5.34`", "\<\"Y\"\>", "5.41`", "5.33`", "5.34`", "5.38`", "5.34`"}, {"82", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "89.`", "5.46`", "\<\"Y\"\>", "5.55`", "5.5`", "5.48`", "5.52`", "5.49`"}, {"83", "\<\"\"\>", "\<\"$^1B_2(n3p)$\"\>", "\<\"R\"\>", "91.3`", "5.92`", "\<\"Y\"\>", "6.03`", "5.93`", "5.93`", "5.97`", "5.93`"}, {"84", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "97.2`", "3.28`", "\<\"Y\"\>", "3.34`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.3`"}, {"85", "\<\"\"\>", "\<\"$^3B_1(npi)$\"\>", "\<\"V\"\>", "94.5`", "3.32`", "\<\"Y\"\>", "3.69`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.31`"}, {"86", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "96.5`", "4.01`", "\<\"Y\"\>", "4.16`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.02`"}, {"87", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.2`", "4.01`", "\<\"Y\"\>", "3.97`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.03`"}, {"88", "\<\"Diacetylene\"\>", "\<\"$^1\\\\Sigma_u^-(ppi)$\"\>", "\<\"V\"\ \>", "94.4`", "5.33`", "\<\"Y\"\>", "5.41`", "5.37`", "5.37`", "5.35`", "5.34`"}, {"89", "\<\"\"\>", "\<\"$^1\\\\Delta_u(ppi)$\"\>", "\<\"V\"\>", "94.1`", "5.61`", "\<\"Y\"\>", "5.67`", "5.63`", "5.64`", "5.62`", "5.61`"}, {"90", "\<\"\"\>", "\<\"$^3\\\\Sigma_u^+(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.1`", "\<\"Y\"\>", "4.01`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.08`"}, {"91", "\<\"\"\>", "\<\"$^3\\\\Delta_u(ppi)$\"\>", "\<\"V\"\>", "98.2`", "4.78`", "\<\"Y\"\>", "4.82`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.8`"}, {"92", "\<\"Diazomethane \"\>", "\<\"$^1A_2(ppi)$\"\>", "\<\"V\"\>", "90.1`", "3.14`", "\<\"Y\"\>", "3.19`", "3.11`", "3.12`", "3.1`", "3.07`"}, {"93", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1B_1(p3s)$\"\>", "\<\"R\"\>", "93.8`", "5.54`", "\<\"Y\"\>", "5.57`", "5.47`", "5.48`", "5.47`", "5.45`"}, {"94", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "91.4`", "5.9`", "\<\"Y\"\>", "5.94`", "5.88`", "5.87`", "5.86`", "5.84`"}, {"95", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_2(ppi)$\"\>", "\<\"V\"\>", "97.7`", "2.79`", "\<\"Y\"\>", "3.19`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "2.83`"}, {"96", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.6`", "4.05`", "\<\"Y\"\>", "3.95`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.03`"}, {"97", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3B_1(p3s\[NonBreakingSpace])$\"\>", "\<\"R\"\>", "98.`", "5.35`", "\<\"Y\"\>", "5.42`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.31`"}, {"98", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_1(p3p)$\"\>", "\<\"R\"\>", "98.5`", "6.82`", "\<\"Y\"\>", "6.85`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.8`"}, {"99", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1A''\[NonBreakingSpace][F](ppi)$\"\>", "\<\"V\"\>", "87.4`", "0.71`", "\<\"Y\"\>", "0.81`", "0.74`", "0.73`", "0.7`", "0.68`"}, {"100", "\<\"Formamide \"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "90.8`", "5.65`", "\<\"Y\"\>", "5.69`", "5.66`", "5.66`", "5.67`", "5.66`"}, {"101", "\<\"\"\>", "\<\"$^1A'(n3s)$\"\>", "\<\"R\"\>", "88.6`", "6.77`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.74`"}, {"102", "\<\"\"\>", "\<\"$^1A'(n3p)$\"\>", "\<\"R\"\>", "89.6`", "7.38`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.4`"}, {"103", "\<\"\"\>", "\<\"$^1A'(ppi)$\"\>", "\<\"V\"\>", "89.3`", "7.63`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.62`"}, {"104", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.7`", "5.38`", "\<\"Y\"\>", "5.36`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.38`"}, {"105", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.2`", "5.81`", "\<\"Y\"\>", "5.77`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.82`"}, {"106", "\<\"Furan\"\>", "\<\"$^1A_2(p3s)$\"\>", "\<\"R\"\>", "93.8`", "6.09`", "\<\"Y\"\>", "6.17`", "6.1`", "6.1`", "6.09`", "6.08`"}, {"107", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "93.`", "6.37`", "\<\"Y\"\>", "6.51`", "6.39`", "6.38`", "6.37`", "6.34`"}, {"108", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "92.4`", "6.56`", "\<\"Y\"\>", "6.85`", "6.68`", "6.68`", "6.65`", "6.58`"}, {"109", "\<\"\"\>", "\<\"$^1B_1(p3p)$\"\>", "\<\"R\"\>", "93.9`", "6.64`", "\<\"Y\"\>", "6.71`", "6.65`", "6.65`", "6.64`", "6.63`"}, {"110", "\<\"\"\>", "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "93.6`", "6.81`", "\<\"Y\"\>", "6.89`", "6.82`", "6.82`", "6.81`", "6.8`"}, {"111", "\<\"\"\>", "\<\"$^1B_2(p3p)$\"\>", "\<\"R\"\>", "93.5`", "7.24`", "\<\"Y\"\>", "7.32`", "7.25`", "7.25`", "7.25`", "7.23`"}, {"112", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.4`", "4.2`", "\<\"Y\"\>", "4.15`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.22`"}, {"113", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.1`", "5.46`", "\<\"Y\"\>", "5.47`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.48`"}, {"114", "\<\"\"\>", "\<\"$^3A_2(p3s)$\"\>", "\<\"R\"\>", "97.9`", "6.02`", "\<\"Y\"\>", "6.11`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.02`"}, {"115", "\<\"\"\>", "\<\"$^3B_1(p3p)$\"\>", "\<\"R\"\>", "97.9`", "6.59`", "\<\"Y\"\>", "6.66`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.59`"}, {"116", "\<\"Glyoxal\"\>", "\<\"$^1A_u(npi)$\"\>", "\<\"V\"\>", "91.`", "2.88`", "\<\"Y\"\>", "3.01`", "2.92`", "2.92`", "2.91`", "2.88`"}, {"117", "\<\"\"\>", "\<\"$^1B_g(npi)$\"\>", "\<\"V\"\>", "88.3`", "4.24`", "\<\"Y\"\>", "4.42`", "4.33`", "4.32`", "4.3`", "4.27`"}, {"118", "\<\"\"\>", "\<\"$^1A_g(dou)$\"\>", "\<\"V\"\>", "0.5`", "5.61`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.26`", "6.76`"}, {"119", "\<\"\"\>", "\<\"$^1B_g(npi)$\"\>", "\<\"V\"\>", "83.9`", "6.57`", "\<\"Y\"\>", "7.12`", "6.76`", "6.75`", "6.73`", "6.58`"}, {"120", "\<\"\"\>", "\<\"$^1B_u(n3p)$\"\>", "\<\"R\"\>", "91.7`", "7.71`", "\<\"Y\"\>", "7.84`", "7.71`", "7.71`", "7.74`", "7.67`"}, {"121", "\<\"\"\>", "\<\"$^3A_u(npi)$\"\>", "\<\"V\"\>", "97.6`", "2.49`", "\<\"Y\"\>", "2.56`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "2.49`"}, {"122", "\<\"\"\>", "\<\"$^3B_g(npi)$\"\>", "\<\"V\"\>", "97.4`", "3.89`", "\<\"Y\"\>", "3.96`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.9`"}, {"123", "\<\"\"\>", "\<\"$^3B_u(ppi)$\"\>", "\<\"V\"\>", "98.5`", "5.15`", "\<\"Y\"\>", "5.1`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.17`"}, {"124", "\<\"\"\>", "\<\"$^3A_g(ppi)$\"\>", "\<\"V\"\>", "98.8`", "6.3`", "\<\"Y\"\>", "6.23`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.3`"}, {"125", "\<\"Imidazole\"\>", "\<\"$^1A''(p3s)$\"\>", "\<\"R\"\>", "93.`", "5.7`", "\<\"Y\"\>", "5.807`", "5.73`", "5.734`", "5.722`", "5.701`"}, {"126", "\<\"\"\>", "\<\"$^1A'(p3p)$\"\>", "\<\"R\"\>", "90.`", "6.41`", "\<\"Y\"\>", "6.585`", "6.495`", "6.471`", "6.455`", "6.415`"}, {"127", "\<\"\"\>", "\<\"$^1A''(p3p)$\"\>", "\<\"R\"\>", "93.6`", "6.5`", "\<\"Y\"\>", "6.579`", "6.524`", "6.528`", "6.511`", "6.504`"}, {"128", "\<\"\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "89.`", "6.71`", "\<\"Y\"\>", "6.92`", "6.799`", "6.792`", "6.797`", "6.731`"}, {"129", "\<\"\"\>", "\<\"$^1A'(ppi)$\"\>", "\<\"V\"\>", "88.9`", "6.86`", "\<\"Y\"\>", "7.02`", "6.926`", "6.929`", "6.905`", "6.873`"}, {"130", "\<\"\"\>", "\<\"$^1A'(n3s)$\"\>", "\<\"R\"\>", "89.`", "7.`", "\<\"Y\"\>", "7.242`", "7.094`", "7.103`", "7.127`", "7.017`"}, {"131", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.3`", "4.74`", "\<\"Y\"\>", "4.68`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.75`"}, {"132", "\<\"\"\>", "\<\"$^3A''(p3s)$\"\>", "\<\"R\"\>", "97.6`", "5.66`", "\<\"Y\"\>", "5.77`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.67`"}, {"133", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "97.9`", "5.74`", "\<\"Y\"\>", "5.77`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.74`"}, {"134", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.3`", "6.31`", "\<\"Y\"\>", "6.4`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.33`"}, {"135", "\<\"Isobutene\"\>", "\<\"$^1B_1(p3s)$\"\>", "\<\"R\"\>", "94.1`", "6.46`", "\<\"Y\"\>", "6.54`", "6.46`", "6.46`", "6.47`", "6.45`"}, {"136", "\<\"\"\>", "\<\"$^1A_1(p3p)$\"\>", "\<\"R\"\>", "94.2`", "7.01`", "\<\"Y\"\>", "7.09`", "7.`", "7.`", "7.01`", "7.`"}, {"137", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.9`", "4.53`", "\<\"Y\"\>", "4.48`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.53`"}, {"138", "\<\"Ketene \"\>", "\<\"$^1A_2(ppi)$\"\>", "\<\"V\"\>", "91.`", "3.86`", "\<\"Y\"\>", "3.97`", "3.91`", "3.92`", "3.9`", "3.88`"}, {"139", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1B_1(p3s)$\"\>", "\<\"R\"\>", "93.9`", "6.01`", "\<\"Y\"\>", "6.09`", "5.98`", "5.99`", "5.99`", "5.96`"}, {"140", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "92.4`", "7.25`", "\<\"Y\"\>", "7.36`", "7.26`", "7.26`", "7.27`", "7.23`"}, {"141", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "94.4`", "7.18`", "\<\"Y\"\>", "7.29`", "7.29`", "7.19`", "7.2`", "7.16`"}, {"142", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_2(ppi)$\"\>", "\<\"V\"\>", "91.`", "3.77`", "\<\"Y\"\>", "3.83`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.78`"}, {"143", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.6`", "5.61`", "\<\"Y\"\>", "5.55`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.61`"}, {"144", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3B_1(p3s)$\"\>", "\<\"R\"\>", "98.1`", "5.79`", "\<\"Y\"\>", "5.89`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.76`"}, {"145", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A_2(p3p)$\"\>", "\<\"R\"\>", "94.4`", "7.12`", "\<\"Y\"\>", "7.25`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.12`"}, {"146", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", "\<\"$^1A^\ \\\"\[NonBreakingSpace][F](ppi)$\"\>", "\<\"V\"\>", "87.9`", "1.`", "\<\"Y\"\>", "1.13`", "1.06`", "1.06`", "1.03`", "1.`"}, {"147", "\<\"Methylenecyclopropene\"\>", "\<\"$^1B_2(ppi)$\"\>", \ "\<\"V\"\>", "85.4`", "4.28`", "\<\"Y\"\>", "4.58`", "4.36`", "4.35`", "4.38`", "4.31`"}, {"148", "\<\"\"\>", "\<\"$^1B_1(p3s)$\"\>", "\<\"R\"\>", "93.6`", "5.44`", "\<\"Y\"\>", "5.48`", "5.44`", "5.44`", "5.45`", "5.44`"}, {"149", "\<\"\"\>", "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "93.3`", "5.96`", "\<\"Y\"\>", "6.`", "5.96`", "5.96`", "5.97`", "5.95`"}, {"150", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "92.8`", "6.12`", "\<\"N\"\>", "6.17`", "6.13`", "6.12`", "6.14`", "6.13`"}, {"151", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "97.2`", "3.49`", "\<\"Y\"\>", "3.57`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.5`"}, {"152", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.6`", "4.74`", "\<\"Y\"\>", "4.69`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.74`"}, {"153", "\<\"Nitrosomethane \"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "93.`", "1.96`", "\<\"Y\"\>", "1.98`", "1.96`", "1.96`", "1.96`", "1.96`"}, {"154", "\<\"\"\>", "\<\"$^1A'(dou)$\"\>", "\<\"V\"\>", "2.5`", "4.76`", "\<\"Y\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.02`", "5.76`"}, {"155", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1A'(n.d.)$\"\>", "\<\"R\"\>", "90.8`", "6.29`", "\<\"Y\"\>", "6.43`", "6.32`", "6.33`", "6.38`", "6.31`"}, {"156", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "98.4`", "1.16`", "\<\"Y\"\>", "1.11`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "1.14`"}, {"157", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.9`", "5.6`", "\<\"Y\"\>", "5.43`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.51`"}, {"158", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^1A''\[NonBreakingSpace] [F](npi)$\"\>", "\<\"V\"\>", "92.7`", "1.67`", "\<\"Y\"\>", "1.68`", "1.66`", "1.67`", "1.67`", "1.67`"}, {"159", "\<\"Propynal\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "89.`", "3.8`", "\<\"Y\"\>", "3.94`", "3.86`", "3.86`", "3.85`", "3.82`"}, {"160", "\<\"\"\>", "\<\"$^1A''(ppi)$\"\>", "\<\"V\"\>", "92.9`", "5.54`", "\<\"Y\"\>", "5.69`", "5.57`", "5.57`", "5.55`", "5.51`"}, {"161", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.4`", "3.47`", "\<\"Y\"\>", "3.53`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.49`"}, {"162", "\<\"\"\>", "\<\"$^3A'(ppi)$\"\>", "\<\"V\"\>", "98.3`", "4.47`", "\<\"Y\"\>", "4.4`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.43`"}, {"163", "\<\"Pyrazine\"\>", "\<\"$^1B_{3u}(npi)$\"\>", "\<\"V\"\>", "90.1`", "4.15`", "\<\"Y\"\>", "4.32`", "4.21`", "4.21`", "4.2`", "4.14`"}, {"164", "\<\"\"\>", "\<\"$^1A_u(npi)$\"\>", "\<\"V\"\>", "88.6`", "4.98`", "\<\"Y\"\>", "5.23`", "5.04`", "5.04`", "5.06`", "4.97`"}, {"165", "\<\"\"\>", "\<\"$^1B_{2u}(ppi)$\"\>", "\<\"V\"\>", "86.9`", "5.02`", "\<\"Y\"\>", "5.15`", "5.09`", "5.09`", "5.06`", "5.03`"}, {"166", "\<\"\"\>", "\<\"$^1B_{2g}(npi)$\"\>", "\<\"V\"\>", "85.6`", "5.71`", "\<\"Y\"\>", "6.`", "5.85`", "5.84`", "5.8`", "5.71`"}, {"167", "\<\"\"\>", "\<\"$^1A_g(n3s)$\"\>", "\<\"R\"\>", "91.1`", "6.65`", "\<\"Y\"\>", "6.83`", "6.7`", "6.71`", "6.74`", "6.66`"}, {"168", "\<\"\"\>", "\<\"$^1B_{1g}(npi)$\"\>", "\<\"V\"\>", "84.2`", "6.74`", "\<\"Y\"\>", "7.14`", "6.85`", "6.85`", "6.87`", "6.73`"}, {"169", "\<\"\"\>", "\<\"$^1B_{1u}(ppi)$\"\>", "\<\"V\"\>", "92.8`", "6.88`", "\<\"Y\"\>", "6.96`", "6.91`", "6.9`", "6.88`", "6.86`"}, {"170", "\<\"\"\>", "\<\"$^1B_{1g}(p3s)$\"\>", "\<\"R\"\>", "93.8`", "7.21`", "\<\"Y\"\>", "7.26`", "7.22`", "7.22`", "7.21`", "7.2`"}, {"171", "\<\"\"\>", "\<\"$^1B_{2u}(n3p)$\"\>", "\<\"R\"\>", "90.8`", "7.24`", "\<\"Y\"\>", "7.44`", "7.31`", "7.31`", "7.35`", "7.25`"}, {"172", "\<\"\"\>", "\<\"$^1B_{1u}(n3p)$\"\>", "\<\"R\"\>", "91.4`", "7.44`", "\<\"Y\"\>", "7.6`", "7.5`", "7.5`", "7.52`", "7.45`"}, {"173", "\<\"\"\>", "\<\"$^1B_{1u}(ppi)$\"\>", "\<\"V\"\>", "90.5`", "7.98`", "\<\"N\"\>", "8.2`", "8.`", "7.98`", "8.02`", "7.94`"}, {"174", "\<\"\"\>", "\<\"$^1A_g(dou)$\"\>", "\<\"V\"\>", "12.`", "8.04`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "9.17`"}, {"175", "\<\"\"\>", "\<\"$^1A_g(ppi)$\"\>", "\<\"V\"\>", "71.`", "8.69`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "8.69`"}, {"176", "\<\"\"\>", "\<\"$^3B_{3u}(npi)$\"\>", "\<\"V\"\>", "97.3`", "3.59`", "\<\"Y\"\>", "3.7`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.59`"}, {"177", "\<\"\"\>", "\<\"$^3B_{1u}(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.35`", "\<\"Y\"\>", "4.19`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.39`"}, {"178", "\<\"\"\>", "\<\"$^3B_{2u}(ppi)$\"\>", "\<\"V\"\>", "97.6`", "4.39`", "\<\"Y\"\>", "4.4`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.4`"}, {"179", "\<\"\"\>", "\<\"$^3A_u(npi)$\"\>", "\<\"V\"\>", "96.1`", "4.93`", "\<\"Y\"\>", "5.16`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.93`"}, {"180", "\<\"\"\>", "\<\"$^3B_{2g}(npi)$\"\>", "\<\"V\"\>", "97.`", "5.08`", "\<\"Y\"\>", "5.21`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.08`"}, {"181", "\<\"\"\>", "\<\"$^3B_{1u}(ppi)$\"\>", "\<\"V\"\>", "97.`", "5.28`", "\<\"Y\"\>", "5.35`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.29`"}, {"182", "\<\"Pyridazine\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "89.`", "3.83`", "\<\"Y\"\>", "4.03`", "3.9`", "3.91`", "3.89`", "3.83`"}, {"183", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "86.9`", "4.37`", "\<\"Y\"\>", "4.65`", "4.46`", "4.46`", "4.47`", "4.37`"}, {"184", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "85.8`", "5.26`", "\<\"Y\"\>", "5.43`", "5.36`", "5.36`", "5.32`", "5.29`"}, {"185", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "86.2`", "5.72`", "\<\"Y\"\>", "6.01`", "5.85`", "5.84`", "5.82`", "5.74`"}, {"186", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "88.5`", "6.17`", "\<\"Y\"\>", "6.42`", "6.26`", "6.27`", "6.31`", "6.17`"}, {"187", "\<\"\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "87.`", "6.37`", "\<\"Y\"\>", "6.67`", "6.46`", "6.46`", "6.47`", "6.37`"}, {"188", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "90.6`", "6.75`", "\<\"Y\"\>", "6.88`", "6.84`", "6.81`", "6.77`", "6.74`"}, {"189", "\<\"\"\>", "\<\"$^3B_1(npi)$\"\>", "\<\"V\"\>", "97.1`", "3.19`", "\<\"Y\"\>", "3.3`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.19`"}, {"190", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "96.1`", "4.11`", "\<\"Y\"\>", "4.31`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.11`"}, {"191", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.34`", "\<\"N\"\>", "4.17`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.38`"}, {"192", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "97.3`", "4.82`", "\<\"Y\"\>", "4.86`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.83`"}, {"193", "\<\"Pyridine\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "88.4`", "4.95`", "\<\"Y\"\>", "5.17`", "5.04`", "5.04`", "5.03`", "4.96`"}, {"194", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "86.5`", "5.14`", "\<\"Y\"\>", "5.29`", "5.23`", "5.23`", "5.2`", "5.17`"}, {"195", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "87.9`", "5.4`", "\<\"Y\"\>", "5.64`", "5.46`", "5.46`", "5.48`", "5.4`"}, {"196", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "92.1`", "6.62`", "\<\"Y\"\>", "6.96`", "6.73`", "6.67`", "6.65`", "6.63`"}, {"197", "\<\"\"\>", "\<\"$^1A_1(n3s)$\"\>", "\<\"R\"\>", "89.7`", "6.76`", "\<\"Y\"\>", "6.71`", "6.77`", "6.83`", "6.86`", "6.76`"}, {"198", "\<\"\"\>", "\<\"$^1A_2(p3s)$\"\>", "\<\"R\"\>", "93.2`", "6.82`", "\<\"Y\"\>", "6.87`", "6.83`", "6.83`", "6.83`", "6.81`"}, {"199", "\<\"\"\>", "\<\"$^1B_1(p3p)$\"\>", "\<\"R\"\>", "93.6`", "7.38`", "\<\"Y\"\>", "7.43`", "7.4`", "7.4`", "7.4`", "7.38`"}, {"200", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "90.5`", "7.39`", "\<\"Y\"\>", "7.59`", "7.46`", "7.44`", "7.47`", "7.39`"}, {"201", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "90.`", "7.4`", "\<\"N\"\>", "7.55`", "7.43`", "7.4`", "7.42`", "7.38`"}, {"202", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.3`", "\<\"Y\"\>", "4.15`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.33`"}, {"203", "\<\"\"\>", "\<\"$^3B_1(npi)$\"\>", "\<\"V\"\>", "97.`", "4.46`", "\<\"Y\"\>", "4.59`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.46`"}, {"204", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "97.3`", "4.79`", "\<\"Y\"\>", "4.83`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.79`"}, {"205", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "97.1`", "5.04`", "\<\"Y\"\>", "5.11`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.05`"}, {"206", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "95.8`", "5.36`", "\<\"Y\"\>", "5.58`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.35`"}, {"207", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "97.7`", "6.24`", "\<\"Y\"\>", "6.26`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.25`"}, {"208", "\<\"Pyrimidine\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "88.6`", "4.44`", "\<\"Y\"\>", "4.66`", "4.51`", "4.51`", "4.51`", "4.44`"}, {"209", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "88.5`", "4.85`", "\<\"Y\"\>", "5.07`", "4.92`", "4.92`", "4.94`", "4.86`"}, {"210", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "86.3`", "5.38`", "\<\"Y\"\>", "5.53`", "5.46`", "5.47`", "5.44`", "5.41`"}, {"211", "\<\"\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "86.7`", "5.92`", "\<\"Y\"\>", "6.2`", "6.03`", "6.03`", "6.02`", "5.93`"}, {"212", "\<\"\"\>", "\<\"$^1B_1(npi)$\"\>", "\<\"V\"\>", "86.7`", "6.26`", "\<\"Y\"\>", "6.54`", "6.34`", "6.34`", "6.36`", "6.26`"}, {"213", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "90.3`", "6.7`", "\<\"Y\"\>", "6.88`", "6.77`", "6.77`", "6.81`", "6.72`"}, {"214", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "91.5`", "6.88`", "\<\"Y\"\>", "6.97`", "6.93`", "6.91`", "6.89`", "6.87`"}, {"215", "\<\"\"\>", "\<\"$^3B_1(npi)$\"\>", "\<\"V\"\>", "96.8`", "4.09`", "\<\"Y\"\>", "4.25`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.1`"}, {"216", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.3`", "4.51`", "\<\"N\"\>", "4.39`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.55`"}, {"217", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "96.5`", "4.66`", "\<\"Y\"\>", "4.83`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.66`"}, {"218", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "97.4`", "4.96`", "\<\"Y\"\>", "4.99`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.96`"}, {"219", "\<\"Pyrrole\"\>", "\<\"$^1A_2(p3s)$\"\>", "\<\"R\"\>", "92.9`", "5.24`", "\<\"Y\"\>", "5.34`", "5.27`", "5.28`", "5.26`", "5.24`"}, {"220", "\<\"\"\>", "\<\"$^1B_1(p3p)$\"\>", "\<\"R\"\>", "92.4`", "6.`", "\<\"Y\"\>", "6.04`", "6.`", "6.01`", "6.`", "5.98`"}, {"221", "\<\"\"\>", "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "93.`", "6.`", "\<\"Y\"\>", "6.09`", "6.03`", "6.04`", "6.03`", "6.01`"}, {"222", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "92.5`", "6.26`", "\<\"Y\"\>", "6.35`", "6.29`", "6.28`", "6.27`", "6.25`"}, {"223", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "86.3`", "6.3`", "\<\"Y\"\>", "6.51`", "6.39`", "6.39`", "6.36`", "6.32`"}, {"224", "\<\"\"\>", "\<\"$^1B_2(p3p)$\"\>", "\<\"R\"\>", "92.6`", "6.83`", "\<\"Y\"\>", "6.93`", "6.85`", "6.85`", "6.85`", "6.83`"}, {"225", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.3`", "4.51`", "\<\"Y\"\>", "4.45`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.53`"}, {"226", "\<\"\"\>", "\<\"$^3A_2(p3s)$\"\>", "\<\"R\"\>", "97.6`", "5.21`", "\<\"Y\"\>", "5.3`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.21`"}, {"227", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "97.8`", "5.45`", "\<\"Y\"\>", "5.49`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.46`"}, {"228", "\<\"\"\>", "\<\"$^3B_1(p3p)$\"\>", "\<\"R\"\>", "97.4`", "5.91`", "\<\"Y\"\>", "5.97`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.92`"}, {"229", "\<\"Streptocyanine-1\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "88.7`", "7.13`", "\<\"Y\"\>", "7.24`", "7.13`", "7.12`", "7.16`", "7.13`"}, {"230", "\<\"\[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \ \[NonBreakingSpace] \[NonBreakingSpace] \[NonBreakingSpace] \"\>", \ "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.3`", "5.52`", "\<\"Y\"\>", "5.45`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.48`"}, {"231", "\<\"Tetrazine\"\>", "\<\"$^1B_{3u}(npi)$\"\>", "\<\"V\"\>", "89.8`", "2.47`", "\<\"Y\"\>", "2.64`", "2.54`", "2.54`", "2.52`", "2.46`"}, {"232", "\<\"\"\>", "\<\"$^1A_u(npi)$\"\>", "\<\"V\"\>", "87.9`", "3.69`", "\<\"Y\"\>", "3.96`", "3.76`", "3.77`", "3.78`", "3.67`"}, {"233", "\<\"\"\>", "\<\"$^1A_g(dou)$\"\>", "\<\"V\"\>", "0.7`", "4.61`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.77`", "6.21`"}, {"234", "\<\"\"\>", "\<\"$^1B_{1g}(npi)$\"\>", "\<\"V\"\>", "83.1`", "4.93`", "\<\"Y\"\>", "5.26`", "5.11`", "5.09`", "5.03`", "4.91`"}, {"235", "\<\"\"\>", "\<\"$^1B_{2u}(ppi)$\"\>", "\<\"V\"\>", "85.4`", "5.21`", "\<\"Y\"\>", "5.37`", "5.3`", "5.31`", "5.26`", "5.23`"}, {"236", "\<\"\"\>", "\<\"$^1B_{2g}(npi)$\"\>", "\<\"V\"\>", "81.7`", "5.45`", "\<\"Y\"\>", "5.84`", "5.65`", "5.64`", "5.57`", "5.46`"}, {"237", "\<\"\"\>", "\<\"$^1A_u(npi)$\"\>", "\<\"V\"\>", "87.7`", "5.53`", "\<\"Y\"\>", "5.77`", "5.63`", "5.63`", "5.6`", "5.52`"}, {"238", "\<\"\"\>", "\<\"$^1B_{3g}(dou)$\"\>", "\<\"V\"\>", "0.7`", "6.15`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.62`"}, {"239", "\<\"\"\>", "\<\"$^1B_{2g}(npi)$\"\>", "\<\"V\"\>", "80.2`", "6.12`", "\<\"Y\"\>", "6.66`", "6.34`", "6.34`", "6.32`", "6.13`"}, {"240", "\<\"\"\>", "\<\"$^1B_{1g}(npi)$\"\>", "\<\"V\"\>", "85.1`", "6.91`", "\<\"Y\"\>", "7.32`", "7.04`", "7.04`", "7.05`", "6.92`"}, {"241", "\<\"\"\>", "\<\"$^3B_{3u}(npi)$\"\>", "\<\"V\"\>", "97.1`", "1.85`", "\<\"Y\"\>", "1.96`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "1.85`"}, {"242", "\<\"\"\>", "\<\"$^3A_u(npi)$\"\>", "\<\"V\"\>", "96.3`", "3.45`", "\<\"Y\"\>", "3.66`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.44`"}, {"243", "\<\"\"\>", "\<\"$^3B_{1g}(npi)$\"\>", "\<\"V\"\>", "97.`", "4.2`", "\<\"Y\"\>", "4.31`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.2`"}, {"244", "\<\"\"\>", "\<\"$^1B_{1u}(ppi)$\"\>", "\<\"V\"\>", "98.5`", "4.49`", "\<\"N\"\>", "4.27`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.54`"}, {"245", "\<\"\"\>", "\<\"$^3B_{2u}(ppi)$\"\>", "\<\"V\"\>", "97.5`", "4.52`", "\<\"Y\"\>", "4.53`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.52`"}, {"246", "\<\"\"\>", "\<\"$^3B_{2g}(npi)$\"\>", "\<\"V\"\>", "96.4`", "5.04`", "\<\"Y\"\>", "5.23`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.05`"}, {"247", "\<\"\"\>", "\<\"$^3A_u(npi)$\"\>", "\<\"V\"\>", "96.6`", "5.11`", "\<\"Y\"\>", "5.28`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.11`"}, {"248", "\<\"\"\>", "\<\"$^3B_{3g}(dou)$\"\>", "\<\"V\"\>", "5.7`", "5.51`", "\<\"N\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "7.35`"}, {"249", "\<\"\"\>", "\<\"$^3B_{1u}(ppi)$\"\>", "\<\"V\"\>", "96.6`", "5.42`", "\<\"Y\"\>", "5.52`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.42`"}, {"250", "\<\"Thioacetone\"\>", "\<\"$^1A_2(npi)$\"\>", "\<\"V\"\>", "88.9`", "2.53`", "\<\"Y\"\>", "2.63`", "2.55`", "2.55`", "2.57`", "2.55`"}, {"251", "\<\"\"\>", "\<\"$^1B_2(n3s)$\"\>", "\<\"R\"\>", "91.3`", "5.56`", "\<\"Y\"\>", "5.67`", "5.57`", "5.57`", "5.61`", "5.56`"}, {"252", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "90.6`", "5.88`", "\<\"Y\"\>", "6.01`", "5.92`", "5.9`", "5.93`", "5.9`"}, {"253", "\<\"\"\>", "\<\"$^1B_2(n3p)$\"\>", "\<\"R\"\>", "92.4`", "6.51`", "\<\"Y\"\>", "6.59`", "6.52`", "6.52`", "6.54`", "6.51`"}, {"254", "\<\"\"\>", "\<\"$^1A_1(n3p)$\"\>", "\<\"R\"\>", "91.6`", "6.61`", "\<\"Y\"\>", "6.71`", "6.62`", "6.62`", "6.66`", "6.61`"}, {"255", "\<\"\"\>", "\<\"$^3A_2(npi)$\"\>", "\<\"V\"\>", "97.4`", "2.33`", "\<\"Y\"\>", "2.35`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "2.34`"}, {"256", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "98.7`", "3.45`", "\<\"Y\"\>", "3.37`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.46`"}, {"257", "\<\"Thiophene\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "87.6`", "5.64`", "\<\"Y\"\>", "5.78`", "5.7`", "5.69`", "5.69`", "5.65`"}, {"258", "\<\"\"\>", "\<\"$^1B_2(ppi)$\"\>", "\<\"V\"\>", "91.5`", "5.98`", "\<\"Y\"\>", "6.12`", "6.`", "6.`", "5.99`", "5.96`"}, {"259", "\<\"\"\>", "\<\"$^1A_2(p3s)$\"\>", "\<\"R\"\>", "92.6`", "6.14`", "\<\"Y\"\>", "6.22`", "6.16`", "6.17`", "6.15`", "6.14`"}, {"260", "\<\"\"\>", "\<\"$^1B_1(p3p)$\"\>", "\<\"R\"\>", "90.1`", "6.14`", "\<\"Y\"\>", "6.31`", "6.2`", "6.2`", "6.18`", "6.14`"}, {"261", "\<\"\"\>", "\<\"$^1A_2(p3p)$\"\>", "\<\"R\"\>", "91.8`", "6.21`", "\<\"Y\"\>", "6.32`", "6.28`", "6.28`", "6.28`", "6.25`"}, {"262", "\<\"\"\>", "\<\"$^1B_1(p3s)$\"\>", "\<\"R\"\>", "92.8`", "6.49`", "\<\"Y\"\>", "6.56`", "6.51`", "6.52`", "6.52`", "6.5`"}, {"263", "\<\"\"\>", "\<\"$^1B_2(p3p)$\"\>", "\<\"R\"\>", "92.4`", "7.29`", "\<\"Y\"\>", "7.38`", "7.32`", "7.33`", "7.31`", "7.29`"}, {"264", "\<\"\"\>", "\<\"$^1A_1(ppi)$\"\>", "\<\"V\"\>", "86.5`", "7.31`", "\<\"N\"\>", "7.57`", "7.5`", "7.46`", "7.42`", "7.35`"}, {"265", "\<\"\"\>", "\<\"$^3B_2(ppi)$\"\>", "\<\"V\"\>", "98.2`", "3.92`", "\<\"Y\"\>", "3.85`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "3.94`"}, {"266", "\<\"\"\>", "\<\"$^3A_1(ppi)$\"\>", "\<\"V\"\>", "97.7`", "4.76`", "\<\"Y\"\>", "4.77`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.77`"}, {"267", "\<\"\"\>", "\<\"$^3B_1(p3p)$\"\>", "\<\"R\"\>", "96.6`", "5.93`", "\<\"Y\"\>", "6.12`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.95`"}, {"268", "\<\"\"\>", "\<\"$^3A_2(p3s)$\"\>", "\<\"R\"\>", "97.5`", "6.08`", "\<\"Y\"\>", "6.16`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.09`"}, {"269", "\<\"Thiopropynal\"\>", "\<\"$^1A''(npi)$\"\>", "\<\"V\"\>", "87.5`", "2.03`", "\<\"Y\"\>", "2.15`", "2.07`", "2.07`", "2.08`", "2.05`"}, {"270", "\<\"\"\>", "\<\"$^3A''(npi)$\"\>", "\<\"V\"\>", "97.2`", "1.8`", "\<\"Y\"\>", "1.83`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "1.81`"}, {"271", "\<\"Triazine\"\>", "\<\"$^1A_1''(npi)$\"\>", "\<\"V\"\>", "88.3`", "4.72`", "\<\"Y\"\>", "4.92`", "4.77`", "4.77`", "4.8`", "4.73`"}, {"272", "\<\"\"\>", "\<\"$^1A_2''(npi)$\"\>", "\<\"V\"\>", "88.3`", "4.75`", "\<\"Y\"\>", "4.99`", "4.82`", "4.82`", "4.82`", "4.74`"}, {"273", "\<\"\"\>", "\<\"$^1E''(npi)$\"\>", "\<\"V\"\>", "88.3`", "4.78`", "\<\"Y\"\>", "4.99`", "4.84`", "4.84`", "4.86`", "4.78`"}, {"274", "\<\"\"\>", "\<\"$^1A_2'(ppi)$\"\>", "\<\"V\"\>", "85.7`", "5.75`", "\<\"Y\"\>", "5.91`", "5.84`", "5.85`", "5.82`", "5.78`"}, {"275", "\<\"\"\>", "\<\"$^1A_1'(ppi)$\"\>", "\<\"V\"\>", "90.4`", "7.24`", "\<\"Y\"\>", "7.34`", "7.3`", "7.28`", "7.27`", "7.24`"}, {"276", "\<\"\"\>", "\<\"$^1E'(n3s)$\"\>", "\<\"R\"\>", "90.9`", "7.32`", "\<\"Y\"\>", "7.45`", "7.37`", "7.37`", "7.41`", "7.35`"}, {"277", "\<\"\"\>", "\<\"$^1E''(npi)$\"\>", "\<\"V\"\>", "82.6`", "7.78`", "\<\"Y\"\>", "8.13`", "8.04`", "7.96`", "7.91`", "7.79`"}, {"278", "\<\"\"\>", "\<\"$^1E'(ppi)$\"\>", "\<\"V\"\>", "90.`", "7.94`", "\<\"Y\"\>", "8.14`", "8.13`", "7.95`", "7.99`", "7.92`"}, {"279", "\<\"\"\>", "\<\"$^3A_2''(npi)$\"\>", "\<\"V\"\>", "96.7`", "4.33`", "\<\"Y\"\>", "4.51`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.33`"}, {"280", "\<\"\"\>", "\<\"$^3E''(npi)$\"\>", "\<\"V\"\>", "96.6`", "4.51`", "\<\"Y\"\>", "4.67`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.51`"}, {"281", "\<\"\"\>", "\<\"$^3A_1''(npi)$\"\>", "\<\"V\"\>", "96.2`", "4.73`", "\<\"Y\"\>", "4.91`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.75`"}, {"282", "\<\"\"\>", "\<\"$^3A_1'(ppi)$\"\>", "\<\"V\"\>", "98.2`", "4.85`", "\<\"Y\"\>", "4.74`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "4.88`"}, {"283", "\<\"\"\>", "\<\"$^3E'(ppi)$\"\>", "\<\"V\"\>", "96.9`", "5.59`", "\<\"Y\"\>", "5.7`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "5.61`"}, {"284", "\<\"\"\>", "\<\"$^3A_2'(ppi)$\"\>", "\<\"V\"\>", "97.6`", "6.62`", "\<\"Y\"\>", "6.59`", "\<\"\"\>", "\<\"\"\>", "\<\"\"\>", "6.63`"} }, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxDividers->{ "Columns" -> {{False}}, "Rows" -> {False, True, {False}, False}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[2.0999999999999996`]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], {None, OutputFormsDump`HeadedColumns}], Function[BoxForm`e$, TableForm[ BoxForm`e$, TableHeadings -> { None, {"#", "Molecule", "Excitation", "Nature", "$\%T_1$", "TBE", "Safe?", "CASSCF", "CASPT2(IPEA)", "CASPT2(NOIPEA)", "CASPT3(IPEA)", "CASPT3(NOIPEA)"}}]]]], "Output", CellChangeTimes->{ 3.856667428035095*^9, {3.856667458900503*^9, 3.856667511405849*^9}, 3.856667598079236*^9, 3.856667641998197*^9, {3.856667680145686*^9, 3.856667707572568*^9}}, CellLabel-> "Out[119]//TableForm=",ExpressionUUID->"b7b5c954-23f1-476d-83c3-\ e63def1b3658"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Timings", "Title", CellChangeTimes->{{3.856791700157078*^9, 3.856791702460801*^9}},ExpressionUUID->"61cd51bf-e012-4d32-bf6d-\ b9b9c71fc72c"], Cell[BoxData[{ RowBox[{ RowBox[{"timings", "=", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"3.86", " ", SuperscriptBox["10", "6"]}], ",", RowBox[{"1.49", " ", SuperscriptBox["10", "8"]}], ",", "12.50", ",", "33.25"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"4.79", " ", SuperscriptBox["10", "6"]}], ",", RowBox[{"2.04", " ", SuperscriptBox["10", "8"]}], ",", "13.24", ",", "49.36"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"1.46", " ", SuperscriptBox["10", "7"]}], ",", RowBox[{"1.82", " ", SuperscriptBox["10", "9"]}], ",", "193.93", ",", "282.62"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"6.95", " ", SuperscriptBox["10", "6"]}], ",", RowBox[{"6.38", " ", SuperscriptBox["10", "8"]}], ",", "29.58", ",", "174.96"}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tPT2", "=", RowBox[{"timings", "\[LeftDoubleBracket]", RowBox[{";;", ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tPT3", "=", RowBox[{"timings", "\[LeftDoubleBracket]", RowBox[{";;", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ratio", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"tPT2", "\[LeftDoubleBracket]", RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}], ",", RowBox[{ RowBox[{"tPT2", "\[LeftDoubleBracket]", RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}], "/", RowBox[{"(", RowBox[{ RowBox[{"tPT2", "\[LeftDoubleBracket]", RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}], "+", RowBox[{"tPT3", "\[LeftDoubleBracket]", RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"Length", "[", "tPT2", "]"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellLabel-> "In[494]:=",ExpressionUUID->"232f4366-aa1b-4672-92d3-a933a006cf71"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"{", RowBox[{"tPT2", ",", "tPT3"}], "}"}], ",", RowBox[{"PlotMarkers", "\[Rule]", "\"\\""}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", CellLabel-> "In[498]:=",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{}, {{{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], GeometricTransformationBox[ InsetBox[ BoxData[ FormBox[ StyleBox[ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3, 3}]]}, AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3, 3}]]}], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]]}, StripOnInput -> False], TraditionalForm]], {0., 0.}, Automatic, Scaled[9.75]], {{{1.49*^8, 12.5}}, {{2.04*^8, 13.24}}, {{1.82*^9, 193.93}}, {{6.38*^8, 29.58}}}]}, { Directive[ PointSize[0.012833333333333334`], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], GeometricTransformationBox[ InsetBox[ BoxData[ FormBox[ StyleBox[ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ PointSize[0.012833333333333334`], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]]}, StripOnInput -> False], TraditionalForm]], {0., 0.}, Automatic, Scaled[9.75]], {{{1.49*^8, 33.25}}, {{2.04*^8, 49.36}}, {{1.82*^9, 282.62}}, {{6.38*^8, 174.96}}}]}}}, {{}, {}}}, { DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange -> {{0, 1.82*^9}, {0, 282.62}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}], FormBox[ FormBox[ TemplateBox[{ TagBox[ FrameBox[ StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"], TagBox[ FrameBox[ StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"]}, "PointLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], { InsetBox[ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3, 3}]]}, AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3, 3}]]}, {DefaultBaseStyle -> {"Graphics", { AbsolutePointSize[6]}, Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]]}}], NCache[ Scaled[{ Rational[1, 2], Rational[1, 2]}], Scaled[{0.5, 0.5}]], Automatic, Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {10, 9.75}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.09205128205128206] -> Baseline)], #}, { GraphicsBox[{{}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], { InsetBox[ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}, { DefaultBaseStyle -> {"Graphics", { AbsolutePointSize[6]}, Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]]}}], NCache[ Scaled[{ Rational[1, 2], Rational[1, 2]}], Scaled[{0.5, 0.5}]], Automatic, Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {10, 9.75}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.09205128205128206] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"PointLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ TagBox[#, HoldForm], ",", TagBox[#2, HoldForm]}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ GraphicsBox[{{ GrayLevel[1], DiskBox[{0, 0}, Offset[{3, 3}]]}, AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3, 3}]]}], ",", "9.75`"}], "}"}], ",", RowBox[{"{", RowBox[{ GraphicsBox[{{ GrayLevel[1], PolygonBox[ NCache[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}]}, { Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}]}]]}, AbsoluteThickness[1.5], Dashing[{}], JoinedCurveBox[ NCache[ Line[{ Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}], Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}], Line[{ Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}], Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]], CurveClosed -> True]}], ",", "9.75`"}], "}"}]}], "}"}]}], ",", RowBox[{"Joined", "\[Rule]", RowBox[{"{", RowBox[{"False", ",", "False"}], "}"}]}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellLabel-> "Out[498]=",ExpressionUUID->"78f19f3a-3b03-4fef-956f-b581dd1020b9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{"ratio", ",", RowBox[{"PlotMarkers", "\[Rule]", "\"\\""}], ",", RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", CellChangeTimes->{{3.856792247668261*^9, 3.856792251919592*^9}}, CellLabel-> "In[499]:=",ExpressionUUID->"acc5833b-2f80-4264-a5d5-ccfd9fbe2536"], Cell[BoxData[ GraphicsBox[{{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[{ {GrayLevel[1], DiskBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}, {AbsoluteThickness[1.5], Dashing[{}], CircleBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]]}], TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{1.49*^8, 0.273224043715847}}, {{2.04*^8, 0.21150159744408945`}}, {{1.82*^9, 0.40694575595425453`}}, {{6.38*^8, 0.14461718979172775`}}}]}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 1.82*^9}, {0, 0.40694575595425453`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellLabel-> "Out[499]=",ExpressionUUID->"b392a4f1-326f-44b6-a678-b2e6b02a558b"] }, Open ]] }, Open ]] }, WindowSize->{2300, 1008}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"13.0 for Mac OS X x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"85b7a10d-2875-445d-bac3-ec6fc5ce6624" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 155, 3, 98, "Title",ExpressionUUID->"b3a1f32d-84aa-450f-9469-c14711d3ca52"], Cell[738, 27, 309, 6, 46, "Input",ExpressionUUID->"5695e463-2d83-4840-b4cb-cf89fb9a3729", InitializationCell->True], Cell[1050, 35, 940, 16, 46, "Input",ExpressionUUID->"5a741cfd-e21a-46f1-b0b2-c292f9a72811", InitializationCell->True], Cell[1993, 53, 575, 12, 68, "Input",ExpressionUUID->"f2aa5eeb-491e-4712-8186-cd8ae4c8f880", InitializationCell->True] }, Closed]], Cell[CellGroupData[{ Cell[2605, 70, 89, 0, 72, "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a301789d5f95"], Cell[2697, 72, 244, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f", InitializationCell->True], Cell[CellGroupData[{ Cell[2966, 81, 5547, 129, 262, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], Cell[8516, 212, 126002, 2331, 531, "Output",ExpressionUUID->"3e201298-ee71-49d6-a572-3484e73e6e41"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[134567, 2549, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], Cell[134656, 2551, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d", InitializationCell->True], Cell[CellGroupData[{ Cell[134925, 2560, 4382, 127, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], Cell[139310, 2689, 30050, 603, 399, "Output",ExpressionUUID->"f0aa608e-f12c-48f1-ba63-9aaf3960f615"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[169409, 3298, 152, 3, 72, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], Cell[CellGroupData[{ Cell[169586, 3305, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], Cell[172917, 3377, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[226126, 4263, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"], Cell[226279, 4268, 2473, 71, 227, "Input",ExpressionUUID->"232f4366-aa1b-4672-92d3-a933a006cf71", InitializationCell->True], Cell[CellGroupData[{ Cell[228777, 4343, 338, 8, 30, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], Cell[229118, 4353, 13074, 310, 249, "Output",ExpressionUUID->"78f19f3a-3b03-4fef-956f-b581dd1020b9"] }, Open ]], Cell[CellGroupData[{ Cell[242229, 4668, 353, 7, 30, "Input",ExpressionUUID->"acc5833b-2f80-4264-a5d5-ccfd9fbe2536"], Cell[242585, 4677, 1903, 49, 249, "Output",ExpressionUUID->"b392a4f1-326f-44b6-a678-b2e6b02a558b"] }, Open ]] }, Open ]] } ] *)