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ABSTRACT
We report a spin-free formulation of the multireference (MR) driven similarity renormalization group (DSRG) based on the ensemble nor-
mal ordering of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. This ensemble averages over all microstates of a given total spin
quantum number, and therefore, it is invariant with respect to SU(2) transformations. As such, all equations may be reformulated in terms
of spin-free quantities and they closely resemble those of spin-adapted closed-shell coupled cluster (CC) theory. The current implementa-
tion is used to assess the accuracy of various truncated MR-DSRG methods (perturbation theory up to third order and iterative methods
with single and double excitations) in computing the constants of 33 first-row diatomic molecules. The accuracy trends for these first-
row diatomics are consistent with our previous benchmark on a small subset of closed-shell diatomic molecules. We then present the first
MR-DSRG application on transition-metal complexes by computing the spin splittings of the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. A
focal point analysis (FPA) shows that third-order perturbative corrections are essential to achieve reasonably converged energetics. The FPA
based on the linearized MR-DSRG theory with one- and two-body operators and up to a quintuple-ζ basis set predicts the spin splittings of
[Fe(H2O)6]2+ and [Fe(NH3)6]2+ to be −35.7 and −17.1 kcal mol−1, respectively, showing good agreement with the results of local CC theory
with singles, doubles, and perturbative triples.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059362

I. INTRODUCTION

One challenge in the computational description of high-
spin (HS) open-shell states is obtaining solutions that satisfy
spin symmetries. This goal is generally achieved via spin adapta-
tion, a procedure that replaces quantities expressed in terms of
spin orbitals with spin-free analogs that only depend on spatial
orbitals. Spin adaptation is indispensable for efficient implemen-
tations of non-relativistic quantum chemistry methods, particu-
larly many-body theories. While the spin adaptation of closed-
shell single-reference theories is straightforward,1–6 the case of
open-shell states is generally more involved.7–12 In particular, spin

adaptation of open-shell states is typically formulated using non-
commuting operators, leading to approaches that are formally
related to multireference (MR) theories13–15 and, hence, present
similar challenges. Spin adaptation via unitary group generators
is easily accomplished in multireference perturbation theory16,17

(MRPT) due to the linear nature of the underlying equations. How-
ever, in the case of multireference coupled cluster (MRCC) theo-
ries18–23 and other nonperturbative MR methods, it is much more
involved.8,11,14,23–25

The recently developed driven similarity renormalization
group (DSRG) is a systematically improvable method to treat
dynamical electron correlation effects in molecular systems.26,27
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In the DSRG formalism, a unitary transformation is performed
on the Hamiltonian to zero those elements that couple the ref-
erence state with high-energy excited configurations. Low-energy
excited configurations that introduce numerical instabilities rooted
in the intruder state problem28–32 are suppressed in the DSRG by
regularization of the equation with a term dependent on a time-
like parameter s. This aspect confers to the DSRG a renormal-
ization group structure, and it is particularly useful in formu-
lating numerically robust multireference (MR) theories. Another
crucial ingredient of MR-DSRG theory is the generalized normal
ordering formalism of Mukherjee and Kutzelnigg (MK-GNO)33,34

in conjunction with many-body conditions,35,36 leading to sim-
ple amplitude equations that avoid the multiple-parentage prob-
lem.19,31,32,37–39 Practical MR-DSRG schemes have been developed
using low-order perturbative approximations40,41 and nonpertur-
bative truncation schemes that include up to one- and two-body
correlations.42

In this work, we introduce spin-adapted versions of MR-DSRG
methods. Contrary to the state-specific strategies discussed above,
we employ an alternative approach to spin-adaptation based on an
ensemble MK-GNO formalism.43–45 In this approach, the zeroth-
order reference is taken to be an ensemble of equally averaged spin
states that form a spin multiplet. Dynamical electron correlation
is then optimized for this ensemble, guaranteeing that all states of
the multiplet are rigorously degenerate. The ensemble approach to
spin adaptation is particularly advantageous as it leads to MR-DSRG
equations analogous to the case of a singlet state, reminiscent of
spin adaptation of single-reference closed-shell CC theory.3,5 The
ensemble MK-GNO approach has been recently employed to for-
mulate spin-free versions of state-specific partially internally con-
tracted MRCC (pIC-MRCC) theory35 and MR equation-of-motion
CC (MR-EOMCC) theory of Datta and Nooijen.36 A spin-averaged
version of the anti-Hermitian contracted Schrödinger equation that
uses reduced density matrices (RDMs) averaged over a spin multi-
plet has been recently introduced by Boyn and Mazziotti to enable
the direct computation of high-spin states.46,47

Another goal of this work is to benchmark further vari-
ous MR-DSRG approaches proposed so far. These methods and
their excited-state extensions have been shown to reliably predict
the ground- and exited-state potential energy surfaces,41,48 spec-
troscopic constants of first-row closed-shell diatomic molecules,49

the automerization energy of cyclobutadiene,49 spin splittings of
diradical systems,41,42,50,51 and vertical excitation energies.48,52 How-
ever, no extensive application to high-spin open-shell systems and
transition-metal complexes has ever been reported yet. This work
attempts to fill this gap by computing the spectroscopic constants of
19 first-row open-shell diatomic molecules and spin splittings of two
Fe(II) spin-crossover model systems.

In the following, we begin with a brief overview of the MK-
GNO formalism for an ensemble of states (Sec. II A) and its appli-
cation to MR-DSRG theory (Sec. II B). In Sec. II C, we present
spin-adapted versions of MR-DSRG truncated schemes and dis-
cuss our implementation. Next, we demonstrate the accuracy of
approximate MR-DSRG methods via two numerical applications.
Section III A reports the benchmark of diatomic molecules, while
the energetics of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ are presented in
Sec. III B. Finally, in Sec. IV, we discuss the present findings and
future research directions.

II. THEORY
In this section, we formulate a spin-adapted version of DSRG

theory based on an ensemble formalism.48,52 We begin by consid-
ering a set of 2N restricted spin orbitals {χpσ ∣p = 1, . . . , N; σ = ↑, ↓},
where each spin orbital,

χpσ (x) = ϕp(r)σ(ω), (1)

is expressed as the product of a spatial function [ϕp(r), molecular
orbital (MO)] and a spin function [σ(ω)]. The MO set is parti-
tioned into three subsets: core (C, denoted by indices m, n), active
(A, denoted by indices u, v, w, x, y, z), and virtual (V, denoted by
indices e, f ) orbitals. For convenience, we also define the compos-
ite orbital sets: hole (H = C ∪A, denoted by indices i, j, k, l), parti-
cle (P = A ∪V, denoted by a, b, c, d), and general (G = C ∪A ∪V,
denoted by p, q, r, s). We use the Greek letters μ, ν, ρ, σ, and τ to
indicate the spin function of an orbital.

A. Ensemble normal ordering
We assume that zeroth-order static correlation effects can

be described by an ensemble of n electronic states, E ≡ {Ψα∣α
= 1, 2, . . . , n}. Each state Ψα ∈ E is a complete active space config-
uration interaction (CASCI) wave function, obtained by diagonal-
izing the bare Hamiltonian in the basis of Slater determinants with
doubly occupied core orbitals and partially occupied active orbitals.
We then form a density operator (ρ̂) that represents the mixed
state,

ρ̂ =
n

∑
α=1

ωα∣Ψα⟩⟨Ψα∣, (2)

where ωα ≥ 0 is the weight of Ψα in the ensemble and the weights
sum up to one∑n

α=1ωα = 1.
The density matrix ρ̂ may be used to formulate a general-

ized normal ordering formalism34 for statistical ensembles. In this
approach, the expectation value of a normal-ordered operator {Â}
with respect to the density operator ρ̂, ⟨{Â}⟩ρ̂ = Tr(ρ̂ {Â}), is
required to be zero,

⟨{Â}⟩ρ̂ =
n

∑
α=1

ωα⟨Ψα∣{Â}∣Ψα⟩ = 0. (3)

It can be easily seen that Eq. (3) reduces to the original pure-state
MK-GNO when one of the states Ψα has a weight equal to one.33,34,53

In practice, the only difference between the pure-state and
ensemble version of the MK-GNO is that, in the latter, all reduced
density matrices (RDMs) are replaced by the ensemble-averaged
counterparts. If we define a generic k-body reduced density matrix
for state Ψα as

[γα]
pμqν...
rρsσ ... = ⟨Ψα∣âpμqν...

rρsσ ... ∣Ψα⟩, (4)

the corresponding ensemble-averaged RDM elements are given by

γ̄pμqν...
rρsσ ... =

n

∑
α=1

ωα[γα]
pμqν...
rρsσ ... . (5)

In Eq. (4), the product of creation (â†
pσ ) and annihilation (âpσ )

operators is compactly expressed as âpμqν...
rρsσ ... = â†

pμ â†
qν ⋅ ⋅ ⋅ âsσ ârρ .
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In the ensemble MK-GNO, contractions of two operators yield
elements of the ensemble-averaged one-particle RDM (γ̄pμ

qν ),

(6)

while contractions of four or more operators are equal to elements
of the ensemble-averaged cumulants. For example, contractions of
four operators give elements of the two-body cumulant (λ̄pμqν

rρsσ ),
expressible in terms of the averaged one- and two-RDMs,

(7)

This result also generalizes to products of two normal-ordered
operators of the form {Â}{B̂} (see Refs. 34, 42, and 53 for details).

The Born–Oppenheimer Hamiltonian (Ĥ) in the ensemble
normal-ordered form is given by

Ĥ = E0 +∑
pq
∑
μν

f qν
pμ
{âpμ

qν} +
1
4∑pqrs

∑
μνρσ

vrρsσ
pμqν
{âpμqν

rρsσ }, (8)

where E0 = ⟨Ĥ⟩ρ̂ is the averaged reference energy and f qν
pμ is the

averaged Fock matrix,

f qν
pμ = hqν

pμ +∑
ij
∑
ρσ

vqν jσ
pμiρ

γ̄iρ
jσ

, (9)

defined by the one-electron (hqν
pμ ) and antisymmetrized two-electron

(vrρsσ
pμqν = ⟨χpμ χqν ∣∣χrρ χsσ ⟩) integrals.

B. DSRG for mixed states based on ensemble
normal ordering

In the DSRG formalism, we transform the bare Hamiltonian via
a unitary operator [Û(s)] that depends on a time-like parameter s,

Ĥ → H̄(s) = Û†(s)ĤÛ(s), s ≥ 0. (10)

In the ensemble version of the DSRG, one unitary transformation
is performed to fold dynamical correlation in an average manner
for all the states in the ensemble. The resulting DSRG transformed
Hamiltonian [H̄(s)] is a general many-body operator, written as

H̄(s) = H̄0(s) +∑
pq
∑
μν

H̄qν
pμ(s){â

pμ
qν} +

1
4∑pqrs

∑
μνρσ

H̄rρsσ
pμqν(s){â

pμqν
rρsσ } + ⋅ ⋅ ⋅ ,

(11)

where H̄0(s) = ⟨H̄(s)⟩ρ̂ and the quantities H̄rρsσ ...
pμqν...(s) are rank-

2k tensors associated with the k-body ensemble normal-ordered
second-quantized operators {âpμqν...

rρsσ ... }.
The unitary transformation Û(s) in Eq. (10) is expressed in

terms of an s-dependent cluster operator T̂(s) as

Û(s) = exp[T̂(s) − T̂†(s)] = exp[Â(s)], (12)

where Â(s) = T̂(s) − T̂†(s) is an anti-Hermitian operator. The
cluster operator is a sum of many-body operators, T̂(s) = T̂1(s)
+ T̂2(s) + ⋅ ⋅ ⋅ , where a generic k-body term T̂k(s) is written in terms
of s-dependent cluster amplitudes tiρjσ ...

aμbν...
(s),

T̂k(s) =
1
(k!)2∑

ij...
∑

ρσ...
∑

ab...
∑

μν...
tiρjσ ...

aμbν...
(s){âaμbν...

iρjσ ...
}. (13)

These cluster amplitudes are antisymmetric when individually per-
muting adjacent upper or lower indices. Since internal excitations
(labeled only by active indices) perform the same role of a unitary
rotation among the CASCI solutions, we further require that T̂(s)
does not include internal excitations. This condition is enforced by
imposing txρyσ ...

uμvν...(s) = 0, ∀u, v, x, y, ⋅ ⋅ ⋅ ∈ A.
The cluster amplitudes are obtained by solving the DSRG

many-body condition,26,27

H̄iρjσ ...

aμbν...
(s) = riρjσ ...

aμbν...
(s), (14)

where riρjσ ...

aμbν...
(s) is parametrized to match the first-order trans-

formed Hamiltonian elements from the single-reference similarity
renormalization group,26

riρjσ ...

aμbν...
(s) = [H̄iρjσ ...

aμbν...
(s) + tiρjσ ...

aμbν...
(s)Δiρjσ ...

aμbν...
]e−s(Δ

iρ jσ ...
aμbν...

)
2

. (15)

Here, Δiρjσ ...

aμbν...
= ϵiρ + ϵjσ + ⋅ ⋅ ⋅ − ϵaμ − ϵbν − ⋅ ⋅ ⋅ are the generalized

Møller–Plesset denominators expressed in terms of semicanoni-
cal orbital energies ϵpσ . From Eqs. (14) and (15), we see that
for s = 0 all cluster amplitudes are null and thus H̄(0) = Ĥ. As s
increases, the transformed Hamiltonian smoothly transitions from
the original Hamiltonian to the one with no coupling between the
MK-GNO vacuum and its ensemble-averaged excitations, that is,
lims→∞[H̄iρjσ ...

aμbν...
(s)] = 0.

In order to solve the cluster amplitudes via Eq. (14),
we expand the DSRG transformed Hamiltonian using the
Baker–Campbell–Hausdorff (BCH) formula,

H̄(s) = Ĥ + [Ĥ, Â(s)] + 1
2
[[Ĥ, Â(s)], Â(s)] + ⋅ ⋅ ⋅ . (16)

Because Eq. (16) contains infinitely many nested commutators,
approximations must be introduced to make it computationally fea-
sible. In the MR-LDSRG(2) scheme,42 each commutator in the BCH
expansion is truncated to keep only the zero-, one-, and two-body
components,

[ ⋅ , Â(s)] ≈
2

∑
k=0
[ ⋅ , Â(s)]

k
, (17)

where [ ⋅ , Â(s)]k is the k-body component of the commutator. This
approximation is applied recursively to all terms that arise from
the BCH expansion [Eq. (16)]. Moreover, in MR-LDSRG(2), we
truncate the cluster operator to single and double excitations, i.e.,
T̂(s) ≈ T̂1(s) + T̂2(s).

Alternatively, the BCH expansion [Eq. (16)] can be approx-
imated using perturbation theory. In particular, the DSRG
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Hamiltonian consistent with second- or third-order MRPT
(MRPT2/MRPT3) theory has been derived via a perturbative anal-
ysis of the MR-LDSRG(2) equations.40,41 We note that the DSRG-
MRPT amplitudes are directly obtained from Eq. (14) of a given
perturbation order, while those of MR-LDSRG(2) are iteratively
updated until Eq. (14) is satisfied. From a perturbation theory per-
spective, the MR-LDSRG(2) energy neglects small contributions
appearing at order three, yet important higher-order terms are in
fact included via the BCH expansion and generally contribute to
making the accuracy of the MR-LDSRG(2) higher than that of
DSRG-MRPT3.

The MR-DSRG formalism also accounts for reference relax-
ation effects by solving the following eigenvalue problem:

H̄(s)∣Ψ′α(s)⟩ = Eα(s)∣Ψ′α(s)⟩. (18)

Here, Eα(s) corresponds to the DSRG energy of the relaxed state
Ψ′α(s). For the DSRG-MRPTs, we only relax the reference once,
meaning that H̄(s) in Eq. (18) is obtained by a DSRG trans-
formation using the original CASCI states. For the nonpertur-
bative MR-LDSRG(2) method, we seek simultaneous solutions of
the cluster amplitudes and the reference states Ψα(s) by itera-
tively solving Eqs. (14) and (18). The final MR-LDSRG(2) energies
for each individual state are obtained in the last diagonalization
step.

C. Spin-free MR-DSRG theory via the ensemble
formalism

In Sec. II B, we have presented MR-DSRG theory using a spin-
orbital formalism. However, when working with non-relativistic
Hamiltonians, it is computationally beneficial to eliminate the spin
dependency in the MR-DSRG equations. To this end, we formu-
late a spin-free MR-DSRG theory based on the work of Kutzel-
nigg and Mukherjee on spin-free density cumulants.34,43–45,54 This
spin-adaptation procedure has been successfully applied to the pIC-
MRCC35 and MR-EOMCC36,55 theories of Nooijen and co-workers.
Here, we brush over the rules that allow us to replace spin-dependent
quantities with the corresponding spin-free ones. A detailed discus-
sion can be found in Refs. 44 and 45.

One may, in principle, follow two approaches to spin adapt
the DSRG equations. In the first one, which we refer to as state-
specific, one starts with a reference wave function Ψ(S, MS) ∈ E with
well defined spin quantum numbers S (total) and MS (z component)
and then enforces that the cluster operator T̂(s) is parameterized in
terms of spin-free unitary group generators (Êuv...

xy...),

Êuv...
xy... =

↑↓

∑
στ...

âuσ vτ...
xσ yτ... . (19)

It can be seen that Êuv...
xy... is a singlet operator, that is, a spherical ten-

sor operator of rank 0 that commutes with spin angular momentum
operators Ŝ+, Ŝ−, and Ŝz . As such, Êuv...

xy... is invariant under SU(2)
transformations, meaning that unitary transformations of pairs of
spin orbitals χp↑(x) and χp↓(x) (and tensor products of such trans-
formations) leave the operator Êuv...

xy... unchanged. This approach
leads to equations formulated in terms of spin-summed RDMs that

do not depend on spin variables (which we refer to as spin-free
RDMs),

Γuv...
xy... = ⟨Ψ(S, MS)∣Êuv...

xy... ∣Ψ(S, MS)⟩ =
↑↓

∑
στ⋅ ⋅ ⋅

γuσ vτ...
xσ yτ... , (20)

expressible as a sum of spin-dependent RDMs (γuσ vτ...
xσ yτ...). Spin-

summed cumulants, however, cannot be expressed using only
spin-free RDMs.43–45,54 For example, the spin-summed two-body
cumulant (Λuv

xy ) is decomposable into

Λuv
xy ≡

↑↓

∑
στ

λuσ vτ
xσ yτ = Γuv

xy − Γu
x Γv

y +
↑↓

∑
σ

γuσ
yσ γvσ

xσ . (21)

The spin-dependent one-RDM (γuσ
yσ ) that appears in the last term is

not invariant under spin rotations, implying that the spin-summed
cumulant is also not SU(2) invariant. More generally, one finds that
the MS dependence of spin-summed density cumulants cannot be
fully removed, meaning that the resulting spin-adapted equations
will depend on the value of MS.

The second approach to spin adaptation—and the one followed
in this work—starts from an equally weighted ensemble of the entire
multiplet,43,54 characterized by the density operator ρ̂S,

ρ̂S =
1

2S + 1

S

∑
MS=−S

∣Ψ(S, MS)⟩⟨Ψ(S, MS)∣. (22)

Note that ρ̂S is a singlet operator and invariant under rotations in the
spin space (with this property being crucially dependent on the equal
weighting of all microstates). It is readily seen that in this approach,
the averaged one-body RDM is given by

Γu
v = 2γ̄u↑

v↑ = 2γ̄u↓
v↓ . (23)

Such relations can be generalized to higher-order RDMs, yielding
the following equations for ensemble-averaged (γ̄) and spin-free (Γ)
two- and three-RDMs:44,45

γ̄u↑v↑
x↑y↑ = γ̄u↓v↓

x↓y↓ = γ̄u↑v↓
x↑y↓ + γ̄u↑v↓

x↓y↑ = γ̄u↓v↑
x↓y↑ + γ̄u↓v↑

x↑y↓ , (24)

Γuv
xy = 2(γ̄u↑v↑

x↑y↑ + γ̄u↑v↓
x↑y↓ ), (25)

γ̄u↑v↑w↑
x↑y↑z↑ = γ̄u↓v↓w↓

x↓y↓z↓ = γ̄u↑v↑w↓
x↑y↑z↓ + γ̄u↑v↑w↓

x↑y↓z↑ + γ̄u↑v↑w↓
x↓y↑z↑ , (26)

Γuvw
xyz = 2(γ̄u↑v↑w↑

x↑y↑z↑ + γ̄u↑v↑w↓
x↑y↑z↓ + γ̄u↑w↑v↓

x↑z↑y↓ + γ̄v↑w↑u↓
y↑z↑x↓ ). (27)

As shown in Ref. 44, these conditions [Eqs. (23)–(27)] also apply to
density cumulants and other antisymmetric singlet operators where
the associated tensor elements are expressible in terms of spin-free
quantities. In particular, the analog two-body density cumulant [see
Eq. (21)] for the ensemble average is

Λuv
xy = Γuv

xy − Γu
x Γv

y +
1
2

Γu
y Γv

x. (28)

Similarly, the two-body cluster operators and the DSRG transformed
Hamiltonian tensors satisfy
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ti↑j↑
a↑b↑
= ti↑j↓

a↑b↓
− tj↑i↓

a↑b↓
, (29)

H̄r↑s↑
p↑q↑ = H̄r↑s↓

p↑q↓ − H̄s↑r↓
p↑q↓ , (30)

where the s-dependence has been suppressed for clarity. We then
choose tij

ab ≡ ti↑j↓
a↑b↓

and H̄rs
pq ≡ H̄r↑s↓

p↑q↓ as independent variables in our

implementation, and their one-body counterparts are ti
a ≡ ti↑

a↑ and
H̄q

p ≡ H̄q↑
p↑ . These choices are reminiscent of the non-orthogonal

spin-adaptation of closed-shell CC theory.3,5 Note that a k-body
spin-free quantity contains (k!)-fold permutational symmetry (e.g.,
Γuvw

xyz = Γuwv
xzy = Γvuw

yxz = Γvwu
yzx = Γwuv

zxy = Γwvu
zyx ). This symmetry can be uti-

lized to reduce the storage and computational cost. To the best
of our knowledge, a direct comparison of the state-specific and
ensemble spin-averaged approaches to spin adaptation has never
been reported. In this work, we adopt the latter approach since
it can be easily implemented by modifying an existing spin-
dependent code. By construction, the ensemble approach guaran-
tees that the transformed Hamiltonian is a singlet operator and
diagonalization of H̄ yields different MS components with degen-
erate energies. Furthermore, for states with odd multiplicity, the
MR-DSRG energy based on the ensemble formalism reproduces the
one from a spin-dependent implementation based on the MS = 0
reference.

To conclude this section, we briefly discuss the implementa-
tion details of the MS-averaged density cumulants in spin-adapted
MR-DSRG theory. First, it is sufficient to construct a spin-free k-
body MS-averaged density cumulant by computing only one of the
spin cases of the k-body MS-averaged RDM. For example, in order to
compute the three-body spin-free density cumulants Λuvw

xyz of a sin-
glet state, we may build the density cumulants λ̄u↑v↑w↓

x↑y↑z↓ using the ↑↑↓
case of the three-body RDMs (γ̄u↑v↑w↓

x↑y↑z↓ ) via

λ̄u↑v↑w↓
x↑y↑z↓ = γ̄u↑v↑w↓

x↑y↑z↓ − γ̄u↑
x↑ λ̄

v↑w↓
y↑z↓ + γ̄u↑

y↑ λ̄v↑w↓
x↑z↓ + γ̄v↑

x↑ λ̄
u↑w↓
y↑z↓

− γ̄v↑
y↑ λ̄

u↑w↓
x↑z↓ − γ̄w↓

z↓ λ̄u↑v↑
x↑y↑ − γ̄u↑

x↑ γ̄
v↑
y↑ γ̄

w↓
z↓ + γ̄v↑

x↑ γ̄
u↑
y↑ γ̄w↓

z↓ . (31)

The spin-free cumulants Λuvw
xyz are then obtained using Eq. (27) with

the replacements Γ→ Λ and γ̄→ λ̄.
Next, we only need to solve the CASCI problem for the high-

spin case, that is, Ψ(S, MS = S). All other states with MS < S may be
obtained via the spin-lowering operator,

∣Ψ(S, MS − 1)⟩ = Ŝ−∣Ψ(S, MS)⟩√
S(S + 1) −MS(MS − 1)

. (32)

Another symmetry that can be exploited connects averages for
positive and negative values of MS, namely,

⟨Ψ(S,−MS)∣âu↑v↑w↓...
x↑y↑z↓... ∣Ψ(S,−MS)⟩ = ⟨Ψ(S, MS)∣âu↓v↓w↑...

x↓y↓z↑... ∣Ψ(S, MS)⟩.
(33)

Thus, using Eq. (33), there is no need to construct the state with
a negative MS value. Instead, we simply compute the spin-flipped
RDMs using the wave function of the opposite (i.e., positive) MS
value.

Using the spin-averaged formalism, it is straightforward to
derive spin-free MR-DSRG equations starting from spin-orbital
expressions. First, spin-orbital equations are expressed in terms of
spin-dependent quantities. We then replace spin-dependent ten-
sors with the corresponding spin-summed counterparts, follow-
ing the rules derived for the MS-averaged ensemble state. Finally,
using the Sn permutation symmetry of a n-body spin-free ten-
sor, terms are relabeled and combined. The equations needed to
implement spin-free MR-LDSRG(2) theory are reported in the
Appendix.

III. RESULTS
A. First-row diatomic molecules

In our previous work,49 we have benchmarked the performance
of the DSRG-MRPT2, DSRG-MRPT3, and MR-LDSRG(2) meth-
ods on 8 singlet first-row diatomic molecules. Here, we exclusively
focus on 19 molecules with a doublet or triplet ground state, includ-
ing B2 (3Σ−g ), BeH (2Σ+), BeF (2Σ+), BO (2Σ+), C−2 (2Σ+g ), CF (2Π),
CH (2Π), CN (2Σ+), CO+ (2Σ+), F+2 (2Πg), He+2 (2Σ+u ), HF+ (2Π),
N+2 (2Σ+g ), NF (3Σ−), NO (2Π), O2 (3Σ−g ), O+2 (2Πg), OH (2Π), and
OH+ (3Σ−), as well as 14 closed-shell molecules: BeH+, BeO, BF,
BH, C2, CO, F2, H2, HF, Li2, LiF, LiH, N2, and NO+. We computed
the equilibrium bond lengths (re), equilibrium harmonic frequencies
(ωe), and anharmonicity constants (ωexe) via a polynomial fit of the
energies around the equilibrium bond length on an equally spaced
0.005 Å grid, as implemented in Psi4.56 Nineteen points were used
in the fitting to guarantee a convergence of ωexe to ∼0.1 cm−1. Sub-
sequently, the zero-point-energy-corrected dissociation energy (D0)
was calculated as (assuming atomic units)

D0 =
2

∑
i=1

Eatomi − Emolecule(re) − ωe/2 + ωexe/4. (34)

These spectroscopic constants were also computed using
CC with singles and doubles (CCSD)57 (unrestricted formalism,
restricted open-shell reference), CCSD with perturbative triples
[CCSD(T)],58 partially contracted second-order n-electron valence
perturbation theory (pc-NEVPT2),59 the complete-active-space
second- (CASPT2) and third-order (CASPT3) perturbation theo-
ries,60 the internally contracted MR configuration interaction with
singles and doubles (ic-MRCISD),61 and ic-MRCISD with Davidson
correction (ic-MRCISD + Q).62,63 We also considered the sequen-
tial variant of MR-LDSRG(2) theory [sq-MR-LDSRG(2)], where the
DSRG transformation reads

H̄sq(s) = e−Â2(s)[e−Â1(s)ĤeÂ1(s)]eÂ2(s). (35)

This variant has the same leading energy error of MR-LDSRG(2) and
lends itself to more efficient implementations. Theoretical predic-
tions were compared against the experimental data taken from Ref.
64, except for those of F+2 (Ref. 65).

All MR computations adopted a full-valence active space, treat-
ing the 1s orbital of H and He atoms, and the 2s and 2p orbitals
of period-2 elements as active orbitals. We employed the cc-pVQZ
basis set,66 except for Li and Be where we use the cc-pCVQZ basis
set.67 The 1s-like orbitals located on heavy atoms other than Li and
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Be were kept frozen in all post-Hartree–Fock or post-complete active
space self-consistent field (CASSCF) treatments of electron correla-
tion. The CC computations were performed using Psi4 1.4,56 while
the MR results (other than DSRG) were obtained using the Mol-
pro 2015.1 package.68 Unless otherwise stated, we set the DSRG flow
parameter to s = 0.5 E−2

h and always utilized the density-fitted DSRG
implementation in Forte41,49,69,70 with the def2-universal-JKFIT aux-
iliary basis set71 for CASSCF and the cc-pVQZ-RI auxiliary basis
set72 for DSRG. A very tight energy convergence (10−11Eh) was used
in all computations.

In Fig. 1 and Table I, we report the error statistics for the
spectroscopic constants of the 33 diatomic molecules considered
in this work. The complete data can be found in the supplemen-
tary material. Table I also summarizes the accuracy trend of these
methods as judged by the mean absolute errors (MAEs) of re, ωe,
and D0. The overall accuracy of the traditional and sequential MR-
LDSRG(2) methods matches that of CCSD(T), where the MAEs
differ by at most 0.1 pm, 2 cm−1, and 1.0 kcal mol−1 for re, ωe,
and D0, respectively. For DSRG-MRPT3, the D0 predictions appear
closer to experiments than those of CASPT3 and ic-MRCISD + Q,
while similar MAEs are observed for re, ωe, and ωexe in the DSRG-
MRPT3, CASPT3, and ic-MRCISD results. Comparing the three
MRPT2 methods, we observe analogous MAEs for all four proper-
ties, yet with DSRG-MRPT2 being the least computationally expen-
sive method.

In the supplementary material, the error statistics are ana-
lyzed separately for closed- and open-shell molecules. No significant

differences on the diatomic constants are observed between the
two sets of molecules. For instance, the MR-LDSRG(2) MAEs for
the closed- and open-shell molecules differ by at most 0.05 pm,
1.7, 0.4 cm−1, and 0.58 kcal mol−1 for re, ωe, ωexe, and D0,
respectively. The supplementary material also reports data for
Li- and Be-containing molecules computed using the cc-pVQZ
basis set with the 1s-like orbitals frozen in the dynamical cor-
relation treatment. Accounting for core correlation effects in Li
ubiquitously leads to smaller errors compared to experiments.
However, as noted before,67 such improvements are not uniform
across all properties of molecules containing Be, where larger
errors on harmonic frequencies are obtained using the cc-pCVQZ
basis set.

B. Spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+
Spin-crossover phenomena are commonly observed in Fe(II)

octahedral complexes, where the ground-state spin multiplicity can
interchange between a low-spin (LS) singlet (t6

2ge0
g) and a high-spin

(HS) quintet (t4
2ge2

g) due to minor external perturbations.73 Here, we
employ the spin-adapted DSRG-MRPT2, DSRG-MRPT3, and sq-
MR-LDSRG(2) methods to compute the adiabatic spin splittings of
the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. These two spin-
crossover model systems have been studied extensively theoreti-
cally.74–79 Therefore, to facilitate comparison with previous results,
we use the BP86/DKH-def2-TZVPP optimized geometries from
Ref. 79.

FIG. 1. Error distributions for the spectroscopic constants of the 33 diatomic molecules. Each violin plot depicts the median (white dot), the interquartile range (thick bar in the
center), the upper and lower adjacent values (line in the center), and the probability distribution (width). Molecules with errors lying outside three halves of the interquartile
range are labeled. The cc-pCVQZ basis set was employed for Li and Be, while the cc-pVQZ basis set was used for all other atoms.
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TABLE I. Error statistics (relative to experimental values) for the equilibrium bond lengths (re), equilibrium harmonic frequencies (ωe), anharmonicity constants (ωexe), and
dissociation energies (D0) of the 33 first-row diatomic molecules considered in this work.a

re (pm) ωe (cm−1) ωexe (cm−1) D0 (kcal mol−1)

Method MSE MAEb STD MAX MSE MAEc STD MAX MSE MAE STD MAX MSE MAEd STD MAX

CCSD −0.49 0.58 0.70 2.92 53.1 54.1 44.9 152.3 −0.3 1.1 1.7 6.7 −8.20 8.39 6.92 21.85
CCSD(T) 0.12 0.18 0.20 0.49 5.6 8.5 11.4 31.9 0.4 0.8 1.6 6.9 −2.52 2.74 2.41 7.63
CASSCF 0.85 1.02 1.11 4.83 −21.9 41.2 60.8 186.4 1.3 1.9 3.3 11.5 −8.21 14.98 16.35 48.07
pc-NEVPT2 0.25 0.45 0.53 1.99 −1.0 18.2 25.2 88.6 0.1 1.0 2.0 6.2 −0.30 3.04 3.93 11.37
CASPT2 0.35 0.41 0.31 0.97 −7.7 17.4 19.3 46.7 0.7 0.8 1.5 5.8 −4.36 4.44 4.14 16.92
CASPT3 0.16 0.25 0.27 0.78 6.5 13.1 20.0 79.5 0.6 0.7 1.6 6.6 −4.41 4.53 3.32 11.31
ic-MRCISD 0.21 0.27 0.25 0.84 1.9 10.4 15.4 53.7 0.6 0.8 1.5 6.2 −5.62 6.11 5.28 17.54
ic-MRCISD + Q 0.33 0.35 0.27 1.11 −4.7 10.4 12.8 36.2 0.6 0.7 1.4 6.2 −3.22 3.51 2.86 9.64
DSRG-MRPT2 0.44 0.49 0.38 1.40 −14.4 18.7 16.7 61.5 0.8 1.1 2.1 8.8 −3.96 4.21 4.24 17.12
DSRG-MRPT3 0.28 0.37 0.40 1.57 1.6 8.6 13.3 46.4 0.4 0.8 1.6 5.9 −0.92 2.02 2.73 8.04
sq-MR-LDSRG(2) 0.16 0.28 0.29 0.72 7.6 11.3 15.6 51.3 0.4 0.7 1.5 6.1 −1.20 1.80 2.39 6.77
MR-LDSRG(2) 0.17 0.28 0.28 0.65 7.2 11.4 15.7 53.3 0.3 0.7 1.5 6.0 −1.03 1.73 2.33 6.24

aThe statistics indicators include mean signed error (MSE, Δ̄ = 1
33∑

33
i=1Δi with Δi = xmethod

i − xexp .
i ), mean absolute error (MAE, 1

33∑
33
i=1∣Δi∣), standard deviation [STD,

√
1

32∑
33
i=1(Δi − Δ̄)2], and maximum absolute error [MAX, max(∣Δi∣)]. The cc-pCVQZ basis set was employed for Li and Be, while the cc-pVQZ basis set was used for all other atoms.

The 1s-like orbitals on period-2 atoms other than Li and Be were excluded for dynamical correlation treatment. All DSRG computations used the density-fitted implementation and
a flow parameter value of 0.5 E−2

h .
bOverall trend: CCSD(T) < CASPT3 ∼ ic-MRCISD ∼MR-LDSRG(2) < ic-MRCISD + Q ∼ DSRG-MRPT3 ≲ CASPT2 ≲ pc-NEVPT2 ≲ DSRG-MRPT2 < CCSD≪ CASSCF.
cOverall trend: CCSD(T) ∼ DSRG-MRPT3 ≲ ic-MRCISD + Q ∼ ic-MRCISD ∼MR-LDSRG(2) ≲ CASPT3 < CASPT2 ∼ pc-NEVPT2 ∼ DSRG-MRPT2≪ CASSCF≪ CCSD.
dOverall trend: MR-LDSRG(2) ≲ DSRG-MRPT3 < CCSD(T) ≲ pc-NEVPT2 ≲ ic-MRCISD + Q < DSRG-MRPT2 ∼ CASPT2 ∼ CASPT3 < ic-MRCISD≪ CCSD≪ CASSCF.

The adiabatic spin splitting (ΔEHL) is calculated as

ΔEHL = E(HS) − E(LS). (36)

The final ΔEHL energies predicted by sq-MR-LDSRG(2) were
obtained via a focal point analysis (FPA),80–82 where we used the
blended cc-pwCVXZ-DK/cc-pVXZ-DK (X = T, Q, 5; abbreviated as
XZ in this section) series of basis sets, constructed from the cc-
pwCVXZ-DK basis set83 for the Fe atom and the cc-pVXZ-DK basis
set66,84 for all other atoms. Both the CASSCF energies (ECAS) and
DSRG correlation energies (Ecorr = EDSRG − ECASSCF) were extrap-
olated to the complete basis set (CBS) limit using the following
formulas:85,86

ECAS(X) = E∞CAS + a exp(−bX), (37)

Ecorr(X) = E∞corr + aX−3, (38)

where X is the cardinal number of a basis set. Scalar relativistic
effects were described using the second-order Douglas–Kroll–Hess
Hamiltonian (DKH2).87,88 In the DSRG treatment of electron cor-
relation, core orbitals (1s for N and O; 1s2s2p for Fe) were kept
frozen.

Unless mentioned otherwise, all MR-DSRG computations were
based on a CASSCF(6e,5o) reference wave function. The active
orbitals included only the Fe 3d shell, and they were selected using
the atomic valence active space technique.89 The def2-universal-
JKFIT auxiliary basis set71 was used for both CASSCF and MR-
DSRG computations. Two approximations were employed to reduce
the cost of sq-MR-LDSRG(2) computations. First, we employed the

non-interacting virtual orbital approximation,49 that is, we ignored
the two-body components with three and four virtual indices for
the n-nested (n ≥ 2) commutators in the BCH expansion [Eq. (16)].
This approach has been shown to introduce negligible errors in
the constants of first-row diatomic molecules (see Ref. 49 and
the supplementary material). Second, the sq-MR-LDSRG(2) energy
was obtained by performing one step of the relaxation procedure
(diagonalize–perturb–diagonalize) followed by a second optimiza-
tion of the DSRG amplitudes (termed the relaxed variant in Ref. 41).
This two-step reference relaxation procedure captures the bulk of
the full energy relaxation, avoiding the need for a self-consistent
procedure.

In Tables II and III, we report the FPA results using the
MR-DSRG hierarchy. For both molecules, second- and third-
order perturbative corrections to ΔEHL can be as large as
+31.0 and 20.9 kcal mol−1, respectively, showing that com-
mon second-order perturbative treatments might be insuffi-
cient to obtain a nearly converged ΔEHL. The sq-MR-LDSRG(2)
scheme yields only a 0.2 kcal mol−1 correction to ΔEHL of
[Fe(H2O)6]2+. However, the same correction is larger (3.5 kcal
mol−1) for [Fe(NH3)6]2+, suggesting the need for more sophis-
ticated treatments of electron correlation to achieve higher
accuracy.

The MR-DSRG ΔEHL predictions are compared to other the-
oretical estimates in Table IV. The sq-MR-LDSRG(2)/FPA pre-
dictions are in good agreement with those of DLPNO-CCSD(T1),
differing by 1.3 and 5.5 kcal mol−1 for [Fe(H2O)6]2+ and
[Fe(NH3)6]2+, respectively. In Table IV, we also report the extrap-
olated energies of other MRPT2 methods obtained using Orca
4.2.91 These MRPT2 schemes include CASPT2 and its diago-
nal variant (CASPT2-D),92 and the strongly contracted NEVPT2
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TABLE II. Focal point analysis for the adiabatic spin splitting (ΔEHL in kcal mol−1) of [Fe(H2O)6]2+.a

Basis setb ΔEHL[CASSCF(6e,5o)] δ[DSRG-MRPT2] δ[DSRG-MRPT3] δ[sq-MR-LDSRG(2)] ΔEHL[sq-MR-LDSRG(2)]

TZ −69.4 +10.9 +20.5 −0.2 [−38.3]
QZ −69.7 +12.3 +20.9 [−0.2] [−36.7]
5Z −69.7 +12.8 [+20.9] [−0.2] [−36.2]
CBS [−69.8] [+13.4] [+20.9] [−0.2] [−35.7]

Fitting [E(X)] E∞CAS + ae−bX E∞corr + aX−3 Additive Additive
Points (X) 3, 4, 5 4, 5
aδ shows the incremental energy with respect to the preceding level of theory in the hierarchy of CASSCF→ DSRG-MRPT2→ DSRG-MRPT3→MR-LDSRG(2). The values inside
square brackets are obtained via basis set extrapolations or the additivity assumption. The final prediction is in boldface. All DSRG computations used a flow parameter value of
0.5 E−2

h .
bNumber of basis functions: TZ: 450, QZ: 839, and 5Z: 1404.

TABLE III. Focal point analysis for the adiabatic spin splitting (ΔEHL in kcal mol−1) of [Fe(NH3)6]2+.a

Basis setb ΔEHL[CASSCF(6e,5o)] δ[DSRG-MRPT2] δ[DSRG-MRPT3] δ[sq-MR-LDSRG(2)] ΔEHL[sq-MR-LDSRG(2)]

TZ −65.4 +28.5 +13.2 +3.5 [−20.2]
QZ −65.7 +30.5 +13.4 [+3.5] [−18.3]
5Z −65.7 +31.0 [+13.4] [+3.5] [−17.7]
CBS [−65.6] [+31.6] [+13.4] [+3.5] [−17.1]

Fitting [E(X)] E∞CAS + ae−bX E∞corr + aX−3 Additive Additive
Points (X) 3, 4, 5 4, 5
aδ shows the incremental energy with respect to the preceding level of theory in the hierarchy of CASSCF→ DSRG-MRPT2→ DSRG-MRPT3→MR-LDSRG(2). The values inside
square brackets are obtained via basis set extrapolations or the additivity assumption. The final prediction is in boldface. All DSRG computations used a flow parameter value
of 0.5 E−2

h .
bNumber of basis functions: TZ: 534, QZ: 1019, and 5Z: 1734.

(sc-NEVPT2).59 The DSRG-MRPT2 results are in perfect agree-
ment with those of CASPT2 without IPEA shift, deviating by at
most by 1.9 kcal mol−1. The inclusion of IPEA shift in CASPT2
closes the energy gap by 6–7 kcal mol−1. Nonetheless, these
CASPT2/CAS(6e,5o) values are far off (>10 kcal mol−1) from the
estimates of DLPNO-CCSD(T1) or sq-MR-LDSRG(2)/FPA. The
NEVPT2 results match those of DLPNO-CCSD(T1) within 2.0 kcal
mol−1. An inspection of the NEVPT2 and DSRG-MRPT2 corre-
lation energies (see the supplementary material) reveals a large
difference for the quintet state of both molecules, where the
CASSCF(6e,5o) wave function largely resembles the restricted open-
shell Hartree–Fock solution. The explicit inclusion of two-body
terms in Dyall’s Hamiltonian leads to more accurate spin splittings
in NEVPT2, as noted before.93 Comparing the sc-NEVPT2 val-
ues, we observe significant differences between the adiabatic (this
work) and vertical (see Ref. 90) spin splittings. This large deviation
is expected since the metal–ligand bonds of the singlet are notably
shorter (>0.15 Å) than those of the quintet.

To obtain more accurate results for molecules containing 3d
transition metals from Cr to Cu, it is often necessary to account
for the double-shell effect by adding another set of d orbitals in
the active space.94,95 Following Ref. 74, we tested the CAS(10e,12o)
active space that includes two sets of Fe 3d orbitals and two
metal–ligand σ orbitals, as depicted in Fig. 2. The corresponding

ΔEHL results are presented in Table IV. For [Fe(H2O)6]2+, the
use of larger active space increases the respective ΔEHL of DSRG-
MRPT2 and CASPT2-D by 9.2 and 8.0 kcal mol−1. The prediction
of CASPT2 with IPEA shift is less affected (going from −51.2 to
−46.1 kcal mol−1), yet it is still 12.8 kcal mol−1 lower than the
DLPNO-CCSD(T1) value. For [Fe(NH3)6]2+, using a CAS(10e,12o)
reference leads to an increase of 9–12 kcal mol−1 in ΔEHL for the
CASPT2, DSRG-MRPT2, and DSRG-MRPT3 methods. The DSRG-
MRPT3/CAS(10e,12o) prediction is in perfect agreement with that
of DLPNO-CCSD(T1). Surprisingly, the sc-NEVPT2 values remain
largely unaffected by the change of active space for both molecules.

We note that the sq-MR-LDSRG(2)/TZ (s = 0.5) equations
failed to converge for the larger CAS(10e,12o) space. Nonetheless,
we are able to obtain the sq-MR-LDSRG(2)/TZ energies using a
smaller flow parameter of s = 0.1 E−2

h , as shown in Table V. As we
enlarge the active space, ΔEHL of [Fe(H2O)6]2+ remains mostly
unchanged, while that of [Fe(NH3)6]2+ increases by 6.5 kcal mol−1.
Although this change is not negligible, it is still encouraging to
see that the MR-LDSRG(2) method is less susceptible than per-
turbative approaches to the choice of the active space, which dis-
play a shift in ΔEHL of 11.5 and 8.7 kcal mol−1 for DSRG-MRPT2
and DSRG-MRPT3, respectively. The convergence difficulties of
MR-LDSRG(2)/CAS(10e,12o) are likely caused by the weakly occu-
pied (3d′) or near-fully occupied (σ) active orbitals (see Fig. 2),
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TABLE IV. Theoretical estimates for the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules.a

Molecule Active space Method Basis set ΔEHL (kcal mol−1) References

[Fe(H2O)6]2+

DMC(B3LYP)b cc-pVTZ −41.0 78
DLPNO-CCSDc CBS(X = 4, 5) −39.7 79
DLPNO-CCSD(T1)c CBS(X = 4, 5) −33.3 79

CAS(6e,5o)

sc-NEVPT2d def2-TZVP −53.9v 90
sc-NEVPT2 CBS(X = 4, 5) −35.3 This work
CASPT2-D CBS(X = 4, 5) −56.7 This work
CASPT2 CBS(X = 4, 5) −57.3 This work
CASPT2 (IPEA = 0.25) CBS(X = 4, 5) −51.2 This work
CASPT2 (IPEA = 0.25)e ANO-RCC/ANO1 −50.1 74
DSRG-MRPT2 CBS(X = 4, 5) −56.4 This work
DSRG-MRPT3 CBS(X = 3, 4) −35.2 This work
sq-MR-LDSRG(2) FPA −35.7 This work

CAS(10e,12o)

sc-NEVPT2 CBS(X = 4, 5) −34.8 This work
CASPT2-D CBS(X = 4, 5) −48.7 This work
CASPT2 CBS(X = 4, 5) −50.3 This work
CASPT2 (IPEA = 0.25) CBS(X = 4, 5) −46.1 This work
CASPT2 (IPEA = 0.25)e ANO-RCC/ANO1 −46.6 74
DSRG-MRPT2 CBS(X = 4, 5) −47.2 This work
DSRG-MRPT3 CBS(X = 3, 4) −35.9 This work

[Fe(NH3)6]2+

DMC(B3LYP)b cc-pVTZ −28.4 78
DLPNO-CCSDc CBS(X = 4, 5) −20.3 79
DLPNO-CCSD(T1)c CBS(X = 4, 5) −11.3 79

CAS(6e,5o)

sc-NEVPT2d def2-TZVP −43.5v 90
sc-NEVPT2 CBS(X = 4, 5) −10.6 This work
CASPT2-D CBS(X = 4, 5) −35.1 This work
CASPT2 CBS(X = 4, 5) −35.9 This work
CASPT2 (IPEA = 0.25) CBS(X = 4, 5) −29.1 This work
CASPT2 (IPEA = 0.25)e ANO-RCC/ANO1 −28.6 74
DSRG-MRPT2 CBS(X = 4, 5) −34.0 This work
DSRG-MRPT3 CBS(X = 3, 4) −20.1 This work
sq-MR-LDSRG(2) FPA −17.1 This work

CAS(10e,12o)

sc-NEVPT2 CBS(X = 4, 5) −9.6 This work
CASPT2-D CBS(X = 4, 5) −23.5 This work
CASPT2 CBS(X = 3, 4) −25.0 This work
CASPT2 (IPEA = 0.25) CBS(X = 3, 4) −20.6 This work
CASPT2 (IPEA = 0.25)e ANO-RCC/ANO1 −20.3 74
DSRG-MRPT2 CBS(X = 4, 5) −22.5 This work
DSRG-MRPT3 CBS(X = 3, 4) −11.4 This work

aThe geometries were optimized using BP86/DKH-def2-TZVPP from Ref. 79. The scalar relativistic effects were addressed using DKH2. The complete basis set (CBS) limit was
computed by extrapolating the CASSCF energies using Eq. (37) with X = 3, 4, 5 and the correlation energies using Eq. (38) with X values given in parentheses. All DSRG computations
employed a flow parameter of 0.5 E−2

h . All CASPT2 data were obtained using an imaginary shift of 0.1. Unless otherwise stated, no IPEA shift was applied to CASPT2.
bB3LYP/TZVP geometries.
cBP86/DKH-def2-TZVPP geometries, DKH2 scalar relativistic effects, and CBS limit from extrapolating self-consistent-field (SCF) energies using ESCF(X) = E∞SCF + aX−3.9 and
correlation energies [Ecorr(X) = EDLPNO−CCSD(T1)(X) − ESCF(X)] using Eq. (38).
dVertical spin splittings using the BP86/def2-TZVP quintet geometry and zero-field splittings considered for the quintet.
eGeometries from PBE0/6-31G∗(MDF10) with the Fe–L (L = O, N) bond optimized by CASPT2/ANO-RCC(Fe)/ANO1(H,N,O) and DKH2 scalar relativistic effects.

as observed previously by Nooijen and co-workers in Fock-space
many-body methods.35,96

Table V also reports the variation of sq-MR-LDSRG(2)/TZ spin
splittings with respect to the flow parameter s. As s increases, the

absolute value of ΔEHL decreases for both molecules. In particular,
as s goes from 0.5 to 1.0 E−2

h , ΔEHL of [Fe(H2O)6]2+ differs by only
1.0 kcal mol−1, while that of [Fe(NH3)6]2+ varies by 2.0 kcal mol−1

instead. This observation suggests that some correlation effects are
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FIG. 2. CASSCF(12e,10o)/TZ natural orbitals. The corresponding occupation numbers are shown below every orbital plot.

still missing in the s = 0.5 E−2
h results for [Fe(NH3)6]2+. We note

that reducing the s-dependence of the results remains an open prob-
lem in the MR-DSRG formalism and in the related in-medium
similarity renormalization group (IM-SRG) approach.97,98

Finally, we report the timings for [Fe(NH3)6]2+, recorded
using a node of two Intel Xeon E5-2650 v2 processors with 16

TABLE V. Adiabatic spin splitting of sq-MR-LDSRG(2)/TZ computed using different
flow parameters (s in E−2

h ) and active spaces.

[Fe(H2O)6]2+ [Fe(NH3)6]2+

s CAS(6e,5o) CAS(10e,12o) CAS(6e,5o) CAS(10e,12o)

0.1 −40.0 −39.5 −23.1 −16.6
0.5 −38.3 −20.2
1.0 −37.3 −18.2

threads and 128 GB memory. There are 84 electrons in this
molecule, 22 of which were excluded from correlated computations.
The CAS(6e,5o) DSRG-MRPT2/5Z energy can be obtained within
30 min. The pure DSRG-MRPT2 step took only 3.5 min to fin-
ish when all density cumulants were available as needed. The total
time for DSRG-MRPT3/QZ based on CAS(6e,5o) required ∼6.8 h,
dominated mostly by the O(N6) step of building second-order
amplitudes (5.2 h). In comparison, the DSRG-MRPT2/QZ compu-
tation finished in 10 min. For sq-MR-LDSRG(2)/TZ, every cycle
of amplitudes update took ∼2 h and about 15 iterations were nec-
essary to converge the energy below 10−8Eh. As such, the sq-MR-
LDSRG(2)/TZ single point energy as reported in Table III took
roughly 2.5 days.

IV. CONCLUSIONS
In this work, we report a spin-adapted implementation of

MR-DSRG theory based on the MS-averaged ensemble normal
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ordering formalism of Mukherjee and Kutzelnigg.43–45 This
approach considers an ensemble with equal probability for all
microstates of a multiplet and, therefore, transforms as a closed-
shell singlet state. Consequently, all quantities that enter in DSRG
theory, including the density cumulants, Hamiltonian, and clus-
ter amplitudes, can be expressed in terms of quantities that are
independent of spin, in a manner similar to spin-adapted CC
theory.3,5

To assess the accuracy of various MR-DSRG schemes against
other well-established methods, we computed the spectroscopic
constants of first-row open-shell diatomic molecules and compared
against experimental values. The resulting error statistics reveals
that the accuracy generally match the trend of DSRG-MRPT2
∼ CASPT2 ∼ NEVPT2 < DSRG-MRPT3 ∼ CASPT3 ∼ ic-MRCISD
≲ MR-LDSRG(2) ∼ CCSD(T), in accordance with our previous
benchmarks on closed-shell molecules.41,49 Next, we present the first
ever MR-DSRG application on transition-metal complexes by com-
puting the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ with
up to quintuple-ζ basis sets. From focal point analyses, we observe
nearly converged spin gaps of these two molecules at the MRPT3
level of theory with a quadruple-ζ basis set and a minimum active
space containing only Fe 3d orbitals. Moving to the strong field of
the spectrochemical series from H2O to NH3, a treatment beyond
the MR-LDSRG(2) may be necessary, as the incremental contribu-
tions to the correlation energy become as high as 3.5 kcal mol−1.
Our final sq-MR-LDSRG(2)/FPA predictions on the spin splittings
of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ are−35.7 and−17.1 kcal mol−1,
respectively. These values are in reasonable agreement to the corre-
sponding DLPNO-CCSD(T1) results of −33.3 and −11.3 kcal mol−1,
respectively.

The current spin-free MR-DSRG implementation is readily
combined with other approximate CASCI methods, including gen-
eralized active space,99 density matrix renormalization group,100 and
numerous selective configuration interaction approaches,101–103 as
long as the wave function is not spin contaminated. As shown by
the FPA of spin-crossover energetics, the MR-LDSRG(2) treatment
of electron correlation is far from complete and higher-order terms
in perturbation theory (e.g., triple excitations) should be consid-
ered in order to reach chemical accuracy. The current spin-free for-
mulation based on the MS-averaged ensemble can also be used in
the state-averaged DSRG framework to compute excited states of
high-spin states.48 This extension simply requires defining a refer-
ence ensemble that, in addition to the ground state, includes ref-
erence excited states with appropriate weights. One more potential
benefit of the ensemble formalism is that it provides a simple way

to compute magnetic properties relevant to EPR spectroscopy and
treat spin–orbit relativistic effects. These quantities are commonly
evaluated in multireference theories via the state interaction for-
malism104 or quasi-degenerate perturbation theory.105 In the MR-
DSRG, matrix elements for states of different multiplicity (includ-
ing excited states) can be computed by performing a single unitary
transformation of the appropriate perturbation (using MR-DSRG
amplitudes converged in the absence of spin–orbit coupling) fol-
lowed by diagonalization of the resulting effective Hamiltonian. A
similar approach was used to evaluate static properties in MR-DSRG
methods and could be implemented by straightforward modification
of the available implementation.48 Therefore, this work also paves
the way for future applications of the MR-DSRG hierarchy to spin
states of transition-metal complexes or excited states of open-shell
radical systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for (1) the computed equi-
librium bond distances, harmonic frequencies, anharmonicity con-
stants, and dissociation energies of the 33 first-row diatomic
molecules and (2) energies of the low- and high-spin states of
[Fe(H2O)6]2+ and [Fe(NH3)6]2+ computed using various multiref-
erence methods.
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APPENDIX: SPIN-FREE MR-LDSRG(2) EQUATIONS

In this Appendix, we report the explicit spin-free expressions
of [Ô, T̂]0,1,2, where Ô and T̂ contain at most two-body operators.
The commutator [Ô, Â] can be easily evaluated using [Ô, T̂] via
[Ô, Â] = [Ô, T̂] + [Ô, T̂]†. The MR-LDSRG(2) Hamiltonian is then
computed using the reclusive relation given by Eq. (17) until the
Frobenius norm of the last commutator is smaller than a given
threshold (e.g., 10−12). In the following, we define Ĉk ≡ [Ô, T̂]k
for the k-body term and use lowercase letters for tensors associ-
ated with the uppercase operator. For brevity, the terms involv-
ing internal amplitudes are ignored and Einstein’s convention
of summation over repeated indices is adopted throughout this
Appendix.

The scalar term of [Ô, T̂] reads

[Ô, T̂]
0
= 2oe

mtm
e + oe

utv
e Γu

v + ov
mtm

u Θu
v + (oev

xytu
e − ouv

mytm
x )Λxy

uv + (oe
xtuv

ey − ov
mtum

xy )Λxy
uv + ǒe f

mntmn
e f + ǒe f

mutmv
e f Γu

v + ǒve
mntmn

ue Θu
v

+ 1
4

ǒe f
uxtvy

e f Γu
v Γx

y +
1
4

ǒvy
mntmn

ux Θu
v Θx

y +
1
2
(ǒve

mxtmy
ue + ǒev

mxtym
ue )Γx

yΘu
v +

1
4
(ǒve

xwtyz
ueΓw

z + ǒvz
mxtmy

uw Θw
z )Γx

yΘu
v

+ 1
2
(ouv

mntmn
xy + ouv

mwtmz
xy Γw

z )Λxy
uv +

1
2
(oe f

xy tuv
e f + oev

xytuv
ewΘw

z )Λxy
uv + (ǒue

xmtvm
ye − oue

xmtmv
ye − ove

mxtmu
ye )Λxy

uv

+ 1
2
[(ǒeu

wxtzv
ey − oeu

wxtvz
ey − ove

wxtuz
ey )Γw

z + (ǒwu
mxtmv

zy − owu
mxtvm

zy − ovw
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zy )Θw
z ]Λxy

uv + (oev
xytuw

ez − ouw
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xy )Λxyz
uvw, (A1)
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where we have adopted the intermediate ǒrs
pq = 2ors

pq − osr
pq and the

hole density Θu
v = 2δu

v − Γu
v .

The one-body contributions contain

ci
p ← oa

pti
a + ǒab

rmtim
ab +

1
2

ǒab
putiv

abΓu
v +

1
4

ǒvy
pj tij

uxΓx
yΓu

v

− 1
2
(ǒvb

pmtim
ub + ǒbv

pmtmi
ub)Γu

v −
1
4
(ǒvb

pxtiy
ub + ǒbv

pxtiy
bu)Γ

u
v Γx

y

+ 1
2
(ouv

pj tij
xy + ǒau

px tiv
ay − oau

px tiv
ya − ova

pxtiu
ya)Λxy

uv, (A2)

cp
a ← op

i ti
a − ǒpe

ij tij
ae −

1
2

ǒpu
ij tij

auΘu
v −

1
4

ǒpb
uxtvy

abΘu
v Θx

y

+ 1
2
(ǒpe

uj t
vj
ae + ǒpe

ju tjv
ae)Θu

v +
1
4
(ǒpy

uj tvj
ax + ǒpy

ju tjv
ax)Θu

v Θx
y

− 1
2
(opb

xy tuv
ab + ǒpu

ix tiv
ay − opu

ix tvi
ay − opv

xi tui
ay)Λxy

uv, (A3)

cq
p ← ǒqa

pmtm
a +

1
2
(ǒqe

pvtu
e − ǒqv

pmtm
u )Γu

v +
1
2
(ǒeq

xptuv
ey − ǒuq

mptmv
xy )Λxy

uv, (A4)

ci
a ← ob

m ťim
ab +

1
2
(ob

u ťiv
ab − ov

j ťij
au)Γu

v +
1
2
(obv

xy ťui
ba − ouv

jy ťji
xa)Λxy

uv, (A5)

where ťij
ab = 2tij

ab − tji
ab in Eq. (A5).

Finally, the two-body components follow

cij
pa, cji

ap ← +ob
ptij

ba, (A6)

cpj
ab, cjp

ba ← −op
i tij

ab, (A7)

cir
pq, cri

qp ← +oar
pqti

a, (A8)

crs
aq, csr

qa ← −ors
iqti

a, (A9)

cij
pq ← +oab

pqtij
ab −

1
2
(oyb

pqtij
xb + oyb

qptji
xb)Γ

x
y , (A10)

cpq
ab ← +opq

ij tij
ab −

1
2
(opq

xj tyj
ab + oqp

xj tyj
ba)Θ

x
y , (A11)

cqj
sb, cjq

bs ←
1
2
(ǒaq

xs tyj
ab − oaq

xs tjy
ab − ǒyq

is tij
xb + oyq

is tij
bx)Γ

x
y + ǒaq

mst
mj
ab − oaq

mst
jm
ab ,

(A12)

cjq
sb, cqj

bs ← −oaq
smtjm

ab +
1
2
(oyq

si tij
bx − oaq

sx tjy
ab)Γ

x
y . (A13)

Note that there are overlapped contributions in Eqs. (A2)–(A5)
and (A6)–(A13). For example, Eqs. (A2)–(A5) all contribute to cm

e .
In this work, Eqs. (A1)–(A5) were implemented as they are pre-
sented, while two types of symmetries are not yet explored. First,
operators Ô and B̂ ≡ [Ô, Â] are Hermitian, effectively removing the
storage of 3 and 36 out of the 9 and 81 elementary blocks (no com-
posite indices) for the one- and two-body parts of Ô or B̂, respec-
tively. For instance, we only need to store bve

um = cve
um + cum

ve , but not

both bve
um and bum

ve . Considering the additional permutation symme-
try of Ô or B̂ (e.g., ove

um = oev
mu) will leave only 27 unique elemen-

tary blocks for the two-body components. As such, a fourfold sym-
metry is observed in tensors labeled by identical upper and lower
indices (e.g., ogh

e f = ohg
f e = oe f

gh = o f e
hg for e, f , g, h ∈ V), which can be

utilized to minimize the number of floating point operations when
building [Ô, Â].
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