Martial addon
This commit is contained in:
parent
461c27ed9b
commit
7d7fb38bf5
@ -24,7 +24,7 @@ In particular, by computing vertical excitation energies with and without the in
|
||||
\end{itemize}
|
||||
These global trends are also true for specific sets of excitations and various system sizes.
|
||||
|
||||
We suggest Stefano Battaglia, Javier Segarra-Marti, Peter Knowles, Hans-Joachim Werner, Leticia Gonz\'alez, Celestino Angeli, and Donald Truhlar as potential referees.
|
||||
We suggest Stefano Battaglia, Javier Segarra-Marti, Peter Knowles, Hans-Joachim Werner, Leticia Gonz\'alez, and Donald Truhlar as potential referees.
|
||||
We look forward to hearing from you.
|
||||
|
||||
\closing{Sincerely, the authors.}
|
||||
|
@ -1,13 +1,68 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
%% https://bibdesk.sourceforge.io/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2022-04-08 09:54:20 +0200
|
||||
%% Created for Pierre-Francois Loos at 2022-04-13 16:47:01 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
||||
|
||||
|
||||
@article{Olsen_1988,
|
||||
author = {J. Olsen and B. O. Roos and P. Jorgensen and H. J. A. Jensen},
|
||||
date-added = {2022-04-13 16:31:23 +0200},
|
||||
date-modified = {2022-04-13 16:33:11 +0200},
|
||||
doi = {10.1063/1.455063},
|
||||
journal = {J. Chem. Phys.},
|
||||
pages = {2185},
|
||||
title = {Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces},
|
||||
volume = {89},
|
||||
year = {1988}}
|
||||
|
||||
@article{Fulscher_1994,
|
||||
author = {M. P. Fulscher and B. O. Roos},
|
||||
date-added = {2022-04-13 16:30:07 +0200},
|
||||
date-modified = {2022-04-13 16:31:10 +0200},
|
||||
doi = {10.1007/BF01113393},
|
||||
journal = {Theor. Chim. Acta},
|
||||
pages = {403},
|
||||
title = {The excited states of pyrazine: A basis set study},
|
||||
volume = {87},
|
||||
year = {1994}}
|
||||
|
||||
@article{Tran_2019,
|
||||
author = {T. Tran and J. Segarra-Marti and M. J. Bearpark and M. A. Robb},
|
||||
date-added = {2022-04-13 16:28:18 +0200},
|
||||
date-modified = {2022-04-13 16:33:37 +0200},
|
||||
doi = {10.1021/acs.jpca.9b03715},
|
||||
journal = {J. Phys. Chem. A},
|
||||
pages = {5223},
|
||||
title = {Molecular Vertical Excitation Energies Studied with First-Order RASSCF (RAS[1,1]): Balancing Covalent and Ionic Excited States},
|
||||
volume = {123},
|
||||
year = {2019}}
|
||||
|
||||
@article{Boggio-Pasqua_2004,
|
||||
author = {M. Boggio-Pasqua and M. J. Bearpark and M. Klene and M. A. Robb},
|
||||
date-added = {2022-04-13 16:27:14 +0200},
|
||||
date-modified = {2022-04-13 16:29:46 +0200},
|
||||
doi = {10.1063/1.1690756},
|
||||
journal = {J. Chem. Phys.},
|
||||
pages = {7849},
|
||||
title = {A computational strategy for geometry optimization of ionic and covalent excited states, applied to butadiene and hexatriene},
|
||||
volume = {120},
|
||||
year = {2004}}
|
||||
|
||||
@article{Borden_1996,
|
||||
author = {W. T. Borden and E. R. Davidson},
|
||||
date-added = {2022-04-13 16:25:02 +0200},
|
||||
date-modified = {2022-04-13 16:29:56 +0200},
|
||||
doi = {10.1021/ar950134v},
|
||||
journal = {Acc. Chem. Res.},
|
||||
pages = {67},
|
||||
title = {The Importance of Including Dynamic Electron Correlation in ab Initio Calculations},
|
||||
volume = {29},
|
||||
year = {1996}}
|
||||
|
||||
@article{Boggio-Pasqua_2007,
|
||||
author = {{Boggio-Pasqua}, Martial and Bearpark, Michael J. and Robb, Michael A.},
|
||||
date-added = {2022-04-04 23:13:51 +0200},
|
||||
@ -65,9 +120,9 @@
|
||||
@article{Davidson_1996,
|
||||
author = {Davidson, Ernest R.},
|
||||
date-added = {2022-04-04 22:37:02 +0200},
|
||||
date-modified = {2022-04-04 22:37:02 +0200},
|
||||
date-modified = {2022-04-13 16:03:23 +0200},
|
||||
doi = {10.1021/jp952794n},
|
||||
journal = {J. Phys. Chem},
|
||||
journal = {J. Phys. Chem.},
|
||||
number = {15},
|
||||
pages = {6161-6166},
|
||||
title = {The Spatial Extent of the V State of Ethylene and Its Relation to Dynamic Correlation in the Cope Rearrangement},
|
||||
@ -78,9 +133,9 @@
|
||||
@article{BenAmor_2020,
|
||||
author = {Ben Amor,Nadia and No{\^u}s,Camille and Trinquier,Georges and Malrieu,Jean-Paul},
|
||||
date-added = {2022-04-04 22:36:48 +0200},
|
||||
date-modified = {2022-04-04 22:36:48 +0200},
|
||||
date-modified = {2022-04-13 16:03:37 +0200},
|
||||
doi = {10.1063/5.0011582},
|
||||
journal = {J. Chem. Phys},
|
||||
journal = {J. Chem. Phys.},
|
||||
number = {4},
|
||||
pages = {044118},
|
||||
title = {Spin polarization as an electronic cooperative effect},
|
||||
@ -1076,11 +1131,12 @@
|
||||
@article{Sarkar_2022,
|
||||
author = {R. Sarkar and P. F. Loos and M. Boggio-Pasqua and D. Jacquemin.},
|
||||
date-added = {2022-03-16 10:53:25 +0100},
|
||||
date-modified = {2022-04-05 13:23:50 +0200},
|
||||
date-modified = {2022-04-13 16:01:34 +0200},
|
||||
doi = {10.1021/acs.jctc.1c01197},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
pages = {in press},
|
||||
pages = {2418},
|
||||
title = {Assessing the performances of CASPT2 and NEVPT2 for vertical excitation energies,},
|
||||
volume = {18},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.1c01197}}
|
||||
|
||||
@ -2930,12 +2986,14 @@
|
||||
@article{Garniron_2018,
|
||||
author = {Y. Garniron and A. Scemama and E. Giner and M. Caffarel and P. F. Loos},
|
||||
date-added = {2021-05-06 15:31:25 +0200},
|
||||
date-modified = {2021-05-06 15:31:25 +0200},
|
||||
date-modified = {2022-04-13 16:02:40 +0200},
|
||||
doi = {10.1063/1.5044503},
|
||||
journal = {J. Chem. Phys.},
|
||||
pages = {064103},
|
||||
title = {Selected Configuration Interaction Dressed by Perturbation},
|
||||
volume = {149},
|
||||
year = {2018}}
|
||||
year = {2018},
|
||||
bdsk-url-1 = {https://doi.org/10.1063/1.5044503}}
|
||||
|
||||
@article{Gauss_2006,
|
||||
author = {Gauss,J{\"u}rgen and Tajti,Attila and K{\'a}llay,Mih{\'a}ly and Stanton,John F. and Szalay,P{\'e}ter G.},
|
||||
|
@ -90,7 +90,7 @@
|
||||
|
||||
% Abstract
|
||||
\begin{abstract}
|
||||
Based on 284 reference vertical transition energies of various natures (singlet, triplet, valence, Rydberg, $n\to\pi^*$, $\pi\to\pi^*$, and double excitations) extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states.
|
||||
Based on 280 reference vertical transition energies of various natures (singlet, triplet, valence, Rydberg, $n\to\pi^*$, $\pi\to\pi^*$, and double excitations) extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states.
|
||||
When one applies the disputable ionization-potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of $0.11$ eV.
|
||||
However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespective of the transition type and system size, with a small reduction of the mean absolute error to $0.09$ eV when the IPEA shift is switched off.
|
||||
%\bigskip
|
||||
@ -134,19 +134,16 @@ A second pitfall was brought to light by Andersson \textit{et al.} \cite{Anderss
|
||||
A cure was quickly proposed via the introduction of an additional parameter in the zeroth-order Hamiltonian, the ionization-potential-electron-affinity (IPEA) shift. \cite{Ghigo_2004}
|
||||
Although the introduction of an IPEA shift can provide a better agreement between experiment and theory, \cite{Pierloot_2006,Pierloot_2008,Suaud_2009,Kepenekian_2009,Daku_2012,Rudavskyi_2014,Vela_2016,Wen_2018} it has been shown that its application is not systematically justified and that its impact is significantly basis set dependent. \cite{Zobel_2017}
|
||||
|
||||
Very recently, based on the highly accurate vertical excitation energies of the QUEST database, \cite{Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c,Veril_2021,Loos_2021c,Loos_2021b} we have reported an exhaustive benchmark of CASPT2 and NEVPT2 for 284 excited states of diverse natures (singlet, triplet, valence, Rydberg, $n\to\pis$, $\pi\to\pis$, and double excitations) computed with a large basis set (aug-cc-pVTZ) in 35 small- and medium-sized organic molecules containing from three to six non-hydrogen atoms. \cite{Sarkar_2022}
|
||||
Very recently, based on the highly accurate vertical excitation energies of the QUEST database, \cite{Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c,Veril_2021,Loos_2021c,Loos_2021b} we have reported an exhaustive benchmark of CASPT2 and NEVPT2 for 280 excited states of diverse natures (singlet, triplet, valence, Rydberg, $n\to\pis$, $\pi\to\pis$, and double excitations) computed with a large basis set (aug-cc-pVTZ) in 35 small- and medium-sized organic molecules containing from three to six non-hydrogen atoms. \cite{Sarkar_2022}
|
||||
Our main take-home message was that both CASPT2 with IPEA shift and the partially-contracted version of NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of \SI{0.11}{} and \SI{0.13}{\eV}, respectively.
|
||||
Importantly, the introduction of the IPEA shift in CASPT2 was found to be crucial as neglecting it increases the mean absolute error to \SI{0.27}{eV}.
|
||||
|
||||
In the electronic structure community, third-order perturbation theory has a fairly bad reputation especially within MP perturbation theory where it is rarely worth its extra computational cost. \cite{Rettig_2020}
|
||||
Nonetheless, going against popular beliefs and one step further in the perturbative expansion, we propose here to assess the performance of the complete-active-space third-order perturbation theory (CASPT3) method developed by Werner \cite{Werner_1996} and implemented in MOLPRO \cite{Werner_2020} for the very same set of electronic transitions as the one used in Ref.~\onlinecite{Sarkar_2022}
|
||||
Nonetheless, going against popular beliefs and one step further in the perturbative expansion, we propose here to assess the performance of the complete-active-space third-order perturbation theory (CASPT3) method developed by Werner \cite{Werner_1996} and implemented in MOLPRO \cite{Werner_2020} for the same set of electronic transitions as the one used in Ref.~\onlinecite{Sarkar_2022}
|
||||
Although CASPT3 calculations have been reported in the literature,
|
||||
\cite{Angeli_2006,Yanai_2007,Grabarek_2016,Li_2017,Li_2018,Li_2021,Bittererova_2001,Bokarev_2009,Frankcombe_2011,Gu_2008,Kerkines_2005,Lampart_2008,Leininger_2000,Maranzana_2020,Papakondylis_1999,Schild_2013,Sun_2018,Takatani_2009,Takatani_2010,Verma_2018,Woywod_2010,Yan_2004,Zhang_2020,Zhu_2005,Zhu_2007,Zhu_2013,Zou_2009}
|
||||
the present study provides, to the best of our knowledge, the first comprehensive benchmark of CASPT3 and allows assessing its accuracy in the framework of electronically excited states.
|
||||
%DJ: Ce sont des phrases de ccls, dj dans l'abstract, pq aussi dans l'Intro ?
|
||||
%Based on the same 284 highly-accurate vertical excitation energies from the QUEST database, we show that CASPT3 only provides a very slight improvement over CASPT2 as far as accuracy is concerned.
|
||||
%Moreover, as already reported in Ref.~\onlinecite{Grabarek_2016} where CASPT3 excitation energies are reported for retinal chromophore minimal models, we also observe that the accuracy of CASPT3 is much less sensitive to the IPEA shift.
|
||||
We underline that, although a third-order version of NEVPT has been developed \cite{Angeli_2006} and has been used in some applications \cite{Pastore_2006a,Pastore_2006b,Pastore_2007,Angeli_2007,Camacho_2010,Angeli_2011,Angeli_2012} by Angeli and coworkers, as far as we are aware of, no NEVPT3 implementation are publicly available.
|
||||
We underline that, although a third-order version of NEVPT has been developed \cite{Angeli_2006} and has been used in some applications \cite{Pastore_2006a,Pastore_2006b,Pastore_2007,Angeli_2007,Camacho_2010,Angeli_2011,Angeli_2012} by Angeli and coworkers, as far as we are aware of, no NEVPT3 implementation is publicly available.
|
||||
\\
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -191,7 +188,7 @@ A detailed discussion of each individual molecule can be found in Ref.~\onlineci
|
||||
We therefore decided to focus on global trends here.
|
||||
The exhaustive list of CASPT2 and CASPT3 transitions can be found in Table \ref{tab:BigTab} and the distribution of the errors are represented in Fig.~\ref{fig:PT2_vs_PT3}.
|
||||
The usual statistical indicators are used in the following, namely, the mean signed error (MSE), the mean absolute error (MAE), the root-mean-square error (RMSE), the standard deviation of the errors (SDE), as well as the largest positive and negative deviations [Max($+$) and Max($-$), respectively].
|
||||
These are given in Table \ref{tab:stat} considering the 265 ``safe'' TBEs (out of 284) for which chemical accuracy is assumed (absolute error below \SI{0.043}{\eV}).
|
||||
These are given in Table \ref{tab:stat} considering the 265 ``safe'' TBEs (out of 280) for which chemical accuracy is assumed (absolute error below \SI{0.043}{\eV}).
|
||||
The MAEs determined for subsets of transitions (singlet, triplet, valence, Rydberg, $n\to\pis$, $\pi\to\pis$, and double excitations) and system sizes (3 non-H atoms, 4 non-H atoms, and 5-6 non-H atoms) can be found in Table \ref{tab:stat_subset}.
|
||||
Error patterns for selected subsets are reported in {\SupMat}.
|
||||
|
||||
@ -243,272 +240,268 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err
|
||||
22 & &$^1A_{2u}(\pi,3p)$ &R &93.4 &7.08 &\Y &6.14 &7.21 &7.07 &7.07 &7.02\\
|
||||
23 & &$^1E_{2u}(\pi,3p)$ &R &92.8 &7.15 &\Y &6.21 &7.26 &7.12 &7.13 &7.08\\
|
||||
24 & &$^1E_{2g}(\pi,\pis)$ &V &73.0 &8.28 &\Y &8.10 &8.31 &7.82 &8.26 &8.16\\
|
||||
25 & &$^1A_{1g}(\text{double})$ &V &n.d. &10.55 &\N &11.44 &10.24 &9.33 & &\\
|
||||
26 & &$^3B_{1u}(\pi,\pis)$ &V &98.6 &4.16 &\Y &3.85 &4.22 &3.92 &4.14 &4.08\\
|
||||
27 & &$^3E_{1u}(\pi,\pis)$ &V &97.1 &4.85 &\Y &4.85 &4.89 &4.51 &4.87 &4.80\\
|
||||
28 & &$^3B_{2u}(\pi,\pis)$ &V &98.1 &5.81 &\Y &6.75 &5.85 &5.40 &5.90 &5.81\\
|
||||
29 &Butadiene &$^1B_u(\pi,\pis)$ &V &93.3 &6.22 &\Y &6.65 &6.76 &6.52 &6.72 &6.65\\
|
||||
30 & &$^1B_g(\pi,3s)$ &R &94.1 &6.33 &\Y &5.94 &6.49 &6.32 &6.43 &6.38\\
|
||||
31 & &$^1A_g(\pi,\pis)$ &V &75.1 &6.50 &\Y &6.99 &6.74 &6.30 &6.73 &6.66\\
|
||||
32 & &$^1A_u(\pi,3p)$ &R &94.1 &6.64 &\Y &5.95 &6.74 &6.64 &6.70 &6.67\\
|
||||
33 & &$^1A_u(\pi,3p)$ &R &94.1 &6.80 &\Y &6.12 &6.95 &6.84 &6.90 &6.86\\
|
||||
34 & &$^1B_u(\pi,3p)$ &R &93.8 &7.68 &\Y &7.93 &7.60 &7.30 &7.62 &7.54\\
|
||||
35 & &$^3B_u(\pi,\pis)$ &V &98.4 &3.36 &\Y &3.55 &3.40 &3.19 &3.40 &3.35\\
|
||||
36 & &$^3A_g(\pi,\pis)$ &V &98.7 &5.20 &\Y &5.52 &5.32 &4.93 &5.29 &5.19\\
|
||||
37 & &$^3B_g(\pi,3s)$ &R &97.9 &6.29 &\Y &5.89 &6.44 &6.27 &6.38 &6.33\\
|
||||
38 &Carbon Trimer &$^1\Delta_g(\text{double})$&V &1.0 &5.22 &\Y &4.98 &5.08 &4.85 &5.20 &5.19\\
|
||||
39 & &$^1\Sigma^+_g(\text{double})$&V&1.0 &5.91 &\Y &5.84 &5.82 &5.58 &5.92 &5.89\\
|
||||
40 &Cyanoacetylene &$^1\Sigma^-(\pi,\pis)$ &V &94.3 &5.80 &\Y &6.54 &5.85 &5.47 &5.89 &5.81\\
|
||||
41 & &$^1\Delta(\pi,\pis)$ &V &94.0 &6.07 &\Y &6.80 &6.13 &5.78 &6.17 &6.09\\
|
||||
42 & &$^3\Sigma^+(\pi,\pis)$ &V &98.5 &4.44 &\Y &4.86 &4.45 &4.04 &4.52 &4.45\\
|
||||
43 & &$^3\Delta(\pi,\pis)$ &V &98.2 &5.21 &\Y &5.64 &5.21 &4.86 &5.26 &5.19\\
|
||||
44 & &$^1A''[F](\pi,\pis)$ &V &93.6 &3.54 &\Y &4.30 &3.67 &3.47 &3.64 &3.58\\
|
||||
45 &Cyanoformaldehyde &$^1A''(n,\pis)$ &V &89.8 &3.81 &\Y &4.02 &3.98 &3.67 &3.94 &3.89\\
|
||||
46 & &$^1A''(\pi,\pis)$ &V &91.9 &6.46 &\Y &7.61 &6.79 &6.43 &6.77 &6.67\\
|
||||
47 & &$^3A''(n,\pis)$ &V &97.6 &3.44 &\Y &3.52 &3.46 &3.25 &3.51 &3.50\\
|
||||
48 & &$^3A'(\pi,\pis)$ &V &98.4 &5.01 &\Y &4.98 &5.25 &5.03 &5.16 &5.12\\
|
||||
49 &Cyanogen &$^1\Sigma_u^-(\pi,\pis)$ &V &94.1 &6.39 &\Y &7.14 &6.40 &6.03 &6.46 &6.39\\
|
||||
50 & &$^1\Delta_u(\pi,\pis)$ &V &93.4 &6.66 &\Y &7.46 &6.70 &6.35 &6.75 &6.68\\
|
||||
51 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.91 &\Y &5.28 &4.85 &4.46 &4.95 &4.89\\
|
||||
52 & &$^1\Sigma_u^-[F](\pi,\pis)$&V &93.4 &5.05 &\Y &5.68 &5.07 &4.75 &5.11 &5.04\\
|
||||
53 &Cyclopentadiene &$^1B_2(\pi,\pis)$ &V &93.8 &5.56 &\Y &6.71 &5.96 &5.62 &6.06 &5.99\\
|
||||
54 & &$^1A_2(\pi,3s)$ &R &94.0 &5.78 &\Y &5.21 &5.88 &5.78 &5.81 &5.77\\
|
||||
55 & &$^1B_1(\pi,3p)$ &R &94.2 &6.41 &\Y &6.08 &6.59 &6.44 &6.47 &6.41\\
|
||||
56 & &$^1A_2(\pi,3p)$ &R &93.8 &6.46 &\Y &5.78 &6.55 &6.46 &6.45 &6.41\\
|
||||
57 & &$^1B_2(\pi,3p)$ &R &94.2 &6.56 &\Y &6.16 &6.72 &6.56 &6.61 &6.54\\
|
||||
58 & &$^1A_1(\pi,\pis)$ &V &78.9 &6.52 &\N &6.49 &6.63 &6.13 &6.59 &6.50\\
|
||||
59 & &$^3B_2(\pi,\pis)$ &V &98.4 &3.31 &\Y &3.26 &3.34 &3.09 &3.31 &3.26\\
|
||||
60 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.11 &\Y &4.92 &5.14 &4.78 &5.10 &5.03\\
|
||||
61 & &$^3A_2(\pi,3s)$ &R &97.9 &5.73 &\Y &5.53 &5.91 &5.74 &5.81 &5.75\\
|
||||
62 & &$^3B_1(\pi,3p)$ &R &97.9 &6.36 &\Y &6.05 &6.56 &6.40 &6.43 &6.37\\
|
||||
63 &Cyclopropene &$^1B_1(\sig,\pis)$ &V &92.8 &6.68 &\Y &7.48 &6.86 &6.58 &6.85 &6.77\\
|
||||
64 & &$^1B_2(\pi,\pis)$ &V &95.1 &6.79 &\Y &7.47 &6.89 &6.47 &6.96 &6.87\\
|
||||
65 & &$^3B_2(\pi,\pis)$ &V &98.0 &4.38 &\Y &4.60 &4.47 &4.27 &4.46 &4.40\\
|
||||
66 & &$^3B_1(\sig,\pis)$ &V &98.9 &6.45 &\Y &7.08 &6.56 &6.32 &6.55 &6.47\\
|
||||
67 &Cyclopropenethione &$^1A_2(n,\pis)$ &V &89.6 &3.41 &\Y &3.44 &3.43 &3.14 &3.46 &3.40\\
|
||||
68 & &$^1B_1(n,\pis)$ &V &84.8 &3.45 &\Y &3.57 &3.45 &3.17 &3.52 &3.46\\
|
||||
69 & &$^1B_2(\pi,\pis)$ &V &83.0 &4.60 &\Y &4.51 &4.64 &4.35 &4.66 &4.61\\
|
||||
70 & &$^1B_2(n,3s)$ &R &91.8 &5.34 &\Y &4.59 &5.25 &5.15 &5.25 &5.22\\
|
||||
71 & &$^1A_1(\pi,\pis)$ &V &89.0 &5.46 &\Y &6.46 &5.84 &5.32 &5.88 &5.75\\
|
||||
72 & &$^1B_2(n,3p)$ &R &91.3 &5.92 &\Y &5.27 &5.93 &5.86 &5.92 &5.90\\
|
||||
73 & &$^3A_2(n,\pis)$ &V &97.2 &3.28 &\Y &3.26 &3.28 &3.00 &3.33 &3.28\\
|
||||
74 & &$^3B_1(n,\pis)$ &V &94.5 &3.32 &\Y &3.51 &3.35 &3.07 &3.42 &3.36\\
|
||||
75 & &$^3B_2(\pi,\pis)$ &V &96.5 &4.01 &\Y &3.80 &3.97 &3.75 &3.99 &3.95\\
|
||||
76 & &$^3A_1(\pi,\pis)$ &V &98.2 &4.01 &\Y &3.83 &4.01 &3.77 &4.00 &3.95\\
|
||||
77 &Cyclopropenone &$^1B_1(n,\pis)$ &V &87.7 &4.26 &\Y &4.92 &4.12 &3.75 &4.40 &4.38\\
|
||||
78 & &$^1A_2(n,\pis)$ &V &91.0 &5.55 &\Y &5.64 &5.62 &5.31 &5.67 &5.64\\
|
||||
79 & &$^1B_2(n,3s)$ &R &90.8 &6.34 &\Y &5.68 &6.28 &6.21 &6.41 &6.44\\
|
||||
80 & &$^1B_2(\pi,\pis)$ &V &86.5 &6.54 &\Y &6.40 &6.54 &6.20 &6.63 &6.62\\
|
||||
81 & &$^1B_2(n,3p)$ &R &91.1 &6.98 &\Y &6.35 &6.84 &6.70 &6.99 &7.01\\
|
||||
82 & &$^1A_1(n,3p)$ &R &91.2 &7.02 &\Y &6.84 &7.27 &7.03 &7.26 &7.24\\
|
||||
83 & &$^1A_1(\pi,\pis)$ &V &90.8 &8.28 &\Y &10.42 &8.96 &8.11 &9.21 &9.07\\
|
||||
84 & &$^3B_1(n,\pis)$ &V &96.0 &3.93 &\Y &4.72 &3.65 &3.28 &4.00 &3.98\\
|
||||
85 & &$^3B_2(\pi,\pis)$ &V &97.9 &4.88 &\Y &4.39 &4.76 &4.60 &4.76 &4.74\\
|
||||
86 & &$^3A_2(n,\pis)$ &V &97.5 &5.35 &\Y &5.40 &5.36 &5.06 &5.44 &5.42\\
|
||||
87 & &$^3A_1(\pi,\pis)$ &V &98.1 &6.79 &\Y &6.59 &6.93 &6.61 &6.86 &6.82\\
|
||||
88 &Diacetylene &$^1\Sigma_u^-(\pi,\pis)$ &V &94.4 &5.33 &\Y &6.13 &5.42 &5.01 &5.45 &5.36\\
|
||||
89 & &$^1\Delta_u(\pi,\pis)$ &V &94.1 &5.61 &\Y &6.39 &5.68 &5.30 &5.72 &5.63\\
|
||||
90 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.10 &\Y &4.54 &4.11 &3.67 &4.17 &4.09\\
|
||||
91 & &$^3\Delta_u(\pi,\pis)$ &V &98.2 &4.78 &\Y &5.28 &4.82 &4.45 &4.86 &4.78\\
|
||||
92 &Diazomethane &$^1A_2(\pi,\pis)$ &V &90.1 &3.14 &\Y &3.27 &3.13 &2.92 &3.09 &3.04\\
|
||||
93 & &$^1B_1(\pi,3s)$ &R &93.8 &5.54 &\Y &4.59 &5.50 &5.30 &5.48 &5.45\\
|
||||
94 & &$^1A_1(\pi,\pis)$ &V &91.4 &5.90 &\Y &5.65 &6.21 &5.92 &6.18 &6.13\\
|
||||
95 & &$^3A_2(\pi,\pis)$ &V &97.7 &2.79 &\Y &3.02 &2.87 &2.67 &2.84 &2.79\\
|
||||
96 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.05 &\Y &4.27 &4.10 &3.88 &4.06 &4.01\\
|
||||
97 & &$^3B_1(\pi,3s)$ &R &98.0 &5.35 &\Y &4.45 &5.34 &5.15 &5.33 &5.30\\
|
||||
98 & &$^3A_1(\pi,3p)$ &R &98.5 &6.82 &\Y &6.34 &7.00 &6.76 &6.96 &6.91\\
|
||||
99 & &$^1A''[F](\pi,\pis)$ &V &87.4 &0.71 &\Y &0.72 &0.69 &0.52 &0.66 &0.62\\
|
||||
100 &Formamide &$^1A''(n,\pis)$ &V &90.8 &5.65 &\Y &5.95 &5.66 &5.45 &5.71 &5.67\\
|
||||
101 & &$^1A'(n,3s)$ &R &88.6 &6.77 &\Y &6.17 &6.80 &6.64 &6.82 &6.81\\
|
||||
102 & &$^1A'(n,3p)$ &R &89.6 &7.38 &\N &6.74 &7.45 &7.32 &7.46 &7.46\\
|
||||
103 & &$^1A'(\pi,\pis)$ &V &89.3 &7.63 &\N &8.80 &7.88 &7.13 &7.95 &7.78\\
|
||||
104 & &$^3A''(n,\pis)$ &V &97.7 &5.38 &\Y &5.89 &5.36 &5.16 &5.41 &5.37\\
|
||||
105 & &$^3A'(\pi,\pis)$ &V &98.2 &5.81 &\Y &6.10 &5.88 &5.62 &5.91 &5.87\\
|
||||
106 &Furan &$^1A_2(\pi,3s)$ &R &93.8 &6.09 &\Y &5.26 &6.16 &6.04 &6.06 &6.02\\
|
||||
107 & &$^1B_2(\pi,\pis)$ &V &93.0 &6.37 &\Y &7.78 &6.59 &6.02 &6.80 &6.71\\
|
||||
108 & &$^1A_1(\pi,\pis)$ &V &92.4 &6.56 &\Y &6.73 &6.66 &6.10 &6.69 &6.62\\
|
||||
109 & &$^1B_1(\pi,3p)$ &R &93.9 &6.64 &\Y &6.07 &6.79 &6.63 &6.65 &6.60\\
|
||||
110 & &$^1A_2(\pi,3p)$ &R &93.6 &6.81 &\Y &5.87 &6.87 &6.77 &6.76 &6.72\\
|
||||
111 & &$^1B_2(\pi,3p)$ &R &93.5 &7.24 &\Y &6.54 &7.11 &6.84 &6.96 &6.88\\
|
||||
112 & &$^3B_2(\pi,\pis)$ &V &98.4 &4.20 &\Y &3.94 &4.26 &4.01 &4.17 &4.12\\
|
||||
113 & &$^3A_1(\pi,\pis)$ &V &98.1 &5.46 &\Y &5.41 &5.50 &5.09 &5.47 &5.40\\
|
||||
114 & &$^3A_2(\pi,3s)$ &R &97.9 &6.02 &\Y &5.57 &6.16 &5.99 &6.05 &5.99\\
|
||||
115 & &$^3B_1(\pi,3p)$ &R &97.9 &6.59 &\Y &6.04 &6.76 &6.60 &6.62 &6.56\\
|
||||
116 &Glyoxal &$^1A_u(n,\pis)$ &V &91.0 &2.88 &\Y &3.42 &2.82 &2.51 &2.97 &2.94\\
|
||||
117 & &$^1B_g(n,\pis)$ &V &88.3 &4.24 &\Y &4.68 &4.21 &3.89 &4.36 &4.31\\
|
||||
118 & &$^1A_g(\text{double})$ &V &0.5 &5.61 &\Y &5.92 &5.37 &5.21 &5.53 &5.55\\
|
||||
119 & &$^1B_g(n,\pis)$ &V &83.9 &6.57 &\Y &7.35 &6.52 &5.98 &6.76 &6.72\\
|
||||
120 & &$^1B_u(n,3p)$ &R &91.7 &7.71 &\Y &7.04 &7.61 &7.34 &7.78 &7.81\\
|
||||
121 & &$^3A_u(n,\pis)$ &V &97.6 &2.49 &\Y &3.06 &2.41 &2.12 &2.57 &2.55\\
|
||||
122 & &$^3B_g(n,\pis)$ &V &97.4 &3.89 &\Y &4.61 &3.90 &3.53 &4.04 &4.01\\
|
||||
123 & &$^3B_u(\pi,\pis)$ &V &98.5 &5.15 &\Y &5.46 &5.14 &4.91 &5.17 &5.14\\
|
||||
124 & &$^3A_g(\pi,\pis)$ &V &98.8 &6.30 &\Y &6.69 &6.32 &6.02 &6.33 &6.27\\
|
||||
125 &Imidazole &$^1A''(\pi,3s)$ &R &93.0 &5.70 &\Y &5.04 &5.88 &5.66 &5.74 &5.68\\
|
||||
126 & &$^1A'(\pi,3p)$ &R &90.0 &6.41 &\Y &6.18 &6.69 &6.45 &6.61 &6.56\\
|
||||
127 & &$^1A''(\pi,3p)$ &R &93.6 &6.50 &\Y &5.43 &6.57 &6.47 &6.47 &6.44\\
|
||||
128 & &$^1A''(n,\pis)$ &V &89.0 &6.71 &\Y &7.13 &6.94 &6.57 &6.92 &6.85\\
|
||||
129 & &$^1A'(\pi,\pis)$ &V &88.9 &6.86 &\Y &6.73 &6.88 &6.46 &6.89 &6.83\\
|
||||
130 & &$^1A'(n,3s)$ &R &89.0 &7.00 &\Y &6.36 &7.10 &6.91 &7.09 &7.07\\
|
||||
131 & &$^3A'(\pi,\pis)$ &V &98.3 &4.73 &\Y &4.55 &4.78 &4.53 &4.73 &4.68\\
|
||||
132 & &$^3A''(\pi,3s)$ &R &97.6 &5.66 &\Y &5.03 &5.86 &5.63 &5.72 &5.66\\
|
||||
133 & &$^3A'(\pi,\pis)$ &V &97.9 &5.74 &\Y &5.69 &5.85 &5.48 &5.80 &5.72\\
|
||||
134 & &$^3A''(n,\pis)$ &V &97.3 &6.31 &\Y &6.58 &6.44 &6.10 &6.43 &6.37\\
|
||||
135 &Isobutene &$^1B_1(\pi,3s)$ &R &94.1 &6.46 &\Y &6.21 &6.74 &6.59 &6.64 &6.57\\
|
||||
136 & &$^1A_1(\pi,3p)$ &R &94.2 &7.01 &\Y &6.90 &7.32 &7.14 &7.24 &7.18\\
|
||||
137 & &$^3A_1(\pi,\pis)$ &V &98.9 &4.53 &\Y &4.66 &4.59 &4.41 &4.58 &4.53\\
|
||||
138 &Ketene &$^1A_2(\pi,\pis)$ &V &91.0 &3.86 &\Y &3.98 &3.92 &3.70 &3.90 &3.85\\
|
||||
139 & &$^1B_1(\pi,3s)$ &R &93.9 &6.01 &\Y &5.22 &5.99 &5.79 &6.00 &5.97\\
|
||||
140 & &$^1A_2(\pi,3p)$ &R &94.4 &7.18 &\Y &6.38 &7.25 &7.05 &7.19 &7.15\\
|
||||
141 & &$^1A_1(\pi,\pis)$ &V &92.4 &7.25 &\Y & & &&&\\
|
||||
142 & &$^3A_2(\pi,\pis)$ &V &91.0 &3.77 &\Y &3.92 &3.81 &3.59 &3.79 &3.74\\
|
||||
143 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.61 &\Y &5.79 &5.65 &5.43 &5.63 &5.59\\
|
||||
144 & &$^3B_1(\pi,3s)$ &R &98.1 &5.79 &\Y &5.05 &5.79 &5.60 &5.80 &5.77\\
|
||||
145 & &$^3A_2(\pi,3p)$ &R &94.4 &7.12 &\Y &6.35 &7.22 &7.01 &7.15 &7.11\\
|
||||
146 & &$^1A''[F](\pi,\pis)$ &V &87.9 &1.00 &\Y &0.95 &1.05 &0.88 &1.00 &0.95\\
|
||||
147 &Methylenecyclopropene&$^1B_2(\pi,\pis)$ &V &85.4 &4.28 &\Y &4.47 &4.40 &4.12 &4.39 &4.33\\
|
||||
148 & &$^1B_1(\pi,3s)$ &R &93.6 &5.44 &\Y &4.92 &5.57 &5.44 &5.46 &5.41\\
|
||||
149 & &$^1A_2(\pi,3p)$ &R &93.3 &5.96 &\Y &5.37 &6.09 &5.97 &5.97 &5.92\\
|
||||
150 & &$^1A_1(\pi,\pis)$ &V &92.8 &6.12 &\N &5.37 &6.26 &6.16 &6.17 &6.13\\
|
||||
151 & &$^3B_2(\pi,\pis)$ &V &97.2 &3.49 &\Y &3.44 &3.57 &3.34 &3.55 &3.49\\
|
||||
152 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.74 &\Y &4.60 &4.82 &4.58 &4.77 &4.72\\
|
||||
153 &Nitrosomethane &$^1A''(n,\pis)$ &V &93.0 &1.96 &\Y &2.12 &1.84 &1.60 &1.94 &1.91\\
|
||||
154 & &$^1A'(\text{double})$ &V &2.5 &4.76 &\Y &4.74 &4.69 &4.67 &4.71 &4.71\\
|
||||
155 & &$^1A'(n,3s)$ &R &90.8 &6.29 &\Y &5.87 &6.32 &6.07 &6.34 &6.31\\
|
||||
156 & &$^3A''(n,\pis)$ &V &98.4 &1.16 &\Y &1.31 &1.00 &0.75 &1.12 &1.09\\
|
||||
157 & &$^3A'(\pi,\pis)$ &V &98.9 &5.60 &\Y &5.52 &5.52 &5.37 &5.54 &5.50\\
|
||||
158 & &$^1A''[F](n,\pis)$ &V &92.7 &1.67 &\Y &1.83 &1.55 &1.32 &1.66 &1.62\\
|
||||
159 &Propynal &$^1A''(n,\pis)$ &V &89.0 &3.80 &\Y &4.00 &3.92 &3.64 &3.90 &3.86\\
|
||||
160 & &$^1A''(\pi,\pis)$ &V &92.9 &5.54 &\Y &6.62 &5.82 &5.49 &5.81 &5.72\\
|
||||
161 & &$^3A''(n,\pis)$ &V &97.4 &3.47 &\Y &3.52 &3.48 &3.26 &3.52 &3.50\\
|
||||
162 & &$^3A'(\pi,\pis)$ &V &98.3 &4.47 &\Y &4.69 &4.59 &4.30 &4.59 &4.54\\
|
||||
163 &Pyrazine &$^1B_{3u}(n,\pis)$ &V &90.1 &4.15 &\Y &4.76 &4.09 &3.66 &4.31 &4.30\\
|
||||
164 & &$^1A_u(n,\pis)$ &V &88.6 &4.98 &\Y &5.90 &4.76 &4.26 &5.10 &5.10\\
|
||||
165 & &$^1B_{2u}(\pi,\pis)$ &V &86.9 &5.02 &\Y &4.97 &5.13 &4.65 &5.09 &5.03\\
|
||||
166 & &$^1B_{2g}(n,\pis)$ &V &85.6 &5.71 &\Y &5.80 &5.68 &5.27 &5.73 &5.70\\
|
||||
167 & &$^1A_g(n,3s)$ &R &91.1 &6.65 &\Y &6.69 &6.66 &6.27 &6.81 &6.80\\
|
||||
168 & &$^1B_{1g}(n,\pis)$ &V &84.2 &6.74 &\Y &7.16 &6.61 &6.07 &6.78 &6.76\\
|
||||
169 & &$^1B_{1u}(\pi,\pis)$ &V &92.8 &6.88 &\Y &8.04 &7.14 &6.72 &7.20 &7.12\\
|
||||
170 & &$^1B_{1g}(\pi,3s)$ &R &93.8 &7.21 &\Y &6.73 &7.41 &7.27 &7.24 &7.18\\
|
||||
171 & &$^1B_{2u}(n,3p)$ &R &90.8 &7.24 &\Y &7.49 &7.34 &6.93 &7.43 &7.40\\
|
||||
172 & &$^1B_{1u}(n,3p)$ &R &91.4 &7.44 &\Y &7.83 &7.55 &7.08 &7.64 &7.59\\
|
||||
173 & &$^1B_{1u}(\pi,\pis)$ &V &90.5 &7.98 &\N &9.65 &8.59 &7.96 &8.68 &8.57\\
|
||||
174 & &$^1A_g(\text{double})$ &V &12.0 &8.04 &\N & & &&&\\
|
||||
175 & &$^1A_g(\pi,\pis)$ &V &71.0 &8.69 &\N & & &&&\\
|
||||
176 & &$^3B_{3u}(n,\pis)$ &V &97.3 &3.59 &\Y &4.16 &3.49 &3.08 &3.72 &3.71\\
|
||||
177 & &$^3B_{1u}(\pi,\pis)$ &V &98.5 &4.35 &\Y &3.98 &4.44 &4.15 &4.34 &4.28\\
|
||||
178 & &$^3B_{2u}(\pi,\pis)$ &V &97.6 &4.39 &\Y &4.62 &4.44 &4.09 &4.47 &4.41\\
|
||||
179 & &$^3A_u(n,\pis)$ &V &96.1 &4.93 &\Y &5.85 &4.73 &4.21 &5.07 &5.07\\
|
||||
180 & &$^3B_{2g}(n,\pis)$ &V &97.0 &5.08 &\Y &5.25 &5.04 &4.66 &5.14 &5.11\\
|
||||
181 & &$^3B_{1u}(\pi,\pis)$ &V &97.0 &5.28 &\Y &5.15 &5.29 &4.92 &5.25 &5.19\\
|
||||
182 &Pyridazine &$^1B_1(n,\pis)$ &V &89.0 &3.83 &\Y &4.29 &3.74 &3.36 &3.94 &3.92\\
|
||||
183 & &$^1A_2(n,\pis)$ &V &86.9 &4.37 &\Y &4.83 &4.29 &3.87 &4.49 &4.48\\
|
||||
184 & &$^1A_1(\pi,\pis)$ &V &85.8 &5.26 &\Y &5.12 &5.34 &4.87 &5.30 &5.25\\
|
||||
185 & &$^1A_2(n,\pis)$ &V &86.2 &5.72 &\Y &6.26 &5.73 &5.19 &5.93 &5.89\\
|
||||
186 & &$^1B_2(n,3s)$ &R &88.5 &6.17 &\Y &5.99 &6.18 &5.90 &6.28 &6.27\\
|
||||
187 & &$^1B_1(n,\pis)$ &V &87.0 &6.37 &\Y &7.16 &6.50 &5.94 &6.72 &6.67\\
|
||||
188 & &$^1B_2(\pi,\pis)$ &V &90.6 &6.75 &\Y &7.54 &7.26 &6.82 &7.25 &7.17\\
|
||||
189 & &$^3B_1(n,\pis)$ &V &97.1 &3.19 &\Y &3.60 &3.08 &2.72 &3.29 &3.28\\
|
||||
190 & &$^3A_2(n,\pis)$ &V &96.1 &4.11 &\Y &4.49 &4.01 &3.59 &4.20 &4.18\\
|
||||
191 & &$^3B_2(\pi,\pis)$ &V &98.5 &4.34 &\N &3.93 &4.44 &4.13 &4.30 &4.24\\
|
||||
192 & &$^3A_1(\pi,\pis)$ &V &97.3 &4.82 &\Y &4.93 &4.87 &4.48 &4.89 &4.83\\
|
||||
193 &Pyridine &$^1B_1(n,\pis)$ &V &88.4 &4.95 &\Y &5.43 &5.15 &4.81 &5.18 &5.13\\
|
||||
194 & &$^1B_2(\pi,\pis)$ &V &86.5 &5.14 &\Y &5.03 &5.18 &4.76 &5.15 &5.09\\
|
||||
195 & &$^1A_2(n,\pis)$ &V &87.9 &5.40 &\Y &6.30 &5.46 &5.03 &5.63 &5.59\\
|
||||
196 & &$^1A_1(\pi,\pis)$ &V &92.1 &6.62 &\Y &7.90 &6.92 &6.27 &7.04 &6.93\\
|
||||
197 & &$^1A_1(n,3s)$ &R &89.7 &6.76 &\Y &6.40 &6.90 &6.67 &6.97 &6.96\\
|
||||
198 & &$^1A_2(\pi,3s)$ &R &93.2 &6.82 &\Y &6.60 &7.08 &6.87 &6.88 &6.80\\
|
||||
199 & &$^1B_1(\pi,3p)$ &R &93.6 &7.38 &\Y &7.12 &7.70 &7.51 &7.48 &7.40\\
|
||||
200 & &$^1A_1(\pi,\pis)$ &V &90.5 &7.39 &\Y &9.49 &7.66 &6.63 &7.87 &7.70\\
|
||||
201 & &$^1B_2(\pi,\pis)$ &V &90.0 &7.40 &\N &7.45 &7.92 &7.67 &7.80 &7.73\\
|
||||
202 & &$^3A_1(\pi,\pis)$ &V &98.5 &4.30 &\Y &3.98 &4.40 &4.06 &4.29 &4.22\\
|
||||
203 & &$^3B_1(n,\pis)$ &V &97.0 &4.46 &\Y &4.65 &4.48 &4.21 &4.57 &4.55\\
|
||||
204 & &$^3B_2(\pi,\pis)$ &V &97.3 &4.79 &\Y &4.83 &4.86 &4.53 &4.81 &4.74\\
|
||||
205 & &$^3A_1(\pi,\pis)$ &V &97.1 &5.04 &\Y &5.11 &5.09 &4.63 &5.09 &5.02\\
|
||||
206 & &$^3A_2(n,\pis)$ &V &95.8 &5.36 &\Y &5.94 &5.33 &4.96 &5.53 &5.51\\
|
||||
207 & &$^3B_2(\pi,\pis)$ &V &97.7 &6.24 &\Y &6.93 &6.40 &5.99 &6.43 &6.35\\
|
||||
208 &Pyrimidine &$^1B_1(n,\pis)$ &V &88.6 &4.44 &\Y &4.85 &4.44 &4.07 &4.58 &4.55\\
|
||||
209 & &$^1A_2(n,\pis)$ &V &88.5 &4.85 &\Y &5.52 &4.80 &4.36 &5.02 &5.00\\
|
||||
210 & &$^1B_2(\pi,\pis)$ &V &86.3 &5.38 &\Y &5.28 &5.42 &4.98 &5.41 &5.36\\
|
||||
211 & &$^1A_2(n,\pis)$ &V &86.7 &5.92 &\Y &6.70 &5.92 &5.32 &6.16 &6.10\\
|
||||
212 & &$^1B_1(n,\pis)$ &V &86.7 &6.26 &\Y &7.20 &6.31 &5.65 &6.58 &6.53\\
|
||||
213 & &$^1B_2(n,3s)$ &R &90.3 &6.70 &\Y &6.86 &6.85 &6.50 &6.89 &6.86\\
|
||||
214 & &$^1A_1(\pi,\pis)$ &V &91.5 &6.88 &\Y &7.69 &7.31 &6.94 &7.29 &7.22\\
|
||||
215 & &$^3B_1(n,\pis)$ &V &96.8 &4.09 &\Y &4.45 &4.05 &3.67 &4.20 &4.18\\
|
||||
216 & &$^3A_1(\pi,\pis)$ &V &98.3 &4.51 &\N &4.22 &4.57 &4.25 &4.51 &4.44\\
|
||||
217 & &$^3A_2(n,\pis)$ &V &96.5 &4.66 &\Y &5.20 &4.63 &4.16 &4.81 &4.78\\
|
||||
218 & &$^3B_2(\pi,\pis)$ &V &97.4 &4.96 &\Y &5.10 &5.01 &4.60 &5.03 &4.97\\
|
||||
219 &Pyrrole &$^1A_2(\pi,3s)$ &R &92.9 &5.24 &\Y &4.49 &5.44 &5.23 &5.28 &5.23\\
|
||||
220 & &$^1B_1(\pi,3p)$ &R &92.4 &6.00 &\Y &5.22 &6.26 &6.07 &6.08 &6.02\\
|
||||
221 & &$^1A_2(\pi,3p)$ &R &93.0 &6.00 &\Y &4.89 &6.16 &6.02 &6.01 &5.97\\
|
||||
222 & &$^1B_2(\pi,\pis)$ &V &92.5 &6.26 &\Y &7.73 &6.62 &6.36 &6.45 &6.38\\
|
||||
223 & &$^1A_1(\pi,\pis)$ &V &86.3 &6.30 &\Y &6.47 &6.41 &5.84 &6.43 &6.34\\
|
||||
224 & &$^1B_2(\pi,3p)$ &R &92.6 &6.83 &\Y &5.82 &6.75 &6.11 &6.92 &6.82\\
|
||||
225 & &$^3B_2(\pi,\pis)$ &V &98.3 &4.51 &\Y &4.24 &4.57 &4.30 &4.49 &4.44\\
|
||||
226 & &$^3A_2(\pi,3s)$ &R &97.6 &5.21 &\Y &4.47 &5.41 &5.21 &5.26 &5.20\\
|
||||
227 & &$^3A_1(\pi,\pis)$ &V &97.8 &5.45 &\Y &5.52 &5.50 &5.04 &5.49 &5.40\\
|
||||
228 & &$^3B_1(\pi,3p)$ &R &97.4 &5.91 &\Y &5.18 &6.22 &6.03 &6.04 &5.98\\
|
||||
229 &Streptocyanine-C1 &$^1B_2(\pi,\pis)$ &V &88.7 &7.13 &\Y &7.82 &7.17 &6.76 &7.28 &7.21\\
|
||||
230 & &$^3B_2(\pi,\pis)$ &V &98.3 &5.52 &\Y &5.86 &5.49 &5.22 &5.54 &5.49\\
|
||||
231 &Tetrazine &$^1B_{3u}(n,\pis)$ &V &89.8 &2.47 &\Y &2.99 &2.31 &1.91 &2.54 &2.53\\
|
||||
232 & &$^1A_u(n,\pis)$ &V &87.9 &3.69 &\Y &4.37 &3.49 &3.00 &3.77 &3.78\\
|
||||
233 & &$^1A_g(\text{double})$ &V &0.7 &4.61 &\N &5.42 &4.69 &4.48 &4.85 &4.87\\
|
||||
234 & &$^1B_{1g}(n,\pis)$ &V &83.1 &4.93 &\Y &5.41 &4.83 &4.33 &5.02 &5.00\\
|
||||
235 & &$^1B_{2u}(\pi,\pis)$ &V &85.4 &5.21 &\Y &5.04 &5.31 &4.84 &5.26 &5.23\\
|
||||
236 & &$^1B_{2g}(n,\pis)$ &V &81.7 &5.45 &\Y &5.43 &5.38 &4.90 &5.42 &5.38\\
|
||||
237 & &$^1A_u(n,\pis)$ &V &87.7 &5.53 &\Y &6.37 &5.51 &4.92 &5.80 &5.80\\
|
||||
238 & &$^1B_{3g}(\text{double})$ &V &0.7 &6.15 &\N &6.59 &5.85 &5.22 &6.20 &6.22\\
|
||||
239 & &$^1B_{2g}(n,\pis)$ &V &80.2 &6.12 &\Y &6.79 &5.96 &5.18 &6.27 &6.28\\
|
||||
240 & &$^1B_{1g}(n,\pis)$ &V &85.1 &6.91 &\Y &7.18 &6.59 &5.89 &6.79 &6.72\\
|
||||
241 & &$^3B_{3u}(n,\pis)$ &V &97.1 &1.85 &\Y &2.38 &1.70 &1.31 &1.94 &1.93\\
|
||||
242 & &$^3A_u(n,\pis)$ &V &96.3 &3.45 &\Y &4.06 &3.26 &2.78 &3.52 &3.52\\
|
||||
243 & &$^3B_{1g}(n,\pis)$ &V &97.0 &4.20 &\Y &4.66 &4.10 &3.62 &4.32 &4.30\\
|
||||
244 & &$^1B_{1u}(\pi,\pis)$ &V &98.5 &4.49 &\N &3.90 &4.55 &4.29 &4.39 &4.34\\
|
||||
245 & &$^3B_{2u}(\pi,\pis)$ &V &97.5 &4.52 &\Y &4.68 &4.55 &4.20 &4.60 &4.55\\
|
||||
246 & &$^3B_{2g}(n,\pis)$ &V &96.4 &5.04 &\Y &5.17 &5.02 &4.53 &5.10 &5.07\\
|
||||
247 & &$^3A_u(n,\pis)$ &V &96.6 &5.11 &\Y &6.12 &5.07 &4.44 &5.41 &5.41\\
|
||||
248 & &$^3B_{3g}(\text{double})$ &V &5.7 &5.51 &\N &6.56 &5.39 &4.86 &5.83 &5.85\\
|
||||
249 & &$^3B_{1u}(\pi,\pis)$ &V &96.6 &5.42 &\Y &5.32 &5.46 &5.08 &5.44 &5.39\\
|
||||
250 &Thioacetone &$^1A_2(n,\pis)$ &V &88.9 &2.53 &\Y &2.72 &2.58 &2.33 &2.60 &2.53\\
|
||||
251 & &$^1B_2(n,3s)$ &R &91.3 &5.56 &\Y &4.80 &5.60 &5.48 &5.64 &5.61\\
|
||||
252 & &$^1A_1(\pi,\pis)$ &V &90.6 &5.88 &\Y &6.94 &6.42 &5.98 &6.40 &6.26\\
|
||||
253 & &$^1B_2(n,3p)$ &R &92.4 &6.51 &\Y &5.57 &6.51 &6.40 &6.53 &6.49\\
|
||||
254 & &$^1A_1(n,3p)$ &R &91.6 &6.61 &\Y &6.24 &6.66 &6.41 &6.59 &6.50\\
|
||||
255 & &$^3A_2(n,\pis)$ &V &97.4 &2.33 &\Y &2.52 &2.34 &2.09 &2.38 &2.31\\
|
||||
256 & &$^3A_1(\pi,\pis)$ &V &98.7 &3.45 &\Y &3.52 &3.48 &3.29 &3.48 &3.43\\
|
||||
257 &Thiophene &$^1A_1(\pi,\pis)$ &V &87.6 &5.64 &\Y &6.11 &5.84 &5.21 &5.89 &5.79\\
|
||||
258 & &$^1B_2(\pi,\pis)$ &V &91.5 &5.98 &\Y &6.94 &6.35 &5.89 &6.44 &6.35\\
|
||||
259 & &$^1A_2(\pi,3s)$ &R &92.6 &6.14 &\Y &5.70 &6.28 &6.07 &6.16 &6.10\\
|
||||
260 & &$^1B_1(\pi,3p)$ &R &90.1 &6.14 &\Y &6.02 &6.21 &5.90 &6.16 &6.10\\
|
||||
261 & &$^1A_2(\pi,3p)$ &R &91.8 &6.21 &\Y &6.05 &6.32 &5.98 &6.28 &6.21\\
|
||||
262 & &$^1B_1(\pi,3s)$ &R &92.8 &6.49 &\Y &5.78 &6.57 &6.28 &6.51 &6.44\\
|
||||
263 & &$^1B_2(\pi,3p)$ &R &92.4 &7.29 &\Y &6.80 &7.29 &7.03 &7.20 &7.13\\
|
||||
264 & &$^1A_1(\pi,\pis)$ &V &86.5 &7.31 &\N &8.29 &7.62 &6.85 &7.71 &7.56\\
|
||||
265 & &$^3B_2(\pi,\pis)$ &V &98.2 &3.92 &\Y &3.68 &3.98 &3.71 &3.90 &3.84\\
|
||||
266 & &$^3A_1(\pi,\pis)$ &V &97.7 &4.76 &\Y &4.97 &4.85 &4.39 &4.87 &4.79\\
|
||||
267 & &$^3B_1(\pi,3p)$ &R &96.6 &5.93 &\Y &5.86 &5.97 &5.64 &5.94 &5.88\\
|
||||
268 & &$^3A_2(\pi,3s)$ &R &97.5 &6.08 &\Y &5.65 &6.22 &6.01 &6.11 &6.04\\
|
||||
269 &Thiopropynal &$^1A''(n,\pis)$ &V &87.5 &2.03 &\Y &2.06 &2.05 &1.84 &2.05 &2.00\\
|
||||
270 & &$^3A''(n,\pis)$ &V &97.2 &1.80 &\Y &1.85 &1.81 &1.60 &1.84 &1.79\\
|
||||
271 &Triazine &$^1A_1''(n,\pis)$ &V &88.3 &4.72 &\Y &5.88 &4.62 &3.90 &5.00 &4.99\\
|
||||
272 & &$^1A_2''(n,\pis)$ &V &88.3 &4.75 &\Y &5.14 &4.77 &4.39 &4.90 &4.87\\
|
||||
273 & &$^1E''(n,\pis)$ &V &88.3 &4.78 &\Y &5.51 &4.76 &4.14 &5.01 &4.98\\
|
||||
274 & &$^1A_2'(\pi,\pis)$ &V &85.7 &5.75 &\Y &5.55 &5.76 &5.32 &5.75 &5.72\\
|
||||
275 & &$^1A_1'(\pi,\pis)$ &V &90.4 &7.24 &\Y &8.20 &7.43 &6.89 &7.50 &7.41\\
|
||||
276 & &$^1E'(n,3s)$ &R &90.9 &7.32 &\Y &7.40 &7.48 &7.15 &7.53 &7.49\\
|
||||
277 & &$^1E''(n,\pis)$ &V &82.6 &7.78 &\Y &8.26 &7.75 &7.04 &7.92 &7.90\\
|
||||
278 & &$^1E'(\pi,\pis)$ &V &90.0 &7.94 &\Y &10.03 &8.65 &7.70 &8.83 &8.72\\
|
||||
279 & &$^3A_2''(n,\pis)$ &V &96.7 &4.33 &\Y &4.74 &4.37 &3.99 &4.51 &4.49\\
|
||||
280 & &$^3E''(n,\pis)$ &V &96.6 &4.51 &\Y &5.14 &4.47 &3.88 &4.71 &4.68\\
|
||||
281 & &$^3A_1''(n,\pis)$ &V &96.2 &4.73 &\Y &5.88 &4.70 &3.94 &5.06 &5.04\\
|
||||
282 & &$^3A_1'(\pi,\pis)$ &V &98.2 &4.85 &\Y &4.46 &4.88 &4.55 &4.81 &4.75\\
|
||||
283 & &$^3E'(\pi,\pis)$ &V &96.9 &5.59 &\Y &5.57 &5.62 &5.20 &5.62 &5.57\\
|
||||
284 & &$^3A_2'(\pi,\pis)$ &V &97.6 &6.62 &\Y &7.70 &6.62 &6.12 &6.76 &6.68\\
|
||||
25 & &$^3B_{1u}(\pi,\pis)$ &V &98.6 &4.16 &\Y &3.85 &4.22 &3.92 &4.14 &4.08\\
|
||||
26 & &$^3E_{1u}(\pi,\pis)$ &V &97.1 &4.85 &\Y &4.85 &4.89 &4.51 &4.87 &4.80\\
|
||||
27 & &$^3B_{2u}(\pi,\pis)$ &V &98.1 &5.81 &\Y &6.75 &5.85 &5.40 &5.90 &5.81\\
|
||||
28 &Butadiene &$^1B_u(\pi,\pis)$ &V &93.3 &6.22 &\Y &6.65 &6.76 &6.52 &6.72 &6.65\\
|
||||
29 & &$^1B_g(\pi,3s)$ &R &94.1 &6.33 &\Y &5.94 &6.49 &6.32 &6.43 &6.38\\
|
||||
30 & &$^1A_g(\pi,\pis)$ &V &75.1 &6.50 &\Y &6.99 &6.74 &6.30 &6.73 &6.66\\
|
||||
31 & &$^1A_u(\pi,3p)$ &R &94.1 &6.64 &\Y &5.95 &6.74 &6.64 &6.70 &6.67\\
|
||||
32 & &$^1A_u(\pi,3p)$ &R &94.1 &6.80 &\Y &6.12 &6.95 &6.84 &6.90 &6.86\\
|
||||
33 & &$^1B_u(\pi,3p)$ &R &93.8 &7.68 &\Y &7.93 &7.60 &7.30 &7.62 &7.54\\
|
||||
34 & &$^3B_u(\pi,\pis)$ &V &98.4 &3.36 &\Y &3.55 &3.40 &3.19 &3.40 &3.35\\
|
||||
35 & &$^3A_g(\pi,\pis)$ &V &98.7 &5.20 &\Y &5.52 &5.32 &4.93 &5.29 &5.19\\
|
||||
36 & &$^3B_g(\pi,3s)$ &R &97.9 &6.29 &\Y &5.89 &6.44 &6.27 &6.38 &6.33\\
|
||||
37 &Carbon trimer &$^1\Delta_g(\text{double})$&V &1.0 &5.22 &\Y &4.98 &5.08 &4.85 &5.20 &5.19\\
|
||||
38 & &$^1\Sigma^+_g(\text{double})$&V&1.0 &5.91 &\Y &5.84 &5.82 &5.58 &5.92 &5.89\\
|
||||
39 &Cyanoacetylene &$^1\Sigma^-(\pi,\pis)$ &V &94.3 &5.80 &\Y &6.54 &5.85 &5.47 &5.89 &5.81\\
|
||||
40 & &$^1\Delta(\pi,\pis)$ &V &94.0 &6.07 &\Y &6.80 &6.13 &5.78 &6.17 &6.09\\
|
||||
41 & &$^3\Sigma^+(\pi,\pis)$ &V &98.5 &4.44 &\Y &4.86 &4.45 &4.04 &4.52 &4.45\\
|
||||
42 & &$^3\Delta(\pi,\pis)$ &V &98.2 &5.21 &\Y &5.64 &5.21 &4.86 &5.26 &5.19\\
|
||||
43 & &$^1A''[F](\pi,\pis)$ &V &93.6 &3.54 &\Y &4.30 &3.67 &3.47 &3.64 &3.58\\
|
||||
44 &Cyanoformaldehyde &$^1A''(n,\pis)$ &V &89.8 &3.81 &\Y &4.02 &3.98 &3.67 &3.94 &3.89\\
|
||||
45 & &$^1A''(\pi,\pis)$ &V &91.9 &6.46 &\Y &7.61 &6.79 &6.43 &6.77 &6.67\\
|
||||
46 & &$^3A''(n,\pis)$ &V &97.6 &3.44 &\Y &3.52 &3.46 &3.25 &3.51 &3.50\\
|
||||
47 & &$^3A'(\pi,\pis)$ &V &98.4 &5.01 &\Y &4.98 &5.25 &5.03 &5.16 &5.12\\
|
||||
48 &Cyanogen &$^1\Sigma_u^-(\pi,\pis)$ &V &94.1 &6.39 &\Y &7.14 &6.40 &6.03 &6.46 &6.39\\
|
||||
49 & &$^1\Delta_u(\pi,\pis)$ &V &93.4 &6.66 &\Y &7.46 &6.70 &6.35 &6.75 &6.68\\
|
||||
50 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.91 &\Y &5.28 &4.85 &4.46 &4.95 &4.89\\
|
||||
51 & &$^1\Sigma_u^-[F](\pi,\pis)$&V &93.4 &5.05 &\Y &5.68 &5.07 &4.75 &5.11 &5.04\\
|
||||
52 &Cyclopentadiene &$^1B_2(\pi,\pis)$ &V &93.8 &5.56 &\Y &6.71 &5.96 &5.62 &6.06 &5.99\\
|
||||
53 & &$^1A_2(\pi,3s)$ &R &94.0 &5.78 &\Y &5.21 &5.88 &5.78 &5.81 &5.77\\
|
||||
54 & &$^1B_1(\pi,3p)$ &R &94.2 &6.41 &\Y &6.08 &6.59 &6.44 &6.47 &6.41\\
|
||||
55 & &$^1A_2(\pi,3p)$ &R &93.8 &6.46 &\Y &5.78 &6.55 &6.46 &6.45 &6.41\\
|
||||
56 & &$^1B_2(\pi,3p)$ &R &94.2 &6.56 &\Y &6.16 &6.72 &6.56 &6.61 &6.54\\
|
||||
57 & &$^1A_1(\pi,\pis)$ &V &78.9 &6.52 &\N &6.49 &6.63 &6.13 &6.59 &6.50\\
|
||||
58 & &$^3B_2(\pi,\pis)$ &V &98.4 &3.31 &\Y &3.26 &3.34 &3.09 &3.31 &3.26\\
|
||||
59 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.11 &\Y &4.92 &5.14 &4.78 &5.10 &5.03\\
|
||||
60 & &$^3A_2(\pi,3s)$ &R &97.9 &5.73 &\Y &5.53 &5.91 &5.74 &5.81 &5.75\\
|
||||
61 & &$^3B_1(\pi,3p)$ &R &97.9 &6.36 &\Y &6.05 &6.56 &6.40 &6.43 &6.37\\
|
||||
62 &Cyclopropene &$^1B_1(\sig,\pis)$ &V &92.8 &6.68 &\Y &7.48 &6.86 &6.58 &6.85 &6.77\\
|
||||
63 & &$^1B_2(\pi,\pis)$ &V &95.1 &6.79 &\Y &7.47 &6.89 &6.47 &6.96 &6.87\\
|
||||
64 & &$^3B_2(\pi,\pis)$ &V &98.0 &4.38 &\Y &4.60 &4.47 &4.27 &4.46 &4.40\\
|
||||
65 & &$^3B_1(\sig,\pis)$ &V &98.9 &6.45 &\Y &7.08 &6.56 &6.32 &6.55 &6.47\\
|
||||
66 &Cyclopropenethione &$^1A_2(n,\pis)$ &V &89.6 &3.41 &\Y &3.44 &3.43 &3.14 &3.46 &3.40\\
|
||||
67 & &$^1B_1(n,\pis)$ &V &84.8 &3.45 &\Y &3.57 &3.45 &3.17 &3.52 &3.46\\
|
||||
68 & &$^1B_2(\pi,\pis)$ &V &83.0 &4.60 &\Y &4.51 &4.64 &4.35 &4.66 &4.61\\
|
||||
69 & &$^1B_2(n,3s)$ &R &91.8 &5.34 &\Y &4.59 &5.25 &5.15 &5.25 &5.22\\
|
||||
70 & &$^1A_1(\pi,\pis)$ &V &89.0 &5.46 &\Y &6.46 &5.84 &5.32 &5.88 &5.75\\
|
||||
71 & &$^1B_2(n,3p)$ &R &91.3 &5.92 &\Y &5.27 &5.93 &5.86 &5.92 &5.90\\
|
||||
72 & &$^3A_2(n,\pis)$ &V &97.2 &3.28 &\Y &3.26 &3.28 &3.00 &3.33 &3.28\\
|
||||
73 & &$^3B_1(n,\pis)$ &V &94.5 &3.32 &\Y &3.51 &3.35 &3.07 &3.42 &3.36\\
|
||||
74 & &$^3B_2(\pi,\pis)$ &V &96.5 &4.01 &\Y &3.80 &3.97 &3.75 &3.99 &3.95\\
|
||||
75 & &$^3A_1(\pi,\pis)$ &V &98.2 &4.01 &\Y &3.83 &4.01 &3.77 &4.00 &3.95\\
|
||||
76 &Cyclopropenone &$^1B_1(n,\pis)$ &V &87.7 &4.26 &\Y &4.92 &4.12 &3.75 &4.40 &4.38\\
|
||||
77 & &$^1A_2(n,\pis)$ &V &91.0 &5.55 &\Y &5.64 &5.62 &5.31 &5.67 &5.64\\
|
||||
78 & &$^1B_2(n,3s)$ &R &90.8 &6.34 &\Y &5.68 &6.28 &6.21 &6.41 &6.44\\
|
||||
79 & &$^1B_2(\pi,\pis)$ &V &86.5 &6.54 &\Y &6.40 &6.54 &6.20 &6.63 &6.62\\
|
||||
80 & &$^1B_2(n,3p)$ &R &91.1 &6.98 &\Y &6.35 &6.84 &6.70 &6.99 &7.01\\
|
||||
81 & &$^1A_1(n,3p)$ &R &91.2 &7.02 &\Y &6.84 &7.27 &7.03 &7.26 &7.24\\
|
||||
82 & &$^1A_1(\pi,\pis)$ &V &90.8 &8.28 &\Y &10.42 &8.96 &8.11 &9.21 &9.07\\
|
||||
83 & &$^3B_1(n,\pis)$ &V &96.0 &3.93 &\Y &4.72 &3.65 &3.28 &4.00 &3.98\\
|
||||
84 & &$^3B_2(\pi,\pis)$ &V &97.9 &4.88 &\Y &4.39 &4.76 &4.60 &4.76 &4.74\\
|
||||
85 & &$^3A_2(n,\pis)$ &V &97.5 &5.35 &\Y &5.40 &5.36 &5.06 &5.44 &5.42\\
|
||||
86 & &$^3A_1(\pi,\pis)$ &V &98.1 &6.79 &\Y &6.59 &6.93 &6.61 &6.86 &6.82\\
|
||||
87 &Diacetylene &$^1\Sigma_u^-(\pi,\pis)$ &V &94.4 &5.33 &\Y &6.13 &5.42 &5.01 &5.45 &5.36\\
|
||||
88 & &$^1\Delta_u(\pi,\pis)$ &V &94.1 &5.61 &\Y &6.39 &5.68 &5.30 &5.72 &5.63\\
|
||||
89 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.10 &\Y &4.54 &4.11 &3.67 &4.17 &4.09\\
|
||||
90 & &$^3\Delta_u(\pi,\pis)$ &V &98.2 &4.78 &\Y &5.28 &4.82 &4.45 &4.86 &4.78\\
|
||||
91 &Diazomethane &$^1A_2(\pi,\pis)$ &V &90.1 &3.14 &\Y &3.27 &3.13 &2.92 &3.09 &3.04\\
|
||||
92 & &$^1B_1(\pi,3s)$ &R &93.8 &5.54 &\Y &4.59 &5.50 &5.30 &5.48 &5.45\\
|
||||
93 & &$^1A_1(\pi,\pis)$ &V &91.4 &5.90 &\Y &5.65 &6.21 &5.92 &6.18 &6.13\\
|
||||
94 & &$^3A_2(\pi,\pis)$ &V &97.7 &2.79 &\Y &3.02 &2.87 &2.67 &2.84 &2.79\\
|
||||
95 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.05 &\Y &4.27 &4.10 &3.88 &4.06 &4.01\\
|
||||
96 & &$^3B_1(\pi,3s)$ &R &98.0 &5.35 &\Y &4.45 &5.34 &5.15 &5.33 &5.30\\
|
||||
97 & &$^3A_1(\pi,3p)$ &R &98.5 &6.82 &\Y &6.34 &7.00 &6.76 &6.96 &6.91\\
|
||||
98 & &$^1A''[F](\pi,\pis)$ &V &87.4 &0.71 &\Y &0.72 &0.69 &0.52 &0.66 &0.62\\
|
||||
99 &Formamide &$^1A''(n,\pis)$ &V &90.8 &5.65 &\Y &5.95 &5.66 &5.45 &5.71 &5.67\\
|
||||
100 & &$^1A'(n,3s)$ &R &88.6 &6.77 &\Y &6.17 &6.80 &6.64 &6.82 &6.81\\
|
||||
101 & &$^1A'(n,3p)$ &R &89.6 &7.38 &\N &6.74 &7.45 &7.32 &7.46 &7.46\\
|
||||
102 & &$^1A'(\pi,\pis)$ &V &89.3 &7.63 &\N &8.80 &7.88 &7.13 &7.95 &7.78\\
|
||||
103 & &$^3A''(n,\pis)$ &V &97.7 &5.38 &\Y &5.89 &5.36 &5.16 &5.41 &5.37\\
|
||||
104 & &$^3A'(\pi,\pis)$ &V &98.2 &5.81 &\Y &6.10 &5.88 &5.62 &5.91 &5.87\\
|
||||
105 &Furan &$^1A_2(\pi,3s)$ &R &93.8 &6.09 &\Y &5.26 &6.16 &6.04 &6.06 &6.02\\
|
||||
106 & &$^1B_2(\pi,\pis)$ &V &93.0 &6.37 &\Y &7.78 &6.59 &6.02 &6.80 &6.71\\
|
||||
107 & &$^1A_1(\pi,\pis)$ &V &92.4 &6.56 &\Y &6.73 &6.66 &6.10 &6.69 &6.62\\
|
||||
108 & &$^1B_1(\pi,3p)$ &R &93.9 &6.64 &\Y &6.07 &6.79 &6.63 &6.65 &6.60\\
|
||||
109 & &$^1A_2(\pi,3p)$ &R &93.6 &6.81 &\Y &5.87 &6.87 &6.77 &6.76 &6.72\\
|
||||
110 & &$^1B_2(\pi,3p)$ &R &93.5 &7.24 &\Y &6.54 &7.11 &6.84 &6.96 &6.88\\
|
||||
111 & &$^3B_2(\pi,\pis)$ &V &98.4 &4.20 &\Y &3.94 &4.26 &4.01 &4.17 &4.12\\
|
||||
112 & &$^3A_1(\pi,\pis)$ &V &98.1 &5.46 &\Y &5.41 &5.50 &5.09 &5.47 &5.40\\
|
||||
113 & &$^3A_2(\pi,3s)$ &R &97.9 &6.02 &\Y &5.57 &6.16 &5.99 &6.05 &5.99\\
|
||||
114 & &$^3B_1(\pi,3p)$ &R &97.9 &6.59 &\Y &6.04 &6.76 &6.60 &6.62 &6.56\\
|
||||
115 &Glyoxal &$^1A_u(n,\pis)$ &V &91.0 &2.88 &\Y &3.42 &2.82 &2.51 &2.97 &2.94\\
|
||||
116 & &$^1B_g(n,\pis)$ &V &88.3 &4.24 &\Y &4.68 &4.21 &3.89 &4.36 &4.31\\
|
||||
117 & &$^1A_g(\text{double})$ &V &0.5 &5.61 &\Y &5.92 &5.37 &5.21 &5.53 &5.55\\
|
||||
118 & &$^1B_g(n,\pis)$ &V &83.9 &6.57 &\Y &7.35 &6.52 &5.98 &6.76 &6.72\\
|
||||
119 & &$^1B_u(n,3p)$ &R &91.7 &7.71 &\Y &7.04 &7.61 &7.34 &7.78 &7.81\\
|
||||
120 & &$^3A_u(n,\pis)$ &V &97.6 &2.49 &\Y &3.06 &2.41 &2.12 &2.57 &2.55\\
|
||||
121 & &$^3B_g(n,\pis)$ &V &97.4 &3.89 &\Y &4.61 &3.90 &3.53 &4.04 &4.01\\
|
||||
122 & &$^3B_u(\pi,\pis)$ &V &98.5 &5.15 &\Y &5.46 &5.14 &4.91 &5.17 &5.14\\
|
||||
123 & &$^3A_g(\pi,\pis)$ &V &98.8 &6.30 &\Y &6.69 &6.32 &6.02 &6.33 &6.27\\
|
||||
124 &Imidazole &$^1A''(\pi,3s)$ &R &93.0 &5.70 &\Y &5.04 &5.88 &5.66 &5.74 &5.68\\
|
||||
125 & &$^1A'(\pi,3p)$ &R &90.0 &6.41 &\Y &6.18 &6.69 &6.45 &6.61 &6.56\\
|
||||
126 & &$^1A''(\pi,3p)$ &R &93.6 &6.50 &\Y &5.43 &6.57 &6.47 &6.47 &6.44\\
|
||||
127 & &$^1A''(n,\pis)$ &V &89.0 &6.71 &\Y &7.13 &6.94 &6.57 &6.92 &6.85\\
|
||||
128 & &$^1A'(\pi,\pis)$ &V &88.9 &6.86 &\Y &6.73 &6.88 &6.46 &6.89 &6.83\\
|
||||
129 & &$^1A'(n,3s)$ &R &89.0 &7.00 &\Y &6.36 &7.10 &6.91 &7.09 &7.07\\
|
||||
130 & &$^3A'(\pi,\pis)$ &V &98.3 &4.73 &\Y &4.55 &4.78 &4.53 &4.73 &4.68\\
|
||||
131 & &$^3A''(\pi,3s)$ &R &97.6 &5.66 &\Y &5.03 &5.86 &5.63 &5.72 &5.66\\
|
||||
132 & &$^3A'(\pi,\pis)$ &V &97.9 &5.74 &\Y &5.69 &5.85 &5.48 &5.80 &5.72\\
|
||||
133 & &$^3A''(n,\pis)$ &V &97.3 &6.31 &\Y &6.58 &6.44 &6.10 &6.43 &6.37\\
|
||||
134 &Isobutene &$^1B_1(\pi,3s)$ &R &94.1 &6.46 &\Y &6.21 &6.74 &6.59 &6.64 &6.57\\
|
||||
135 & &$^1A_1(\pi,3p)$ &R &94.2 &7.01 &\Y &6.90 &7.32 &7.14 &7.24 &7.18\\
|
||||
136 & &$^3A_1(\pi,\pis)$ &V &98.9 &4.53 &\Y &4.66 &4.59 &4.41 &4.58 &4.53\\
|
||||
137 &Ketene &$^1A_2(\pi,\pis)$ &V &91.0 &3.86 &\Y &3.98 &3.92 &3.70 &3.90 &3.85\\
|
||||
138 & &$^1B_1(\pi,3s)$ &R &93.9 &6.01 &\Y &5.22 &5.99 &5.79 &6.00 &5.97\\
|
||||
139 & &$^1A_2(\pi,3p)$ &R &94.4 &7.18 &\Y &6.38 &7.25 &7.05 &7.19 &7.15\\
|
||||
140 & &$^3A_2(\pi,\pis)$ &V &91.0 &3.77 &\Y &3.92 &3.81 &3.59 &3.79 &3.74\\
|
||||
141 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.61 &\Y &5.79 &5.65 &5.43 &5.63 &5.59\\
|
||||
142 & &$^3B_1(\pi,3s)$ &R &98.1 &5.79 &\Y &5.05 &5.79 &5.60 &5.80 &5.77\\
|
||||
143 & &$^3A_2(\pi,3p)$ &R &94.4 &7.12 &\Y &6.35 &7.22 &7.01 &7.15 &7.11\\
|
||||
144 & &$^1A''[F](\pi,\pis)$ &V &87.9 &1.00 &\Y &0.95 &1.05 &0.88 &1.00 &0.95\\
|
||||
145 &Methylenecyclopropene&$^1B_2(\pi,\pis)$ &V &85.4 &4.28 &\Y &4.47 &4.40 &4.12 &4.39 &4.33\\
|
||||
146 & &$^1B_1(\pi,3s)$ &R &93.6 &5.44 &\Y &4.92 &5.57 &5.44 &5.46 &5.41\\
|
||||
147 & &$^1A_2(\pi,3p)$ &R &93.3 &5.96 &\Y &5.37 &6.09 &5.97 &5.97 &5.92\\
|
||||
148 & &$^1A_1(\pi,\pis)$ &V &92.8 &6.12 &\N &5.37 &6.26 &6.16 &6.17 &6.13\\
|
||||
149 & &$^3B_2(\pi,\pis)$ &V &97.2 &3.49 &\Y &3.44 &3.57 &3.34 &3.55 &3.49\\
|
||||
150 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.74 &\Y &4.60 &4.82 &4.58 &4.77 &4.72\\
|
||||
151 &Nitrosomethane &$^1A''(n,\pis)$ &V &93.0 &1.96 &\Y &2.12 &1.84 &1.60 &1.94 &1.91\\
|
||||
152 & &$^1A'(\text{double})$ &V &2.5 &4.76 &\Y &4.74 &4.69 &4.67 &4.71 &4.71\\
|
||||
153 & &$^1A'(n,3s)$ &R &90.8 &6.29 &\Y &5.87 &6.32 &6.07 &6.34 &6.31\\
|
||||
154 & &$^3A''(n,\pis)$ &V &98.4 &1.16 &\Y &1.31 &1.00 &0.75 &1.12 &1.09\\
|
||||
155 & &$^3A'(\pi,\pis)$ &V &98.9 &5.60 &\Y &5.52 &5.52 &5.37 &5.54 &5.50\\
|
||||
156 & &$^1A''[F](n,\pis)$ &V &92.7 &1.67 &\Y &1.83 &1.55 &1.32 &1.66 &1.62\\
|
||||
157 &Propynal &$^1A''(n,\pis)$ &V &89.0 &3.80 &\Y &4.00 &3.92 &3.64 &3.90 &3.86\\
|
||||
158 & &$^1A''(\pi,\pis)$ &V &92.9 &5.54 &\Y &6.62 &5.82 &5.49 &5.81 &5.72\\
|
||||
159 & &$^3A''(n,\pis)$ &V &97.4 &3.47 &\Y &3.52 &3.48 &3.26 &3.52 &3.50\\
|
||||
160 & &$^3A'(\pi,\pis)$ &V &98.3 &4.47 &\Y &4.69 &4.59 &4.30 &4.59 &4.54\\
|
||||
161 &Pyrazine &$^1B_{3u}(n,\pis)$ &V &90.1 &4.15 &\Y &4.76 &4.09 &3.66 &4.31 &4.30\\
|
||||
162 & &$^1A_u(n,\pis)$ &V &88.6 &4.98 &\Y &5.90 &4.76 &4.26 &5.10 &5.10\\
|
||||
163 & &$^1B_{2u}(\pi,\pis)$ &V &86.9 &5.02 &\Y &4.97 &5.13 &4.65 &5.09 &5.03\\
|
||||
164 & &$^1B_{2g}(n,\pis)$ &V &85.6 &5.71 &\Y &5.80 &5.68 &5.27 &5.73 &5.70\\
|
||||
165 & &$^1A_g(n,3s)$ &R &91.1 &6.65 &\Y &6.69 &6.66 &6.27 &6.81 &6.80\\
|
||||
166 & &$^1B_{1g}(n,\pis)$ &V &84.2 &6.74 &\Y &7.16 &6.61 &6.07 &6.78 &6.76\\
|
||||
167 & &$^1B_{1u}(\pi,\pis)$ &V &92.8 &6.88 &\Y &8.04 &7.14 &6.72 &7.20 &7.12\\
|
||||
168 & &$^1B_{1g}(\pi,3s)$ &R &93.8 &7.21 &\Y &6.73 &7.41 &7.27 &7.24 &7.18\\
|
||||
169 & &$^1B_{2u}(n,3p)$ &R &90.8 &7.24 &\Y &7.49 &7.34 &6.93 &7.43 &7.40\\
|
||||
170 & &$^1B_{1u}(n,3p)$ &R &91.4 &7.44 &\Y &7.83 &7.55 &7.08 &7.64 &7.59\\
|
||||
171 & &$^1B_{1u}(\pi,\pis)$ &V &90.5 &7.98 &\N &9.65 &8.59 &7.96 &8.68 &8.57\\
|
||||
172 & &$^3B_{3u}(n,\pis)$ &V &97.3 &3.59 &\Y &4.16 &3.49 &3.08 &3.72 &3.71\\
|
||||
173 & &$^3B_{1u}(\pi,\pis)$ &V &98.5 &4.35 &\Y &3.98 &4.44 &4.15 &4.34 &4.28\\
|
||||
174 & &$^3B_{2u}(\pi,\pis)$ &V &97.6 &4.39 &\Y &4.62 &4.44 &4.09 &4.47 &4.41\\
|
||||
175 & &$^3A_u(n,\pis)$ &V &96.1 &4.93 &\Y &5.85 &4.73 &4.21 &5.07 &5.07\\
|
||||
176 & &$^3B_{2g}(n,\pis)$ &V &97.0 &5.08 &\Y &5.25 &5.04 &4.66 &5.14 &5.11\\
|
||||
177 & &$^3B_{1u}(\pi,\pis)$ &V &97.0 &5.28 &\Y &5.15 &5.29 &4.92 &5.25 &5.19\\
|
||||
178 &Pyridazine &$^1B_1(n,\pis)$ &V &89.0 &3.83 &\Y &4.29 &3.74 &3.36 &3.94 &3.92\\
|
||||
179 & &$^1A_2(n,\pis)$ &V &86.9 &4.37 &\Y &4.83 &4.29 &3.87 &4.49 &4.48\\
|
||||
180 & &$^1A_1(\pi,\pis)$ &V &85.8 &5.26 &\Y &5.12 &5.34 &4.87 &5.30 &5.25\\
|
||||
181 & &$^1A_2(n,\pis)$ &V &86.2 &5.72 &\Y &6.26 &5.73 &5.19 &5.93 &5.89\\
|
||||
182 & &$^1B_2(n,3s)$ &R &88.5 &6.17 &\Y &5.99 &6.18 &5.90 &6.28 &6.27\\
|
||||
183 & &$^1B_1(n,\pis)$ &V &87.0 &6.37 &\Y &7.16 &6.50 &5.94 &6.72 &6.67\\
|
||||
184 & &$^1B_2(\pi,\pis)$ &V &90.6 &6.75 &\Y &7.54 &7.26 &6.82 &7.25 &7.17\\
|
||||
185 & &$^3B_1(n,\pis)$ &V &97.1 &3.19 &\Y &3.60 &3.08 &2.72 &3.29 &3.28\\
|
||||
186 & &$^3A_2(n,\pis)$ &V &96.1 &4.11 &\Y &4.49 &4.01 &3.59 &4.20 &4.18\\
|
||||
187 & &$^3B_2(\pi,\pis)$ &V &98.5 &4.34 &\N &3.93 &4.44 &4.13 &4.30 &4.24\\
|
||||
188 & &$^3A_1(\pi,\pis)$ &V &97.3 &4.82 &\Y &4.93 &4.87 &4.48 &4.89 &4.83\\
|
||||
189 &Pyridine &$^1B_1(n,\pis)$ &V &88.4 &4.95 &\Y &5.43 &5.15 &4.81 &5.18 &5.13\\
|
||||
190 & &$^1B_2(\pi,\pis)$ &V &86.5 &5.14 &\Y &5.03 &5.18 &4.76 &5.15 &5.09\\
|
||||
191 & &$^1A_2(n,\pis)$ &V &87.9 &5.40 &\Y &6.30 &5.46 &5.03 &5.63 &5.59\\
|
||||
192 & &$^1A_1(\pi,\pis)$ &V &92.1 &6.62 &\Y &7.90 &6.92 &6.27 &7.04 &6.93\\
|
||||
193 & &$^1A_1(n,3s)$ &R &89.7 &6.76 &\Y &6.40 &6.90 &6.67 &6.97 &6.96\\
|
||||
194 & &$^1A_2(\pi,3s)$ &R &93.2 &6.82 &\Y &6.60 &7.08 &6.87 &6.88 &6.80\\
|
||||
195 & &$^1B_1(\pi,3p)$ &R &93.6 &7.38 &\Y &7.12 &7.70 &7.51 &7.48 &7.40\\
|
||||
196 & &$^1A_1(\pi,\pis)$ &V &90.5 &7.39 &\Y &9.49 &7.66 &6.63 &7.87 &7.70\\
|
||||
197 & &$^1B_2(\pi,\pis)$ &V &90.0 &7.40 &\N &7.45 &7.92 &7.67 &7.80 &7.73\\
|
||||
198 & &$^3A_1(\pi,\pis)$ &V &98.5 &4.30 &\Y &3.98 &4.40 &4.06 &4.29 &4.22\\
|
||||
199 & &$^3B_1(n,\pis)$ &V &97.0 &4.46 &\Y &4.65 &4.48 &4.21 &4.57 &4.55\\
|
||||
200 & &$^3B_2(\pi,\pis)$ &V &97.3 &4.79 &\Y &4.83 &4.86 &4.53 &4.81 &4.74\\
|
||||
201 & &$^3A_1(\pi,\pis)$ &V &97.1 &5.04 &\Y &5.11 &5.09 &4.63 &5.09 &5.02\\
|
||||
202 & &$^3A_2(n,\pis)$ &V &95.8 &5.36 &\Y &5.94 &5.33 &4.96 &5.53 &5.51\\
|
||||
203 & &$^3B_2(\pi,\pis)$ &V &97.7 &6.24 &\Y &6.93 &6.40 &5.99 &6.43 &6.35\\
|
||||
204 &Pyrimidine &$^1B_1(n,\pis)$ &V &88.6 &4.44 &\Y &4.85 &4.44 &4.07 &4.58 &4.55\\
|
||||
205 & &$^1A_2(n,\pis)$ &V &88.5 &4.85 &\Y &5.52 &4.80 &4.36 &5.02 &5.00\\
|
||||
206 & &$^1B_2(\pi,\pis)$ &V &86.3 &5.38 &\Y &5.28 &5.42 &4.98 &5.41 &5.36\\
|
||||
207 & &$^1A_2(n,\pis)$ &V &86.7 &5.92 &\Y &6.70 &5.92 &5.32 &6.16 &6.10\\
|
||||
208 & &$^1B_1(n,\pis)$ &V &86.7 &6.26 &\Y &7.20 &6.31 &5.65 &6.58 &6.53\\
|
||||
209 & &$^1B_2(n,3s)$ &R &90.3 &6.70 &\Y &6.86 &6.85 &6.50 &6.89 &6.86\\
|
||||
210 & &$^1A_1(\pi,\pis)$ &V &91.5 &6.88 &\Y &7.69 &7.31 &6.94 &7.29 &7.22\\
|
||||
211 & &$^3B_1(n,\pis)$ &V &96.8 &4.09 &\Y &4.45 &4.05 &3.67 &4.20 &4.18\\
|
||||
212 & &$^3A_1(\pi,\pis)$ &V &98.3 &4.51 &\N &4.22 &4.57 &4.25 &4.51 &4.44\\
|
||||
213 & &$^3A_2(n,\pis)$ &V &96.5 &4.66 &\Y &5.20 &4.63 &4.16 &4.81 &4.78\\
|
||||
214 & &$^3B_2(\pi,\pis)$ &V &97.4 &4.96 &\Y &5.10 &5.01 &4.60 &5.03 &4.97\\
|
||||
215 &Pyrrole &$^1A_2(\pi,3s)$ &R &92.9 &5.24 &\Y &4.49 &5.44 &5.23 &5.28 &5.23\\
|
||||
216 & &$^1B_1(\pi,3p)$ &R &92.4 &6.00 &\Y &5.22 &6.26 &6.07 &6.08 &6.02\\
|
||||
217 & &$^1A_2(\pi,3p)$ &R &93.0 &6.00 &\Y &4.89 &6.16 &6.02 &6.01 &5.97\\
|
||||
218 & &$^1B_2(\pi,\pis)$ &V &92.5 &6.26 &\Y &7.73 &6.62 &6.36 &6.45 &6.38\\
|
||||
219 & &$^1A_1(\pi,\pis)$ &V &86.3 &6.30 &\Y &6.47 &6.41 &5.84 &6.43 &6.34\\
|
||||
220 & &$^1B_2(\pi,3p)$ &R &92.6 &6.83 &\Y &5.82 &6.75 &6.11 &6.92 &6.82\\
|
||||
221 & &$^3B_2(\pi,\pis)$ &V &98.3 &4.51 &\Y &4.24 &4.57 &4.30 &4.49 &4.44\\
|
||||
222 & &$^3A_2(\pi,3s)$ &R &97.6 &5.21 &\Y &4.47 &5.41 &5.21 &5.26 &5.20\\
|
||||
223 & &$^3A_1(\pi,\pis)$ &V &97.8 &5.45 &\Y &5.52 &5.50 &5.04 &5.49 &5.40\\
|
||||
224 & &$^3B_1(\pi,3p)$ &R &97.4 &5.91 &\Y &5.18 &6.22 &6.03 &6.04 &5.98\\
|
||||
225 &Streptocyanine-C1 &$^1B_2(\pi,\pis)$ &V &88.7 &7.13 &\Y &7.82 &7.17 &6.76 &7.28 &7.21\\
|
||||
226 & &$^3B_2(\pi,\pis)$ &V &98.3 &5.52 &\Y &5.86 &5.49 &5.22 &5.54 &5.49\\
|
||||
227 &Tetrazine &$^1B_{3u}(n,\pis)$ &V &89.8 &2.47 &\Y &2.99 &2.31 &1.91 &2.54 &2.53\\
|
||||
228 & &$^1A_u(n,\pis)$ &V &87.9 &3.69 &\Y &4.37 &3.49 &3.00 &3.77 &3.78\\
|
||||
229 & &$^1A_g(\text{double})$ &V &0.7 &4.61 &\N &5.42 &4.69 &4.48 &4.85 &4.87\\
|
||||
230 & &$^1B_{1g}(n,\pis)$ &V &83.1 &4.93 &\Y &5.41 &4.83 &4.33 &5.02 &5.00\\
|
||||
231 & &$^1B_{2u}(\pi,\pis)$ &V &85.4 &5.21 &\Y &5.04 &5.31 &4.84 &5.26 &5.23\\
|
||||
232 & &$^1B_{2g}(n,\pis)$ &V &81.7 &5.45 &\Y &5.43 &5.38 &4.90 &5.42 &5.38\\
|
||||
233 & &$^1A_u(n,\pis)$ &V &87.7 &5.53 &\Y &6.37 &5.51 &4.92 &5.80 &5.80\\
|
||||
234 & &$^1B_{3g}(\text{double})$ &V &0.7 &6.15 &\N &6.59 &5.85 &5.22 &6.20 &6.22\\
|
||||
235 & &$^1B_{2g}(n,\pis)$ &V &80.2 &6.12 &\Y &6.79 &5.96 &5.18 &6.27 &6.28\\
|
||||
236 & &$^1B_{1g}(n,\pis)$ &V &85.1 &6.91 &\Y &7.18 &6.59 &5.89 &6.79 &6.72\\
|
||||
237 & &$^3B_{3u}(n,\pis)$ &V &97.1 &1.85 &\Y &2.38 &1.70 &1.31 &1.94 &1.93\\
|
||||
238 & &$^3A_u(n,\pis)$ &V &96.3 &3.45 &\Y &4.06 &3.26 &2.78 &3.52 &3.52\\
|
||||
239 & &$^3B_{1g}(n,\pis)$ &V &97.0 &4.20 &\Y &4.66 &4.10 &3.62 &4.32 &4.30\\
|
||||
240 & &$^1B_{1u}(\pi,\pis)$ &V &98.5 &4.49 &\N &3.90 &4.55 &4.29 &4.39 &4.34\\
|
||||
241 & &$^3B_{2u}(\pi,\pis)$ &V &97.5 &4.52 &\Y &4.68 &4.55 &4.20 &4.60 &4.55\\
|
||||
242 & &$^3B_{2g}(n,\pis)$ &V &96.4 &5.04 &\Y &5.17 &5.02 &4.53 &5.10 &5.07\\
|
||||
243 & &$^3A_u(n,\pis)$ &V &96.6 &5.11 &\Y &6.12 &5.07 &4.44 &5.41 &5.41\\
|
||||
244 & &$^3B_{3g}(\text{double})$ &V &5.7 &5.51 &\N &6.56 &5.39 &4.86 &5.83 &5.85\\
|
||||
245 & &$^3B_{1u}(\pi,\pis)$ &V &96.6 &5.42 &\Y &5.32 &5.46 &5.08 &5.44 &5.39\\
|
||||
246 &Thioacetone &$^1A_2(n,\pis)$ &V &88.9 &2.53 &\Y &2.72 &2.58 &2.33 &2.60 &2.53\\
|
||||
247 & &$^1B_2(n,3s)$ &R &91.3 &5.56 &\Y &4.80 &5.60 &5.48 &5.64 &5.61\\
|
||||
248 & &$^1A_1(\pi,\pis)$ &V &90.6 &5.88 &\Y &6.94 &6.42 &5.98 &6.40 &6.26\\
|
||||
249 & &$^1B_2(n,3p)$ &R &92.4 &6.51 &\Y &5.57 &6.51 &6.40 &6.53 &6.49\\
|
||||
250 & &$^1A_1(n,3p)$ &R &91.6 &6.61 &\Y &6.24 &6.66 &6.41 &6.59 &6.50\\
|
||||
251 & &$^3A_2(n,\pis)$ &V &97.4 &2.33 &\Y &2.52 &2.34 &2.09 &2.38 &2.31\\
|
||||
252 & &$^3A_1(\pi,\pis)$ &V &98.7 &3.45 &\Y &3.52 &3.48 &3.29 &3.48 &3.43\\
|
||||
253 &Thiophene &$^1A_1(\pi,\pis)$ &V &87.6 &5.64 &\Y &6.11 &5.84 &5.21 &5.89 &5.79\\
|
||||
254 & &$^1B_2(\pi,\pis)$ &V &91.5 &5.98 &\Y &6.94 &6.35 &5.89 &6.44 &6.35\\
|
||||
255 & &$^1A_2(\pi,3s)$ &R &92.6 &6.14 &\Y &5.70 &6.28 &6.07 &6.16 &6.10\\
|
||||
256 & &$^1B_1(\pi,3p)$ &R &90.1 &6.14 &\Y &6.02 &6.21 &5.90 &6.16 &6.10\\
|
||||
257 & &$^1A_2(\pi,3p)$ &R &91.8 &6.21 &\Y &6.05 &6.32 &5.98 &6.28 &6.21\\
|
||||
258 & &$^1B_1(\pi,3s)$ &R &92.8 &6.49 &\Y &5.78 &6.57 &6.28 &6.51 &6.44\\
|
||||
259 & &$^1B_2(\pi,3p)$ &R &92.4 &7.29 &\Y &6.80 &7.29 &7.03 &7.20 &7.13\\
|
||||
260 & &$^1A_1(\pi,\pis)$ &V &86.5 &7.31 &\N &8.29 &7.62 &6.85 &7.71 &7.56\\
|
||||
261 & &$^3B_2(\pi,\pis)$ &V &98.2 &3.92 &\Y &3.68 &3.98 &3.71 &3.90 &3.84\\
|
||||
262 & &$^3A_1(\pi,\pis)$ &V &97.7 &4.76 &\Y &4.97 &4.85 &4.39 &4.87 &4.79\\
|
||||
263 & &$^3B_1(\pi,3p)$ &R &96.6 &5.93 &\Y &5.86 &5.97 &5.64 &5.94 &5.88\\
|
||||
264 & &$^3A_2(\pi,3s)$ &R &97.5 &6.08 &\Y &5.65 &6.22 &6.01 &6.11 &6.04\\
|
||||
265 &Thiopropynal &$^1A''(n,\pis)$ &V &87.5 &2.03 &\Y &2.06 &2.05 &1.84 &2.05 &2.00\\
|
||||
266 & &$^3A''(n,\pis)$ &V &97.2 &1.80 &\Y &1.85 &1.81 &1.60 &1.84 &1.79\\
|
||||
267 &Triazine &$^1A_1''(n,\pis)$ &V &88.3 &4.72 &\Y &5.88 &4.62 &3.90 &5.00 &4.99\\
|
||||
268 & &$^1A_2''(n,\pis)$ &V &88.3 &4.75 &\Y &5.14 &4.77 &4.39 &4.90 &4.87\\
|
||||
269 & &$^1E''(n,\pis)$ &V &88.3 &4.78 &\Y &5.51 &4.76 &4.14 &5.01 &4.98\\
|
||||
270 & &$^1A_2'(\pi,\pis)$ &V &85.7 &5.75 &\Y &5.55 &5.76 &5.32 &5.75 &5.72\\
|
||||
271 & &$^1A_1'(\pi,\pis)$ &V &90.4 &7.24 &\Y &8.20 &7.43 &6.89 &7.50 &7.41\\
|
||||
272 & &$^1E'(n,3s)$ &R &90.9 &7.32 &\Y &7.40 &7.48 &7.15 &7.53 &7.49\\
|
||||
273 & &$^1E''(n,\pis)$ &V &82.6 &7.78 &\Y &8.26 &7.75 &7.04 &7.92 &7.90\\
|
||||
274 & &$^1E'(\pi,\pis)$ &V &90.0 &7.94 &\Y &10.03 &8.65 &7.70 &8.83 &8.72\\
|
||||
275 & &$^3A_2''(n,\pis)$ &V &96.7 &4.33 &\Y &4.74 &4.37 &3.99 &4.51 &4.49\\
|
||||
276 & &$^3E''(n,\pis)$ &V &96.6 &4.51 &\Y &5.14 &4.47 &3.88 &4.71 &4.68\\
|
||||
277 & &$^3A_1''(n,\pis)$ &V &96.2 &4.73 &\Y &5.88 &4.70 &3.94 &5.06 &5.04\\
|
||||
278 & &$^3A_1'(\pi,\pis)$ &V &98.2 &4.85 &\Y &4.46 &4.88 &4.55 &4.81 &4.75\\
|
||||
279 & &$^3E'(\pi,\pis)$ &V &96.9 &5.59 &\Y &5.57 &5.62 &5.20 &5.62 &5.57\\
|
||||
280 & &$^3A_2'(\pi,\pis)$ &V &97.6 &6.62 &\Y &7.70 &6.62 &6.12 &6.76 &6.68\\
|
||||
\end{longtable*}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%%% FIGURE 2 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{fig2.pdf}
|
||||
\includegraphics[width=\linewidth]{fig2}
|
||||
\caption{Histograms of the errors (in \si{\eV}) obtained for CASPT2 and CASPT3 with and without IPEA shift.
|
||||
Raw data are given in Table \ref{tab:BigTab}.}
|
||||
\label{fig:PT2_vs_PT3}
|
||||
@ -517,7 +510,7 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err
|
||||
|
||||
%%% TABLE II %%%
|
||||
\begin{table*}
|
||||
\caption{Statistical quantities (in eV), considering the 265 ``safe'' TBEs (out of 284) as reference, for various multi-reference methods.
|
||||
\caption{Statistical quantities (in eV), considering the 265 ``safe'' TBEs (out of 280) as reference, for various multi-reference methods.
|
||||
Raw data are given in Table \ref{tab:BigTab}.}
|
||||
\label{tab:stat}
|
||||
\begin{ruledtabular}
|
||||
@ -579,8 +572,33 @@ Because the relative size of the active space naturally decreases as the number
|
||||
Note that combining CASPT2 and CASPT3 via an hybrid protocol such as CASPT2.5, as proposed by Zhang and Truhlar in the context of spin splitting energies in transition metals, \cite{Zhang_2020} is not beneficial in the present situation.
|
||||
|
||||
It is worth mentioning that CASPT3(NOIPEA) yields MAEs for each subset that is almost systematically below \SI{0.1}{\eV}, except for the singlet subset which contains some states showing large (positive) deviations at both the CASPT2 and CASPT3 levels.
|
||||
This can be tracked down to the relatively small active spaces that we have considered here and, more precisely, to the lack of direct $\sig$-$\pi$ coupling in the active space which are known to be important in ionic states for example. \cite{Davidson_1996,Angeli_2009,Garniron_2018,BenAmor_2020}
|
||||
\alert{These errors could be certainly alleviated by using a restricted active space (RAS) procedure.}
|
||||
This is most notably the case for the $^1 B_u(\pi,\pis)$ state of butadiene, the $^1B_2(\pi,\pis)$ state of cyclopentadiene, the $^1A_1(\pi,\pis)$ state of cyclopropenone, the second $^1B_{1u}(\pi,\pis)$ state of pyrazine, the $^1B_2(\pi,\pis)$ state of pyridazine, and the $^1E'(\pi,\pis)$ state of triazine, for which both CASPT2(IPEA) and CASPT3(NOIPEA) overestimate the corresponding vertical transition energies by at least \SI{0.4}{\eV} with respect to the TBEs.
|
||||
This can be tracked down to the relatively small active spaces that we have considered here and, more precisely, to the lack of direct $\sig$-$\pi$ coupling in the active space that is known to be important in ionic states, for example. \cite{Davidson_1996,Borden_1996,Boggio-Pasqua_2004,Angeli_2009,Garniron_2018,Tran_2019,BenAmor_2020}
|
||||
For this family of states, it is particularly important to describe the dynamic response of the $\sig$-electron framework to the field of the $\pi$-electron system, a phenomenon known as dynamic $\sig$ polarization.
|
||||
Because the dynamic $\sig$ polarization is generally more important for the ionic excited state than for the ground state, its contribution is expected to lower the vertical transition energy.
|
||||
Furthermore, this part of the dynamic $\sig$-$\pi$ correlation needs to be included at the orbital optimization stage, otherwise the orbitals become too diffuse, resulting in artificial valence-Rydberg mixing which cannot be disentangled using non-degenerate perturbation theory such as the version of CASPT2 and CASPT3 considered here. \cite{Angeli_2009}
|
||||
|
||||
As an illustration of this problematic, we have chosen to address the specific case of the second $^1B_{1u}(\pi,\pis)$ state of pyrazine, which is known to exhibit a strong ionic character. \cite{Fulscher_1994}
|
||||
As shown in Table \ref{tab:BigTab} (\#171), the TBE for the vertical transition energy to this state is \SI{7.98}{\eV}.
|
||||
CASPT2(IPEA) and CASPT3(NOIPEA) locate this state at \SI{8.59}{} and \SI{8.57}{\eV}, respectively, providing a large overestimation of \SI{0.6}{\eV}.
|
||||
This state was computed using a reference CASSCF wave function averaged over four states [the ground state, two valence $B_{1u}(\pi,\pis)$ states and one Rydberg $B_{1u}(\pi,3p_x)$ state] with an active space comprising the $\pi$ valence and three $3p_x$ orbitals.
|
||||
(The $3p_x$ orbitals were included to recover part of the radial correlation.)
|
||||
However, this strategy leads to a valence-Rydberg mixing due to the fact that the dynamic correlation is not sufficiently described at the CASSCF level.
|
||||
The ionic $B_{1u}(\pi,\pis)$ state lies \SI{9.65}{\eV} vertically above the ground state, while the Rydberg $B_{1u}(\pi,3p_x)$ state is \SI{0.2}{\eV} below at the CASSCF level.
|
||||
For this reason, the two states are mixed and both CASPT2 and CASPT3 fails to predict accurate transition energies for the ionic state.
|
||||
The Rydberg character of the ionic $B_{1u}(\pi,\pis)$ state is evident from the inspection of the CASSCF wave function and also from its value of $\expval*{x^2}$, which measures the spatial extent of the wave function out of the molecular plane (hence characteristic of the size of the $\pi$ orbitals in the considered state).
|
||||
The $\expval*{x^2}$ value is \SI{31.9}{\bohr^2} for the ionic $B_{1u}(\pi,\pis)$ state and \SI{51.1}{\bohr^2} for the $B_{1u}(\pi,3p_x)$ Rydberg state, while it is only \SI{26.6}{\bohr^2} for the ground state.
|
||||
|
||||
To remove the artificial valence-Rydberg mixing in the reference CASSCF wave function, we included the dynamic $\sig$ polarization at the orbital optimization stage using a restricted active space self-consistent field (RASSCF) approach. \cite{Olsen_1988}
|
||||
We selected the bonding $\sigCC$ and $\sigCN$ orbitals in the RAS1 partition and the corresponding anti-bonding $\sigsCC$ and $\sigsCN$ orbitals in RAS3 allowing a single hole in RAS1 and a single electron in RAS3.
|
||||
The six valence $\pi$ orbitals were kept in RAS2 (full CI space).
|
||||
In this way, the contraction of the $\pi$ orbitals as a result of the dynamic $\sig$ polarization is ensured and the interference of the Rydberg state is removed allowing to compute the two valence $B_{1u}(\pi,\pis)$ states without including the Rydberg $B_{1u}(\pi,3p_x)$ state in the state-averaging procedure.
|
||||
The $\expval*{x^2}$ value associated with the ionic $B_{1u}(\pi,\pis)$ state is reduced to \SI{26.9}{\bohr^2}, providing a spatial extent similar to that of the ground state ($\expval*{x^2} = \SI{27.0}{\bohr^2}$ at the RASSCF level).
|
||||
Using the RASSCF orbitals to perform the CASPT2(IPEA) and CASPT3(NOIPEA) calculations using a CAS-CI(6,6) reference, we obtain vertical transition energies of \SI{7.92}{} and \SI{8.10}{\eV}, respectively.
|
||||
The agreement with the TBE is now within the expected accuracy of the method with an error of about \SI{0.1}{\eV}.
|
||||
To be complete the vertical transition energy to the first $B_{1u}(\pi,\pis)$ state, which also possesses a significant ionic character, is improved too with respect to the TBE at \SI{6.88}{\eV} with transition energies of \SI{6.83}{\eV} and \SI{6.87}{\eV} at the CASPT2(IPEA) and CASPT3(NOIPEA) levels, respectively.
|
||||
This represents a significant improvement compared to the \SI{7.14}{} and \SI{7.12}{\eV} values obtained at the same level of theory but using a reference SA4-CASSCF wave function.
|
||||
We thus believe that the difficult cases listed above can be handled more rigorously provided that more suitable active spaces are used to describe the reference (zeroth-order) wave function prior to the CASPT2/CASPT3 calculations.
|
||||
|
||||
Comparatively, Liang \textit{et al.} have recently shown, for a larger set of transitions, that time-dependent density-functional theory with the best exchange-correlation functionals yield RMSEs of the order of \SI{0.3}{\eV}, \cite{Liang_2022} outperforming (more expensive) wave function methods like CIS(D). \cite{Head-Gordon_1994,Head-Gordon_1995}
|
||||
The accuracy of CASPT2(IPEA) and CASPT3 is clearly a step beyond but at a much larger computational cost.
|
||||
@ -626,7 +644,7 @@ This feature is crucial in the description of some photochemistry mechanisms. \c
|
||||
%%% %%% %%% %%%
|
||||
|
||||
Table \ref{tab:timings} reports the evolution of the wall times associated with the computation of the second- and third-order energies in benzene with the aug-cc-pVTZ basis and the frozen-core approximation (42 electrons and 414 basis functions) for increasingly large active spaces.
|
||||
All these calculations have been performed on a single core of an Intel Xeon E5-2670 2.6Ghz.
|
||||
All these calculations have been performed on a single core of an Intel Xeon E5-2670 2.6 Ghz.
|
||||
It is particularly instructive to study the wall time ratio as the number of (contracted and uncontracted) external configurations grows (see Fig.~\ref{fig:timings}).
|
||||
Overall, the PT3 step takes between 5 and 10 times longer than the PT2 step for the active spaces that we have considered here, and remains thus typically affordable for these kinds of calculations.
|
||||
|
||||
@ -634,7 +652,7 @@ Overall, the PT3 step takes between 5 and 10 times longer than the PT2 step for
|
||||
\section{Conclusion}
|
||||
\label{sec:ccl}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
In the present study, we have benchmarked, using 284 highly-accurate electronic transitions extracted from the QUEST database, \cite{Veril_2021} the third-order multi-reference perturbation theory method, CASPT3, by computing vertical excitation energies with and without IPEA shift.
|
||||
In the present study, we have benchmarked, using 280 highly-accurate electronic transitions extracted from the QUEST database, \cite{Veril_2021} the third-order multi-reference perturbation theory method, CASPT3, by computing vertical excitation energies with and without IPEA shift.
|
||||
The two principal take-home messages of this study are that:
|
||||
(i) CASPT3 transition energies are almost independent of the IPEA shift;
|
||||
(ii) CASPT2(IPEA) and CASPT3 have a very similar accuracy.
|
||||
|
Loading…
Reference in New Issue
Block a user