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A formulation of the n-electron valence state perturbation theory �NEVPT� at the third order of
perturbation is presented. The present implementation concerns the so-called strongly contracted
variant of NEVPT, where only a subspace of the first-order interacting space is taken into account.
The resulting strongly contracted NEVPT3 approach is discussed in three test cases: �a� the energy
difference between the 3B1 and 1A1 states of the methylene molecule, �b� the potential-energy curve
of the N2 molecule ground state, and �c� the chromium dimer �Cr2� ground-state potential-energy
profile. Particular attention is devoted to the last case where large basis sets comprising also h
orbitals are adopted and where remarkable differences between the second- and third-order results
show up. © 2006 American Institute of Physics. �DOI: 10.1063/1.2148946�

I. INTRODUCTION

Multireference perturbation theory �MRPT� is nowadays
a standard tool for the treatment of the dynamical correlation
in quasidegenerate systems where more than one electronic
configuration play an important role in the qualitative de-
scription of the wave function, as occurs, for instance, in
molecules at geometries far from the equilibrium one �rup-
ture of a chemical bond, transition states� or in most elec-
tronically excited states. A usual strategy to deal with
quasidegenerate systems is to describe the zero-order wave
function through a complete active space self consistent
field1 �CASSCF� calculation to take into account the statical
correlation and to improve the result by employing second-
order perturbation theory �PT� to recover the dynamical cor-
relation of the electrons. Among the most successful imple-
mentations the CASPT2 technique of Roos and coworkers
stands out,2,3 where the first-order correction to the wave
function is carried out in terms of internally contracted �IC�
functions. More recently the n-electron valence state pertur-
bation theory �NEVPT2�,4–7 still based on an IC functions
expansion, has been implemented and successfully tested.8

The main difference between CASPT2 and NEVPT2 lies in
the choice of the zero-order Hamiltonian, monoelectronic
�Focklike� in the former, and bielectronic in the latter. One of
the merits of NEVPT2 is the complete removal of intruder
states without any need of resorting to the use of unphysical
level shifts common to most preceding MRPT approaches.

Usually MRPT is carried out at the second order of per-
turbation in the energy. Often, however, in order to judge on

the efficiency and stability of the MRPT, it would be desir-
able to push the perturbation order at least one step further.
Since the third-order energy contribution makes use of ex-
actly the same correction functions as are used in the con-
struction of the first-order correction to the wave function,
the implementation of a third-order MRPT appears to be fea-
sible without excessive computational efforts. Actually, ver-
sions of third-order MRPT have already been published by
various authors: Werner9 in 1996 provided a version of
CASPT3 employing a mixed basis of IC functions and
simple configurations, Havenith et al.10 in 1999 and two of
the present authors11 in 2002 generated third-order MRPT
based on configurations as expansion functions.

The present article is devoted to the description of the
third-order implementation within the scheme of NEVPT
with the adoption of IC functions throughout the perturbation
series. The rest of the paper is organized as follows. Section
II describes the third-order implementation after recalling the
main features of the NEVPT technique. Section III is dedi-
cated to the application of NEVPT3 to a few significant test
cases �the CH2 singlet-triplet splitting, the N2 ground-state
potential-energy curve, and the chromium dimer potential
curve, with particular emphasis on the last case�. Section IV
contains some conclusive remarks.

II. NEVPT3

It is a well-known result of standard Rayleigh-
Schrödinger PT that the third-order correction to the energy
of a given state �m only necessitates the first-order correc-
tion to the wave function,
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Em
�3� = ��m

�1��V��m
�1�� − Em

�1���m
�1��2. �1�

If �m
�1� has been obtained as an expansion over a given set of

correction functions �L ��m
�1�=	LcL

�1��L�, evaluation of Em
�3�

is then straightforward provided the matrix elements of the
perturbation operator ��K�V��L� can be easily calculated. In
NEVPT �Refs. 4 and 6� the zero-order wave function and
energy �m

�0� and Em
�0� are the solution of a CAS–

configuration-interaction �CI� �usually CASSCF� equation
PSHPS�m

�0�=Em
�0��m

�0� with PS=	K�K��K� denoting the projec-
tor onto a given CAS space S spanned by the determinants
�K�. The other zero-order wave functions not belonging to
the CAS space, referred to as the correction functions or also
as the “perturbers,” are of multireference nature and belong
to CAS–CI spaces with well-defined occupation patterns of
the core and virtual orbitals �collectively called the “inac-
tive” orbitals� and with a given number of active electrons.
The perturbers are indicated as �l,�

�k� and the CAS–CI spaces
they belong to as Sl

�k� with k the number of electrons pro-
moted to �if positive� or removed from �if negative� the ac-
tive space and with l designating the occupation pattern of
the inactive orbitals �� simply enumerates the various per-
turbers�. Only eight types of Sl

�k� spaces have to be consid-
ered for the construction of �m

�1�: indicating with i , j indices
for core orbitals �always doubly occupied in the CAS deter-
minants�, r ,s for virtual orbitals �never occupied�, and a ,b ,c
for active orbitals �with all possible occupations�, the Sl

�k�

spaces are spanned by doubly excited IC functions,

Sij,rs
�0� � EriEsj�m

�0�,

Sij,r
�+1� � EriEaj�m

�0�,

Srs,i
�−1� � EriEsa�m

�0�,

Sij
�+2� � EaiEbj�m

�0�,

Srs
�−2� � EraEsb�m

�0�,

Sr,i
�0� � EriEab�m

�0� and ErbEai�m
�0�,

Si
�+1� � EaiEbc�m

�0�,

Sr
�−1� � EraEbc�m

�0�.

The E operators above are the spin-traced replacement
operators12 Ewx=aw�

+ ax�+aw�
+ ax�. Two variants of NEVPT

have so far been implemented to the second order: the sim-
pler one, called “strongly contracted” �SC-NEVPT2�, makes
use of exactly one perturber function from each Sl

�k� sub-
space, obtained as a projection �l

�k�= PS
l
�k�H�m

�0�. A second
variant, called “partially contracted” �PC-NEVPT2� consists
in the diagonalization of a model Hamiltonian within each
subspace and is fully described in Ref. 6. We simply recall
that both variants yield quite similar results in all the test
cases so far examined. For this reason, in the development of
the third-order NEVPT we have confined ourselves to the
simpler variant, the strongly contracted approach �SC-

NEVPT3�. The energies of the strongly contracted perturber
functions are given by a Rayleigh ratio,

El
�k� =

��l
�k��HD��l

�k��
��l

�k���l
�k��

,

where HD is a model Hamiltonian proposed by Dyall,13 mo-
noelectronic in the core and virtual orbitals and fully bielec-
tronic in the active orbitals

HD = Hi + H� + C ,

Hi = 	
i,j

f ijEij + 	
r,s

frsErs,

H� = 	
a,b

hab
effEab +

1

2 	
a,b,c,d

�ab�cd��EacEbd − �bcEad� .

In the equations above, f ij and frs are generalized Fock
matrices,14 hab

eff is the matrix element of the one-electron part
of the Hamiltonian corrected with the mean-field interaction
with the core electrons and C is a suitable constant which
makes HD equivalent to H within the CAS space. The first-
order correction to the wave function in the strongly con-
tracted approach can be finally written as

�m
�1� = 	

l,k
cl

�k��l
�k�, �2�

where the �l
�k� functions are here assumed to be properly

normalized and where the explicit form of the expansion
coefficients for all the occurrences of the Sl

�k� spaces is given
in Ref. 6. Once the expression of �m

�1� is known, it is possible
to deal with the third-order formula given in Eq. �1�, which
reduces to

Em
�3� = ��m

�1��V��m
�1�� , �3�

since the first-order contribution to the energy is null in
NEVPT. The zero-order Hamiltonian is given by its spectral
decomposition,

H0 = 	
m�

CAS

��m�
�0��Em�

�0���m�
�0�� + 	

k,l
��l

�k��El
�k���l

�k�� , �4�

and the working equation for SC-NEVPT3 becomes

Em
�3� = 	

l,k
	
l�,k�

cl�
�k��*cl

�k���l�
�k���H − H0��l

�k�� , �5�

where H0 gives nonvanishing contributions only in the diag-
onal case �l ,k= l� ,k��.

Given the form of the perturbers �l
�k� which consist in

linear combinations of doubly excited IC functions, the main
difficulty in the implementation of Eq. �5� lies in the evalu-
ation of the matrix elements of the Hamiltonian operator
between two IC functions. This problem has been addressed
in Refs. 15 and 16, where the matrix elements are produced
by the symbolic program FRODO �after formal reduction of
density operators� written in the computer algebra system
MUPAD.17 Actually the FRODO program yields a FORTRAN

subroutine for all occurrences of IC functions in the bracket
of Eq. �5�. In practice, no new quantities are necessary with
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respect to those required in a NEVPT2 calculation; in par-
ticular, the highest particle rank of the density matrix which
is required in Eq. �5� is four, exactly like in NEVPT2. The
FORTRAN code implementing the third-order SC-NEVPT3
has been written in a parallelized version, using the “message
passing interface”18 since the third-order formulas naturally
lend themselves to a distributed calculation.

III. TEST CALCULATIONS

A. CH2

The energy difference between the 3B1 and the 1A1 states
in methylene represents a classical test case for new calcula-
tion methods. For this molecule a full CI calculation was
performed by Bauschlicher and Taylor19 using a double zeta
plus polarization atomic basis set. Our second-order NEVPT
results, already partially published elsewhere,8 both in the
strongly and partially contracted variants, as well as the
third-order SC-NEVPT3 calculations, are reported in Table I
and compared with other calculations. Three different CAS
spaces of increasing size are considered, the simplest of
which corresponds to the distribution of the six valence elec-
trons over the six valence orbitals. The third-order correction
is rather conspicuous in the smallest active space, bringing a
variation in the energy difference of −0.66 kcal/mol with
respect to SC-NEVPT2. For the larger active spaces the cor-
rection is smaller, amounting to +0.58 kcal/mol for the 4220
space and +0.15 kcal/mol for the 7331 space. The compari-
son with the other third-order calculations, viz., the CASPT3
of Werner9 and the Møller-Plesset barycentric �MPB3� and
Epstein-Nesbet �EN3� of Ref. 11, shows that the third-order
results are all rather similar, with CASPT3 and NEVPT3
differing by 0.21 kcal/mol in the 3210 space, by
0.13 kcal/mol in 4220 and 0.06 kcal/mol in the 7331 space.

B. N2

The potential-energy curve of the N2 molecule in its
ground state constitutes a good test case for MRPT due to the
difficulties which may be encountered in the description of
the dissociation of the triple bond. The basis set employed in
the calculations is Dunning’s correlation consistent valence
quadruple zeta20 �cc-pVQZ� and the zero-order wave func-
tion is provided by a CASSCF calculation, carried out with
the DALTON program,21 with the ten valence electrons distrib-
uted over the eight valence orbitals �2s and 2p�. The second-
order �SC-NEVPT2 and PC-NEVPT2� as well as the third-
order �SC-NEVPT3� results are set out in Fig. 1 where the
absolute energies are reported versus the internuclear dis-
tance. At the scale of Fig. 1 the results of PC-NEVPT2 are
hardly distinguishable from those of SC-NEVPT2, the
former lying slightly below the latter according to the gen-
eral behavior of the two variants of NEVPT2 proved in Ref.
6. The third-order SC-NEVPT3 energy curve is located be-
low the second-order curves and runs roughly parallel to
them with an energy difference of about 0.03 a.u. Figure 2
reports again the potential-energy curves with the zero of the
energy taken at the asymptotic value of dissociation for each

TABLE I. Energies for the CH2 molecule.

Method

1A1 energy
�a.u.�

1A1 energy
�a.u.�

�E
�kcal/mol�

3210 active spacea

CASSCF −38.945 529 −38.965 954 12.82
CASPT2b −39.013 092 −39.037 695 15.44
CASPT3b −39.023 374 −39.043 766 12.80
MPB2c −39.011 695 −39.036 885 15.81
EN2c −39.024 854 −39.048 424 14.79
MPB3c −39.021 887 −39.042 750 13.09
EN3c −39.023 624 −39.043 291 12.34
SC-NEVPT2d −39.006 707 −39.028 498 13.67
PC-NEVPT2d −39.007 802 −39.029 354 13.52
SC-NEVPT3d −39.019 488 −39.040 216 13.01

4220 active spacea

CASSCF −38.968 726 −38.982 788 8.82
CASPT2b −39.017 120 −39.038 707 13.54
CASPT3b −39.024 593 −39.044 195 12.30
MPB2c −39.016 396 −39.038 139 13.64
EN2c −39.024 499 −39.046 250 12.47
MPB3c −39.023 789 −39.044 005 12.69
EN3c −39.025 216 −39.044 839 12.31
SC-NEVPT2d −39.013 487 −39.032 376 11.85
PC-NEVPT2d −39.014 521 −39.033 006 11.60
SC-NEVPT3d −39.022 179 −39.041 994 12.43

7331 active spacea

CASSCF −39.009 906 −39.029 672 12.40
CASPT2b −39.023 760 −39.043 345 12.29
CASPT3b −39.025 954 −39.045 359 12.18
MPB2c −39.024 489 −39.044 125 12.32
EN2c −39.026 107 −39.045 722 12.31
MPB3c −39.025 951 −39.045 521 12.28
EN3c −39.026 187 −39.045 699 12.24
SC-NEVPT2d −39.024 296 −39.043 529 12.07
PC-NEVPT2d −39.024 671 −39.043 843 12.03
SC-NEVPT3d −39.025 725 −39.045 202 12.22

Full CIe −39.027 284 −39.046 348 11.96

aPartition of the active space orbitals in the A1, B1, B2, and A2 symmetries.
bReference 9.
cReference 11.
dThis work.
eReference 19.

TABLE II. Spectroscopic properties of the 1	g
+ ground state of N2.

Method
re

�Å�
De

�eV�

e

�cm−1�
xe
e

�cm−1�

CASSCFa 1.1039 9.233 2337.1 13.68
CASPT2b 1.1023 9.37 2332.6 14.51
CASPT3b 1.1011 9.59 2350.7 14.09
SC-NEVPT2a 1.1027 9.649 2332.6 14.10
PC-NEVPT2a 1.1023 9.744 2336.0 14.17
SC-NEVPT3a 1.1029 9.536 2331.3 14.17
Expt.c 1.098 9.906 2358.6 14.3

aThis work.
bReference 9.
cReference 33.
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curve. As can be seen from Fig. 2, no substantial change in
the description of the potential-energy curve is brought about
by the third-order calculation. Such a conclusion is also
borne out by the comparison of some spectroscopic constants
calculated with the three curves by numerical solution of the
vibrational Schrödinger equation, reported in Table II.

C. Cr2

The description of the potential-energy curve for the
ground state of the chromium dimer stands out as a remark-
ably difficult task for ab initio methods. The interplay be-
tween the high number of quasidegenerate structures that are

FIG. 1. Calculated potential-energy curves for the N2 ground state: absolute energies.

FIG. 2. Calculated potential-energy curves for the N2 ground state: relative energies.
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necessary to qualitatively account for a correct dissociation
to the high spin �septet� atoms, the great need for dynamical
correlation required by the 3p and 3d orbitals which contend
the same physical space and the presence of two distinct
bond regions due to the 3d-3d and 4s-4s interactions, alto-
gether contribute to make this little molecule a most compli-
cated example of chemical bond. A recent work of Celani et
al.22 gives a good survey of the literature concerning both
theoretical and experimental results for the Cr2 molecule. In
the previous studies carried out by our group5,6 on the chro-
mium dimer with the NEVPT2 technique, on one hand, good
results were obtained for the equilibrium distance as well as
for the dissociation energy, while, on the other hand, less
satisfactory results were reached for the spectroscopic prop-
erties of �G1/2 and 
e, due to the too sharp curvature of the
calculated potential-energy function. In this section we take
up the calculation of the Cr2 curve both at the second and at
the third order within the NEVPT approach, by adopting two
ANO basis sets of different size; the first basis is the ANO-L
set developed by Pou-Amerigo et al.23 with the contraction
scheme 21s15p10d6f4g→ �7s6p5d4f3g�. All the results ob-
tained with this basis set have been corrected for the basis set
superposition error �BSSE� with the counterpoise method of
Boys and Bernardi;24 furthermore a relativistic correction has
been introduced by simply adding the first-order contribu-
tions due to the mass-velocity and Darwin operators. The
other basis is a larger ANO set, called ANO-RCC, recently
developed by Roos25,26 and available at the MOLCAS

internet site,27 which includes also h atomic orbitals; the con-
traction scheme we adopted is 21s15p10d6f4g2h
→ �10s10p8d6f4g2h�. The basis set was optimized by the
developers within the Douglas-Kroll Hamiltonian28 so as to

account for the scalar relativistic effects. Our molecular cal-
culations have consequently also been carried out including
the Douglas-Kroll operator at the CASSCF level. No attempt
to correct the results for the BSSE was deemed to be worth
doing with this large basis set. In all cases, the CASSCF
wave function was calculated by including all the 4s and 3d
electrons and orbitals in the construction of the active space
�12 active electrons in 12 active orbitals� and the perturba-
tion calculations only took into account the 3s and 3p orbit-
als for the core correlation, keeping the more internal orbitals
frozen. The zero-order CASSCF wave function was calcu-
lated with the MOLCAS program.29 The evaluation of the SC-
NEVPT3 energy, especially with the ANO-RCC basis �360
atomic orbitals� is rather a large calculation and has been
carried out with a parallel architecture of 64 processors �Intel
Xeon 3.0 Ghz� on an IBM CLX/1024 Linux cluster at the
Italian supercomputer center CINECA. For a single point
with the ANO-RCC basis the calculation used up about 2 h
of clock time.

Figures 3 and 4 show the potential-energy curves calcu-
lated with the ANO-L basis; Fig. 3 presents the absolute
energies while Fig. 4 shows the energies measured from the
asymptotic values. As is apparent, the third-order contribu-
tions introduce large modifications to the picture obtained at
the second order. The position of the minimum remains
nearly the same but the value of the minimum is shifted
upwards by a large amount �
0.7 eV�. Furthermore, the re-
gion of the 4s-4s bond drastically changes nature at the third
order, giving rise to a distinct outer minimum at R
=2.6434 Å. In order to ascertain whether such behavior
could be attributed to deficiencies in the way the third-order
correction takes into account the perturber functions in the

FIG. 3. Calculated potential-energy curves for the Cr2 ground state in the ANO-L basis set: absolute energies.
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first-order interacting space, a completely variational calcu-
lation is shown in Figs. 3 and 4 where all the perturber func-
tions �l

�k� are included in the construction of a variational
wave function �m=a0�m

�0�+	l,kal
�k��l

�k�, with the coefficients
and the energy obtained by diagonalization of the corre-
sponding Hamiltonian matrix. In order to partially correct for
the size consistency error �SCE�, Davidson’s procedure30

was applied but, despite such a correction, the SCE remained
conspicuous. Such variational calculations, which belong to
the family of internally contracted configuration interactions
�IC-CIs�,31 yielded a curve which runs roughly parallel to the
third-order one, thus showing that the SC-NEVPT3 calcula-
tions are not affected by substantial error in the neglect of
higher-order contributions deriving from the first-order inter-

acting space. Figures 5 and 6 show the calculations per-
formed at the second and third order with the larger ANO-
RCC basis set. The results are qualitatively similar to those
obtained with the smaller basis but some significant quanti-
tative differences can be remarked. The main characteristics
of the calculations are collected in Table III. At the second
order of perturbation the main difference which can be re-
marked passing from the smaller to the larger basis concerns
the magnitude of the dissociation energy, which passes from
a seemingly good value of 1.48–1.60 eV �experimental esti-
mates range between 1.45 and 1.56 eV� to an “overshot”
value of 1.70–1.82 eV. Similar results are obtained by
Celani et al.22 for their CASPT2 studies, where a basis set
limit for the dissociation energy is estimated to be 
1.9 eV.

FIG. 5. Calculated potential-energy curves for the Cr2 ground state in the
ANO-RCC basis set: absolute energies.

FIG. 4. Calculated potential-energy curves for the Cr2 ground state in the ANO-L basis set: relative energies.

FIG. 6. Calculated potential-energy curves for the Cr2 ground state in the
ANO-RCC basis set: relative energies.
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The third-order results of Table III rather heavily underesti-
mate the dissociation energy; the ANO-RCC result shows a
considerable improvement over the smaller basis one, pass-
ing from 0.78 to 0.97 eV, but is disappointingly in error by
about 0.5 eV with respect to the experimental estimate.
Again, the situation is not dissimilar from the CIPT2 results
of Ref. 22 where the value of 1.07 eV is obtained in the more
extended calculation. The CIPT2 method is a hybrid method
where the excitations from the active space are treated varia-
tionally with MRCI while the others are dealt with perturba-
tionally; an advantage of such a method lies in the removal
of the intruder states problem, a disadvantage being, on the
other hand, the presence of size consistency errors. In this
respect it is worth remarking that the third-order SC-NEVPT
approach is completely free from any intruder states problem
and is perfectly size consistent. The most striking feature of
the SC-NEVPT3 results, though, is the appearance of a sec-
ond distinct minimum in correspondence with the formation
of the 4s-4s bond. In this respect, the results at SC-NEVPT3
level become similar to the findings of the pioneering calcu-
lations of Goodgame and Goddard.32 It is remarkable that the
high level CIPT2 calculations of Celani et al.22 also yield a
second minimum, albeit shallower than the one found in the
SC-NEVPT3 case. Even though it is likely that the outer
minimum of SC-NEVPT3 is too deep, the present calcula-
tions, as well as those of Celani et al.,22 bring some support
for the existence of a secondary 4s-4s minimum in the Cr2

potential-energy curve.
An analysis of the various contributions which form the

third-order result reveals various differential behaviors of the
correction functions; partitioning the SC-NEVPT3 energy
contribution according to the following scheme:

E�3��Sl
�k�� = 	

l�,k�

��l
�k��V��l�

k��cl
�k�cl�

�k��, �6�

and collecting all the contributions coming from spaces of
the same type, shows that the spaces of type Sij,rs

�0� �doubly
inactive excitations� and Si,rs

�−1� give together a contribution
which is positive and roughly constant �
0.015 a.u.� for R

�3.2 a.u. �the location of the inner minimum�. The spaces of
type Srs

�−2�, Sij
�+2�, and Sij,r

�+1� all give negative contributions.
Altogether such negative contribution shows a small vari-
ability, passing from −0.014 a.u. at R=3.2 a.u. �inner mini-
mum�, to −0.016 a.u. at R=4.4 a.u. �maximum�, to
−0.017 a.u. at R=5.6 a.u. �outer minimum�, and remaining
relatively unchanged afterward.

It is possible that the SC-NEVPT3 calculations suffer, in
some measure, from the relatively low number of correction
functions that are employed and that better results could be
obtained passing on to the PC-NEVPT3 where the whole
first-order interacting space is fully taken into account. The
implementation of the PC-NEVPT3 will be taken up in fu-
ture work.

IV. CONCLUSIONS

In this paper the implementation of the third-order
NEVPT in its strongly contracted variant has been presented
and discussed. The SC-NEVPT3 approach is endowed with
the general characteristics of the n-electron valence state PT
�Ref. 4� among which the size consistency and the absence
of the intruder states problem appear as particularly notewor-
thy. The importance of having a viable third-order procedure
such as SC-NEVPT3 lies, beyond the possible improvement
in the description of the system under study, in the possibility
of judging on the adequacy of the zero-order wave function;
the case of too wide a discrepancy between the second- and
third-order results can be a clear indicator that the zero-order
description necessitates major improvement. The SC-
NEVPT3 approach has been initially tested on two simple
cases �CH2 and N2� where the third-order contribution brings
about a small variation with respect to the second-order re-
sults. Furthermore, a remarkably more severe test has been
carried out on the potential-energy curve of the chromium
dimer using large basis sets; in this case large deviations
from the second-order results are introduced by the SC-
NEVPT3, clearly revealing the inadequacy of the zero-order
description which consists, as usual, of a CASSCF wave
function involving the more external electrons and orbitals.

TABLE III. Characteristics of the calculated Cr2 potential-energy curve.
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The Cr2 third-order calculations, though, bear out recent
results22 obtained with different high level techniques.
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