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ABSTRACT: We report a new implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for
simulations of electron attachment and ionization in strongly correlated molecular systems (EA/IP-MR-ADC). Following our recent
work on IP-MR-ADC [J. Chem. Theory Comput. 2019, 15, 5908], we present the first implementation of the second-order MR-ADC
method for electron attachment (EA-MR-ADC(2)) and two extended second-order approximations (EA- and IP-MR-ADC(2)-X)
that incorporate a partial treatment of third-order electron correlation effects. Introducing a small approximation for the second-
order amplitudes of the effective Hamiltonian, our implementation of EA- and IP-MR-ADC(2)-X has a low M( )5 computational
scaling with the basis set size M. Additionally, we describe an efficient algorithm for solving the first-order amplitude equations in
MR-ADC and partially contracted second-order N-electron valence perturbation theory (NEVPT2) which completely avoids
computation of the four-particle reduced density matrices without introducing any approximations or imaginary-time propagation.
For a benchmark set of eight small molecules, a carbon dimer, and a twisted ethylene, we demonstrate that EA- and IP-MR-ADC(2)-
X achieve an accuracy similar to that of strongly contracted NEVPT2 while having a lower computational scaling with the active
space size and providing efficient access to transition properties.

1. INTRODUCTION

Recently, we proposed a multireference formulation of algebraic
diagrammatic construction theory (MR-ADC) for simulations
of electronic excitations and spectra in strongly correlated
chemical systems.1 MR-ADC is a generalization of the single-
reference algebraic diagrammatic construction approach2−8 that
aims to obtain excitation energies and transition probabilities
from poles and residues of a retarded propagator approximated
using multireference perturbation theory (MRPT). Similar to
conventional MRPT,9−23 MR-ADC uses multiconfigurational
(complete active space) wavefunctions to describe static
correlation in frontier (active) molecular orbitals of the ground
and excited electronic states and perturbatively treats dynamic
correlation in the remaining orbitals.
However, several important differences between MR-ADC

and multistate MRPT exist. Rather than constructing perturbed
(dynamically correlated) active-space wavefunctions for each
electronic state of interest, as it is done in conventional
multistate MRPT,12,17 in MR-ADC dynamic correlation
information is determined for a single (so-called “parent” or
“reference”) state and the differential electron correlation in the

remaining states is assumed to be simple to describe. This allows
MR-ADC to describe many electronic excitations (including
those outside of the active space) with a computational cost
lower than that of a single multistate MRPT calculation and
removes the need for using reference wavefunctions with state-
averaged orbitals, which introduce dependence of results on
weights used in state averaging and can be numerically difficult
to compute. Importantly, MR-ADC also provides an efficient
route to obtain various transition properties (such as intensities
and spectral densities) that are not directly accessible in
conventional MRPT calculations. In its formulation, MR-ADC
has a close connection to the multireference propagator,24−32

linear-response,33−37 and equation-of-motion approaches38−40
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but, in contrast to many of these methods, is based on a
Hermitian eigenvalue problem, which ensures that the
computed excitation energies have real values.
In our earlier work, we reported an implementation and

benchmark of MR-ADC for simulations of ionization processes
in multireference systems that incorporates all contributions to
transition energies and spectroscopic amplitudes up to the
second order in perturbation theory (IP-MR-ADC(2)).41 The
IP-MR-ADC(2) method was found to provide reliable results
for a variety of weakly and strongly correlated systems; however,
the computed errors in ionization energies were found to be
larger than those of the conventional second-order MRPT. In
this manuscript, we expand the applicability of the MR-ADC
framework by developing its second-order implementation for
simulations of electron attachment (EA-MR-ADC(2)). Addi-
tionally, we report two extended second-order MR-ADC
approximations (EA- and IP-MR-ADC(2)-X) that incorporate
third-order electron correlation effects into computation of
charged excitation energies and transition properties. We
benchmark the new methods against electron affinities and
ionization energies obtained from the accurate semistochastic
heat-bath configuration interaction method and compare their
performance with that of conventional single- and multi-
reference methods.

2. THEORY

2.1. Overview of MR-ADC.We start by reviewing the main
aspects of the MR-ADC formulation. For more details on the
derivation of MR-ADC using the formalism of effective
Liouvillean theory,42 the reader is referred to ref 1. The central
object of interest in MR-ADC is a retarded propagator43,44

Gμν(ω) expressed in a general form as

G G G

q H E q

q H E q

( ) ( ) ( )

( )

( )

1

1

ω ω ω

ω

ω

= ±

= ⟨Ψ| − + |Ψ⟩

± ⟨Ψ| + − |Ψ⟩

μν μν μν

μ ν

ν μ

+ −

− †

† −
(1)

Here, Gμν(ω) describes the response of a many-electron system
in an initial state |Ψ⟩ to an external perturbation with frequency
ω. The wavefunction |Ψ⟩ is an eigenstate of the electronic
Hamiltonian H with energy E and the frequency can be
expressed in terms of its real and imaginary parts, ω ≡ ω′ + iη.
The form of qν

† and qμ, referred to as the perturbation and
observable operators, respectively, determines the nature of a
spectroscopic process described byGμν(ω). The operatorsH, qν

†,
and qμ are usually expressed in their second-quantized form,
where the number of creation and annihilation operators in qν

†

(odd or even) determines the sign (+ or −) in eq 1. TheG ( )ωμν
+

and G ( )ωμν
− terms in eq 1 are referred to as the forward and

backward components of the propagator, respectively. In this
work, we will focus on the propagator with qν

† = ap
† and qμ = aq

that describes electron attachment and ionization processes in
photoelectron spectroscopy, also known as one-particle Green’s
function.3,8,24,29,30,45−52

The MR-ADC approach uses multireference perturbation
theory (MRPT) to compute accurate approximations to the
exact propagator for systems with multiconfigurational nature of
the wavefunction. To accomplish this, the molecular orbitals of
the system are split into core, active, and external subspaces
(Figure 1) and the N-electron wavefunction |Ψ⟩ is expressed in

terms of the zeroth-order (reference) wavefunction |Ψ0⟩,
obtained from a complete active-space configuration interaction
(CASCI) or self-consistent field (CASSCF) calculation, as
follows

e e T T,A T T

k

N

k0 0
1

∑|Ψ⟩ = |Ψ ⟩ = |Ψ ⟩ =−

=

†

(2)

T
k

t a a a a
1

( )
...k

i j a b
i j
a b

a b j i2
...

...
...∑=

! ′ ′ ′ ′
′ ′
′ ′

′
†

′
†

′ ′
(3)

In eq 2, the unitary wave operator eA (A† = −A) is
parametrized in terms of the amplitudes of the excitation
operator T that generates all internally contracted excitations
between core, active, and external orbitals.53−57

To construct perturbative approximations toGμν(ω), the total
electronic Hamiltonian H is separated into its zeroth-order H(0)

and perturbationV contributions. TheH(0) operator is chosen to
be the Dyall Hamiltonian15,17,58
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(7)

expressed in the basis of molecular orbitals that diagonalize the
core and external blocks of the generalized Fock matrix (eq 7)
with eigenvalues εi and εa, respectively. Expanding the
propagator Gμν(ω) in the multireference perturbative series
and truncating the expansion at the nth order defines the
propagator of the MR-ADC(n) approximation

G G G G( ) ( ) ( ) ... ( )n(0) (1) ( )ω ω ω ω≈ + + + (8)

A special feature of MR-ADC is that the forward and
backward components of the propagator (G ( )ωμν

+ andG ( )ωμν
− in

eq 1) are decoupled at any level of approximation. As a result, the
perturbative expansion (eq 8) can be performed for each
component independently. In practice, the forward and
backward contributions to the MR-ADC(n) propagator (eq 8)
are expressed in the matrix form

G T S M T( ) ( ) 1ω ω= −± ± ± ±
−

±
†

(9)

Figure 1. Orbital index convention used in this work.
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where M±, T±, and S± are the effective Liouvillean, transition
moment, and overlap matrices, respectively, each evaluated up
to the nth order in perturbation theory. The MR-ADC(n)
transition energies are obtained as eigenvalues (Ω±) of the
Hermitian matrix M± by solving a generalized eigenvalue
problem

M Y S Y Ω=± ± ± ± ± (10)

The resulting eigenvectors Y± are combined with the effective
transition moment matrix T± to compute spectroscopic
amplitudes

X T S Y1/2=± ± ±
−

± (11)

which provide information about spectral intensities and can
be used to evaluate the MR-ADC(n) propagator and spectral
function

G X X( ) ( ) 1ω ω Ω= −± ± ±
−

±
†

(12)

T G( )
1

Im Tr ( )ω
π

ω= − [ ]± (13)

2.2. MR-ADC(2) for Electron Attachment and Ioniza-
tion. We now discuss the second-order MR-ADC approx-
imations for the forward and backward components of one-
particle Green’s function (G+(ω) and G−(ω)) that describe
electron attachment and ionization processes (EA- and IP-MR-
ADC(2)), respectively. For more details about IP-MR-ADC(2),
we refer the reader to our previous publication.41

In EA- and IP-MR-ADC(2), the M±, T±, and S± matrices in
eq 9 are evaluated up to the second order in MRPT. The nth-
order contributions to the EA-MR-ADC(2) matrices have the
form:1,8,42

M h H h, ,n

klm

k l m n
k l m( )

0
( ) ( ) ( )

0∑= ⟨Ψ |[ [ ̃ ]] |Ψ ⟩μν μ ν+

+ + =

+ +
†

+
(14)

T a h,p
n

kl

k l n

p
k l( )

0
( ) ( )

0∑= ⟨Ψ |[ ̃ ] |Ψ ⟩ν ν+

+ =

+
†

+
(15)

S h h,n

kl

k l n
k l( )

0
( ) ( )

0∑= ⟨Ψ |[ ] |Ψ ⟩μν μ ν+

+ =

+ +
†

+
(16)

where H̃(k) and ap
k( )̃ are the kth-order contributions to the

effective Hamiltonian H̃ = e−AHeA and observable ap̃ = e−Aape
A

operators, h k( )
μ+

† is kth-order electron attachment operator that
defines the (N + 1)-electron internally contracted EA-MR-ADC

basis states hk k( ) ( )
0|Ψ ⟩ = |Ψ ⟩μ μ+ +

† , and [...] and [...]+ denote
commutator and anticommutator, respectively. Similarly, the
n-th order IP-MR-ADC(2) matrix elements are expressed as

M h H h, ,n

klm

k l m n
k l m( )

0
( ) ( ) ( )

0∑= ⟨Ψ |[ [ ̃ ]] |Ψ ⟩μν μ ν−

+ + =

−
†

− +
(17)

T a h,p
n

kl

k l n

p
k l( )

0
( ) ( )

0∑= ⟨Ψ |[ ̃ ] |Ψ ⟩ν ν−

+ =

− +
(18)

S h h,n

kl

k l n
k l( )

0
( ) ( )

0∑= ⟨Ψ |[ ] |Ψ ⟩μν μ ν−

+ =

−
†

− +
(19)

where we additionally introduce the kth-order ionization

operators h k( )
μ−

† that define the (N − 1)-electron basis states

hk k( ) ( )
0|Ψ ⟩ = |Ψ ⟩μ μ− −

† used for solving the IP-MR-ADC equations.
Figure 2a,b illustrate the EA- and IP-MR-ADC(2) basis states

obtained by acting the electron attachment h k( )
μ+

† and ionization

h k( )
μ−

† operators on the reference state |Ψ0⟩, respectively. Similar
to the single-reference EA- and IP-SR-ADC(2) approxima-
tions,8 the EA- and IP-MR-ADC(2) equations depend only on

Figure 2. Schematic illustration of the electron-attached (2a) and ionized (2b) states produced by acting theh k( )
μ±

† (k = 0, 1) operators on the reference
state |Ψ0⟩. An arrow represents electron attachment, a circle denotes ionization, and a circle connected with an arrow denotes single excitation. The
operators Z±I

† incorporate all photoelectron transitions in the active orbitals.
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the zeroth- and first-order operators h(0)
μ±

† and h(1)
μ±

†, respectively.

The zeroth-order operators, h(0)
μ±

†, have the form

a Z Zh ; ,a I I I
(0)

0= { } = |Ψ ⟩⟨Ψ |+
† †

+
†

+
†

+ (20)

a Z Zh ; ,i I I I
(0)

0= { } = |Ψ ⟩⟨Ψ |−
†

−
†

−
†

− (21)

where h aa
(0) =μ+

† † describes a single-electron attachment in the
external orbitals and Z+I

† incorporates description of all
photoelectron transitions in the active orbitals by projecting
the N-electron reference state |Ψ0⟩ onto the (N + 1)-electron
CASCI states |Ψ+I⟩, where the extra electron is added to the

active space. Similarly, the operators h (0)
μ−

† describe a one-
electron ionization in the core orbitals, while Z−I

† includes
ionization and excitations in the active orbitals. Defining

a a a ar
pq

p q r≡ † † and a a a aqr
p

p r q≡ † , the first-order operators, h (1)
μ±

†

, are expressed as

a a a a ah ; ; ; ;i
ax

i
ab

y
ax

x
ab

i
xy(1) = { }+

†
(22)

a a a a ah ; ; ; ;ij
x

ij
a

ix
y

ix
a

xy
a(1) = { }−

†
(23)

As depicted in Figure 2, these operators describe attachment
or ionization of an electron accompanied by one-electron

excitation between core, active, or external orbitals. The h(1)
±

†

operators do not contain the all-active operators az
xy and azy

x

because all active-space transitions are incorporated by the Z±I
†

operators in h(0)
±

†.
Evaluating the EA- and IP-MR-ADC(2) matrix elements in

eqs 14−19 also requires expressions for the low-order effective

operators H̃(k) and ap
k( )̃ (up to k = 2). These equations are

obtained by expanding H̃ and ap̃ using the Baker−Campbell−
Hausdorff (BCH) formula and collecting terms at the kth order

H H(0) (0)̃ = (24)

H V H A,(1) (0) (1)̃ = + [ ] (25)

H H A V H A,
1
2

,(2) (0) (2) (1) (1)̃ = [ ] + [ + ̃ ]
(26)

a ap p
(0)̃ = (27)

a a A,p p
(1) (1)̃ = [ ] (28)

a a A a A A,
1
2

, ,p p p
(2) (2) (1) (1)̃ = [ ] + [[ ] ]

(29)

where A(k) ≡ T(k) − T(k)† as defined in eq 2. Equations 24−29
depend on the cluster excitation operatorsT(k) (k = 1, 2) that can
be expressed in a general form:

T ttk k k( ) ( ) ( )∑τ τ= =
μ

μ μ
† †

(30)

where the kth-order amplitudes t k( )
μ are contracted with strings of

creation and annihilation operators denoted as τμ
† (cf. Eq. 3).

The first-order amplitudes t(1)
μ can be grouped into 11 classes

corresponding to different types of single and double excitations

(T1
(1) and T2

(1))

t t t t t t

t t t t t

t ; ; ; ; ; ;

; ; ; ;

i
a

i
x

x
a

ij
ab

ij
ax

ix
ab

ij
xy

xy
ab

ix
ay

ix
yz

xy
az

(1) (1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1)

= {

} (31)

which are used to parameterize the first-order wavefunction

T0
(1) (1)

0|Ψ ⟩ = |Ψ ⟩ for the MR-ADC reference state. As we

discussed in ref 41, the wavefunction 0
(1)|Ψ ⟩ is equivalent to the

first-order wavefunction in internally contracted second-order
N-electron valence perturbation theory (NEVPT2).15−17

Evaluating matrix elements of operators in eqs 24−29 also
requires single- and semi-internal double-excitation amplitudes

of the second-order excitation operators (T1
(2) and T2

(2))

t t t t t tt ; ; ; ; ;i
a

i
x

x
a

ix
ay

ix
yz

xy
az(2) (2) (2) (2) (2) (2) (2)= { } (32)

The amplitudes t(1) and t(2) are determined from solving a
system of projected linear equations1

H k0 ( 1, 2)k
0

( )
0τ⟨Ψ | ̃ |Ψ ⟩ = =μ (33)

by diagonalizing small blocks of the zeroth-order Hamiltonian
H(0) matrix in the basis of internally contracted excitations
τμ
†.15−17,41

Figure 3 shows the perturbation order to which the effective
Hamiltonian H̃ and observable ap̃ operators are expanded for

each block of the EA/IP-MR-ADC(2) matricesM± and T±. To

maintain the total second order, ap̃ is expanded up toap
(2)̃ andap

(1)̃
for the h(0)

μ±
† and h(1)

μ±
† sectors of the T± matrix, respectively (eqs

15 and 18). Similarly, the diagonal h(0)
μ±

†−h(0)
μ±

† and h(1)
μ±

†−h(1)
μ±

†

blocks of the effective Liouvillean matrixM± are expanded up to

H̃(2) and H̃(0), respectively, while the h(0)
μ±

†−h(1)
μ±

† coupling block
includes terms up to H̃(1). Because H̃(0) does not contain
contributions that couple excitations outside of the active space,

the h (1)
μ±

†−h(1)
μ±

† sector of M± has a block-diagonal structure

(Figure 3). Out of five blocks of the h(1)
μ±

†−h(1)
μ±

† sector, four
nondiagonal blocks correspond to nonorthogonal excitations

defined by h(1)
μ±

† with at least one active-space index and one

diagonal block corresponding to h(1)
μ±

† with all nonactive indices

(i.e., h ai
ab(1) =μ+

† for EA and h aij
a(1) =μ−

† for IP). For a fixed active

Figure 3. Perturbative structure of the effective Liouvillean (M) and
transition moment (T) matrices of EA- and IP-MR-ADC(2). Nonzero
matrix blocks are highlighted in color. A colored line represents a
diagonal block. Numbers denote the perturbation order to which the
effective Hamiltonian H̃ or observable q̃ operators are approximated for
each block.
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space, the computational cost of the EA/IP-MR-ADC(2)
methods is dominated by the solution of the generalized
eigenvalue problem (eq 10) and scales as M( )5 with the size of
the one-electron basis set M, which is equivalent to computa-
tional scaling of the single-reference EA/IP-SR-ADC(2)
approximations.8

2.3. Extended EA- and IP-MR-ADC(2). In addition to the
EA- and IP-MR-ADC(2) approaches that include all contribu-
tions to the ADC matrices strictly to the second order, in this
work, we also explore the extended EA- and IP-MR-ADC(2)-X
approximations, which additionally incorporate contributions of

H̃(1) in the h(1)
μ±

†−h(1)
μ±

† block ofM± and ap
(2)̃ in the h(1)

μ±
† sector of

T± (Figure 4). The extended ADC approximations have been

originally introduced in the single-reference ADC frame-
work7,49,59 as a way to partially incorporate third-order
correlation effects into the description of excitation energies
and transition moments.

Increasing the order of H̃ in the h(1)
μ±

†−h(1)
μ±

† block of M±

introduces couplings between excitations described by the

h(1)
0|Ψ ⟩μ±

† basis states such that this sector of the effective
Liouvillean matrix is no longer block diagonal. These new
contributions serve a two-fold purpose: (i) they significantly
improve orbital relaxation effects for the primary electron-

attached or ionized states described by the h(0)
μ±

† operators and
(ii) they provide a better description of energies for the satellite
transitions involving electron attachment/ionization accompa-
nied by a single excitation outside of the active space.
Importantly, introducing new terms in the EA- and IP-MR-

ADC(2)-X equations does not increase the computational
scaling of calculating transition energies with the size of the basis
set or active space, relative to EA- and IP-MR-ADC(2). In

particular, the h(1)
μ±

†−h(1)
μ±

† matrix elements of the H̃(1) operator

depend only on the first-order amplitudes t(1)
μ , one- and two-

electron integrals, and up to three-particle reduced density
matrix (3-RDM) with respect to the reference state |Ψ0⟩.
Evaluating additional terms in the effective transition moments
matrix T± requires a full set of the second-order singles and
doubles amplitudes

t t t t t t

t t t t t
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(2) (2) (2) (2) (2)

= {
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which can be obtained by solving the second-order amplitude
equations (eq 33, k = 2) with the M( )6 basis set scaling. In
practice, the t(2) amplitudes have a very small effect on the EA/
IP-MR-ADC(2) and EA/IP-MR-ADC(2)-X results and their
contributions can be neglected (see Section 3 for details),
lowering computational scaling of computing transition mo-
ments to M( )5 .

3. IMPLEMENTATION

The main objective of EA- or IP-MR-ADC is to compute charge
excitation energies by numerically solving the generalized
eigenvalue problem (eq 10) for several (usually, low-energy)
EAs or IPs and to obtain the corresponding transition
probabilities by calculating the spectroscopic amplitudes in eq
11. Implementation of EA- and IP-MR-ADC(2) and their
extended MR-ADC(2)-X variants generally follows the
implementation of IP-MR-ADC(2) that we discussed in ref
41. Here, we briefly overview the main steps of the MR-ADC
algorithm and highlight differences with our previous
implementation.

3.1. CASSCF and CASCI Wavefunctions. The EA- or IP-
MR-ADC calculation starts by computing the N-electron
reference CASSCF wavefunction |Ψ0⟩ for a set of core, active,
and external molecular orbitals specified by the user. In addition
to |Ψ0⟩, the EA/IP-MR-ADC equations require calculating the
(N± 1)-electronCASCI states |Ψ±I⟩ that define the active-space
attachment/ionization operators Z±I

† in eqs 20 and 21. Although,
formally, the set of the |Ψ±I⟩ states must be complete (i.e., their
number scales factorially with the number of active orbitals), in
practice, only a small subset of low-energy |Ψ±I⟩ needs to be
included in the calculation. The number of these states (NCI)
should be sufficiently large to include all important CASCI states
in the spectral region of interest and is chosen to be a user-
defined parameter in our implementation. The optimal value of
NCI can be determined by monitoring convergence of the MR-
ADC results in a series of calculations with an increasing number
of |Ψ±I⟩.

3.2. Reduced Density Matrices and Amplitudes of the
Effective Hamiltonian. Once the CASSCF and CASCI states
are computed, their wavefunctions |Ψ0⟩ and |Ψ±I⟩ are used to
calculate reduced density matrices (RDMs) as expectation
values of creation and annihilation operators in the active space.
Three types of RDMs appear in the EA/IP-MR-ADC equations:
(i) reference RDMs computed with respect to |Ψ0⟩ (e.g., ⟨Ψ0|
ax
†ay|Ψ0⟩); (ii) transition RDMs between |Ψ0⟩ and |Ψ±I⟩ (e.g.,
⟨Ψ+I|ax

†|Ψ0⟩ or ⟨Ψ0|ax
†|Ψ−I⟩); and (iii) excited-state RDMs

between |Ψ±I⟩ themselves (e.g., ⟨Ψ+I|ax
†ay|Ψ+J⟩). Because

transition RDMs are computed between states with a different
particle number, they always contain an odd number of creation
and annihilation operators. We will refer to these RDMs as n.5-
RDMs, where n.5 is obtained by dividing the total number of
creation and annihilation operators by two.
The computed RDMs are used to solve equations for the

amplitudes of the effective Hamiltonian t k( )
μ (k = 1, 2). As we

discussed in Sections 2.2 and 2.3, equations for the EA/IP-MR-
ADC(2)-X transition energies depend on the single- and

double-excitation t(1)
μ (eq 31) and the single- and semi-internal

Figure 4. Perturbative structure of the effective Liouvillean (M) and
transition moment (T) matrices of EA- and IP-MR-ADC(2)-X.
Nonzero matrix blocks are highlighted in color. Numbers denote the
perturbation order to which the effective Hamiltonian H̃ or observable
q̃ operators are approximated for each block.
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double-excitation t(2)
μ (eq 32), while a full set of t(2)

μ (singles and
doubles, eq 34) is necessary for calculating transition moments.

In practice, however, the number of terms that depend on t(2)
μ in

the EA/IP-MR-ADC(2)-X equations is much smaller compared

to that of t(1)
μ and their contributions have a minor effect on the

EA/IP-MR-ADC(2)-X results. For this reason, in our
implementation, we approximate

tt i
a(2) (2)≈ { } (35)

where we neglect all t(2)
μ amplitudes with active-space indices. As

we demonstrate in the Supporting Information (Tables S1 and
S2), the approximation in eq 35 has a small effect on the
computed transition energies (Ωμ) and spectroscopic factors (P,
eq 37), with mean absolute errors of∼0.04 and 0.01 eV forΩμ of
EA-MR-ADC and IP-MR-ADC, respectively, and the corre-
sponding errors in P of∼0.0008 and 0.0003. The larger errors of
this approximation for EA-MR-ADC reflect a somewhat larger
sensitivity of this approximation to relaxation effects in orbitals
and differential electron correlation.
Solving the EA/IP-MR-ADC(2)-X amplitude equations for

t k( )
μ (k = 1, 2) requires diagonalizing overlap matrices computed
in the basis of internally contracted excitations τμ

†|Ψ0⟩ (eq 33)
and removing amplitudes corresponding to small overlap
eigenvalues. Although diagonalizing the overlap matrix can be
performed very efficiently because of its block-diagonal
structure, eliminating redundant semi-internal amplitudes

(e.g., tix
ay(1), tix

yz(1), or tyx
az(1)) introduces small contributions in

the amplitude equations that violate the size consistency of the
EA/IP-MR-ADC(2)-X energies and transition moments.41 To
make sure that no size consistency-violating terms appear in the
equations, we eliminate the redundant amplitudes using the
approach developed by Hanauer and Köhn60 where the semi-
internal excitation operators τμ

† are transformed to a generalized
normal-ordered form prior to diagonalization of the overlap
matrix, which fully restores the size consistency of the MR-ADC
results.
Assuming approximation for the second-order amplitudes in

eq 35, the EA/IP-MR-ADC(2)-X equations formally depend on
up to reference 4-RDM, transition 3.5-RDM, and excited-state
4-RDM. The only two contributions of reference 4-RDM are
found in (i) the first-order equations for the semi-internal

amplitudes tix
yz(1) and txy

az(1) and (ii) matrix elements of H̃(2) in the

effective Liouvillean matrix M±. Although the tix
yz(1) and txy

az(1)

amplitudes can be computed without 4-RDM using the
imaginary-time algorithm developed in our previous work,1,41

in our present implementation, we bypass 4-RDM without any
approximations by forming efficient intermediates in the first-
order amplitude equations, as demonstrated in the Appendix.
(We note that the same technique can be used to bypass
reference 4-RDM in implementation of partially contracted
state-specific and quasi-degenerate NEVPT2.)15−17 We employ
a similar approach to avoid calculating the remaining reference
4-RDM, transition 3.5-, and excited-state 4-RDM contributions
in the equations for the M± matrix elements, as outlined in Ref
41. The resulting EA/IP-MR-ADC(2)-X implementation
depends on up to reference 3-RDM, transition 2.5-RDM, and
excited-state 3-RDM, leading to an overall N N( )det act

6

computational scaling of the algorithm with the number of

active-space orbitals Nact and dimension of the CAS Hilbert
space Ndet.

3.3. MR-ADC Eigenvalue Problem and Spectroscopic
Factors. In the final step of the EA/IP-MR-ADC(2)-X
algorithm, electron attachment or ionization energies are
computed by solving the generalized eigenvalue problem (eq
10) transformed to the symmetrically orthogonalized form

M Y Y Ω̃ ̃ = ̃± ± ± ± (36)

where M S M S1/2 1/2̃ =± ±
−

± ±
− and Y S Y1/2̃ =± ± ±. The eigenvec-

tors Y± are used to calculate the spectroscopic factors that
provide information about the intensity of a photoelectron
transition α with energy Ω±α

P X
p

p
2∑= | |α α± ±

(37)

where the spectroscopic amplitudes X±pα are defined in eq 11.
Working equations for all matrix elements ofM±, T±, and S± in
eqs 11 and 36 were automatically generated using a modified
version of the SECONDQUANTIZATIONALGEBRA program61 and are
provided in the Supporting Information.
Solving the eigenvalue problem (eq 36) requires diagonalizing

the overlapmatrix S± and removing redundant eigenvectors with
small eigenvalues. Conveniently, the nondiagonal blocks of S±
have the same form as some of the blocks of the overlap matrix
encountered in the solution of the amplitude equations (Section
3.2), which allows us to perform overlap diagonalization and
truncation of the redundant eigenvectors for these two steps of
the MR-ADC algorithm simultaneously.41 Our implementation
employs two user-defined parameters (ηs and ηd) for discarding
linearly dependent eigenvectors of the overlap matrices. We use
the ηs parameter (∼ 10−6) for eliminating redundancies in the
solution of the single- and semi-internal double-excitation

amplitude equations (e.g., ti
a(1), tix

ay(1), tix
yz(1), etc.) and for the S+

and S− ma t r i x b l o ck s w i t h h a a;k
a y

ax( ) = { }μ+
† † and

h a a;k
i ix

y( ) = { }μ−
† , respectively. For the remaining (double-

excitation) amplitudes and blocks of S± that typically exhibit
less-severe linear dependencies, we employ a smaller truncation
parameter ηd (∼10−10) to retain more eigenvectors in the
overlap matrix.
The symmetric EA/IP-MR-ADC(2)-X eigenvalue problem

can be solved using any available iterative eigensolver to obtain
several lowest photoelectron transition energies and spectro-
scopic factors. In our MR-ADC program, we employ a multiroot
implementation of the Davidson algorithm62,63 that computes
eigenvalues by starting with a set of guess (trial) eigenvectors Ỹ±
and optimizing these vectors until convergence by forming the
matrix-vector products σ± = M̃±Ỹ± with the M( )5 basis set
scaling. To reduce the cost of forming the σ± vectors, the

computationally expensive but small h h(0) (0)−μ μ±
†

±
† block of the

M± matrix is precomputed at the first iteration, stored in
memory, and reused in subsequent iterations of the Davidson
algorithm.

4. COMPUTATIONAL DETAILS
The EA- and IP-MR-ADC(2) methods and their extended EA/
IP-MR-ADC(2)-X variants were implemented in PRISM, a
standalone program that is being developed in our group. The
PRISM program was interfaced with PYSCF64 to obtain integrals
and CASSCF/CASCI reference wavefunctions. The MR-ADC
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results were benchmarked against EAs and IPs from the
semistochastic heat-bath configuration interaction
(SHCI)65−67 extrapolated to the full configuration interaction
(FCI) limit and were compared to those computed using
strongly contracted NEVPT2 (sc-NEVPT2),15,16 single-refer-
ence EA- and IP-ADC (EA/IP-SR-ADC(n), n = 2, 3),8 and
equation-of-motion coupled cluster theory with single and
double excitations (EA/IP-EOM-CCSD).46,68,69 We used
PYSCF to obtain the sc-NEVPT2 and EA/IP-SR-ADC results,
while EAs and IPs from EOM-CCSD were computed using Q-
CHEM.70 The SHCI electron attachment and ionization energies
were obtained by computing total energies of individual
eigenstates of neutral, electron-attached, and ionized systems
for a range of selection parameters and extrapolating to the FCI
limit using a linear fit as described in ref 67. The SHCI method
was implemented in the DICE program.65−67

Performance of the EA/IP-MR-ADC(2) and EA/IP-MR-
ADC(2)-X methods was tested for a benchmark set of eight
molecules (HF, F2, CO, N2, H2O, CS, H2CO, and C2H4), a
carbon dimer (C2), and an ethylene molecule in a twisted
geometry (t-C2H4). Following our previous work,41 for each
small molecule, we considered two geometries, denoted as
equilibrium and stretched. The equilibrium geometries were
taken from ref 49. The stretched geometries of diatomic
molecules were obtained by increasing the bond length by a
factor of two. For H2O, H2CO, and C2H4, the stretched
geometries were defined by doubling the O−H, C−O, and C−C
bond distances, respectively. The C−C bond distance in C2 was
set to 1.2425 Å. The t-C2H4 geometry was obtained from Ref 71.
and is reported in the Supporting Information.
All computations employed the aug-cc-pVDZ basis set,72 with

the only exception of calculations for H2CO, C2H4, and t-C2H4,
where the cc-pVDZ basis set was used for the hydrogen atoms.
For H2CO, C2H4, and t-C2H4, the SHCI computations
employed the frozen-core approximation for the 1s orbitals. In
other calculations, all electrons were correlated. Active spaces
used in MR-ADC and sc-NEVPT2 are denoted as (ne, mo),

where m is a number of frontier molecular orbitals included in
the active space and n is the number of active electrons. All
multireference computations in Section 5.1 included 10 active
orbitals. The MR-ADC and sc-NEVPT2 calculations of electron
affinities incorporated n = 6 active electrons for all molecules
except HF, where n = 4 was used. For ionization potentials, we
employed n = 8, 14, 10, 10, 8, 10, 12, and 10 for HF, F2, CO, N2,
H2O, CS, H2CO, and C2H4, respectively, as described in our
previous work.41 For C2 and t-C2H4, the (6e, 10o) and (8e, 12o)
active spaces were used, respectively. All MR-ADC calculations
were performed including 10 ionized or electron-attached
CASCI states in the model space. The ηs = 10−6 and ηd = 10−10

truncation parameters were used to eliminate redundant
excitations in the solution of the MR-ADC equations (see
Section 3.3 for details). Throughout the manuscript, positive
electron affinity implies exothermic electron attachment (i.e.,
EA = EN − EN+1), while a positive ionization energy denotes an
endothermic process (IP = EN−1 − EN).

5. RESULTS
5.1. Benchmark: Small Molecules. We now analyze the

performance of EA/IP-MR-ADC(2) and EA/IP-MR-ADC(2)-
X by comparing results of these methods with accurate electron
affinities (EAs) and ionization potentials (IPs) computed at the
full configuration interaction (FCI) limit using the semi-
stochastic heat-bath CI algorithm (SHCI). We first consider a
set of eight closed-shell molecules (HF, F2, CO, N2, H2O, CS,
H2CO, and C2H4) and benchmark the MR-ADC methods
together with the single-reference ADC approximations
(EA/IP-SR-ADC(n), n = 2 and 3), equation-of-motion coupled
cluster theory with single and double excitations
(EA/IP-EOM-CCSD) and strongly contracted second-order
N-electron valence perturbation theory (sc-NEVPT2).
Table 1 compares results of six approximate methods with the

SHCI for the first two EAs of small molecules computed at near-
equilibrium geometries. For all molecules but F2, the computed
EAs are negative, indicating that electron attachment is

Table 1. Vertical Attachment Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Equilibrium Geometriesa

SR-ADC(2) SR-ADC(3) MR-ADC(2) MR-ADC(2)-X EOM-CCSD sc-NEVPT2 SHCI

system state Ω P Ω P Ω P Ω P Ω Ω Ω

HF 4σ −0.84 1.00 −0.82 0.99 −0.91 1.00 −0.82 0.99 −0.83 −0.88 −0.81
5σ −4.97 0.99 −4.88 0.98 −5.05 0.99 −4.87 0.98 −4.93 −4.97 −4.88

F2 3σu 0.12 0.91 0.44 0.89 −0.41 0.89 0.19 0.86 0.00 0.28 0.27
4σu −4.84 0.97 −4.74 0.96 −5.01 0.95 −4.87 0.94 −4.84 −4.68 −4.74

CO 2π −1.81 0.97 −1.79 0.95 −2.05 0.97 −1.84 0.94 −1.82 −2.15 −1.79
6σ −2.00 0.99 −1.93 0.99 −2.08 1.00 −1.99 0.99 −1.99 −2.12 −1.95

N2 1πg −2.63 0.94 −2.55 0.92 −2.75 0.93 −2.53 0.91 −2.66 −2.66 −2.59
3σu −2.62 0.99 −2.68 0.99 −2.77 1.00 −2.71 0.99 −2.65 −2.69 −2.63

H2O 4a1 −0.78 0.99 −0.75 0.99 −0.89 0.99 −0.82 0.99 −0.76 −0.95 −0.74
2b2 −1.51 1.00 −1.50 1.00 −1.57 1.00 −1.54 0.99 −1.50 −1.64 −1.49

CS 3π −0.05 0.91 −0.44 0.89 0.04 0.85 −0.02 0.86 −0.37 −0.49 −0.40
8σ −1.47 0.98 −1.42 0.98 −1.65 0.99 −1.59 0.98 −1.48 −1.52 −1.48

H2CO 2b1 −1.15 0.95 −1.16 0.93 −1.32 0.93 −1.02 0.91 −1.24 −1.60 −1.14
6a1 −1.63 0.99 −1.76 0.98 −1.84 0.99 −1.72 0.98 −1.68 −1.84 −1.72

C2H4 3b3u −1.65 0.99 −1.65 0.99 −1.74 0.99 −1.67 0.99 −1.66 −1.76 −1.66
4ag −2.04 0.95 −2.10 0.98 −2.15 0.93 −1.96 0.91 −2.10 −2.25 −2.10

ΔMAE 0.07 0.03 0.20 0.09 0.05 0.14
ΔSTD 0.11 0.05 0.21 0.13 0.07 0.13
ΔMAX 0.35 0.18 0.68 0.38 0.27 0.46

aSee Section 4 for details of the calculations. Also shown are mean absolute errors (ΔMAE), standard deviations (ΔSTD), and maximum absolute
errors (ΔMAX) of the results, relative to the SHCI.
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endothermic. All single- and multireference methods show a
very good agreement with SHCI vertical electron affinities with
mean absolute errors (ΔMAE) of ≤0.2 eV. Among the

multireference approaches, the largest errors are produced by
EA-MR-ADC(2) with ΔMAE = 0.20 eV and a standard deviation
(ΔSTD) of 0.21 eV. Including the third-order correlation effects

Table 2. Vertical Attachment Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Stretched Geometriesa

SR-ADC(2) SR-ADC(3) MR-ADC(2) MR-ADC(2)-X EOM-CCSD sc-NEVPT2 SHCI

system state Ω P Ω P Ω P Ω P Ω Ω Ω

HF 4σ 2.41 0.93 3.17 0.79 1.58 0.79 2.06 0.75 2.09 1.80 2.33
3σ + 5σ −1.73 0.21 −1.75 0.40 −1.60 −1.49
3σ − 5σ −1.76 0.98 −1.73 0.86 −2.36 0.82 −2.49 0.62 −1.81 −1.78 −2.22

F2 3σu 4.06 0.52 8.64 0.98 2.87 0.49 3.58 0.47 3.92 3.57 3.80
3σg 1.90 0.43 2.66 0.41 3.27 2.90

CO 2π 2.35 0.91 3.36 0.77 1.94 0.56 2.02 0.56 2.96 1.90 1.93
N2 1πg −0.65 0.84 13.00 1.88 0.33 0.46 0.41 0.44 0.95 0.03 0.45
H2O 4a1 2.35 0.82 2.67 0.71 1.42 0.69 1.63 0.68 1.33 1.43 1.59

2b2 1.58 0.82 2.15 0.55 0.80 0.72 1.04 0.69 0.68 0.79 1.03
3a1 0.36 0.12 0.32 0.11 0.56 −0.01

CS 3π 2.24 0.90 3.96 0.41 2.61 0.41 2.60 0.41 3.00 2.44 2.28
8σ 2.66 0.91 2.70 0.78 1.69 0.28 1.64 0.29 2.50 1.76 1.47

H2CO 2b1 1.97 0.92 2.35 0.80 1.22 0.46 1.32 0.46 2.29 1.37 1.40
C2H4 1b2g 0.79 0.80 1.90 0.63 0.14 0.69 0.04 0.69 0.26 −0.23 −0.02

1b3u 0.73 0.73 1.08 0.74 0.16 0.52 0.01 0.51 0.21 −0.31 −0.04
ΔMAE 0.59 2.44 0.34 0.16 0.51 0.27
ΔSTD 0.58 3.38 0.43 0.20 0.49 0.33
ΔMAX 1.19 12.55 1.00 0.33 1.04 0.57

aSee Section 4 for details of the calculations. Also shown are mean absolute errors (ΔMAE), standard deviations (ΔSTD), and maximum absolute
errors (ΔMAX) of the results, relative to the SHCI.

Table 3. Vertical Ionization Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Equilibrium Geometriesa

SR-ADC(2) SR-ADC(3) MR-ADC(2) MR-ADC(2)-X EOM-CCSD sc-NEVPT2 SHCI

system state Ω P Ω P Ω P Ω P Ω Ω Ω

HF 1π 14.41 0.89 16.79 0.93 16.35 0.93 16.27 0.93 15.85 16.41 16.07
3σ 18.69 0.90 20.65 0.94 20.38 0.94 20.30 0.93 19.88 20.43 20.06

F2 1πg 13.90 0.87 16.03 0.89 16.55 0.88 16.01 0.88 15.40 15.47 15.64
1πu 17.06 0.84 19.25 0.75 19.86 0.80 18.39 0.77 18.77 18.66 18.83
3σg 20.25 0.89 21.26 0.89 22.08 0.87 21.95 0.86 21.16 20.91 21.15

CO 5σ 13.78 0.91 13.57 0.90 14.07 0.92 13.84 0.91 13.99 13.46 13.74
1π 16.24 0.89 17.16 0.90 17.38 0.90 17.22 0.90 16.93 16.71 16.90
4σ 18.28 0.85 20.46 0.76 20.15 0.85 19.97 0.84 19.67 19.43 19.56

N2 3σg 14.79 0.88 15.42 0.91 15.76 0.91 15.54 0.90 15.43 15.24 15.30
1πu 16.98 0.91 16.60 0.92 17.33 0.92 17.17 0.92 17.11 16.76 16.83
2σu 17.96 0.85 18.79 0.82 19.00 0.83 18.81 0.82 18.71 18.43 18.50

H2O 1b1 11.23 0.89 12.99 0.92 12.74 0.93 12.64 0.92 12.38 12.49 12.53
3a1 13.53 0.89 15.28 0.92 15.07 0.93 14.99 0.92 14.66 14.81 14.81
1b2 17.95 0.90 19.34 0.93 19.28 0.94 19.18 0.93 18.89 19.01 18.98

CS 7σ 10.99 0.86 10.99 0.85 11.59 0.85 11.30 0.84 11.36 10.94 11.13
2π 12.84 0.91 12.67 0.90 13.43 0.91 13.20 0.90 12.94 12.77 12.83
6σ 16.88 0.85 15.53 0.18 16.83 0.40 16.55 0.36 17.02 15.79 15.88

H2CO 2b2 9.46 0.87 11.11 0.91 11.23 0.92 10.93 0.90 10.62 10.29 10.72
1b1 13.73 0.88 14.54 0.88 15.14 0.90 14.86 0.89 14.47 14.09 14.48
5a1 14.62 0.86 16.61 0.90 16.70 0.90 16.39 0.89 15.95 15.68 16.01
1b2 16.67 0.88 17.04 0.69 17.76 0.88 17.26 0.86 17.21 16.58 16.86

C2H4 1b1u 10.14 0.91 10.47 0.91 11.01 0.90 10.80 0.89 10.58 10.58 10.58
1b1g 12.79 0.91 13.22 0.91 13.75 0.92 13.45 0.90 13.22 13.09 13.21
3ag 13.78 0.89 14.34 0.91 14.74 0.89 14.37 0.87 14.31 14.24 14.25
1b2u 16.13 0.87 16.50 0.74 17.10 0.84 16.81 0.83 16.61 16.51 16.45

ΔMAE 0.83 0.30 0.56 0.31 0.17 0.17
ΔSTD 0.68 0.32 0.23 0.22 0.28 0.19
ΔMAX 1.78 0.91 1.03 0.80 1.14 0.44

aSee Section 4 for details of the calculations. Also shown are mean absolute errors (ΔMAE), standard deviations (ΔSTD), and maximum absolute
errors (ΔMAX) of the results, relative to the SHCI.
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in the EA-MR-ADC(2)-X method reduces ΔMAE by a factor of
two (ΔMAE = 0.09 eV) and significantly lowers the standard
deviation (ΔSTD = 0.13 eV). The sc-NEVPT2 method shows
intermediate performance between that of EA-MR-ADC(2) and
EA-MR-ADC(2)-X with ΔMAE = 0.14 eV and ΔSTD = 0.13 eV.
Table 1 also shows spectroscopic factors (P) computed using
the SR-ADC and MR-ADC approximations that provide
information about the occupancy of virtual states probed by
electron attachment. With the exception of just two states (3σu
of F2 and 3π of CS), the values of spectroscopic factors are
greater than 0.9, suggesting that the corresponding virtual states
are largely unoccupied in the neutral molecules. For all
transitions, the P values computed using EA-MR-ADC(2) and
EA-MR-ADC(2)-X are in closer agreement with those of SR-
ADC(3) than SR-ADC(2).
We now turn our attention to Table 2, which presents EAs of

small molecules computed at stretched geometries where
multireference effects become significant. The importance of
static correlation at these geometries is demonstrated by the
divergence of the SR-ADC perturbation series with more than a
four-fold increase in ΔMAE from EA-SR-ADC(2) (0.59 eV) to
EA-SR-ADC(3) (2.44 eV) and a ten-fold increase in ΔMAE for

EA-EOM-CCSD (0.51 eV) relative to that for the equilibrium
geometries. The best agreement with the SHCI is demonstrated
by EA-MR-ADC(2)-X (ΔMAE = 0.16 eV, ΔSTD = 0.20 eV) that
significantly improves on the performance of sc-NEVPT2
(ΔMAE = 0.27 eV, ΔSTD = 0.33 eV) and EA-MR-ADC(2)
(ΔMAE = 0.34 eV, ΔSTD = 0.43 eV). Interestingly, stretching
geometries of small molecules significantly depopulates their
highest occupied molecular orbitals (HOMOs), making
electron attachment to these orbitals possible. Although
single-reference methods do not predict electron attachment
to the HOMO, such transitions are observed in the SHCI, EA-
MR-ADC, and sc-NEVPT2 results for HF (3σ), F2 (3σg), and
H2O (3a1). In particular, the HF molecule electron attachment
to the HOMO (3σ) and the second unoccupied virtual orbital
(5σ) are energetically nearly degenerate, which results in strong
mixing of the wavefunctions for these two electronic states
(denoted as 3σ ± 5σ in Table 2) as observed in the SHCI
calculations. Analysis of contributions to the EA-MR-ADC(2)
and EA-MR-ADC(2)-X spectroscopic factors for the HF
molecule also reveals the mixed nature of the 3σ ± 5σ
transitions, in good agreement with the SHCI results.

Table 4. Vertical Ionization Energies (Ω, eV) and Spectroscopic Factors (P) of Molecules with Stretched Geometries

SR-ADC(2) SR-ADC(3) MR-ADC(2) MR-ADC(2)-X EOM-CCSD sc-NEVPT2 SHCI

system state Ω P Ω P Ω P Ω P Ω Ω Ω

HF 1π 9.84 0.77 16.15 0.84 13.86 0.60 13.80 0.60 13.67 13.60 13.65
3σ 13.30 0.84 14.68 0.76 14.98 0.73 14.92 0.72 14.76 14.83 14.84

F2 1πg 10.63 0.64 17.55 0.88 18.12 0.74 17.46 0.73 16.86 17.03 17.13
1πu 10.66 0.64 17.69 0.89 18.16 0.82 17.52 0.82 16.95 17.18 17.19

N2 3σg 15.70 0.63 −2.60 1.69 14.00 0.69 13.65 0.68 14.36 13.10 13.38
1πu 17.50 0.55 −5.24 2.16 14.17 0.51 13.88 0.50 14.77 13.19 13.49

H2O 1b1 6.53 0.71 12.24 0.66 11.31 0.64 11.22 0.64 10.65 10.99 11.07
3a1 10.49 0.75 12.78 0.67 13.22 0.67 13.14 0.67 12.69 13.00 13.02
1b2 11.18 0.75 13.01 0.72 13.78 0.71 13.69 0.71 13.26 13.55 13.56

H2CO 2b2 10.65 0.85 8.31 0.21 11.51 0.39 10.96 0.31 9.85 10.10 10.37
1b1 10.69 0.86 8.35 0.22 11.21 0.48 11.01 0.47 9.66 10.27 10.55
5a1 10.60 0.91 10.97 0.88 13.16 0.57 12.91 0.57 10.97 12.83 13.16

C2H4 1b1u 9.37 0.76 6.87 0.83 9.69 0.53 9.18 0.52 9.41 9.15 9.25
3ag 11.38 0.79 8.74 0.91 11.36 0.73 11.14 0.68 11.17 10.14 10.93

ΔMAE 2.70 3.66 0.50 0.25 0.56 0.19
ΔSTD 3.10 6.28 0.36 0.22 0.81 0.21
ΔMAX 6.53 18.73 1.14 0.59 2.18 0.79

aSee Section 4 for details of the calculations. Also shown are mean absolute errors (ΔMAE), standard deviations (ΔSTD), and maximum absolute
errors (ΔMAX) of the results, relative to the SHCI.

Figure 5.Mean absolute errors (MAE, eV) and standard deviations from the mean signed error (STD, eV) for vertical electron attachment energies of
molecules with (a) equilibrium and (b) stretched geometries, relative to the SHCI. The MAE is represented as a height of each colored bar, while the
STD is depicted as a radius of the black vertical line. A number on a bar indicates the MAE for a bar off the chart. See Tables 1 and 2 for data on
individual molecules.
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To assess the performance of the MR-ADC methods for
ionization energies, we consider the results of IP-MR-ADC(2)
and IP-MR-ADC(2)-X for molecules at equilibrium and
stretched geometries presented in Tables 3 and 4, respectively.
As discussed in our previous work,41 IP-MR-ADC(2) shows
intermediate performance between IP-SR-ADC(2) and IP-SR-
ADC(3) at equilibrium (ΔMAE = 0.56 eV and ΔSTD = 0.23 eV),
but is muchmore reliable than SR-ADC at stretched geometries,
where it maintains its accuracy (ΔMAE = 0.50 eV andΔSTD = 0.36
eV), while results of the single-reference ADC methods
drastically deteriorate (ΔMAE and ΔSTD > 2 eV). The extended
IP-MR-ADC(2)-X approximation significantly improves on IP-
MR-ADC(2) lowering ΔMAE by about a factor of two for both
equilibrium and stretched geometries (ΔMAE∼ 0.3 eV andΔSTD

∼ 0.2 eV). At equilibrium, the accuracy of IP-MR-ADC(2)-X is
similar to that of IP-SR-ADC(3) (ΔMAE andΔSTD∼ 0.3 eV) and
is competitive with that of IP-EOM-CCSD (ΔMAE ∼ 0.2 eV and
ΔSTD∼ 0.3 eV) and sc-NEVPT2 (ΔMAE andΔSTD∼ 0.2 eV). For

stretched geometries, performance of IP-MR-ADC(2)-X is quite
similar to that of sc-NEVPT2. Both IP-MR-ADC(2) and IP-
MR-ADC(2)-X yield very similar spectroscopic factors that
significantly reduce their values upon stretching, indicating
significant depopulation of the corresponding occupied orbitals.
Overall, our results demonstrate a consistent performance of

the MR-ADC(2) and MR-ADC(2)-X approximations for
electron attachment and ionization energies of small molecules
across two sets of molecular geometries, as depicted in Figures 5
and 6. Importantly, incorporating third-order effects in the MR-
ADC(2)-X effective Hamiltonian matrix significantly reduces
errors in computed EAs and IPs without increasing the overall
computational scaling of the method. The accuracy of IP-MR-
ADC(2)-X is similar to sc-NEVPT2 for transition energies, but
the former method has an added advantage of providing efficient
access to spectroscopic factors, which can be used to compute
density of states and intensities in photoelectron spectra.

Figure 6.Mean absolute errors (MAE, eV) and standard deviations from the mean signed error (STD, eV) for vertical ionization energies of molecules
with (a) equilibrium and (b) stretched geometries, relative to the SHCI. The MAE is represented as a height of each colored bar, while the STD is
depicted as a radius of the black vertical line. A number on a bar indicates MAE for a bar off the chart. See Tables 3 and 4 for data on individual
molecules.

Table 5. CarbonDimer Vertical Electron Attachment (C2
−) and Ionization (C2

+) Energies (Ω, eV) and Spectroscopic Factors (P)
Computed Using the Aug-cc-pVDZ Basis Set with r(C−C) = 1.2425 Å.a

SR-ADC(3) MR-ADC(2) MR-ADC(2)-X sc-NEVPT2 SHCI

Molecule Configuration State Ω P Ω P Ω P Ω Ω

C2
−

(2σu)
2(1πu)

4(3σg)
1 1 g

2Σ +
3.97 0.8126 3.50 0.7105 3.29 0.7335 2.72 3.03

(2σu)
1(1πu)

4(3σg)
2 1 u

2Σ + 2.58 0.0259 1.42 0.0882 1.09 0.0921 0.36 0.75

(2σu)
2(1πu)

4(3σu)
1 2 u

2Σ + −1.68 0.9242 −2.03 0.9882 −2.01 0.9845 −1.86 −1.69

(2σu)
2(1πu)

4(4σg)
1 2 g

2Σ + −2.78 0.8515 −2.76 0.9203 −2.78 0.9249 −2.88 −2.42

(2σu)
2(1πu)

4(1πg)
1 12Πg −2.50 0.9091 −2.30 0.8601 −2.36 0.8842 −2.33 −2.60

C2
+ (2σu)

2(1πu)
3 12Πu 11.69 0.9215 12.33 0.8907 12.03 0.8747 12.32 12.34

(2σu)
2(1πu)

2(3σg)
1 12Δg 11.17 0.0002 14.51 0.0003 14.36 0.0003 13.99 13.94

(2σu)
2(1πu)

2(3σg)
1 1 g

2Σ − b b 15.15 0.0000 15.00 0.0000 14.51 14.15

(2σu)
2(1πu)

2(3σg)
1 1 g

2Σ +
11.43 0.0004 14.82 0.0009 14.67 0.0008 14.25 14.29

(2σu)
1(1πu)

4 1 u
2Σ + 13.95 0.8738 15.33 0.7324 15.06 0.7188 15.34 15.09

(2σu)
2(1πu)

1(3σg)
2 22Πu

b b 14.91 0.0172 14.71 0.0170 14.56 15.43
ΔMAE

prim 0.53 0.28 0.25 0.25
ΔSTD

prim 0.71 0.34 0.29 0.30
ΔMAE

sat 2.49 0.66 0.54 0.34
ΔSTD

sat 2.68 0.57 0.58 0.47
aFor MR-ADC and sc-NEVPT2, the CASSCF reference wavefunction was computed using the (6e, 10o) active space. Also shown are mean
absolute errors (ΔMAE) and standard deviations (ΔSTD) for relative energies of primary (singly-ionized) and satellite states, relative to the SHCI.
bState is absent in SR-ADC(3).
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5.2. Carbon Dimer. Next, we apply MR-ADC(2) and MR-
ADC(2)-X to calculate low-energy EAs and IPs of the carbon
dimer (C2) at near-equilibrium geometry (1.2425 Å) and
compare their results with SR-ADC(3), sc-NEVPT2, and the
SHCI. We employ the aug-cc-pVDZ basis set in all calculations
and the (6e, 10o) active space for the multireference methods.
The electronic structure of the neutral C2 molecule is a well-
known challenging multireference problem67,73−77 that has a
closed-shell X g

1Σ + ground electronic state [(2σu)
2(1πu)

4(3σg)
0

electronic configuration with a significant contribution from
(2σu)

0(1πu)
4(3σg)

2] and several low-lying excited states with
different occupations in its frontier 1πu and 3σg molecular
orbitals. Because of the close proximity of the 2σu, 1πu, and 3σg
orbital energies, the photoelectron spectrum of C2 exhibits
several closely spaced transitions with intense (primary) peaks,
originating from attachment/ionization of a single electron in
the neutral ground-state (2σu)

2(1πu)
4(3σg)

0 configuration and
weak (satellite) peaks which involve one-electron attachment/
ionization and simultaneous single or double excitation.
Table 5 reports accurate EAs and IPs for primary and satellite

transitions in the photoelectron spectrum of C2 computed using
the SHCI, along with results from SR-ADC(3), MR-ADC(2),
MR-ADC(2)-X, and sc-NEVPT2. Out of five EA transitions
reported, only one has a single-excitation satellite characterÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ( )XC C (1 )g u2

1
2

2Σ → Σ+ − + , while the remaining four corre-

spond to primary peaks. Among six IPs, two have a primary
character (12Πu,1 u

2Σ +), three are singly-excited satellites (12Δg,

1 g
2Σ −, 1 g

2Σ +), and one (22Πu) corresponds to a satellite peak
with a double-excitation character. All satellite transitions can be
easily identified in the SR-ADC and MR-ADC computations as
charged excitations with small spectroscopic factors (P < 0.5).
For the primary EAs and IPs, the best performance is

demonstrated by MR-ADC(2)-X and sc-NEVPT2 with mean
absolute errors (ΔMAE

prim ) of 0.25 eV and a standard deviation
(ΔSTD

prim) of 0.3 eV, relative to the SHCI. The MR-ADC(2)
method shows somewhat larger errors (ΔMAE

prim = 0.28 eV,ΔSTD
prim =

0.34 eV), while SR-ADC(3) exhibits the poorest performance
(ΔMAE

prim = 0.53 eV, ΔSTD
prim = 0.71 eV) as expected from the single-

reference nature of this approximation. Although MR-ADC(2)-
X and sc-NEVPT2 perform similarly on average, the former
method shows a much better agreement with the SHCI for the
C2 band gap computed as energy spacing between the lowest IP
and EA peaks in the photoelectron spectrum, with errors of 0.05
and 0.33 eV for MR-ADC(2)-X and sc-NEVPT2, respectively.

All four methods show significantly larger errors for the
satellite transitions. The fact that the states involved in these
transitions have challenging electronic structures is demon-
strated by the performance of SR-ADC(3), which predicts only
three out of five satellite transitions and yields very large mean
absolute and standard deviation errors (ΔMAE

sat andΔSTD
sat > 2 eV).

The MR-ADC(2) method shows a significant improvement
over SR-ADC(3) (ΔMAE

sat = 0.66 eV and ΔSTD
sat = 0.57 eV), while

MR-ADC(2)-X outperforms MR-ADC(2) withΔMAE
sat = 0.54 eV

and ΔSTD
sat = 0.58 eV. The best agreement with the SHCI for the

satellite transitions is demonstrated by sc-NEVPT2 withΔMAE
sat =

0.34 eV and ΔSTD
sat = 0.47 eV. Both MR-ADC(2)-X and sc-

NEVPT2 produce an incorrect order of the 1 g
2Σ − and 1 g

2Σ +

electronic states of C2
+ and large errors in IP for the doubly

excited satellite 22Πu peak (0.72 and 0.87 eV for MR-ADC(2)-X
and sc-NEVPT2, respectively).

5.3. Twisted Ethylene. Finally, we investigate the perform-
ance of MR-ADC(2) and MR-ADC(2)-X for the EA and IP of
the ethylene molecule at a twisted geometry with a 90.0°
dihedral H−C −C−H angle. Twisted ethylene (t-C2H4) is a
classic example of a system, which lowest energy singlet
electronic state (N1B1, originating from the (1e)4(3a1)

2(2e)2

valence electronic configuration) has a wavefunction that is
dominated by two equally important Slater determinants
[(2ex)

2(2ey)
0 and (2ex)

0(2ey)
2].78−82 Because each determinant

has a contribution of about 50% to the wavefunction, the natural
occupancies of the t-C2H4 frontier orbitals n(2ex) and n(2ey) ≈
1.
Table 6 compares results of SR-ADC(3), MR-ADC(2), MR-

ADC(2)-X, and sc-NEVPT2with accurate EAs and IPs from the
SHCI. For the first EA and IP, the best agreement with the SHCI
is shown byMR-ADC(2) andMR-ADC(2)-X with errors of less
than 0.2 and 0.15 eV, respectively. The sc-NEVPT2 method
produces a larger error for the EA (0.35 eV) and a similar error
for the IP (0.17 eV). Both MR-ADC(2) and MR-ADC(2)-X
correctly describe the open-shell nature of the frontier 2ex and
2ey orbitals, yielding spectroscopic factors P ≈ 0.5, which
indicates that the corresponding single-particle states are nearly
half-occupied. The importance of multireference effects for the
first EA and IP of t-C2H4 is demonstrated by the poor
performance of SR-ADC(3) that predicts large spectroscopic
factors (P∼ 0.7−0.9) and overestimates the EA and IP from the
SHCI by 1.21 and 1.27 eV, respectively, incorrectly predicting a
bound electronic state for t C H2 4‐ −. Overall, for the three lowest
energy EAs and IPs of t-C2H4, the best results are shown byMR-

Table 6. Twisted Ethylene Vertical Electron Attachment (t C H2 4‐ −) and Ionization (t C H2 4‐ +) Energies (Ω, eV) and
Spectroscopic Factors (P)a

SR-ADC(3) MR-ADC(2) MR-ADC(2)-X sc-NEVPT2 SHCI

molecule configuration state Ω P Ω P Ω P Ω Ω

t C H2 4‐ −
(1e)4(3a1)

2(2e)3 12E 0.78 0.71 −0.40 0.44 −0.25 0.44 −0.78 −0.43
(1e)4(3a1)

2(2e)2(1a2)
1 12B2 −1.55 0.85 −2.00 0.99 −1.94 0.98 −1.91 −1.60

(1e)4(3a1)
2(2e)2(4a1)

1 12B1 −1.83 0.88 −2.18 0.63 −1.99 0.63 −2.03 −1.99
t C H2 4‐ + (1e)4(3a1)

2(2e)1 12E 7.61 0.87 8.99 0.46 8.78 0.45 8.71 8.88

(1e)4(3a1)
1(2e)2 12B1 14.35 0.89 14.47 0.90 14.13 0.88 14.38 14.29

(1e)3(3a1)
2(2e)2 22E 14.57 0.70 15.15 0.91 14.95 0.89 14.93 14.99

ΔMAE 0.53 0.18 0.14 0.17
ΔSTD 0.81 0.23 0.17 0.17

aFor MR-ADC and sc-NEVPT2, the CASSCF reference wavefunction was computed using the (8e, 12o) active space. Also shown are mean
absolute errors (ΔMAE) and standard deviations (ΔSTD) in transition energies, relative to the SHCI.
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ADC(2)-X (ΔMAE = 0.14 eV and ΔSTD = 0.17 eV), with sc-
NEVPT2 (ΔMAE = 0.17 eV and ΔSTD = 0.17 eV) and MR-
ADC(2) (ΔMAE = 0.18 eV and ΔSTD = 0.23 eV) showing
somewhat larger errors, on average.

6. CONCLUSIONS

In this work, we presented a new implementation and
benchmark of multireference algebraic diagrammatic construc-
tion theory for electron attachment and ionization (EA/IP-MR-
ADC). Following our earlier work on the strict second-order IP-
MR-ADC approach (IP-MR-ADC(2)),41 we report the first
implementation of the EA-MR-ADC(2) method and the
extended EA/IP-MR-ADC(2)-X approximations that partially
incorporate third-order correlation effects in the calculation of
transition energies and properties. Taking advantage of a small
approximation for the second-order amplitudes of the effective
Hamiltonian, our implementation of both EA/IP-MR-ADC(2)
and EA/IP-MR-ADC(2)-X has the same M( )5 computational
scaling with the basis set sizeM and a fixed active space as that of
the single-reference EA/IP-ADC(2) method. Additionally, by
refactoring terms in the equations and constructing efficient
intermediates, our EA/IP-MR-ADC(2)-X implementation
completely avoids calculating the four-particle reduced density
matrices (4-RDMs), offering a lower N N( )det act

6 scaling with

the size of the active space (Nact) compared to the N N( )det act
8

scaling of conventional implementations of second-order
multireference perturbation theories.
We benchmarked the performance of EA/IP-MR-ADC(2)-X

for a set of eight small molecules at equilibrium and stretched
geometries, a carbon dimer (C2), and a twisted ethylene
molecule (t-C2H4). To ensure a consistent benchmark, the
errors in the EA/IP-MR-ADC(2)-X electron affinities (EAs)
and ionization energies (IPs) were calculated relative to accurate
EAs and IPs from the semistochastic heat-bath configuration
interaction (SHCI) extrapolated to the full configuration
interaction limit. In all tests, the accuracy of the extended EA/
IP-MR-ADC(2)-X approximations was found to be similar to
that of strongly contracted N-electron valence second-order
perturbation theory (sc-NEVPT2). In particular, MR-ADC(2)-
X outperformed sc-NEVPT2 for EAs of small molecules and EAs
and IPs of t-C2H4, while sc-NEVPT2 showed smaller errors for
IPs of small molecules and satellite transitions of C2.
Importantly, although sc-NEVPT2 requires separate calcu-

lations for each electronic state of the neutral and electron-
attached/ionized molecules, EA/IP-MR-ADC(2)-X provides a
direct access to many EAs and IPs in a single calculation. This,
coupled with the EA/IP-MR-ADC(2)-X ability to efficiently
calculate spectroscopic properties (e.g., spectroscopic factors
and density of states), makes EA/IP-MR-ADC(2)-X an
attractive alternative to sc-NEVPT2 for calculations of charged
excitation energies and photoelectron spectra of multireference
systems. To realize the full potential of the EA/IP-MR-ADC(2)-
Xmethods, an efficient implementation of these methods will be
developed in our future work. We also plan on extending our
current implementation to calculations of open-shell and
multireference systems with a large number of active orbitals
by combining EA/IP-MR-ADC(2)-X with the density matrix
renormalization group and selected configuration interaction
reference wavefunctions. Finally, developing an implementation
of IP-MR-ADC(2)-X for ionizations of core electrons is another
avenue that we are planning to explore.

■ APPENDIX

Avoiding 4-RDM in pc-NEVPT2 and MR-ADC(2) Amplitude
Equations
Solving the partially contracted NEVPT2 (pc-NEVPT2)15−17

and MR-ADC(2)1,41 equations for the semi-internal double-

excitation amplitudes tix
yz(1) and txy

az(1) requires computation of
the zeroth-order Hamiltonian matrix elements of the form

K a H a,xyz uvw yz
x

u
vw

,
1

0
(0)

0=⟨Ψ | [ ]|Ψ ⟩[+ ′]
(38)

K a H a,xyz uvw z
xy

uv
w

,
1

0
(0)

0=⟨Ψ | [ ]|Ψ ⟩[− ′]
(39)

where a a a ar
pq

p q r≡ † † and a a a aqr
p

p r q≡ † . Formally, Eqs. 38 and 39
depend on the four-particle reduced matrix (4-RDM) of the
reference wavefunction |Ψ0⟩, which has a high N N( )det act

8

computational scaling with a number of active orbitals Nact and
becomes prohibitively expensive for large active spaces (with
Nact ≥ 18). A number of techniques have been proposed for

evaluating contributions of the tix
yz(1) and txy

az(1) amplitudes
without computing the 4-RDM in strongly contracted and
uncontracted NEVPT2.21,23,83−86 Here, we demonstrate that
the matrix elements Kxyz uvw,

1[+ ′] and Kxyz uvw,
1[− ′] (and thus the

corresponding amplitudes tix
yz(1) and txy

az(1)) in pc-NEVPT2 and
MR-ADC(2) can be evaluated without computing the 4-RDM
and introducing any approximations, with a lower scaling. As an
example, we consider the terms in eq 38 that depend on the 4-
RDM

K v a a a a a a a a

v a a a a a a a a

v a a a a a a a a

1
2

1
2

1
2

xyz uvw
x y z

vx
y z

w x y z u y z x

x y z
wx
y z

v x y z u y z x

x y z
x y
uz

v w x z y z x y

,
1

0 0

0 0

0 0

∑

∑

∑

⇐ ⟨Ψ | |Ψ ⟩

− ⟨Ψ | |Ψ ⟩

− ⟨Ψ | |Ψ ⟩

[+ ′]

′ ′ ′
′
′ ′ † †

′
†

′
†

′

′ ′ ′
′

′ ′ † †
′

†
′

†
′

′ ′ ′
′ ′

′ † † †
′

†
′ ′

(40)

where we omitted contributions of lower-rank RDMs for clarity.
Reordering creation and annihilation operators such that the
operators with summation labels go first,1,23,84 the first term of
eq 40 can be rewritten as

v a a a a a a a a

v a a a a a

v a a a a a a

v a a a a a a

1
2
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2
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2

1
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x y z
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y z

w x y z u y z x

v
w x u y z

y z
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y z

y z x u y z

y z
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y z

y z w u y z

0 0

0
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∑

∑

∑

⟨Ψ | |Ψ ⟩
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+ ⟨Ψ | |Ψ ⟩

− ⟨Ψ | |Ψ ⟩

′ ′ ′
′
′ ′ † †

′
†

′
†

′

† †

′ ′

′ ′
′

†
′

† †

′ ′

′ ′
′

†
′

† †

(41)

where we defined intermediate states

v v a a av

x y z
y z
vx

x z y 0∑| ⟩ = |Ψ ⟩
′ ′ ′

′ ′
′

′
†

′ ′
(42)

Equation 41 demonstrates that the first 4-RDM contribution
to eq 40 can be evaluated without explicitly computing and

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00778
J. Chem. Theory Comput. 2020, 16, 6343−6357

6354

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00778?ref=pdf


storing the 4-RDM. By precomputing the intermediate states
|vv⟩ with N N( )det act

4 active-space scaling, the cost of computing

the 4-RDM contribution in eq 41 is lowered from N N( )det act
8 to

N N( )det act
6 , which is equivalent to the cost of computing a 3-

RDM. (Note that the last two terms in eq 41 have N( )act
8

scaling, which is significantly lower than N N( )det act
6 ). The

remaining 4-RDM contributions in Kxyz uvw,
1[+ ′] and Kxyz uvw,

1[− ′] can be
evaluated in a similar way without computing and storing the 4-
RDM. Importantly, all of these contributions can be expressed in
terms of a single set of intermediate states |vv⟩ defined in eq 42,
which can be computed at the beginning of the calculation and
reused for efficient evaluation of Kxyz uvw,

1[+ ′] and Kxyz uvw,
1[− ′] . We note

that the factorization described here has also been used in the
efficient implementation of internally contracted multireference
configuration interaction theory.87,88
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