CASSCF fig

This commit is contained in:
Pierre-Francois Loos 2022-06-03 10:10:31 +02:00
parent c3a47a403b
commit 566de9c3ca
5 changed files with 914 additions and 31 deletions

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookFileLineBreakTest NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7] NotebookDataPosition[ 158, 7]
NotebookDataLength[ 1289234, 25065] NotebookDataLength[ 1328597, 25927]
NotebookOptionsPosition[ 1285992, 24999] NotebookOptionsPosition[ 1325125, 25857]
NotebookOutlinePosition[ 1286390, 25015] NotebookOutlinePosition[ 1325522, 25873]
CellTagsIndexPosition[ 1286347, 25012] CellTagsIndexPosition[ 1325479, 25870]
WindowFrame->Normal*) WindowFrame->Normal*)
(* Beginning of Notebook Content *) (* Beginning of Notebook Content *)
@ -79,6 +79,864 @@ Cell[BoxData[
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"WFT", "=",
RowBox[{"{",
RowBox[{"\"\<CASSCF\>\"", ","}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"MAE", "=",
RowBox[{
RowBox[{"Import", "[", "\"\<FCI-all.xlsx\>\"", "]"}],
"\[LeftDoubleBracket]",
RowBox[{"Sheet", ",",
RowBox[{"3", ";;", "286"}], ",",
RowBox[{"41", "+",
RowBox[{"{", "18", "}"}]}]}], "\[RightDoubleBracket]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"graph", "=", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Histogram", "[",
RowBox[{
RowBox[{"MAE", "\[LeftDoubleBracket]",
RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",", "20", ",",
"\"\<PDF\>\"", ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"BaseStyle", "\[Rule]", "14"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.2"}], ",",
RowBox[{"+", "2.2"}]}], "}"}], ",", "Automatic"}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Error (eV)\>\"", ",", "None"}], "}"}]}], ",",
RowBox[{"ChartStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "0.5", "]"}], ",", "Black"}], "]"}],
"}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "None"}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "20", ",", "Black"}], "]"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{
RowBox[{
RowBox[{
"WFT", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}],
"<>", "\"\< MAE: \>\"", "<>",
RowBox[{"ToString", "[",
RowBox[{"SetAccuracy", "[",
RowBox[{
RowBox[{"Mean", "[",
RowBox[{"Abs", "[",
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{"MAE", "\[LeftDoubleBracket]",
RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",",
"\"\<\>\""}], "]"}], "]"}], "]"}], ",", "3"}], "]"}],
"]"}], "<>", "\"\< eV\>\""}], ",", "20"}], "]"}]}]}], "]"}],
"\[IndentingNewLine]", ",", "\[IndentingNewLine]",
RowBox[{"SmoothHistogram", "[",
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{"MAE", "\[LeftDoubleBracket]",
RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",",
"\"\<\>\""}], "]"}], ",", "Automatic", ",", "\"\<PDF\>\"", ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.2"}], ",", "2.2"}], "}"}], ",", "Automatic"}],
"}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "]"}]}], ",",
RowBox[{"Filling", "\[Rule]", "Bottom"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Web\>\""}]}], "]"}]}],
"\[IndentingNewLine]", "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{"\"\<CASSCF.pdf\>\"", ",", "%"}], "]"}], ";"}]}], "Input",
CellLabel->"In[64]:=",ExpressionUUID->"31fd4aa9-bc03-4d09-8e5a-c1a6e87694ae"],
Cell[BoxData[
GraphicsBox[{{
{RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.567], Thickness[
Small]}], {},
{RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.567], Thickness[
Small]}],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-1.2, 0}, {-1., 0.07547169811320754},
"RoundingRadius" -> 0]},
ImageSizeCache->{{71.49000000000002, 84.95000000000002}, {
57.293578568398516`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.07547169811320754]& ,
TagBoxNote->"0.07547169811320754"],
StyleBox[
"0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-1., 0}, {-0.8, 0.1509433962264151},
"RoundingRadius" -> 0]},
ImageSizeCache->{{84.45000000000002, 97.91000000000003}, {
40.28106247807825, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.1509433962264151]& ,
TagBoxNote->"0.1509433962264151"],
StyleBox[
"0.1509433962264151`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.1509433962264151, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-0.8, 0}, {-0.6, 0.4339622641509434},
"RoundingRadius" -> 0]},
ImageSizeCache->{{97.41000000000003,
110.87000000000003`}, {-23.51587286062278, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.4339622641509434]& ,
TagBoxNote->"0.4339622641509434"],
StyleBox[
"0.4339622641509434`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.4339622641509434, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-0.6, 0}, {-0.4, 0.2830188679245283},
"RoundingRadius" -> 0]},
ImageSizeCache->{{110.37000000000003`, 123.83000000000003`}, {
10.509159320017773`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.2830188679245283]& ,
TagBoxNote->"0.2830188679245283"],
StyleBox[
"0.2830188679245283`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.2830188679245283, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-0.4, 0}, {-0.2, 0.4528301886792453},
"RoundingRadius" -> 0]},
ImageSizeCache->{{123.33000000000003`,
136.79000000000002`}, {-27.769001883202847`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.4528301886792453]& ,
TagBoxNote->"0.4528301886792453"],
StyleBox[
"0.4528301886792453`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.4528301886792453, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{-0.2, 0}, {0., 0.7547169811320755},
"RoundingRadius" -> 0]},
ImageSizeCache->{{136.29000000000002`,
149.75000000000003`}, {-95.81906624448393, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.7547169811320755]& ,
TagBoxNote->"0.7547169811320755"],
StyleBox[
"0.7547169811320755`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.7547169811320755, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0., 0}, {0.2, 0.7735849056603774},
"RoundingRadius" -> 0]},
ImageSizeCache->{{149.25000000000003`,
162.71000000000004`}, {-100.07219526706402`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.7735849056603774]& ,
TagBoxNote->"0.7735849056603774"],
StyleBox[
"0.7735849056603774`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.7735849056603774, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.2, 0}, {0.4, 0.5283018867924528},
"RoundingRadius" -> 0]},
ImageSizeCache->{{162.21000000000004`,
175.67000000000004`}, {-44.78151797352311, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.5283018867924528]& ,
TagBoxNote->"0.5283018867924528"],
StyleBox[
"0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.4, 0}, {0.6, 0.5283018867924528},
"RoundingRadius" -> 0]},
ImageSizeCache->{{175.17000000000004`,
188.63000000000002`}, {-44.78151797352311, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.5283018867924528]& ,
TagBoxNote->"0.5283018867924528"],
StyleBox[
"0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.6, 0}, {0.8, 0.4528301886792453},
"RoundingRadius" -> 0]},
ImageSizeCache->{{188.13000000000002`,
201.59000000000003`}, {-27.769001883202847`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.4528301886792453]& ,
TagBoxNote->"0.4528301886792453"],
StyleBox[
"0.4528301886792453`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.4528301886792453, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{0.8, 0}, {1., 0.24528301886792453`},
"RoundingRadius" -> 0]},
ImageSizeCache->{{201.09000000000003`, 214.55000000000004`}, {
19.015417365177903`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.24528301886792453`]& ,
TagBoxNote->"0.24528301886792453"],
StyleBox[
"0.24528301886792453`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.24528301886792453`, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{1., 0}, {1.2, 0.18867924528301888`},
"RoundingRadius" -> 0]},
ImageSizeCache->{{214.05000000000004`, 227.51000000000005`}, {
31.77480443291811, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.18867924528301888`]& ,
TagBoxNote->"0.18867924528301888"],
StyleBox[
"0.18867924528301888`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.18867924528301888`, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{1.2, 0}, {1.4, 0.018867924528301886`},
"RoundingRadius" -> 0]},
ImageSizeCache->{{227.01000000000005`, 240.47000000000003`}, {
70.05296563613872, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.018867924528301886`]& ,
TagBoxNote->"0.018867924528301886"],
StyleBox[
"0.018867924528301886`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.018867924528301886`, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{1.4, 0}, {1.6, 0.03773584905660377},
"RoundingRadius" -> 0]},
ImageSizeCache->{{239.97000000000003`, 253.43000000000006`}, {
65.79983661355865, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.03773584905660377]& ,
TagBoxNote->"0.03773584905660377"],
StyleBox[
"0.03773584905660377`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.03773584905660377, {FontFamily -> "Times"}], "Tooltip"]& ],
TagBox[
TooltipBox[
TagBox[
{GrayLevel[0], Opacity[0.5],
TagBox[
DynamicBox[{
FEPrivate`If[
CurrentValue["MouseOver"],
EdgeForm[{
GrayLevel[0.5],
AbsoluteThickness[1.5],
Opacity[0.66]}], {}, {}],
RectangleBox[{2., 0}, {2.2, 0.07547169811320754},
"RoundingRadius" -> 0]},
ImageSizeCache->{{278.85, 292.31000000000006`}, {
57.293578568398516`, 74.80609465871879}}],
"DelayedMouseEffectStyle"]},
StatusArea[#, 0.07547169811320754]& ,
TagBoxNote->"0.07547169811320754"],
StyleBox[
"0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput ->
False]],
Annotation[#,
Style[0.07547169811320754, {FontFamily -> "Times"}],
"Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData["
1:eJztm+VXVV3UtykRUUIpRRBQUEAkBBHUm3kAQaQVpEQBRaRDESkFKaVTkO4G
KQlBWHR3d3d3x3ueMZ7nf3g/sL+ccY3fGmvvc8Y+a8754WJ6Y/L8HR4ODg4j
IQ7O/3yGBP/PhVuK879XTGefk6L2Hvo/Lo+JkrOW30MJ7214fYPFYcz0PW3U
oz2UdSNUV+eLBOAC51QV6x7i4NUTsXWSBEaSrYwFyj2kE38pgTpLGjADRdYX
cffQjJWHr+oZOdBIdhC7v7SLPgp4qi+UyYPd56fkr/p2EQ6Vt7IgzXOIECMf
cKjaRfj/NOlvOClACUVPfFLWLiJIjK8KOvcChsbCTZvDd5HIrzPrD5OV4ChD
++Gm6y6qw9kcfqCtAnRfbxPSWuwioxEMMfMjNXgkvd4Kb3aR+me2sM931UGd
9m/oO9ldpCCwkzgh8RpsZu103B/sooZysTsvMZoQkifOk3VzF20cPWtcMdKC
QieSw+5Lu6gER5NlNP0N9D/vrD483kGwWqHHhasNe4yhvtcXdhDG/G57uO47
uLyipS7Rs4MuexZHPpnSAYFi1lvGFTtIRXeEbvizLqi4r6z5Z+ygCX53ZMOk
D59V8/79Dd1B50wp7uFPGEDgrS/fR77voB6ld8+Di40gb0v0+RnzHfTbkiuY
KtsEuiuI6W9r7iDOaQHj+lFT2PJtm5GX3kFniv776LFtBpSav7ItBHaQtGOc
8AjtR+Dj1PgSxryDqu/nFz+RNQfFQxaJcvIdpESyL/rS9xN8rF+8NHu4jVzj
FqwjJi3A71fOEMncNoJc2R/hEpaQrWOdxNu1jfJzOVQXi62gnU/4o2rZNhKb
HyGnFrOBNTwiIbv0bXTFRvcwc9gWyNuaieKDt1H4Vy1mBfevwB35s6PeeRuR
n4Qb17DYg7yResSq2TbyyYkz3CX7BiYPb+hRv95GMsYzea4EDuB1bp73keQ2
algaIUT4jvC7J/NYi38b8fjbxk2SOEFz/Oe679e30XO/t5RiN5xh6aNQQDrp
NvqXz36J87ELXBA5o9Gxv4Vmme587zX9DhzkjWx701tIGSN5yT/5B0gP+21e
69hCw6/0r8Ytu4JBmip6jLbQTfc99xcYd3CzZnTTT91CX/1y345HeECKxIyi
T9AWIqPRpfYj9oJ66t8MeY5bSI1yWz/B0RvmJs3nB0y2UEti5jiXsw8Q5TzM
xVXfQsXu3M5f5XyB9Rue/S2JLTT4/jrxKKMfSMjVScrwbSHSqAZ94z0/eE/v
Q/WRcQvdO+iof9LnDy4LSqO/Lmwh/68qxj9KAyDhL31qye4m0m35JCKV8ROq
v09+mpzcROmLfLdS4gNh6kUqhrhtE22OeZqVxQYBAfOH89zFmwgzaEIYl/wL
mNcFul8kb6KnN+S2DfOD4XHpSZTNz02kkV365k5TCLz1qjaI/raJzmVEhO/M
h4KDuid/jdEmSlp5zjlGHg4x7Iq4S6qbyDxxwutAKALKd2kbL4lvok7KJ9NK
nyJhrHosUODuJlLOf+mFqxYFOD+TtF5f20TagelBLkdRwPjWhMOJeBPxX/Oj
xsRHA4aHfyd5ewPZEqRR8D2LAY2Tw7KW8Q1UlRbzVgc3Fr42VXhsNW+gj1tm
BwO5sRAR6qZ8tWgDcfksHQQax0GJ3rPrwokbSPX1xyeht+Nh6P7lJR3/DcTJ
VEoztxgPh2dG8j3sNtAXxxcuDtkJQNcZ75BtsIE+3cJ5pWubCI9iDGV6lTeQ
rHasYZhkErw05b18LLqBljxvNVyhTwZrof3xG9wbaPwozn9iIxlCLpSlP6Xb
QCGfHSk2mlOgsP+7pQnRBor7UjH/5Hcq9CXJiv7cXEcXzzMvDvumwa4FFWnR
6DpSHe+tzbNKh8tig72jjetIzGCNuObdbxCgiI0l/LuOhiAsm0QpA5TH9Iw5
4teR1bekVWGWTLDI4BZ87ruONnnvCvtFZ0Lglx18yy/rSNakq2eTIQvypEqa
w/XW0QezLUudqCzouuIcXPFiHRmH2RdNXM+GzRkp7TnhdSR94mWrl5gNlHmX
uMg411FSf57Zxp0c4HPq2+OjXUcco9+vfM3LAYXnUZVqhOvoSlTQozPCf+AD
43tv+/U1RHNFStG56Q/4Ld9RSxheQ45lMY17L3Mh+98mc2P9GtpO4LzzejEX
2tyKVtby1lDYML3j7695sKriUEgTu4b+M/+rOn0pH8hvPXX+z3sN1fsJuuEm
5wP3Fpn8W5s1VPuzgeMAUwByFd20ru/XkNM8LmdLfwEY+4ZP/VZYQ9mjdNJW
Fn/BS0M7sxPW0HG7p8AWRSH8vnPbZv/2Guo+3GcXyimEpoM1McbLa+jXuNeo
vGIRLNUVkIsTrKGPSllfb+4UwYVfdgMGq6tIcGIt5l/oP+DQEU/wHVxFNx/E
LV0QKQZpPhKz/NpVxPlnsoJyvhgM8DofDv1ZRZ6pYspN/iXg1hpCiB+9ikJv
JvziBQQpEVptrJ6rKESN2U54EUG9IWuYrNUqulOYHmslUwpzD1Z0zN+tIvTy
mVJ0fCkQncvjCXm2in7NGhf/PC4F1h7bQ/TfKroyrByooFIGEvGiNVNsq0i6
8dWZvuwyeP+R2O889SrCj2hMZyItBxfhNnUevFWkLHGF6LZ+OUgzcMv9HlxB
EnWvPq5Vl4NbUfHk3p8VxDe5E/yBuQLqlaWsxTxX0CxNM0myQwUQbfaS+b5b
QVoSrRd8xypAwkcnfvC/FfR48VDzpnAluHBsPmClXkEpZ7m/a0dXQnXtt9aP
y8toXL5XSxyvCgjekemg6mWURUluW/22Ch7jhh8QRy6jFuYr90aqqsAhnN1X
6fMy0uZu63FjrYZywYKbMXLLyIzlomO5ezXgdIv9W7q1jC6+nmv8ulINmA8d
zwRxlpEkb3ZAgUINfCXVmnHqXUJvbbZ13hfUQEnKsm1r5hKa0zOicaSvhUNx
20t0rksogShUH8+xFh5NnEt6r7WEHD0HaAdna8HaLui/HMElFKgU+eKMXB0U
XmXpOL64hKhpNi6Y59bBbn62ruT8Ihq5/puSjq4eBBQxxz/LF5HIAgv7ukM9
WKw2+Y+FLKK3c+uqc3P1kOfxku3Ox0VEGumitCXfAJuscyWWUovI2LtL62xB
A/BVWShW3lhEaTVDFpcYGuGDFsE82eECyhvqjSJ0aYTsI1+7l50LSF7vKlfX
YiOsBjNQJaYtIEFNQ01jhSbg5k9PWXdaQM1ayRcq/zaBcfsDjNArbB4VRFjO
0Ay/jWu7XO8toNxwJjcV52ZYJFYy6CJZQIGi8SYW883AkTiBwzQ9j5pTb7gQ
y7WAvqhZoGHJPIqSCaPCy2mBlJHj2wWB86gl3R3/5vlWmLXxKMM3mUc3Bg4+
6j9qBdbLtMpyT+ZRhMWMtJhRK+j8SVwMYZhH4VfZdNPDWyFB/p7D9M4cAk2S
9OCmVphcLKe52zqHpARqNnCOWoHZVT79S9IcMpa4J9J/uw3esAyL1NnPIQU8
vDw6tTaIKTPopVSdQ5tGeN/R9zYYfbVnpMkzh/78d1Gy8E8bMO674Kedm0MP
F2jHCcba4HUgZfDO2CxaLd5+EXShHSLuxnCKFs4iidaWWb377TDYzFXp5TeL
hrqoAj9ptQOdQbFqv/4salyWuZnj1g5qZ6VWWERnkUDmYSxdTjuExPY6mV2d
RcWNZV6p/e3QDzq0xRszqL6zvl0NtwMuD25kEDXOoBO2hwkstzpAxfKbmGLc
DMqkcaMhku6AQEqygUjbGWREJ1VxZNIB3ZlhpguKM2gthVqWwL8DKGXYCe/f
mUEmrkmtl3M7QHEuP9ThzAzqvNon9KC7A/ycxXiah6aRpk3J+ffbHdDO1FF9
JW8a1RTUS0VSdQJ5iab6O69pZN6e6TrB2wnyastrmTrTSPB84P17zzrBa9vm
+6HQNPKzY2MNNOqEZr9z9BI00+hH652sc66dcIErKNt/ZQqR2xe1+sV2gnQD
s8RIzRSSc7loxV/cCW7vs4fYo6aQr7njq72uTqjHx3y0sJxCDLq0sWNLnUAU
1URULj+FpEi21rYIukDi0csIErYp1Klrsvbf1S5w6Z3lVcWdQhZOBsFl3F1Q
bW5RF9c3iVYNTOncxLqA4CKBxmrWJDq7XVsVpdoFj9N9Nx+6TaIzMre6yIy6
wOEpg9v3N5Mo8QMV/7hdF5RPpTF0PJhEWiaU3Df8ugDH4UHuNYpJpP9LYn84
tgsw12ol9RcmkINcwLvruV3wtfDFaG7FBHp3n99jv6oLSpQmPuGGTaChPPsb
5t1dcLhuel7GfAKp/RRIDZ/ugkfex1G/pCdQIMmesvN2F1jf9uCfZJ5Ahk94
jwUJu6Gw5koj19E48rTEvVdP1Q27bxO1bLrGEU+9eJAYSzcI4NzbqU4fR3fJ
rdsK+brBIqzc45LLOHrh6bos+Lgb8gTkr79+PY4EMFE7bQrdsNk5lJ/MP47y
mX2r/N52A5+ZgcwW6ThiOqFZdv/YDR9I9sYxM2PIJ1FapsmxG7KTXSw90Bj6
VkGc/y6gG1bFKEl7g8ZQUFb/X+34buAej469YTqG8GgxRn153WD8lUvQRGIM
5YhRbbbXdsNv2uLmQsYxxBwupq0x0A2LeZLahHujyHlZhcVzuRs4FHr3nrWN
orsvva7r4/WA/so77/DkURQtGLqJT9MDKe4bzHPfRhGrqP2n9xw9MHvrWyGf
2ijiK/P9EC3SA6yVpPL2d0cR/rmUnGLVHtDRDJtqIB5FVtKXr9Wa9YD0nsI2
Z/UIonzL8qjBrQdqeUyYqi1GkBxloFJbXA9I6LtJv7o1gq6kb4tOoh6ojIn/
vNkzjAaPqnBJBnvg8UBpjPuPYVTDoounuNcDpRSDTdcFh5EF/SPaMppewEjv
7P6dG0I9nZfuvbzfC/+cLjE/CxlCqQXeKqwqvfCo+I7crOQQqplW4Oe07oWC
LQlru4NB9L0xMMYsvBcEOLXjqdMGkc+P5NTtsl74o2PXmq4+iKpsTD+UzvQC
X2TIwWOSQWQxRhrdRtoHmT25NweLB1BK0UD17ft9wE3e9uyj8QCaUt4ma9Xs
gzSJRVtihgFUJtruUOLeBxzfziZFt/SjT/dSLuzk90HS3+sdAvb9qMJHKPDz
VB+wrv933MLdj6qzeS2EKPshjl2V7f1YH5p58WBC4nE/ML81Vzz27UMcQaI9
/p/6ISrU2+6nSB/6aaTIT5vUD4ydKSkcG71o/uTJSs9AP4RdqO6qiO1F1MSa
kdXkA0AnNobzUrEXtceJho6KD8CvL4e31wl60f7eofu1rwNwOY9G2TW3B42Q
iTy3yhuAgOW7Dow6PSjveo307MoAUN6STc+n7kHm8Txsb9kHwUdDr1e2phvV
a391G303COS/nPCnP3cjvLtW+0oxg+DRGsn5hbUbTbdElxSNDMKFc0WqlH1d
KJZfmZng2hD8EO52SnXtQqlih0fMr4aAyHotQ+RBF9LScpq6FD4ETtkXBvrm
O1EKXWB82dAQECzcIjQL7UQiI+RlzAzDYH9DlIdIuhNxfexN59IaBhz11+qR
hx1oxy1evyt2GGwDrL7zp3egvKKUWqKZYThsDMhuetWB2uGB8D/2EbA8kzmk
TdqBfEg8uMaNR2D3vwaiw5J29PasVq1hzgiYW0zz+pu0IwsbXHHZ3RHY/I2r
wc7YjuzU6u/9uzYKpjN0bmWtbUiHrSvRWHgUVhkEclW+tSEfIUe1+9qjYKii
MLrC04Zuo3vmZN9HYdHH+Pz38VZUq7/uu5I8Crp1rvzX/FuR9JTBcGvjKMzi
xmvlirYimQ0rvbSVUag1t78SPNuCHMaUdGwujUHtVJ5JzdMWJPHO9ID/3hiU
Ki1VbaU0o4jtvoheZSzX3KBjvtCMAq6SmKhaj0GBgNqH50ZNiIDj862cMCwn
+9TaNzeiXnb85yMlY5BJW3Mtg6sRPV+mr+8ZxbL7kfmQTwNaCL7zIxBvHJIO
eRvOr9ejg8zdNCpmLBvpMz1QqEehDg3OcmLjEDUc9Vn3Tx3acBxME9LBslxP
UyBVHcqhtvUdchmHX6UkzFUWtSgpFO/BrUQs8zy23uipQbYCJpnUNePgE2Pd
yiRYgwKOVTQSp7FMkXVTPqQaEZ+n/tV5ZgJ+OM3Yfj2oQj9unjsIZsbyFn1H
mnoVkuqudtkQmQB7HUW2geJKNGlOoDqkieUeN7tzDJVI09GgSuHrBFhKlHXd
t69ApeXurxRCsfx357bOWDnSmaFs682fAFN2TocAkXL0iz2PaawDy6HaveWx
ZajCbeGz3gqWL4RyrhGUocv4uhQmxJOg+6XNiUGnFFHml9qsME9C6yBZXqgX
Qp1OgZqzQpNQWmL7Zle+BA36s68qq2A5ao70BUUxUnMm7nhoNgmZDkpFWV1F
aNwgR9nPFcvaFe9JfxWiv2LvOlWjJyFKnJvSQO0v+u/fdplPAZZZw0tr6AoQ
9aDr33stk+BDTGzEPJKHXrwj/fZkCsuLFle+Reci79sPUeX+JNg3T1QNvf2D
yLTfZaSRTYF9pvyHBzdzELvZyvbRjSkw9Su+FjSbhVZmvXrz72PZnL1hIyUT
mV/YetEnOQWlaZwrUf2/0duSN4Var7BsSiShppGGancyb8ibTEEU33gUxWQy
Gp6SXoi1x/Ju0V6jbiJiKwkTUffF3u/fz+cuS3EozUzRyjIay/YmqfAhBmkH
EI3tZGL3++FHtL4UiTDpayt9CMvk4oXaOyHo/N5kCX0zdv2vPYMenEB0X9Xo
T/kAlhnT6SWJfZE8MG/WzGJZvizC6tYPVEb+Zp5jawpwyuQJSsxtETuRXtUq
zjTglP4XePGeFmq1z4m7dAHLODcHVex0gIJWstWXGsujjxPHrtjBWZptEyNG
LGs9ND1v7QozHhTJcWzTYM+qT+if4wuelHpR/HexHJWnyJgSCH1tSVbXH2D5
Mn5selQoUCQEarwXxnJtomW4VBRsz45+IJDAMkEzw2R1DIie6y3alcEyZrOa
XSQeaDLvGooqYNmW1tisOBE6ylYSJ5SnobQAQ1UgkAJPDPTjel9ieVPn33FO
GogRR/gyaWCZ2/OtGFcGmJZdLyzWmgbNPNUz4l2ZwHbb5m3aW+x+nYsqc5ey
wXDEnWJJG8vrdmke8jlQ0/35mt07LJNT4HB7/QGqBW7RN//DnAkKHQ25cCJ5
6Uwgdn2UtGCixbl8OMi0f0mL3S9Kv3H/ypMC6CaBo2VNLP/QkC12+guLI0fH
FK+xnLAerVleCJflxR1d1bDPV+m8hY/zD5jiiFjklbA8fvlp4n/FwHbymFT3
GZZx0sIkbUqA6iSKtl0Ky9dgdakAQQXjOSJvsWkwvTYXLWFTCu8L4q9FCWE5
PVuKlrYMXthdkiC8j+VHtlsLBWWAFtXZKjix3CAWWaxcDsPMdhK9LNjvo0b2
1Hu7HG7LyCY8ocPyXO+65s8KEJh6RE1xCcuWMWF3+Sqh6onX0qOzWD5rKE7Q
UQl2X92Daw6mwCfw3mqXWRVcvBFRl7uCZZaT4ETyavjU9egp8QSW/9SKWmVU
w19ZHY7aLiyL+i1JytZAH1d+yHoN9v1vfxlEt1QDUvvpFJ5/sazFIrzsXos9
l/z5QlOwvLo8j9jr4KZzdShjKJbtCgJ86+rg4vMoOSb3KcgkdRB6q1sPIdM6
3NHWWA6XmuU72wAMGoEmcXpY5qDyI0xowM4dTEpcKlguGn7Y+7gRyIsi5cXF
sf8fyaSp5IlGaPjFXLPEi+U+M28bhyYwYk9UYWfCsu5DQRkm7Jxn4u+FQ4rl
HYKJa6XNcI917cwn7HnR6tLssfq6Ba6bzSl7TGOZ6hd/+VELMNTLfZVqx553
7dyrT2Vb4SfH5Ym84kmYDaaqysbOdQZ4g/c7kibBVGs/+OpSKyxVh5HG+0/C
KuuIsdOjNjh/ZVyI5ys2X60QXXJvg0shN8/Z6mLz/KTLSgNtgGu1Nun6fBIs
7TyXStjboSR0hV/j0STsin8ov2XdDh9kxIRxbmJzUuUgn7p2sPnaSmtGhs27
HhruXe6A8LEHC7m72PM+nFH4jW4H5D+M8WofmwCcd2eoG/I7gAwnrra+Hptz
zM/znsXOSQbWj2JysPlmMwpT6oSE+lBd9TBsPSnKCTiT0Ak/F0Q8D50mgMjx
l57xVifsZjcQuBhhc8kvQj2Pu4Ceziv/4AU2v/SGAhPQBZtkx0hTaAJ8+sRn
kya6oLCefiX/5gSQR98uvsjbDXhptm74ZNhcl9zP2qEblpylHojvjAM595bO
RFs3kEj1XnYYwdbDnb6H0kzYPpu/8d1fbD28jErIc017oH7Zn2s5A5u7xE7R
l2L73uI2neu/sLnsj0IXsl4441NTr2yPrbdURt4rr3vhr00BlY/uODAOPdNW
+d0L5Evy9Y3y2DyOX7DsqBdkrj40JxPE5oZXSdll+oApJ0pLlQlbz3lxJvzC
+sCzoWI/9dw4sB5M5h8s9MGNkQF9ovUxSCqv89B+2A89jNl9Jv1jwOr2W6vJ
rR8eNT2VnCjH9gvP/Pn5+/th7qCEVDt1DLivWJ6PZBuA8KKiyXV/bD6qPnrW
agBWDx9T+Npi8yThXNPaAbjJ4/0O3mH7EZObbn00g5D1t7juWGYMBO6f1xB5
PwiYMxJnW/mx+fEKb2reIPTIhor/YcDm1Z1ElIRDUEZRI5hGhO13PP8O2b4Y
gsXi9t6CtVHAvIjInoobApMbxev9/aNQSuf4XXZzCApf3dKhqMTmk+/V80WH
QcH6Hc7bdGx/lSrNw+g/DOeN3VzqA0dB4iMPoev4MLgfE1VI2mPzB9QDazwj
IPyl3GdSbxQk8Q4y1L6NgCdXafwvhVForBtxqmgdAV+clor3/41CosQ4BzX5
KNjoGbk/v4Xt79IUg+rvj0LrmH6W6sVRYCOvwbXTGIUO8abkg+0RmP8oaMiL
7QvF6H7Pfm0YgdSe1O6Z36Pg99yXVihqBAwfXhMO6x6FKv+FE8FPI3An0idV
/ngU0nOpX36UHIFlPHzqMzfHgOB70I95hhHI0Plk/xf7O3JtXCqP3BoG0/qZ
eaNPY3D7vBmZf8Mw8HCqvbgePgatRXKqldHDsO7biLorx4D82dbyXcthyNkS
YndfHAP24aS8YdlhMFfNCgDKcaAuieKqZhmGe8U3TjYejsM/9WKf2cMh2GYM
1Et6Ow5U55bbRTuHIN+JqFPdfRxOivGTu1OHwHLWWuhizji0a7l9iXAcAkHp
paSq/nEwHvhwK/jlEOxnaFBY402AxH/M/hW8Q1BE0f6Fk30CQi56kF69MAS2
nx/Pjj+bgBkSgerQyUH4byDveZDVBNhpSINI8SAcC7EVS0VPwP3fjYTEgYOA
YkJv4dRNwPWjN5YrxoNgT0jq92d1AmSTL4QuPRkEYX37Q93LkzCldun3CeMg
4DWv69BjJkHl51Ncxv0BqOB519b2fhJE7mBIJTsGwOlnz0MX70ko51wnskwb
ALG9pwkP8idBOGGUMs55AAhf/SNfGcb2XdHfuGtfD0BNKadNLOEUFPpGvxu+
PwA/mKOnlDmnYP1OS/Aodv56+oNC/oLSFMzcD5OsnesH4kXnwtIv2L5mX4nC
u7wfGuR2mT/FT8FToTetnKH94JGj783WNAXUxxIa0R/7QYZmaG9ocwrkQy2f
jkr1A6mNnLYftu5pNzwImrrRDy3DZc3ij6dBZzycKPWgD3xE+AQPDKbBS4a+
kb2jD54lJMRm+E/DcDERnkZKH1wivkKqXTQN/YRTNiLf+qDDyN3y8sQ0cPzF
jqnKfRDQdjTeSDwDe9Nu07icfaB4z1Tm290ZyPAclOrE7wPq4PH8e2ozMJHt
80+krxe6DxWvz3+bAUbV2HkJ7Dn0S7PGIyJ5BpSY5LsmHHpBpVJw53nbDByW
xVWQKfcCLWua1tm9GWh9Ux9ez94L/e7XGosYZ0Ej0a7l4nEPhK348JtKzILD
GxufidYeUFfAj2Y2nYXicMj4L7YHruV/Ot8XNAsrHtE3mD71wDDt7CdPNAvj
S2mdHuI9EPVVbVR4Zha+Hng02dP0gOZ4o+Q26Rw4bv5zOprphuvikJvCPwc/
eQU8CQq6YTw5i0Hj9RxQcA9fCvreDXEkzG4ULnOAG9LZna/UDdpmgZs16XMw
H0kop8fSDTe7iDRsu+ZAwt7G6fdGF0wL2NRxH81BgG/GqltZFySFYasy8zyM
aIaE4Hl3gS6OZkSw9DzcP+s5eEW9C9i124lkzedhNPy1XRdrF8zXPP6IFzYP
25+s8h9g61Da7fyhvIp5oHltPytb1gmG3mwSBgvz8NL9TQmNZydwboRmM1As
gMLHuBehKp2wrERK3/lgASo6btCN3uiEzEL77z/eLEBc7arm4nIHtt/aWHvk
tgB9Htb3a/52wF2Hd+prWQuw6bxw/rNTB6xP9VTH9y3AeguNHr5cB/x5Ksmj
hrsIw/ZMxx+udIB5+r9QUrZFWDHh6mucaAf+i1yEFfKLYEGa003zux22zaNN
P1sugpIPSdNLy3Yo6KUYuB21CANPsxkiRdrB8pGL2GjNIjTellSZu4CdwqN2
MwJWFmHIpqoI09MG+/gGtE9pliDlFk9MWnQb/Hs/5HQktARM3MxPeA3bwLZB
biVLZwnuC309N8DfBkJc5ao6XkvwuS9pNRm3DY79+Cpp85Yg/3nZzYTGVijd
TuBsGVqCkRjBkc6gVmy/eCXY8cwyREWsXnv0thVEStzxBe4sA+mvA+NRzlbA
u35stKi4DIoTete9tlqgwtm0N8p2Ge5bltjOeraA09y4yIu4ZRC4VYrpvdkC
YjIv0s81LgOBunaUNravIsyqoSnZWAZHPqm1ALVmqKF84PDh6gocy493Gm81
wQ/LtMWboivg5p2sv+vTBE8HrykP6K+AmPX4Z/47TUCM8S3z9luB94NhhHfq
sX1dLD7H48IVGLwXNDfyvhE8zloE7o6tAP0bOr9nhI2QcM/cvptgFe4cyjY5
xjfA9/fpuZmXVyEk+slTS7EG0A2ennfjWIXPfgRBPNP1INHAwPgOswqvBiMX
fn+vB9YjlReguAoSQ3wfVtnq4RyXn9sV3VXoyyR4utVYB/OaDWjDZhU49F/T
F5vWQb0fwVaT9yqo98lniFHVQUrlf+xJsaswN03l7VVYC+7bFhoO+asAnv52
AZq1YMiaGaDesAratY94lc7WgrTaXB3/yCq0b5Q6tv6uAQ6P6yfkG6tQyDab
iaNcAyQlL/kWCNeg8HumyMRJNSyvBOhV0a7Bn+RYA4vkamhmao6I5FwDm0rt
T3kK1fBb4WynlcgaDHeoiEUdV4G3M+acotIaXPAifsqdUgWm+VZCnPpr4FTC
/UlbqQrk57I/En3Frn8w+UkQvwq4ry4mjfti13cl6KRlVsJFGZbhf/Fr8ITj
jnHh60pY//qaIujvGngz4lprkVRCe2aQhFnTGnwa6uqN+FcB2eOtX6TG1kAP
M0BrZlgB/pTEOSxba0CHwW/soqsAc3HR2ROidaC3jZdvbCoHRUtb+n66dcjy
ynRVsCsHvpTc53+412H78+ALfZ5yoBpc/u71GMvflRXIJ8tgm4S1WFdlHS5U
dvOJBZVBN2itixiuY4ezhEUiqTLIMwu5RW+/DgyF9JzqJ6UQFNuhvuO/Duc/
GIlh/pSCZdcFv7bEddCU2zzO1SsFlbPiNalF64DDYlJTwlAKAoJ2h84t62AU
a9VRkIbgikEBj+bEOlThNvpdv4pgP2xN58HOOtxPe7lR4lYC/c3sYZTnN2Cn
cmPP/6AYCnG025avbcA7so6EBKNiCL0bTlh3dwM2aBY2j0b/ga1298NY8Q0I
CC+rjnjxD9QDycy+qG2AbIMnj39DETyqlUhQNt6A91QySaMiRUC//22Ax2ED
Orm+xnsVFcLx7SLyC4Eb4HLWgjH2XiEMv9oUm07eAJPFND22rL9Q4n3HprR4
A6Q6FCdZOP9CZJlOZkjbBtzwj/gRm1YA9huRU+ZTG3DgthWWyFEAmix9tHJ7
G3DLyN324e98wChfkmcj2QSHZM0VbZ58YHKVcsZn2oR2Fq84jrw8wCtyKhzi
24T8n1a4wY/yYHyxeCVfYhNKzRRkMytzofzaDrOf+iZ4RJj+/CybC7Hy3GqG
ppvA8JM2cbvvDzg56HmLO23CWMpHzbvv/4D2n5hKxl+bQL9oPce5nQOPpwf2
9lM34R11IeOqSw6wXKbi6kKbEPFysdnqSg4QSspqZ3RsYvvRwPKW9GyYtvke
7DqzCT9XyjI2RLOhOr20+e3BJjhrtujPDGRB4sgevhDZFsjUDrakfsqCHxd5
BS/f2IL456POwhezQFfU0Hidfwvmuw2WE39ngsSn+NhGyS2YSm+9PCKTCWyJ
w70Jr7cgvzLZsGYoA4j7aEi/fdgCzFK5m/6NDJgnfib60mULqPlIjsINf0P9
IzfLeyFbkNmy3aL+Nx1SjSvSyX5vAQH+l8HQc+ngEXU4Ple2Ba8FFiWVX6WB
Yfu9y5VdW+B825r+259UkCYwkYmY2wJHE4tMErJUuMOf5GB5tAWvxFV0Vg1T
gFR3LP/5xW0QVkguvNqcDMvBtEscLNuwoBh+ze5uMjQ3KFw/K7gNr4cNmclD
kiDjyEN5THob8KgY4ooIksCHq9qjSHMbPlj7yn38kIidV0/KfppvQ3+Krz7L
RALI+wvsmPzYhkE+14RSpQTgqTLjkAzbhld3LN14m+Lh4k6KFnPmNqyYF703
FI+HddbJwOOKbfDNyW5WLo+DdjX6xt6ebWCZCCiexsRBtocSbs7CNlixMO0Q
lseCf4k3v+fJNhz+C7uUIBYL5qu1Bu8pdqB590lMZkMMKF7Hixa+tQPnAhR0
LivGAJ/iw+6rD3dAGpZeNw1HA5WL+flt2R2YmN73LzaIhu38dEzrmx0Q5q8V
7NuPgu656U8pFjvA9Kqd8qJHFORdZUx1ctsBQqJuCiWGKAiSUR19HbED7suf
KO7pRWLnbT8qwewdMHtgNRITFAEqWQ2SFNU74KMhxTRQFw6CEwT2S3078EGR
i7T+JAyuUAnl1iztgOjysdcLwTDYF/88H427C4e1n7WNLUKh3zKTwZZqF55a
qP08zAuBopQ5RSW2XfDgU+fb3g+G0MHrbtz/7ULOhR5SCZFgsCVVR8TPdrHv
yZ2lSY9foI75uTmpvQuGjmNyZf1B8N+HZjZkid2PbPdNx+0goI87qxHssQuW
V4s7ye0D4bgLE/AxahcwV5iOPvf8hOGz1nUyf3ZhV8zj4JDnJyDBnONbtbtA
86E7Lt47ACINFnnxBneBQWjfVW/VH+zDWfQGV3ahQ13ntrSiP2i2vI7Iw98D
0V2PAckiPxDG/dXhQ7MHnzW55A1Y/ICJt43I4PYepNKwkfz28wW8d8RCYrAH
esXCP2nxfWE8UPQjg8IevBq6vppr4QMVtbZJezp7kEkxWHdhwBti93OHOqz3
IL5+cPhaixc4caxc+u21B8fR0QpldZ6g/ZpV4kfMHpDHteDhNHiAmI/Wlzd5
e3DrG2v8Zrs7sJSHZD+q3wODdebkrDE3INzsmKEe3gPPOnFfuR1XmGYhoV9b
2wPW8uqFeQpXqFEWf95wZh9s5706A+//gERXu+/xV/bh89FikPGb7/CjqOCf
3Z19IAohaHcLcAHdpbU1VeF9oC7620Tc7AxPGW7f4nuxDzLtJTuEZM7A9kxb
nVRvH076XIRClJ2A2DHcd9Z2HwZvCl8bTXSE+T/d1eU++xD9bPr2wYkDNEyT
HYbF7UNDRPwdAk0HSL38lOdzwT6wLuJu0NR+Aw9JB51njfsgSMD6VEHgGxja
FoXeHt0Hxzc58+2Z9iDze7P1zCb2+SclTXN47OHO6B3C0bMHUMna4Hjdwg5I
L71/WHj1ABi/E128GPIVlkWjTAO4DiAqTQGj3/IFWj71xRuLHsDBrT8U76i/
QEbipQEJ5QOIb6kvvG9iCz59UuQ3DA7gfvTyW7J+GzA97yx29PUAKHJYX3Mr
28Cz/0qse/wO4FF4YE31tDXwmOxkZCUcgC5/PwG+qzVcjOaeci88gPNA+uOs
kDWst+vR6jQfQCLF5tBVQmtoJ4iVw4wfwPPdzjKdMSvI4R90ot0+AL9XxhUk
rVbgr0tVuHnuEPAnVJk5263APER2pZn+EKTq9bpPZqxAsfE7czLPIUzKCTIl
XbSGe8elqo5ih5A6d7MX5KyBinvf65XqIcQlffYeiLKGbS3eyvtGh5BDeTIQ
SWgD3f6Gexe/HQLT+uUfafY2kF8Vz7kYcAjcTXIq58hsIWhn+G110iH0Klnq
VWbZgiXb5eCof4eQOFxLMaP7BVRePmu2bj2EtZI59098X0HQ0w3/xeQheB/Y
2BtT2sEVVCHAtXsI0zUrD7QJ7GF/9dDo3IUjYEk27v37wx76r/PHTjAcgVwI
nSgvzTcoUjTpLeY9AgZKwYJ/Gd8g1CWJ5NeTI9Df026Reu4AtgVjIh9eHgHd
Tb+46mMHUJ+ntZQ2OYLWJzG2FLmO8B+dYvpNxyNYHHPmovzkBPSynuM4QUdw
LPJ+M17IGY7tqmkGUo5gT8yKK/qiCwxnnUjnlhxBF8eIcN+SC6AJAQfv9iPQ
e8KiTtfxHSKpPuTrTR8Bc3qFAm/ZD7B/krooun8ECnHU34byXUHTapLpGukx
sErtfhrNcwPhVHrlXaZjCIs917ta7A5MQ0oe7feOYboSjlGjB+CR+ZSlPT2G
9s8fH26Me8I4pm7b5dUx4LU+bHqE4w0VH/A4tMyOYczy+nn6Sz4QG/dQ66Hz
MVx0qr4jnOgDTt3mgVTBx3A7srNTEXxBm+h3w0raMTCZcRAz9PuC2IMZnPrS
YxD5rDD19rMfsBgy8sd1HkOTnk7wJLU/EEaoGnydPYZUZYLvGgX+MN3iF6Vy
eAwmruLPfV4GQA1uY9dd8hOIH2w75ML5CYm8Z86TMJ9AbPhZgq34n/DjnRBm
5v4JKO4pOvpLB4Ju0OdPZVInkIEXrFa8EQhP6zJTQjVOAE9QR5YxNAjYDuZG
Pn08gbWeq3V6Ir+A+M4NKvnvJ+AxO4YrM/cL5l+rS7KHnkAg3WSPkXcwNPj8
tCPIOIHlyC/XbflCILW8+c9w+Qncn/8rQdcbAh6bZ+cLuk9A9CEv4bZVKBje
FGbwnz+BCltN/8wrYSCjYq1odHwCpVeK59fzwoC6qq/yxjkcjGf4LXLtZ+Fw
9rXFCDkFDuZZ+A211Nlw2Nm+tH9Eh4PZkk74Z2obAbPeGZQLN3EwI67kVK8u
REIvqzRXLzcOJv7algXtr0ioLZt9WvUAB7OpEPsohSwKCtSctbMf42CMxsuF
B+WjIGmDyS5SFgfznF6UxMY7Cn55lAR7qOBglO9yB2o0RIEry8s/Vm9wMIfD
vne0CaLBqmSnWccQB3OtfCVG+0E06CsHzClY4GA08hreCxlFg9oqN4GwPQ6G
m3w4qzUsGiRdm65xuuFgRAdHQw9ro+HBdX3BqwE4mD99BY/j16KBvYhQkSgC
+3yLjYsZ1DFAqxhrvJWIg1Fl1LhIIBAD55fAdTwLBwP7/5zdX8TAgfNgbEsR
DuZhauQxj0kMLF6zKvlXhYNJEMtqnHaKgcF8qr7kFhzMzVG5ldDAGGiUz94I
7MPBvH8mnPI4Lgb+zcmSOk3gYDCIIK4nPQbSHBZYzZZwMBEVQg9lc2Ig7OoP
0dc7OJjHxM884/7EgOcf5tdSuLiY1IA9q76sGPgiU2YpcB4XM026EbucEgPG
06/8WahwMZlSAcazkTHw2m4//RIDLkYhxWy3yScGZC8H1Z6w4mJKO89SJH+J
AaEs3onFu7gYTJ/NfRedGOCUbD3qe4SLecj+zdJcKgauTRherhHHxcTpW5s5
c8QAme053j/yuBgK1uW7Tedi4IQyQSZaDRdDmmTI8WYiGlbTRXS9tHExBYVn
KV/9jYZR8REHG2NcTD/pt4Ze92hoHbEJ17XExTg2KImuq0VDqeXlghcO2Pux
9L2svRkNmRdz20U8cDHbshaVNitREJXybIkrEBdzxcywjzM3Cv7Xd8D8n99w
6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/nPoPp/7Dqf9w6j+c+g+n/sOp/3Dq
P5z6D6f+w6n/cOo/nPoPp/7Dqf9w6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/
nPoPp/7Dqf9w6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/nPoPp/7Dqf/w/7v/
8P8AUD6mog==
"], {{{},
{GrayLevel[0], Opacity[0.3], EdgeForm[None],
GraphicsGroupBox[PolygonBox[CompressedData["
1:eJwl1kPUGIYSBtA/tu2ksW2bjW3btts4jdnYtm3btm0n7+Z1cc/MZmY1Z86X
qGG7im0DBwQEBCJCkICA333EIP/14QlHWMIQmlCEJATBCUZQgvyeJRAB/LLo
Jz/4zje+8oXPfOIjH3jPO97yhte84iUveM4znvKExzziIQ+4zz3ucofb3OIm
N7jONa5yhctc4iIXOM85znKG05ziJCc4zjGOcoTDHOIgB9jPPvayh93sYic7
2M42trKFzWxiIxtYzzrWsobVrGIlK1jOMpayhMUsYiELmM885jKH2cxiJjP4
l+lMYypTmMwkJjKB8YxjLGP4h9GMYiQjGM4whjKEv/mLwQxiIAPoTz/60ofe
9KInPehON7rShc50oiMdaE87fh9mG1rTipa0oDnNaEoTGtOIhjSgPvWoSx1q
U4ua1KA61ahKFSpTiYpUoDzlKMuflKE0pShJCYpTjKIUoTCFKEgB8pOPvOQh
N7nISQ6yk42sZCEzmchIBtKTjrSkITWpSEkKkpOMpCQhMX+QiIQkID7xiEsc
YhOLmMQgOtGIShQiE4mIRCA84QhLGEITipCEIDjBCEoQAhOI30/kl4fykx98
5xtf+cJnPvGRD7znHW95w2te8ZIXPOcZT3nCYx7xkAfc5x53ucNtbnGTG1zn
Gle5wmUucZELnOccZznDaU5xkhMc5xhHOcJhDnGQA+xnH3vZw252sZMdbGcb
W9nCZjaxkQ2sZx1rWcNqVrGSFSxnGUtZwmIWsZAFzGcec5nDbGYxkxn8y3Sm
MZUpTGYSE5nAeMYxljH8w2hGMZIRDGcYQxnC3/zFYAYxkAH0px996UNvetGT
HnSnG13pQmc60ZEOtKcdbWlDa1rRkhY0pxlNaUJjGtGQBtSnHnWpQ21qUZMa
VKcaValCZSpRkQqUpxxl+ZMylKYUJSlBcYpRlCIUphAFKUB+8pGXPOQmFznJ
QXaykZUsZCYTGclAetKRljSkJhUpSUFykpGUJCTmDxKRkATEJx5xiUNsYhGT
GEQnGlGJQmQiEZEIhCccYQlDaEIRkhAEJxhBCUJgAgX6L0z8Un7yg+984ytf
+MwnPvKB97zjLW94zSte8oLnPOMpT3jMIx7ygPvc4y53uM0tbnKD61zjKle4
zCUucoHznOMsZzjNKU5yguMc4yhHOMwhDnKA/exjL3vYzS52soPtbGMrW9jM
JjaygfWsYy1rWM0qVrKC5SxjKUtYzCIWsoD5zGMuc5jNLGYyg3+ZzjSmMoXJ
TGIiExjPOMYyhn8YzShGMoLhDGMoQ/ibvxjMIAYygP70oy996E0vetKD7nSj
K13oTCc60oH2tKMtbWhNK1rSguY0oylNaEwjGtKA+tSjLnWoTS1qUoPqVKMq
VahMJSpSgfKUoyx/UobSlKIkJShOMYpShMIUoiAFyE8+8pKH3OQiJznITjay
koXMZCIjGUhPOtKShtSkIiUpSE4ykpKExPxBIhKSgPjEIy5xiE0sYhKD6EQj
KlGITCQiEoHwhCMsYQhNKEISguAEI2jA/yN/wP8AXVqEEQ==
"]]]}, {}, {}}, {{}, {},
{GrayLevel[0], PointSize[
NCache[
Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwl10O0GIYSANAX21ZjNrbd2LZt20Zj23Ya27Zt28a/OX9xz8xmlqOEDdpW
aBMoICAgYpCAgD8xMNKAoAQjOCEISShCE4awhCM8Ef7UE4nIRCEq0YhODGIS
i9jEIS7x+Iv4JCAhiUhMEpKSjOSkICWp+JvUpCEt6UhPBjKSicxkISvZyE4O
cpKL3OQhL/nITwEKUojC/EMRilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerU
oCa1qE0d6lKP+jSgIY1oTBOa0ozmtKAlrWhNG9rSjvZ0oCOd6EwXutKN7vSg
J73oTR/60o/+DGAggxjMEIYyjOGMYCT/MorRjGEs4xjPBCYyiclMYSrTmM4M
ZjKL2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3rWM9/bGAjm9jMFrayje3s
YCe72M0e9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zg
Jre4zR3uco/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAn
v/jNn+YPRGCCEJRgBCcEIQlFaMIQlnCEJwIRiURkohCVaEQnBjGJRWziEJd4
/EV8EpCQRCQmCUlJRnJSkJJU/E1q0pCWdKQnAxnJRGaykJVsZCcHOclFbvKQ
l3zkpwAFKURh/qEIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYO
dalHfRrQkEY0pglNaUZzWtCSVrTmz/BuSzva04GOdKIzXehKN7rTg570ojd9
6Es/+jOAgQxiMEMYyjCGM4KR/MsoRjOGsYxjPBOYyCQmM4WpTGM6M5jJLGYz
h7nMYz4LWMgiFrOEpSxjOStYySpWs4a1rGM9/7GBjWxiM1vYyja2s4Od7GI3
e9jLPvZzgIMc4jBHOMoxjnOCk5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3
uMs97vOAhzziMU94yjOe84KXvOI1b3jLO97zgY984jNf+Mo3vvODn/ziN38W
fyACE4SgBCM4IQhJKEIThrCEIzwRiEgkIhOFqEQjOjGISSxiE4e4xOMv4pOA
hCQiMUlISjKSk4KUpOJvUpOGtKQjPRnISCYyk4WsZCM7OchJLnKTh7zkIz8F
KEghCvMPRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerT
gIY0ojFNaEozmtOClrSiNW1oSzva04GOdKIzXehKN7rTg570ojd96Es/+jOA
gQxiMEMYyjCGM4KR/MsoRjOGsYxjPBOYyCQmM4WpTGM6M5jJLGYzh7nMYz4L
WMgiFrOEpSxjOStYySpWs4a1rGM9/7GBjWxiM1vYyja2s4Od7GI3e9jLPvZz
gIMc4jBHOMoxjnOCk5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3uMs97vOA
hzziMU94yjOe84KXvOI1b3jLO97zgY984jNf+Mo3vvODn/ziN3+O/kAEJghB
CUZwQhCSUIQmDGEJR3giBPn///A/0nOEEQ==
"]]}}}], {{}, {}}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{-2.2880000000000003`, 0},
BaseStyle->14,
Frame->True,
FrameLabel->{{None, None}, {
FormBox["\"Error (eV)\"", TraditionalForm], None}},
FrameStyle->Directive[
Thickness[Large], 20,
GrayLevel[0]],
FrameTicks->{{None, None}, {Automatic, Automatic}},
GridLines->{{0}, {0}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->300,
LabelStyle->{FontFamily -> "Times"},
PlotLabel->FormBox[
StyleBox["\"CASSCF MAE: 0.47 eV\"", 20, StripOnInput -> False],
TraditionalForm],
PlotRange->{{-2.2, 2.2}, {All, All}},
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {None,
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellLabel->"Out[66]=",ExpressionUUID->"6388ff56-ba75-4aa8-9483-c26182754d88"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{ Cell[BoxData[{
RowBox[{ RowBox[{
RowBox[{"WFT", "=", RowBox[{"WFT", "=",
@ -24998,8 +25856,8 @@ b5JAxM18hw2qT5rnrVWF88HuEdCA89HzC4wPAHciYt4=
}, Open ]] }, Open ]]
}, },
WindowSize->{1440, 847}, WindowSize->{1440, 847},
WindowMargins->{{1441, Automatic}, {Automatic, 0}}, WindowMargins->{{Automatic, 126}, {Automatic, 0}},
FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)", FrontEndVersion->"13.0 for Mac OS X x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb", StyleDefinitions->"Default.nb",
ExpressionUUID->"85b7a10d-2875-445d-bac3-ec6fc5ce6624" ExpressionUUID->"85b7a10d-2875-445d-bac3-ec6fc5ce6624"
] ]
@ -25028,43 +25886,47 @@ Cell[2603, 70, 89, 0, 98, "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a3017
Cell[2695, 72, 245, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f", Cell[2695, 72, 245, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f",
InitializationCell->True], InitializationCell->True],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[2965, 81, 5142, 122, 304, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], Cell[2965, 81, 3811, 94, 262, "Input",ExpressionUUID->"31fd4aa9-bc03-4d09-8e5a-c1a6e87694ae"],
Cell[8110, 205, 126303, 2334, 531, "Output",ExpressionUUID->"015b06bf-1e91-4e1a-9cff-a6bd49cc491b"] Cell[6779, 177, 35282, 757, 272, "Output",ExpressionUUID->"6388ff56-ba75-4aa8-9483-c26182754d88"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[134450, 2544, 1392, 34, 94, "Input",ExpressionUUID->"f9587fd2-1e23-4030-9f68-19ee3273f3fd"], Cell[42098, 939, 5142, 122, 304, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"],
Cell[135845, 2580, 910, 23, 34, "Output",ExpressionUUID->"ddd7a8f9-59bf-40aa-b7d9-bc4f1657909d"] Cell[47243, 1063, 126303, 2334, 531, "Output",ExpressionUUID->"015b06bf-1e91-4e1a-9cff-a6bd49cc491b"]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[136792, 2608, 33857, 784, 1858, "Input",ExpressionUUID->"d3cfcc37-7870-45d8-9dde-1f2d1fb25587"], Cell[173583, 3402, 1392, 34, 94, "Input",ExpressionUUID->"f9587fd2-1e23-4030-9f68-19ee3273f3fd"],
Cell[170652, 3394, 1668, 42, 34, "Output",ExpressionUUID->"20eac2ff-49eb-454b-8032-5f9dde62980f"], Cell[174978, 3438, 910, 23, 34, "Output",ExpressionUUID->"ddd7a8f9-59bf-40aa-b7d9-bc4f1657909d"]
Cell[172323, 3438, 965099, 18691, 2059, "Output",ExpressionUUID->"6574969c-81b8-467d-9bfb-ccfcce64c9d4"] }, Open ]],
Cell[CellGroupData[{
Cell[175925, 3466, 33857, 784, 1858, "Input",ExpressionUUID->"d3cfcc37-7870-45d8-9dde-1f2d1fb25587"],
Cell[209785, 4252, 1668, 42, 34, "Output",ExpressionUUID->"20eac2ff-49eb-454b-8032-5f9dde62980f"],
Cell[211456, 4296, 965099, 18691, 2059, "Output",ExpressionUUID->"6574969c-81b8-467d-9bfb-ccfcce64c9d4"]
}, Open ]] }, Open ]]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1137471, 22135, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], Cell[1176604, 22993, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"],
Cell[1137560, 22137, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d", Cell[1176693, 22995, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d",
InitializationCell->True], InitializationCell->True],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1137829, 22146, 4452, 128, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], Cell[1176962, 23004, 4452, 128, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"],
Cell[1142284, 22276, 31728, 630, 318, "Output",ExpressionUUID->"4a3f128c-d621-4a5d-9883-46aa65f2e128"] Cell[1181417, 23134, 31728, 630, 318, "Output",ExpressionUUID->"4a3f128c-d621-4a5d-9883-46aa65f2e128"]
}, Open ]] }, Open ]]
}, Open ]], }, Open ]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1174061, 22912, 152, 3, 98, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], Cell[1213194, 23770, 152, 3, 98, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1174238, 22919, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], Cell[1213371, 23777, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"],
Cell[1177569, 22991, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] Cell[1216702, 23849, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"]
}, Open ]] }, Open ]]
}, Closed]], }, Closed]],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1230778, 23877, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"], Cell[1269911, 24735, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"],
Cell[1230931, 23882, 2518, 68, 229, "Input",ExpressionUUID->"ad61fbc1-6c66-408c-8f64-9aeb20e11f88", Cell[1270064, 24740, 2518, 68, 229, "Input",ExpressionUUID->"ad61fbc1-6c66-408c-8f64-9aeb20e11f88",
InitializationCell->True], InitializationCell->True],
Cell[1233452, 23952, 2761, 73, 283, "Input",ExpressionUUID->"d48b5f18-7800-4eb1-91de-a74892343606"], Cell[1272585, 24810, 2761, 73, 283, "Input",ExpressionUUID->"d48b5f18-7800-4eb1-91de-a74892343606"],
Cell[CellGroupData[{ Cell[CellGroupData[{
Cell[1236238, 24029, 2169, 44, 115, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], Cell[1275371, 24887, 2169, 44, 115, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"],
Cell[1238410, 24075, 47554, 920, 345, "Output",ExpressionUUID->"b7f2b372-fe4a-440e-bb84-c204b0cb3a05"] Cell[1277543, 24933, 47554, 920, 345, "Output",ExpressionUUID->"b7f2b372-fe4a-440e-bb84-c204b0cb3a05"]
}, Open ]] }, Open ]]
}, Open ]] }, Open ]]
} }

View File

@ -159,8 +159,8 @@ We underline that, although a third-order version of NEVPT has been developed \c
\end{figure} \end{figure}
%%% %%% %%% %%% %%% %%% %%% %%%
For each compound represented in Fig.~\ref{fig:mol}, we have computed the CASPT2 and CASPT3 vertical excitation energies with Dunning's aug-cc-pVTZ For each compound represented in Fig.~\ref{fig:mol}, we have computed the \alert{single-state} CASPT2 and CASPT3 vertical excitation energies.
basis set. \cite{Kendall_1992} \alert{All calculations reported in the present manuscript have been performed with Dunning's aug-cc-pVTZ basis set.} \cite{Kendall_1992}
Geometries and reference theoretical best estimates (TBEs) for the vertical excitation energies have been extracted from the QUEST database \cite{Veril_2021} and can be downloaded at \url{https://lcpq.github.io/QUESTDB_website}. Geometries and reference theoretical best estimates (TBEs) for the vertical excitation energies have been extracted from the QUEST database \cite{Veril_2021} and can be downloaded at \url{https://lcpq.github.io/QUESTDB_website}.
All the CASPT2 and CASPT3 calculations have been carried out in the frozen-core approximation and within the RS2 and RS3 contraction schemes as implemented in MOLPRO and described in Refs.~\onlinecite{Werner_1996} and \onlinecite{Werner_2020}. All the CASPT2 and CASPT3 calculations have been carried out in the frozen-core approximation and within the RS2 and RS3 contraction schemes as implemented in MOLPRO and described in Refs.~\onlinecite{Werner_1996} and \onlinecite{Werner_2020}.
@ -501,8 +501,11 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err
%%% FIGURE 2 %%% %%% FIGURE 2 %%%
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{fig2} \includegraphics[width=0.5\linewidth]{fig2a}
\caption{Histograms of the errors (in \si{\eV}) obtained for CASPT2 and CASPT3 with and without IPEA shift. \\
\vspace{0.01\textwidth}
\includegraphics[width=\linewidth]{fig2b}
\caption{Histograms of the errors (in \si{\eV}) obtained for \alert{CASSCF as well as} CASPT2 and CASPT3 with and without IPEA shift.
Raw data are given in Table \ref{tab:BigTab}.} Raw data are given in Table \ref{tab:BigTab}.}
\label{fig:PT2_vs_PT3} \label{fig:PT2_vs_PT3}
\end{figure} \end{figure}
@ -658,6 +661,7 @@ The two principal take-home messages of this study are that:
(ii) CASPT2(IPEA) and CASPT3 have a very similar accuracy. (ii) CASPT2(IPEA) and CASPT3 have a very similar accuracy.
These global trends are also true for specific sets of excitations and various system sizes. These global trends are also true for specific sets of excitations and various system sizes.
Therefore, if one can afford the extra computation cost associated with the third-order energy (which is only several times more than its second-order counterpart), one can eschew the delicate choice of the IPEA value in CASPT2, and rely solely on the CASPT3(NOIPEA) excitation energies. Therefore, if one can afford the extra computation cost associated with the third-order energy (which is only several times more than its second-order counterpart), one can eschew the delicate choice of the IPEA value in CASPT2, and rely solely on the CASPT3(NOIPEA) excitation energies.
\alert{Of course, it is worth stressing that the present conclusions are only valid for small- and medium-sized molecules and that the present study does not cover transition metal complexes.}
%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%
\section*{Supplementary Material} \section*{Supplementary Material}

BIN
Manuscript/fig2a.pdf Normal file

Binary file not shown.

View File

@ -35,14 +35,19 @@ A few things need to be modified -- minor -- for the paper to be accepted.
} }
\\ \\
\alert{ \alert{
We thank the reviewer for these positive comments and supporting publication of the present manuscript.
} }
\begin{enumerate} \begin{enumerate}
\item \item
{Table I should be moved to the SI. Key entries could be kept if explicitly discussed in the manuscript.} {Table I should be moved to the SI.
Key entries could be kept if explicitly discussed in the manuscript.}
\\ \\
\alert{ \alert{
We would prefer to keep Table I in the main text as it is the core table of the present manuscript.
We believe that it would be unfortunate to move (parts of) the table in the SI as it would not be ideal for the reader to have to switch between the main article and the SI depending on the system he/she is interested in.
We hope that the reviewer will understand our motivations.
} }
\item \item
@ -50,18 +55,21 @@ A few things need to be modified -- minor -- for the paper to be accepted.
The very important classes of transition metal complexes are not covered.} The very important classes of transition metal complexes are not covered.}
\\ \\
\alert{ \alert{
We have modified the conclusion to stress these two points.
} }
\item \item
{Make it VERY clear that the excitation energies are Single-State CASPTX excitation energies.} {Make it VERY clear that the excitation energies are Single-State CASPTX excitation energies.}
\\ \\
\alert{ \alert{
The reviewer is right. We have added this additional information in the "Computational Details" section of the manuscript.
} }
\item \item
{The authors should point out the difference between dynamic sigma polarization and so-called left-right polarization (https://doi.org/10.1021/jp9528020).} {The authors should point out the difference between dynamic sigma polarization and so-called left-right polarization (https://doi.org/10.1021/jp9528020).}
\\ \\
\alert{ \alert{
This has been clarified in the discussion section of our revised manuscript.
} }
\end{enumerate} \end{enumerate}
@ -75,6 +83,8 @@ I have however some comments that I would like the authors consider.
} }
\\ \\
\alert{ \alert{
Thank you for recommending publication of the present manuscript.
Our response to Reviewer \#2's comments are given below.
} }
\begin{enumerate} \begin{enumerate}
@ -84,6 +94,7 @@ I have however some comments that I would like the authors consider.
CASSCF has largest errors, sure, but it would be interesting to see how broad is the distribution in comparison to caspt3, represented in the same way.} CASSCF has largest errors, sure, but it would be interesting to see how broad is the distribution in comparison to caspt3, represented in the same way.}
\\ \\
\alert{ \alert{
The histogram for CASSCF has been added (and discussed) in the revised version of the manuscript.
} }
\item \item
@ -103,12 +114,18 @@ I would say the latter, so while the TBEs are useful, a comparison with the expe
} }
\item \item
{Can the authors also discuss if there is any basis set effect? Are the TBEs obtained with the same basis set as their calculations? {Can the authors also discuss if there is any basis set effect?
Are the TBEs obtained with the same basis set as their calculations?
Probably not. Probably not.
The authors could be more a bit more specific about the method/basis set of each of the TBEs in the SI, so that everyone can compare for a specific molecule (if desired) the setups in which the values where obtained. The authors could be more a bit more specific about the method/basis set of each of the TBEs in the SI, so that everyone can compare for a specific molecule (if desired) the setups in which the values where obtained.
Again, this should be discussed against the experimental value in order to convey a clear recommendation to the readers.} Again, this should be discussed against the experimental value in order to convey a clear recommendation to the readers.}
\\ \\
\alert{ \alert{
All calculations reported in the present manuscript have been performed with the very same basis as the TBEs (aug-cc-pVTZ), as mentioned in the "Computational Details" section.
We have modified the corresponding sentence to stress this further.
Having an augmented triple-$\zeta$ basis allows us to describe faithfully all excited states (including the Rydberg states).
Therefore, there is no basis set effect between the CASPT2/CASPT3 and TBE excitation energies.
Moreover, because the basis set effects are extremely transferable within wave function methods, we can safely assume that the present conclusions would be identical in a small or larger basis set.
} }
\end{enumerate} \end{enumerate}