diff --git a/Data/CASPT3.nb b/Data/CASPT3.nb index 237a76c..07224b5 100644 --- a/Data/CASPT3.nb +++ b/Data/CASPT3.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 1289234, 25065] -NotebookOptionsPosition[ 1285992, 24999] -NotebookOutlinePosition[ 1286390, 25015] -CellTagsIndexPosition[ 1286347, 25012] +NotebookDataLength[ 1328597, 25927] +NotebookOptionsPosition[ 1325125, 25857] +NotebookOutlinePosition[ 1325522, 25873] +CellTagsIndexPosition[ 1325479, 25870] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -79,6 +79,864 @@ Cell[BoxData[ Cell[CellGroupData[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{"WFT", "=", + RowBox[{"{", + RowBox[{"\"\\"", ","}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"MAE", "=", + RowBox[{ + RowBox[{"Import", "[", "\"\\"", "]"}], + "\[LeftDoubleBracket]", + RowBox[{"Sheet", ",", + RowBox[{"3", ";;", "286"}], ",", + RowBox[{"41", "+", + RowBox[{"{", "18", "}"}]}]}], "\[RightDoubleBracket]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"graph", "=", "\[IndentingNewLine]", + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Histogram", "[", + RowBox[{ + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",", "20", ",", + "\"\\"", ",", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"BaseStyle", "\[Rule]", "14"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.2"}], ",", + RowBox[{"+", "2.2"}]}], "}"}], ",", "Automatic"}], "}"}]}], ",", + + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\\"", ",", "None"}], "}"}]}], ",", + RowBox[{"ChartStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "0.5", "]"}], ",", "Black"}], "]"}], + "}"}]}], ",", + RowBox[{"FrameTicks", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "None"}], "}"}]}], ",", + RowBox[{"FrameStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Thick", ",", "20", ",", "Black"}], "]"}]}], ",", + RowBox[{"PlotLabel", "\[Rule]", + RowBox[{"Style", "[", + RowBox[{ + RowBox[{ + RowBox[{ + "WFT", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "<>", "\"\< MAE: \>\"", "<>", + RowBox[{"ToString", "[", + RowBox[{"SetAccuracy", "[", + RowBox[{ + RowBox[{"Mean", "[", + RowBox[{"Abs", "[", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",", + "\"\<\>\""}], "]"}], "]"}], "]"}], ",", "3"}], "]"}], + "]"}], "<>", "\"\< eV\>\""}], ",", "20"}], "]"}]}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"SmoothHistogram", "[", + RowBox[{ + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], ",", + "\"\<\>\""}], "]"}], ",", "Automatic", ",", "\"\\"", ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.2"}], ",", "2.2"}], "}"}], ",", "Automatic"}], + "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", + RowBox[{"Thickness", "[", "0.01", "]"}]}], "]"}]}], ",", + RowBox[{"Filling", "\[Rule]", "Bottom"}], ",", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], ",", + RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{"\"\\"", ",", "%"}], "]"}], ";"}]}], "Input", + CellLabel->"In[64]:=",ExpressionUUID->"31fd4aa9-bc03-4d09-8e5a-c1a6e87694ae"], + +Cell[BoxData[ + GraphicsBox[{{ + {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.567], Thickness[ + Small]}], {}, + {RGBColor[0.92, 0.488, 0.2432], EdgeForm[{Opacity[0.567], Thickness[ + Small]}], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-1.2, 0}, {-1., 0.07547169811320754}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{71.49000000000002, 84.95000000000002}, { + 57.293578568398516`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.07547169811320754]& , + TagBoxNote->"0.07547169811320754"], + StyleBox[ + "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.07547169811320754, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-1., 0}, {-0.8, 0.1509433962264151}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{84.45000000000002, 97.91000000000003}, { + 40.28106247807825, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.1509433962264151]& , + TagBoxNote->"0.1509433962264151"], + StyleBox[ + "0.1509433962264151`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.1509433962264151, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-0.8, 0}, {-0.6, 0.4339622641509434}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{97.41000000000003, + 110.87000000000003`}, {-23.51587286062278, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.4339622641509434]& , + TagBoxNote->"0.4339622641509434"], + StyleBox[ + "0.4339622641509434`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.4339622641509434, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-0.6, 0}, {-0.4, 0.2830188679245283}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{110.37000000000003`, 123.83000000000003`}, { + 10.509159320017773`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.2830188679245283]& , + TagBoxNote->"0.2830188679245283"], + StyleBox[ + "0.2830188679245283`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.2830188679245283, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-0.4, 0}, {-0.2, 0.4528301886792453}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{123.33000000000003`, + 136.79000000000002`}, {-27.769001883202847`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.4528301886792453]& , + TagBoxNote->"0.4528301886792453"], + StyleBox[ + "0.4528301886792453`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.4528301886792453, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{-0.2, 0}, {0., 0.7547169811320755}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{136.29000000000002`, + 149.75000000000003`}, {-95.81906624448393, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.7547169811320755]& , + TagBoxNote->"0.7547169811320755"], + StyleBox[ + "0.7547169811320755`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.7547169811320755, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{0., 0}, {0.2, 0.7735849056603774}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{149.25000000000003`, + 162.71000000000004`}, {-100.07219526706402`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.7735849056603774]& , + TagBoxNote->"0.7735849056603774"], + StyleBox[ + "0.7735849056603774`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.7735849056603774, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{0.2, 0}, {0.4, 0.5283018867924528}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{162.21000000000004`, + 175.67000000000004`}, {-44.78151797352311, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.5283018867924528]& , + TagBoxNote->"0.5283018867924528"], + StyleBox[ + "0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{0.4, 0}, {0.6, 0.5283018867924528}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{175.17000000000004`, + 188.63000000000002`}, {-44.78151797352311, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.5283018867924528]& , + TagBoxNote->"0.5283018867924528"], + StyleBox[ + "0.5283018867924528`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.5283018867924528, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{0.6, 0}, {0.8, 0.4528301886792453}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{188.13000000000002`, + 201.59000000000003`}, {-27.769001883202847`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.4528301886792453]& , + TagBoxNote->"0.4528301886792453"], + StyleBox[ + "0.4528301886792453`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.4528301886792453, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{0.8, 0}, {1., 0.24528301886792453`}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{201.09000000000003`, 214.55000000000004`}, { + 19.015417365177903`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.24528301886792453`]& , + TagBoxNote->"0.24528301886792453"], + StyleBox[ + "0.24528301886792453`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.24528301886792453`, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{1., 0}, {1.2, 0.18867924528301888`}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{214.05000000000004`, 227.51000000000005`}, { + 31.77480443291811, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.18867924528301888`]& , + TagBoxNote->"0.18867924528301888"], + StyleBox[ + "0.18867924528301888`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.18867924528301888`, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{1.2, 0}, {1.4, 0.018867924528301886`}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{227.01000000000005`, 240.47000000000003`}, { + 70.05296563613872, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.018867924528301886`]& , + TagBoxNote->"0.018867924528301886"], + StyleBox[ + "0.018867924528301886`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.018867924528301886`, {FontFamily -> "Times"}], "Tooltip"]& ], + + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{1.4, 0}, {1.6, 0.03773584905660377}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{239.97000000000003`, 253.43000000000006`}, { + 65.79983661355865, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.03773584905660377]& , + TagBoxNote->"0.03773584905660377"], + StyleBox[ + "0.03773584905660377`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.03773584905660377, {FontFamily -> "Times"}], "Tooltip"]& ], + TagBox[ + TooltipBox[ + TagBox[ + {GrayLevel[0], Opacity[0.5], + TagBox[ + DynamicBox[{ + FEPrivate`If[ + CurrentValue["MouseOver"], + EdgeForm[{ + GrayLevel[0.5], + AbsoluteThickness[1.5], + Opacity[0.66]}], {}, {}], + + RectangleBox[{2., 0}, {2.2, 0.07547169811320754}, + "RoundingRadius" -> 0]}, + + ImageSizeCache->{{278.85, 292.31000000000006`}, { + 57.293578568398516`, 74.80609465871879}}], + "DelayedMouseEffectStyle"]}, + StatusArea[#, 0.07547169811320754]& , + TagBoxNote->"0.07547169811320754"], + StyleBox[ + "0.07547169811320754`", {FontFamily -> "Times"}, StripOnInput -> + False]], + Annotation[#, + Style[0.07547169811320754, {FontFamily -> "Times"}], + "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" +1:eJztm+VXVV3UtykRUUIpRRBQUEAkBBHUm3kAQaQVpEQBRaRDESkFKaVTkO4G +KQlBWHR3d3d3x3ueMZ7nf3g/sL+ccY3fGmvvc8Y+a8754WJ6Y/L8HR4ODg4j +IQ7O/3yGBP/PhVuK879XTGefk6L2Hvo/Lo+JkrOW30MJ7214fYPFYcz0PW3U +oz2UdSNUV+eLBOAC51QV6x7i4NUTsXWSBEaSrYwFyj2kE38pgTpLGjADRdYX +cffQjJWHr+oZOdBIdhC7v7SLPgp4qi+UyYPd56fkr/p2EQ6Vt7IgzXOIECMf +cKjaRfj/NOlvOClACUVPfFLWLiJIjK8KOvcChsbCTZvDd5HIrzPrD5OV4ChD +++Gm6y6qw9kcfqCtAnRfbxPSWuwioxEMMfMjNXgkvd4Kb3aR+me2sM931UGd +9m/oO9ldpCCwkzgh8RpsZu103B/sooZysTsvMZoQkifOk3VzF20cPWtcMdKC +QieSw+5Lu6gER5NlNP0N9D/vrD483kGwWqHHhasNe4yhvtcXdhDG/G57uO47 +uLyipS7Rs4MuexZHPpnSAYFi1lvGFTtIRXeEbvizLqi4r6z5Z+ygCX53ZMOk +D59V8/79Dd1B50wp7uFPGEDgrS/fR77voB6ld8+Di40gb0v0+RnzHfTbkiuY +KtsEuiuI6W9r7iDOaQHj+lFT2PJtm5GX3kFniv776LFtBpSav7ItBHaQtGOc +8AjtR+Dj1PgSxryDqu/nFz+RNQfFQxaJcvIdpESyL/rS9xN8rF+8NHu4jVzj +FqwjJi3A71fOEMncNoJc2R/hEpaQrWOdxNu1jfJzOVQXi62gnU/4o2rZNhKb +HyGnFrOBNTwiIbv0bXTFRvcwc9gWyNuaieKDt1H4Vy1mBfevwB35s6PeeRuR +n4Qb17DYg7yResSq2TbyyYkz3CX7BiYPb+hRv95GMsYzea4EDuB1bp73keQ2 +algaIUT4jvC7J/NYi38b8fjbxk2SOEFz/Oe679e30XO/t5RiN5xh6aNQQDrp +NvqXz36J87ELXBA5o9Gxv4Vmme587zX9DhzkjWx701tIGSN5yT/5B0gP+21e +69hCw6/0r8Ytu4JBmip6jLbQTfc99xcYd3CzZnTTT91CX/1y345HeECKxIyi +T9AWIqPRpfYj9oJ66t8MeY5bSI1yWz/B0RvmJs3nB0y2UEti5jiXsw8Q5TzM +xVXfQsXu3M5f5XyB9Rue/S2JLTT4/jrxKKMfSMjVScrwbSHSqAZ94z0/eE/v +Q/WRcQvdO+iof9LnDy4LSqO/Lmwh/68qxj9KAyDhL31qye4m0m35JCKV8ROq +v09+mpzcROmLfLdS4gNh6kUqhrhtE22OeZqVxQYBAfOH89zFmwgzaEIYl/wL +mNcFul8kb6KnN+S2DfOD4XHpSZTNz02kkV365k5TCLz1qjaI/raJzmVEhO/M +h4KDuid/jdEmSlp5zjlGHg4x7Iq4S6qbyDxxwutAKALKd2kbL4lvok7KJ9NK +nyJhrHosUODuJlLOf+mFqxYFOD+TtF5f20TagelBLkdRwPjWhMOJeBPxX/Oj +xsRHA4aHfyd5ewPZEqRR8D2LAY2Tw7KW8Q1UlRbzVgc3Fr42VXhsNW+gj1tm +BwO5sRAR6qZ8tWgDcfksHQQax0GJ3rPrwokbSPX1xyeht+Nh6P7lJR3/DcTJ +VEoztxgPh2dG8j3sNtAXxxcuDtkJQNcZ75BtsIE+3cJ5pWubCI9iDGV6lTeQ +rHasYZhkErw05b18LLqBljxvNVyhTwZrof3xG9wbaPwozn9iIxlCLpSlP6Xb +QCGfHSk2mlOgsP+7pQnRBor7UjH/5Hcq9CXJiv7cXEcXzzMvDvumwa4FFWnR +6DpSHe+tzbNKh8tig72jjetIzGCNuObdbxCgiI0l/LuOhiAsm0QpA5TH9Iw5 +4teR1bekVWGWTLDI4BZ87ruONnnvCvtFZ0Lglx18yy/rSNakq2eTIQvypEqa +w/XW0QezLUudqCzouuIcXPFiHRmH2RdNXM+GzRkp7TnhdSR94mWrl5gNlHmX +uMg411FSf57Zxp0c4HPq2+OjXUcco9+vfM3LAYXnUZVqhOvoSlTQozPCf+AD +43tv+/U1RHNFStG56Q/4Ld9RSxheQ45lMY17L3Mh+98mc2P9GtpO4LzzejEX +2tyKVtby1lDYML3j7695sKriUEgTu4b+M/+rOn0pH8hvPXX+z3sN1fsJuuEm +5wP3Fpn8W5s1VPuzgeMAUwByFd20ru/XkNM8LmdLfwEY+4ZP/VZYQ9mjdNJW +Fn/BS0M7sxPW0HG7p8AWRSH8vnPbZv/2Guo+3GcXyimEpoM1McbLa+jXuNeo +vGIRLNUVkIsTrKGPSllfb+4UwYVfdgMGq6tIcGIt5l/oP+DQEU/wHVxFNx/E +LV0QKQZpPhKz/NpVxPlnsoJyvhgM8DofDv1ZRZ6pYspN/iXg1hpCiB+9ikJv +JvziBQQpEVptrJ6rKESN2U54EUG9IWuYrNUqulOYHmslUwpzD1Z0zN+tIvTy +mVJ0fCkQncvjCXm2in7NGhf/PC4F1h7bQ/TfKroyrByooFIGEvGiNVNsq0i6 +8dWZvuwyeP+R2O889SrCj2hMZyItBxfhNnUevFWkLHGF6LZ+OUgzcMv9HlxB +EnWvPq5Vl4NbUfHk3p8VxDe5E/yBuQLqlaWsxTxX0CxNM0myQwUQbfaS+b5b +QVoSrRd8xypAwkcnfvC/FfR48VDzpnAluHBsPmClXkEpZ7m/a0dXQnXtt9aP +y8toXL5XSxyvCgjekemg6mWURUluW/22Ch7jhh8QRy6jFuYr90aqqsAhnN1X +6fMy0uZu63FjrYZywYKbMXLLyIzlomO5ezXgdIv9W7q1jC6+nmv8ulINmA8d +zwRxlpEkb3ZAgUINfCXVmnHqXUJvbbZ13hfUQEnKsm1r5hKa0zOicaSvhUNx +20t0rksogShUH8+xFh5NnEt6r7WEHD0HaAdna8HaLui/HMElFKgU+eKMXB0U +XmXpOL64hKhpNi6Y59bBbn62ruT8Ihq5/puSjq4eBBQxxz/LF5HIAgv7ukM9 +WKw2+Y+FLKK3c+uqc3P1kOfxku3Ox0VEGumitCXfAJuscyWWUovI2LtL62xB +A/BVWShW3lhEaTVDFpcYGuGDFsE82eECyhvqjSJ0aYTsI1+7l50LSF7vKlfX +YiOsBjNQJaYtIEFNQ01jhSbg5k9PWXdaQM1ayRcq/zaBcfsDjNArbB4VRFjO +0Ay/jWu7XO8toNxwJjcV52ZYJFYy6CJZQIGi8SYW883AkTiBwzQ9j5pTb7gQ +y7WAvqhZoGHJPIqSCaPCy2mBlJHj2wWB86gl3R3/5vlWmLXxKMM3mUc3Bg4+ +6j9qBdbLtMpyT+ZRhMWMtJhRK+j8SVwMYZhH4VfZdNPDWyFB/p7D9M4cAk2S +9OCmVphcLKe52zqHpARqNnCOWoHZVT79S9IcMpa4J9J/uw3esAyL1NnPIQU8 +vDw6tTaIKTPopVSdQ5tGeN/R9zYYfbVnpMkzh/78d1Gy8E8bMO674Kedm0MP +F2jHCcba4HUgZfDO2CxaLd5+EXShHSLuxnCKFs4iidaWWb377TDYzFXp5TeL +hrqoAj9ptQOdQbFqv/4salyWuZnj1g5qZ6VWWERnkUDmYSxdTjuExPY6mV2d +RcWNZV6p/e3QDzq0xRszqL6zvl0NtwMuD25kEDXOoBO2hwkstzpAxfKbmGLc +DMqkcaMhku6AQEqygUjbGWREJ1VxZNIB3ZlhpguKM2gthVqWwL8DKGXYCe/f +mUEmrkmtl3M7QHEuP9ThzAzqvNon9KC7A/ycxXiah6aRpk3J+ffbHdDO1FF9 +JW8a1RTUS0VSdQJ5iab6O69pZN6e6TrB2wnyastrmTrTSPB84P17zzrBa9vm ++6HQNPKzY2MNNOqEZr9z9BI00+hH652sc66dcIErKNt/ZQqR2xe1+sV2gnQD +s8RIzRSSc7loxV/cCW7vs4fYo6aQr7njq72uTqjHx3y0sJxCDLq0sWNLnUAU +1URULj+FpEi21rYIukDi0csIErYp1Klrsvbf1S5w6Z3lVcWdQhZOBsFl3F1Q +bW5RF9c3iVYNTOncxLqA4CKBxmrWJDq7XVsVpdoFj9N9Nx+6TaIzMre6yIy6 +wOEpg9v3N5Mo8QMV/7hdF5RPpTF0PJhEWiaU3Df8ugDH4UHuNYpJpP9LYn84 +tgsw12ol9RcmkINcwLvruV3wtfDFaG7FBHp3n99jv6oLSpQmPuGGTaChPPsb +5t1dcLhuel7GfAKp/RRIDZ/ugkfex1G/pCdQIMmesvN2F1jf9uCfZJ5Ahk94 +jwUJu6Gw5koj19E48rTEvVdP1Q27bxO1bLrGEU+9eJAYSzcI4NzbqU4fR3fJ +rdsK+brBIqzc45LLOHrh6bos+Lgb8gTkr79+PY4EMFE7bQrdsNk5lJ/MP47y +mX2r/N52A5+ZgcwW6ThiOqFZdv/YDR9I9sYxM2PIJ1FapsmxG7KTXSw90Bj6 +VkGc/y6gG1bFKEl7g8ZQUFb/X+34buAej469YTqG8GgxRn153WD8lUvQRGIM +5YhRbbbXdsNv2uLmQsYxxBwupq0x0A2LeZLahHujyHlZhcVzuRs4FHr3nrWN +orsvva7r4/WA/so77/DkURQtGLqJT9MDKe4bzHPfRhGrqP2n9xw9MHvrWyGf +2ijiK/P9EC3SA6yVpPL2d0cR/rmUnGLVHtDRDJtqIB5FVtKXr9Wa9YD0nsI2 +Z/UIonzL8qjBrQdqeUyYqi1GkBxloFJbXA9I6LtJv7o1gq6kb4tOoh6ojIn/ +vNkzjAaPqnBJBnvg8UBpjPuPYVTDoounuNcDpRSDTdcFh5EF/SPaMppewEjv +7P6dG0I9nZfuvbzfC/+cLjE/CxlCqQXeKqwqvfCo+I7crOQQqplW4Oe07oWC +LQlru4NB9L0xMMYsvBcEOLXjqdMGkc+P5NTtsl74o2PXmq4+iKpsTD+UzvQC +X2TIwWOSQWQxRhrdRtoHmT25NweLB1BK0UD17ft9wE3e9uyj8QCaUt4ma9Xs +gzSJRVtihgFUJtruUOLeBxzfziZFt/SjT/dSLuzk90HS3+sdAvb9qMJHKPDz +VB+wrv933MLdj6qzeS2EKPshjl2V7f1YH5p58WBC4nE/ML81Vzz27UMcQaI9 +/p/6ISrU2+6nSB/6aaTIT5vUD4ydKSkcG71o/uTJSs9AP4RdqO6qiO1F1MSa +kdXkA0AnNobzUrEXtceJho6KD8CvL4e31wl60f7eofu1rwNwOY9G2TW3B42Q +iTy3yhuAgOW7Dow6PSjveo307MoAUN6STc+n7kHm8Txsb9kHwUdDr1e2phvV +a391G303COS/nPCnP3cjvLtW+0oxg+DRGsn5hbUbTbdElxSNDMKFc0WqlH1d +KJZfmZng2hD8EO52SnXtQqlih0fMr4aAyHotQ+RBF9LScpq6FD4ETtkXBvrm +O1EKXWB82dAQECzcIjQL7UQiI+RlzAzDYH9DlIdIuhNxfexN59IaBhz11+qR +hx1oxy1evyt2GGwDrL7zp3egvKKUWqKZYThsDMhuetWB2uGB8D/2EbA8kzmk +TdqBfEg8uMaNR2D3vwaiw5J29PasVq1hzgiYW0zz+pu0IwsbXHHZ3RHY/I2r +wc7YjuzU6u/9uzYKpjN0bmWtbUiHrSvRWHgUVhkEclW+tSEfIUe1+9qjYKii +MLrC04Zuo3vmZN9HYdHH+Pz38VZUq7/uu5I8Crp1rvzX/FuR9JTBcGvjKMzi +xmvlirYimQ0rvbSVUag1t78SPNuCHMaUdGwujUHtVJ5JzdMWJPHO9ID/3hiU +Ki1VbaU0o4jtvoheZSzX3KBjvtCMAq6SmKhaj0GBgNqH50ZNiIDj862cMCwn ++9TaNzeiXnb85yMlY5BJW3Mtg6sRPV+mr+8ZxbL7kfmQTwNaCL7zIxBvHJIO +eRvOr9ejg8zdNCpmLBvpMz1QqEehDg3OcmLjEDUc9Vn3Tx3acBxME9LBslxP +UyBVHcqhtvUdchmHX6UkzFUWtSgpFO/BrUQs8zy23uipQbYCJpnUNePgE2Pd +yiRYgwKOVTQSp7FMkXVTPqQaEZ+n/tV5ZgJ+OM3Yfj2oQj9unjsIZsbyFn1H +mnoVkuqudtkQmQB7HUW2geJKNGlOoDqkieUeN7tzDJVI09GgSuHrBFhKlHXd +t69ApeXurxRCsfx357bOWDnSmaFs682fAFN2TocAkXL0iz2PaawDy6HaveWx +ZajCbeGz3gqWL4RyrhGUocv4uhQmxJOg+6XNiUGnFFHml9qsME9C6yBZXqgX +Qp1OgZqzQpNQWmL7Zle+BA36s68qq2A5ao70BUUxUnMm7nhoNgmZDkpFWV1F +aNwgR9nPFcvaFe9JfxWiv2LvOlWjJyFKnJvSQO0v+u/fdplPAZZZw0tr6AoQ +9aDr33stk+BDTGzEPJKHXrwj/fZkCsuLFle+Reci79sPUeX+JNg3T1QNvf2D +yLTfZaSRTYF9pvyHBzdzELvZyvbRjSkw9Su+FjSbhVZmvXrz72PZnL1hIyUT +mV/YetEnOQWlaZwrUf2/0duSN4Var7BsSiShppGGancyb8ibTEEU33gUxWQy +Gp6SXoi1x/Ju0V6jbiJiKwkTUffF3u/fz+cuS3EozUzRyjIay/YmqfAhBmkH +EI3tZGL3++FHtL4UiTDpayt9CMvk4oXaOyHo/N5kCX0zdv2vPYMenEB0X9Xo +T/kAlhnT6SWJfZE8MG/WzGJZvizC6tYPVEb+Zp5jawpwyuQJSsxtETuRXtUq +zjTglP4XePGeFmq1z4m7dAHLODcHVex0gIJWstWXGsujjxPHrtjBWZptEyNG +LGs9ND1v7QozHhTJcWzTYM+qT+if4wuelHpR/HexHJWnyJgSCH1tSVbXH2D5 +Mn5selQoUCQEarwXxnJtomW4VBRsz45+IJDAMkEzw2R1DIie6y3alcEyZrOa +XSQeaDLvGooqYNmW1tisOBE6ylYSJ5SnobQAQ1UgkAJPDPTjel9ieVPn33FO +GogRR/gyaWCZ2/OtGFcGmJZdLyzWmgbNPNUz4l2ZwHbb5m3aW+x+nYsqc5ey +wXDEnWJJG8vrdmke8jlQ0/35mt07LJNT4HB7/QGqBW7RN//DnAkKHQ25cCJ5 +6Uwgdn2UtGCixbl8OMi0f0mL3S9Kv3H/ypMC6CaBo2VNLP/QkC12+guLI0fH +FK+xnLAerVleCJflxR1d1bDPV+m8hY/zD5jiiFjklbA8fvlp4n/FwHbymFT3 +GZZx0sIkbUqA6iSKtl0Ky9dgdakAQQXjOSJvsWkwvTYXLWFTCu8L4q9FCWE5 +PVuKlrYMXthdkiC8j+VHtlsLBWWAFtXZKjix3CAWWaxcDsPMdhK9LNjvo0b2 +1Hu7HG7LyCY8ocPyXO+65s8KEJh6RE1xCcuWMWF3+Sqh6onX0qOzWD5rKE7Q +UQl2X92Daw6mwCfw3mqXWRVcvBFRl7uCZZaT4ETyavjU9egp8QSW/9SKWmVU +w19ZHY7aLiyL+i1JytZAH1d+yHoN9v1vfxlEt1QDUvvpFJ5/sazFIrzsXos9 +l/z5QlOwvLo8j9jr4KZzdShjKJbtCgJ86+rg4vMoOSb3KcgkdRB6q1sPIdM6 +3NHWWA6XmuU72wAMGoEmcXpY5qDyI0xowM4dTEpcKlguGn7Y+7gRyIsi5cXF +sf8fyaSp5IlGaPjFXLPEi+U+M28bhyYwYk9UYWfCsu5DQRkm7Jxn4u+FQ4rl +HYKJa6XNcI917cwn7HnR6tLssfq6Ba6bzSl7TGOZ6hd/+VELMNTLfZVqx553 +7dyrT2Vb4SfH5Ym84kmYDaaqysbOdQZ4g/c7kibBVGs/+OpSKyxVh5HG+0/C +KuuIsdOjNjh/ZVyI5ys2X60QXXJvg0shN8/Z6mLz/KTLSgNtgGu1Nun6fBIs +7TyXStjboSR0hV/j0STsin8ov2XdDh9kxIRxbmJzUuUgn7p2sPnaSmtGhs27 +HhruXe6A8LEHC7m72PM+nFH4jW4H5D+M8WofmwCcd2eoG/I7gAwnrra+Hptz +zM/znsXOSQbWj2JysPlmMwpT6oSE+lBd9TBsPSnKCTiT0Ak/F0Q8D50mgMjx +l57xVifsZjcQuBhhc8kvQj2Pu4Ceziv/4AU2v/SGAhPQBZtkx0hTaAJ8+sRn +kya6oLCefiX/5gSQR98uvsjbDXhptm74ZNhcl9zP2qEblpylHojvjAM595bO +RFs3kEj1XnYYwdbDnb6H0kzYPpu/8d1fbD28jErIc017oH7Zn2s5A5u7xE7R +l2L73uI2neu/sLnsj0IXsl4441NTr2yPrbdURt4rr3vhr00BlY/uODAOPdNW ++d0L5Evy9Y3y2DyOX7DsqBdkrj40JxPE5oZXSdll+oApJ0pLlQlbz3lxJvzC ++sCzoWI/9dw4sB5M5h8s9MGNkQF9ovUxSCqv89B+2A89jNl9Jv1jwOr2W6vJ +rR8eNT2VnCjH9gvP/Pn5+/th7qCEVDt1DLivWJ6PZBuA8KKiyXV/bD6qPnrW +agBWDx9T+Npi8yThXNPaAbjJ4/0O3mH7EZObbn00g5D1t7juWGYMBO6f1xB5 +PwiYMxJnW/mx+fEKb2reIPTIhor/YcDm1Z1ElIRDUEZRI5hGhO13PP8O2b4Y +gsXi9t6CtVHAvIjInoobApMbxev9/aNQSuf4XXZzCApf3dKhqMTmk+/V80WH +QcH6Hc7bdGx/lSrNw+g/DOeN3VzqA0dB4iMPoev4MLgfE1VI2mPzB9QDazwj +IPyl3GdSbxQk8Q4y1L6NgCdXafwvhVForBtxqmgdAV+clor3/41CosQ4BzX5 +KNjoGbk/v4Xt79IUg+rvj0LrmH6W6sVRYCOvwbXTGIUO8abkg+0RmP8oaMiL +7QvF6H7Pfm0YgdSe1O6Z36Pg99yXVihqBAwfXhMO6x6FKv+FE8FPI3An0idV +/ngU0nOpX36UHIFlPHzqMzfHgOB70I95hhHI0Plk/xf7O3JtXCqP3BoG0/qZ +eaNPY3D7vBmZf8Mw8HCqvbgePgatRXKqldHDsO7biLorx4D82dbyXcthyNkS +YndfHAP24aS8YdlhMFfNCgDKcaAuieKqZhmGe8U3TjYejsM/9WKf2cMh2GYM +1Et6Ow5U55bbRTuHIN+JqFPdfRxOivGTu1OHwHLWWuhizji0a7l9iXAcAkHp +paSq/nEwHvhwK/jlEOxnaFBY402AxH/M/hW8Q1BE0f6Fk30CQi56kF69MAS2 +nx/Pjj+bgBkSgerQyUH4byDveZDVBNhpSINI8SAcC7EVS0VPwP3fjYTEgYOA +YkJv4dRNwPWjN5YrxoNgT0jq92d1AmSTL4QuPRkEYX37Q93LkzCldun3CeMg +4DWv69BjJkHl51Ncxv0BqOB519b2fhJE7mBIJTsGwOlnz0MX70ko51wnskwb +ALG9pwkP8idBOGGUMs55AAhf/SNfGcb2XdHfuGtfD0BNKadNLOEUFPpGvxu+ +PwA/mKOnlDmnYP1OS/Aodv56+oNC/oLSFMzcD5OsnesH4kXnwtIv2L5mX4nC +u7wfGuR2mT/FT8FToTetnKH94JGj783WNAXUxxIa0R/7QYZmaG9ocwrkQy2f +jkr1A6mNnLYftu5pNzwImrrRDy3DZc3ij6dBZzycKPWgD3xE+AQPDKbBS4a+ +kb2jD54lJMRm+E/DcDERnkZKH1wivkKqXTQN/YRTNiLf+qDDyN3y8sQ0cPzF +jqnKfRDQdjTeSDwDe9Nu07icfaB4z1Tm290ZyPAclOrE7wPq4PH8e2ozMJHt +80+krxe6DxWvz3+bAUbV2HkJ7Dn0S7PGIyJ5BpSY5LsmHHpBpVJw53nbDByW +xVWQKfcCLWua1tm9GWh9Ux9ez94L/e7XGosYZ0Ej0a7l4nEPhK348JtKzILD +GxufidYeUFfAj2Y2nYXicMj4L7YHruV/Ot8XNAsrHtE3mD71wDDt7CdPNAvj +S2mdHuI9EPVVbVR4Zha+Hng02dP0gOZ4o+Q26Rw4bv5zOprphuvikJvCPwc/ +eQU8CQq6YTw5i0Hj9RxQcA9fCvreDXEkzG4ULnOAG9LZna/UDdpmgZs16XMw +H0kop8fSDTe7iDRsu+ZAwt7G6fdGF0wL2NRxH81BgG/GqltZFySFYasy8zyM +aIaE4Hl3gS6OZkSw9DzcP+s5eEW9C9i124lkzedhNPy1XRdrF8zXPP6IFzYP +25+s8h9g61Da7fyhvIp5oHltPytb1gmG3mwSBgvz8NL9TQmNZydwboRmM1As +gMLHuBehKp2wrERK3/lgASo6btCN3uiEzEL77z/eLEBc7arm4nIHtt/aWHvk +tgB9Htb3a/52wF2Hd+prWQuw6bxw/rNTB6xP9VTH9y3AeguNHr5cB/x5Ksmj +hrsIw/ZMxx+udIB5+r9QUrZFWDHh6mucaAf+i1yEFfKLYEGa003zux22zaNN +P1sugpIPSdNLy3Yo6KUYuB21CANPsxkiRdrB8pGL2GjNIjTellSZu4CdwqN2 +MwJWFmHIpqoI09MG+/gGtE9pliDlFk9MWnQb/Hs/5HQktARM3MxPeA3bwLZB +biVLZwnuC309N8DfBkJc5ao6XkvwuS9pNRm3DY79+Cpp85Yg/3nZzYTGVijd +TuBsGVqCkRjBkc6gVmy/eCXY8cwyREWsXnv0thVEStzxBe4sA+mvA+NRzlbA +u35stKi4DIoTete9tlqgwtm0N8p2Ge5bltjOeraA09y4yIu4ZRC4VYrpvdkC +YjIv0s81LgOBunaUNravIsyqoSnZWAZHPqm1ALVmqKF84PDh6gocy493Gm81 +wQ/LtMWboivg5p2sv+vTBE8HrykP6K+AmPX4Z/47TUCM8S3z9luB94NhhHfq +sX1dLD7H48IVGLwXNDfyvhE8zloE7o6tAP0bOr9nhI2QcM/cvptgFe4cyjY5 +xjfA9/fpuZmXVyEk+slTS7EG0A2ennfjWIXPfgRBPNP1INHAwPgOswqvBiMX +fn+vB9YjlReguAoSQ3wfVtnq4RyXn9sV3VXoyyR4utVYB/OaDWjDZhU49F/T +F5vWQb0fwVaT9yqo98lniFHVQUrlf+xJsaswN03l7VVYC+7bFhoO+asAnv52 +AZq1YMiaGaDesAratY94lc7WgrTaXB3/yCq0b5Q6tv6uAQ6P6yfkG6tQyDab +iaNcAyQlL/kWCNeg8HumyMRJNSyvBOhV0a7Bn+RYA4vkamhmao6I5FwDm0rt +T3kK1fBb4WynlcgaDHeoiEUdV4G3M+acotIaXPAifsqdUgWm+VZCnPpr4FTC +/UlbqQrk57I/En3Frn8w+UkQvwq4ry4mjfti13cl6KRlVsJFGZbhf/Fr8ITj +jnHh60pY//qaIujvGngz4lprkVRCe2aQhFnTGnwa6uqN+FcB2eOtX6TG1kAP +M0BrZlgB/pTEOSxba0CHwW/soqsAc3HR2ROidaC3jZdvbCoHRUtb+n66dcjy +ynRVsCsHvpTc53+412H78+ALfZ5yoBpc/u71GMvflRXIJ8tgm4S1WFdlHS5U +dvOJBZVBN2itixiuY4ezhEUiqTLIMwu5RW+/DgyF9JzqJ6UQFNuhvuO/Duc/ +GIlh/pSCZdcFv7bEddCU2zzO1SsFlbPiNalF64DDYlJTwlAKAoJ2h84t62AU +a9VRkIbgikEBj+bEOlThNvpdv4pgP2xN58HOOtxPe7lR4lYC/c3sYZTnN2Cn +cmPP/6AYCnG025avbcA7so6EBKNiCL0bTlh3dwM2aBY2j0b/ga1298NY8Q0I +CC+rjnjxD9QDycy+qG2AbIMnj39DETyqlUhQNt6A91QySaMiRUC//22Ax2ED +Orm+xnsVFcLx7SLyC4Eb4HLWgjH2XiEMv9oUm07eAJPFND22rL9Q4n3HprR4 +A6Q6FCdZOP9CZJlOZkjbBtzwj/gRm1YA9huRU+ZTG3DgthWWyFEAmix9tHJ7 +G3DLyN324e98wChfkmcj2QSHZM0VbZ58YHKVcsZn2oR2Fq84jrw8wCtyKhzi +24T8n1a4wY/yYHyxeCVfYhNKzRRkMytzofzaDrOf+iZ4RJj+/CybC7Hy3GqG +ppvA8JM2cbvvDzg56HmLO23CWMpHzbvv/4D2n5hKxl+bQL9oPce5nQOPpwf2 +9lM34R11IeOqSw6wXKbi6kKbEPFysdnqSg4QSspqZ3RsYvvRwPKW9GyYtvke +7DqzCT9XyjI2RLOhOr20+e3BJjhrtujPDGRB4sgevhDZFsjUDrakfsqCHxd5 +BS/f2IL456POwhezQFfU0Hidfwvmuw2WE39ngsSn+NhGyS2YSm+9PCKTCWyJ +w70Jr7cgvzLZsGYoA4j7aEi/fdgCzFK5m/6NDJgnfib60mULqPlIjsINf0P9 +IzfLeyFbkNmy3aL+Nx1SjSvSyX5vAQH+l8HQc+ngEXU4Ple2Ba8FFiWVX6WB +Yfu9y5VdW+B825r+259UkCYwkYmY2wJHE4tMErJUuMOf5GB5tAWvxFV0Vg1T +gFR3LP/5xW0QVkguvNqcDMvBtEscLNuwoBh+ze5uMjQ3KFw/K7gNr4cNmclD +kiDjyEN5THob8KgY4ooIksCHq9qjSHMbPlj7yn38kIidV0/KfppvQ3+Krz7L +RALI+wvsmPzYhkE+14RSpQTgqTLjkAzbhld3LN14m+Lh4k6KFnPmNqyYF703 +FI+HddbJwOOKbfDNyW5WLo+DdjX6xt6ebWCZCCiexsRBtocSbs7CNlixMO0Q +lseCf4k3v+fJNhz+C7uUIBYL5qu1Bu8pdqB590lMZkMMKF7Hixa+tQPnAhR0 +LivGAJ/iw+6rD3dAGpZeNw1HA5WL+flt2R2YmN73LzaIhu38dEzrmx0Q5q8V +7NuPgu656U8pFjvA9Kqd8qJHFORdZUx1ctsBQqJuCiWGKAiSUR19HbED7suf +KO7pRWLnbT8qwewdMHtgNRITFAEqWQ2SFNU74KMhxTRQFw6CEwT2S3078EGR +i7T+JAyuUAnl1iztgOjysdcLwTDYF/88H427C4e1n7WNLUKh3zKTwZZqF55a +qP08zAuBopQ5RSW2XfDgU+fb3g+G0MHrbtz/7ULOhR5SCZFgsCVVR8TPdrHv +yZ2lSY9foI75uTmpvQuGjmNyZf1B8N+HZjZkid2PbPdNx+0goI87qxHssQuW +V4s7ye0D4bgLE/AxahcwV5iOPvf8hOGz1nUyf3ZhV8zj4JDnJyDBnONbtbtA +86E7Lt47ACINFnnxBneBQWjfVW/VH+zDWfQGV3ahQ13ntrSiP2i2vI7Iw98D +0V2PAckiPxDG/dXhQ7MHnzW55A1Y/ICJt43I4PYepNKwkfz28wW8d8RCYrAH +esXCP2nxfWE8UPQjg8IevBq6vppr4QMVtbZJezp7kEkxWHdhwBti93OHOqz3 +IL5+cPhaixc4caxc+u21B8fR0QpldZ6g/ZpV4kfMHpDHteDhNHiAmI/Wlzd5 +e3DrG2v8Zrs7sJSHZD+q3wODdebkrDE3INzsmKEe3gPPOnFfuR1XmGYhoV9b +2wPW8uqFeQpXqFEWf95wZh9s5706A+//gERXu+/xV/bh89FikPGb7/CjqOCf +3Z19IAohaHcLcAHdpbU1VeF9oC7620Tc7AxPGW7f4nuxDzLtJTuEZM7A9kxb +nVRvH076XIRClJ2A2DHcd9Z2HwZvCl8bTXSE+T/d1eU++xD9bPr2wYkDNEyT +HYbF7UNDRPwdAk0HSL38lOdzwT6wLuJu0NR+Aw9JB51njfsgSMD6VEHgGxja +FoXeHt0Hxzc58+2Z9iDze7P1zCb2+SclTXN47OHO6B3C0bMHUMna4Hjdwg5I +L71/WHj1ABi/E128GPIVlkWjTAO4DiAqTQGj3/IFWj71xRuLHsDBrT8U76i/ +QEbipQEJ5QOIb6kvvG9iCz59UuQ3DA7gfvTyW7J+GzA97yx29PUAKHJYX3Mr +28Cz/0qse/wO4FF4YE31tDXwmOxkZCUcgC5/PwG+qzVcjOaeci88gPNA+uOs +kDWst+vR6jQfQCLF5tBVQmtoJ4iVw4wfwPPdzjKdMSvI4R90ot0+AL9XxhUk +rVbgr0tVuHnuEPAnVJk5263APER2pZn+EKTq9bpPZqxAsfE7czLPIUzKCTIl +XbSGe8elqo5ih5A6d7MX5KyBinvf65XqIcQlffYeiLKGbS3eyvtGh5BDeTIQ +SWgD3f6Gexe/HQLT+uUfafY2kF8Vz7kYcAjcTXIq58hsIWhn+G110iH0Klnq +VWbZgiXb5eCof4eQOFxLMaP7BVRePmu2bj2EtZI59098X0HQ0w3/xeQheB/Y +2BtT2sEVVCHAtXsI0zUrD7QJ7GF/9dDo3IUjYEk27v37wx76r/PHTjAcgVwI +nSgvzTcoUjTpLeY9AgZKwYJ/Gd8g1CWJ5NeTI9Df026Reu4AtgVjIh9eHgHd +Tb+46mMHUJ+ntZQ2OYLWJzG2FLmO8B+dYvpNxyNYHHPmovzkBPSynuM4QUdw +LPJ+M17IGY7tqmkGUo5gT8yKK/qiCwxnnUjnlhxBF8eIcN+SC6AJAQfv9iPQ +e8KiTtfxHSKpPuTrTR8Bc3qFAm/ZD7B/krooun8ECnHU34byXUHTapLpGukx +sErtfhrNcwPhVHrlXaZjCIs917ta7A5MQ0oe7feOYboSjlGjB+CR+ZSlPT2G +9s8fH26Me8I4pm7b5dUx4LU+bHqE4w0VH/A4tMyOYczy+nn6Sz4QG/dQ66Hz +MVx0qr4jnOgDTt3mgVTBx3A7srNTEXxBm+h3w0raMTCZcRAz9PuC2IMZnPrS +YxD5rDD19rMfsBgy8sd1HkOTnk7wJLU/EEaoGnydPYZUZYLvGgX+MN3iF6Vy +eAwmruLPfV4GQA1uY9dd8hOIH2w75ML5CYm8Z86TMJ9AbPhZgq34n/DjnRBm +5v4JKO4pOvpLB4Ju0OdPZVInkIEXrFa8EQhP6zJTQjVOAE9QR5YxNAjYDuZG +Pn08gbWeq3V6Ir+A+M4NKvnvJ+AxO4YrM/cL5l+rS7KHnkAg3WSPkXcwNPj8 +tCPIOIHlyC/XbflCILW8+c9w+Qncn/8rQdcbAh6bZ+cLuk9A9CEv4bZVKBje +FGbwnz+BCltN/8wrYSCjYq1odHwCpVeK59fzwoC6qq/yxjkcjGf4LXLtZ+Fw +9rXFCDkFDuZZ+A211Nlw2Nm+tH9Eh4PZkk74Z2obAbPeGZQLN3EwI67kVK8u +REIvqzRXLzcOJv7algXtr0ioLZt9WvUAB7OpEPsohSwKCtSctbMf42CMxsuF +B+WjIGmDyS5SFgfznF6UxMY7Cn55lAR7qOBglO9yB2o0RIEry8s/Vm9wMIfD +vne0CaLBqmSnWccQB3OtfCVG+0E06CsHzClY4GA08hreCxlFg9oqN4GwPQ6G +m3w4qzUsGiRdm65xuuFgRAdHQw9ro+HBdX3BqwE4mD99BY/j16KBvYhQkSgC ++3yLjYsZ1DFAqxhrvJWIg1Fl1LhIIBAD55fAdTwLBwP7/5zdX8TAgfNgbEsR +DuZhauQxj0kMLF6zKvlXhYNJEMtqnHaKgcF8qr7kFhzMzVG5ldDAGGiUz94I +7MPBvH8mnPI4Lgb+zcmSOk3gYDCIIK4nPQbSHBZYzZZwMBEVQg9lc2Ig7OoP +0dc7OJjHxM884/7EgOcf5tdSuLiY1IA9q76sGPgiU2YpcB4XM026EbucEgPG +06/8WahwMZlSAcazkTHw2m4//RIDLkYhxWy3yScGZC8H1Z6w4mJKO89SJH+J +AaEs3onFu7gYTJ/NfRedGOCUbD3qe4SLecj+zdJcKgauTRherhHHxcTpW5s5 +c8QAme053j/yuBgK1uW7Tedi4IQyQSZaDRdDmmTI8WYiGlbTRXS9tHExBYVn +KV/9jYZR8REHG2NcTD/pt4Ze92hoHbEJ17XExTg2KImuq0VDqeXlghcO2Pux +9L2svRkNmRdz20U8cDHbshaVNitREJXybIkrEBdzxcywjzM3Cv7Xd8D8n99w +6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/nPoPp/7Dqf9w6j+c+g+n/sOp/3Dq +P5z6D6f+w6n/cOo/nPoPp/7Dqf9w6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/ +nPoPp/7Dqf9w6j+c+g+n/sOp/3DqP5z6D6f+w6n/cOo/nPoPp/7Dqf/w/7v/ +8P8AUD6mog== + "], {{{}, + {GrayLevel[0], Opacity[0.3], EdgeForm[None], + GraphicsGroupBox[PolygonBox[CompressedData[" +1:eJwl1kPUGIYSBtA/tu2ksW2bjW3btts4jdnYtm3btm0n7+Z1cc/MZmY1Z86X +qGG7im0DBwQEBCJCkICA333EIP/14QlHWMIQmlCEJATBCUZQgvyeJRAB/LLo +Jz/4zje+8oXPfOIjH3jPO97yhte84iUveM4znvKExzziIQ+4zz3ucofb3OIm +N7jONa5yhctc4iIXOM85znKG05ziJCc4zjGOcoTDHOIgB9jPPvayh93sYic7 +2M42trKFzWxiIxtYzzrWsobVrGIlK1jOMpayhMUsYiELmM885jKH2cxiJjP4 +l+lMYypTmMwkJjKB8YxjLGP4h9GMYiQjGM4whjKEv/mLwQxiIAPoTz/60ofe +9KInPehON7rShc50oiMdaE87fh9mG1rTipa0oDnNaEoTGtOIhjSgPvWoSx1q +U4ua1KA61ahKFSpTiYpUoDzlKMuflKE0pShJCYpTjKIUoTCFKEgB8pOPvOQh +N7nISQ6yk42sZCEzmchIBtKTjrSkITWpSEkKkpOMpCQhMX+QiIQkID7xiEsc +YhOLmMQgOtGIShQiE4mIRCA84QhLGEITipCEIDjBCEoQAhOI30/kl4fykx98 +5xtf+cJnPvGRD7znHW95w2te8ZIXPOcZT3nCYx7xkAfc5x53ucNtbnGTG1zn +Gle5wmUucZELnOccZznDaU5xkhMc5xhHOcJhDnGQA+xnH3vZw252sZMdbGcb +W9nCZjaxkQ2sZx1rWcNqVrGSFSxnGUtZwmIWsZAFzGcec5nDbGYxkxn8y3Sm +MZUpTGYSE5nAeMYxljH8w2hGMZIRDGcYQxnC3/zFYAYxkAH0px996UNvetGT +HnSnG13pQmc60ZEOtKcdbWlDa1rRkhY0pxlNaUJjGtGQBtSnHnWpQ21qUZMa +VKcaValCZSpRkQqUpxxl+ZMylKYUJSlBcYpRlCIUphAFKUB+8pGXPOQmFznJ +QXaykZUsZCYTGclAetKRljSkJhUpSUFykpGUJCTmDxKRkATEJx5xiUNsYhGT +GEQnGlGJQmQiEZEIhCccYQlDaEIRkhAEJxhBCUJgAgX6L0z8Un7yg+984ytf ++MwnPvKB97zjLW94zSte8oLnPOMpT3jMIx7ygPvc4y53uM0tbnKD61zjKle4 +zCUucoHznOMsZzjNKU5yguMc4yhHOMwhDnKA/exjL3vYzS52soPtbGMrW9jM +JjaygfWsYy1rWM0qVrKC5SxjKUtYzCIWsoD5zGMuc5jNLGYyg3+ZzjSmMoXJ +TGIiExjPOMYyhn8YzShGMoLhDGMoQ/ibvxjMIAYygP70oy996E0vetKD7nSj +K13oTCc60oH2tKMtbWhNK1rSguY0oylNaEwjGtKA+tSjLnWoTS1qUoPqVKMq +VahMJSpSgfKUoyx/UobSlKIkJShOMYpShMIUoiAFyE8+8pKH3OQiJznITjay +koXMZCIjGUhPOtKShtSkIiUpSE4ykpKExPxBIhKSgPjEIy5xiE0sYhKD6EQj +KlGITCQiEoHwhCMsYQhNKEISguAEI2jA/yN/wP8AXVqEEQ== + + "]]]}, {}, {}}, {{}, {}, + {GrayLevel[0], PointSize[ + NCache[ + Rational[1, 120], 0.008333333333333333]], Thickness[0.01], CapForm[ + "Butt"], LineBox[CompressedData[" +1:eJwl10O0GIYSANAX21ZjNrbd2LZt20Zj23Ya27Zt28a/OX9xz8xmlqOEDdpW +aBMoICAgYpCAgD8xMNKAoAQjOCEISShCE4awhCM8Ef7UE4nIRCEq0YhODGIS +i9jEIS7x+Iv4JCAhiUhMEpKSjOSkICWp+JvUpCEt6UhPBjKSicxkISvZyE4O +cpKL3OQhL/nITwEKUojC/EMRilKM4pSgJKUoTRnKUo7yVKAilahMFapSjerU +oCa1qE0d6lKP+jSgIY1oTBOa0ozmtKAlrWhNG9rSjvZ0oCOd6EwXutKN7vSg +J73oTR/60o/+DGAggxjMEIYyjOGMYCT/MorRjGEs4xjPBCYyiclMYSrTmM4M +ZjKL2cxhLvOYzwIWsojFLGEpy1jOClayitWsYS3rWM9/bGAjm9jMFrayje3s +YCe72M0e9rKP/RzgIIc4zBGOcozjnOAkpzjNGc5yjvNc4CKXuMwVrnKN69zg +Jre4zR3uco/7POAhj3jME57yjOe84CWveM0b3vKO93zgI5/4zBe+8o3v/OAn +v/jNn+YPRGCCEJRgBCcEIQlFaMIQlnCEJwIRiURkohCVaEQnBjGJRWziEJd4 +/EV8EpCQRCQmCUlJRnJSkJJU/E1q0pCWdKQnAxnJRGaykJVsZCcHOclFbvKQ +l3zkpwAFKURh/qEIRSlGcUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYO +dalHfRrQkEY0pglNaUZzWtCSVrTmz/BuSzva04GOdKIzXehKN7rTg570ojd9 +6Es/+jOAgQxiMEMYyjCGM4KR/MsoRjOGsYxjPBOYyCQmM4WpTGM6M5jJLGYz +h7nMYz4LWMgiFrOEpSxjOStYySpWs4a1rGM9/7GBjWxiM1vYyja2s4Od7GI3 +e9jLPvZzgIMc4jBHOMoxjnOCk5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3 +uMs97vOAhzziMU94yjOe84KXvOI1b3jLO97zgY984jNf+Mo3vvODn/ziN38W +fyACE4SgBCM4IQhJKEIThrCEIzwRiEgkIhOFqEQjOjGISSxiE4e4xOMv4pOA +hCQiMUlISjKSk4KUpOJvUpOGtKQjPRnISCYyk4WsZCM7OchJLnKTh7zkIz8F +KEghCvMPRShKMYpTgpKUojRlKEs5ylOBilSiMlWoSjWqU4Oa1KI2dahLPerT +gIY0ojFNaEozmtOClrSiNW1oSzva04GOdKIzXehKN7rTg570ojd96Es/+jOA +gQxiMEMYyjCGM4KR/MsoRjOGsYxjPBOYyCQmM4WpTGM6M5jJLGYzh7nMYz4L +WMgiFrOEpSxjOStYySpWs4a1rGM9/7GBjWxiM1vYyja2s4Od7GI3e9jLPvZz +gIMc4jBHOMoxjnOCk5ziNGc4yznOc4GLXOIyV7jKNa5zg5vc4jZ3uMs97vOA +hzziMU94yjOe84KXvOI1b3jLO97zgY984jNf+Mo3vvODn/ziN3+O/kAEJghB +CUZwQhCSUIQmDGEJR3giBPn///A/0nOEEQ== + "]]}}}], {{}, {}}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{False, False}, + AxesLabel->{None, None}, + AxesOrigin->{-2.2880000000000003`, 0}, + BaseStyle->14, + Frame->True, + FrameLabel->{{None, None}, { + FormBox["\"Error (eV)\"", TraditionalForm], None}}, + FrameStyle->Directive[ + Thickness[Large], 20, + GrayLevel[0]], + FrameTicks->{{None, None}, {Automatic, Automatic}}, + GridLines->{{0}, {0}}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->300, + LabelStyle->{FontFamily -> "Times"}, + PlotLabel->FormBox[ + StyleBox["\"CASSCF MAE: 0.47 eV\"", 20, StripOnInput -> False], + TraditionalForm], + PlotRange->{{-2.2, 2.2}, {All, All}}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, {None, + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellLabel->"Out[66]=",ExpressionUUID->"6388ff56-ba75-4aa8-9483-c26182754d88"] +}, Open ]], + +Cell[CellGroupData[{ + Cell[BoxData[{ RowBox[{ RowBox[{"WFT", "=", @@ -24998,8 +25856,8 @@ b5JAxM18hw2qT5rnrVWF88HuEdCA89HzC4wPAHciYt4= }, Open ]] }, WindowSize->{1440, 847}, -WindowMargins->{{1441, Automatic}, {Automatic, 0}}, -FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)", +WindowMargins->{{Automatic, 126}, {Automatic, 0}}, +FrontEndVersion->"13.0 for Mac OS X x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"85b7a10d-2875-445d-bac3-ec6fc5ce6624" ] @@ -25028,43 +25886,47 @@ Cell[2603, 70, 89, 0, 98, "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a3017 Cell[2695, 72, 245, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f", InitializationCell->True], Cell[CellGroupData[{ -Cell[2965, 81, 5142, 122, 304, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], -Cell[8110, 205, 126303, 2334, 531, "Output",ExpressionUUID->"015b06bf-1e91-4e1a-9cff-a6bd49cc491b"] +Cell[2965, 81, 3811, 94, 262, "Input",ExpressionUUID->"31fd4aa9-bc03-4d09-8e5a-c1a6e87694ae"], +Cell[6779, 177, 35282, 757, 272, "Output",ExpressionUUID->"6388ff56-ba75-4aa8-9483-c26182754d88"] }, Open ]], Cell[CellGroupData[{ -Cell[134450, 2544, 1392, 34, 94, "Input",ExpressionUUID->"f9587fd2-1e23-4030-9f68-19ee3273f3fd"], -Cell[135845, 2580, 910, 23, 34, "Output",ExpressionUUID->"ddd7a8f9-59bf-40aa-b7d9-bc4f1657909d"] +Cell[42098, 939, 5142, 122, 304, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], +Cell[47243, 1063, 126303, 2334, 531, "Output",ExpressionUUID->"015b06bf-1e91-4e1a-9cff-a6bd49cc491b"] }, Open ]], Cell[CellGroupData[{ -Cell[136792, 2608, 33857, 784, 1858, "Input",ExpressionUUID->"d3cfcc37-7870-45d8-9dde-1f2d1fb25587"], -Cell[170652, 3394, 1668, 42, 34, "Output",ExpressionUUID->"20eac2ff-49eb-454b-8032-5f9dde62980f"], -Cell[172323, 3438, 965099, 18691, 2059, "Output",ExpressionUUID->"6574969c-81b8-467d-9bfb-ccfcce64c9d4"] +Cell[173583, 3402, 1392, 34, 94, "Input",ExpressionUUID->"f9587fd2-1e23-4030-9f68-19ee3273f3fd"], +Cell[174978, 3438, 910, 23, 34, "Output",ExpressionUUID->"ddd7a8f9-59bf-40aa-b7d9-bc4f1657909d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[175925, 3466, 33857, 784, 1858, "Input",ExpressionUUID->"d3cfcc37-7870-45d8-9dde-1f2d1fb25587"], +Cell[209785, 4252, 1668, 42, 34, "Output",ExpressionUUID->"20eac2ff-49eb-454b-8032-5f9dde62980f"], +Cell[211456, 4296, 965099, 18691, 2059, "Output",ExpressionUUID->"6574969c-81b8-467d-9bfb-ccfcce64c9d4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[1137471, 22135, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], -Cell[1137560, 22137, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d", +Cell[1176604, 22993, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], +Cell[1176693, 22995, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d", InitializationCell->True], Cell[CellGroupData[{ -Cell[1137829, 22146, 4452, 128, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], -Cell[1142284, 22276, 31728, 630, 318, "Output",ExpressionUUID->"4a3f128c-d621-4a5d-9883-46aa65f2e128"] +Cell[1176962, 23004, 4452, 128, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], +Cell[1181417, 23134, 31728, 630, 318, "Output",ExpressionUUID->"4a3f128c-d621-4a5d-9883-46aa65f2e128"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[1174061, 22912, 152, 3, 98, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], +Cell[1213194, 23770, 152, 3, 98, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], Cell[CellGroupData[{ -Cell[1174238, 22919, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], -Cell[1177569, 22991, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] +Cell[1213371, 23777, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], +Cell[1216702, 23849, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[1230778, 23877, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"], -Cell[1230931, 23882, 2518, 68, 229, "Input",ExpressionUUID->"ad61fbc1-6c66-408c-8f64-9aeb20e11f88", +Cell[1269911, 24735, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"], +Cell[1270064, 24740, 2518, 68, 229, "Input",ExpressionUUID->"ad61fbc1-6c66-408c-8f64-9aeb20e11f88", InitializationCell->True], -Cell[1233452, 23952, 2761, 73, 283, "Input",ExpressionUUID->"d48b5f18-7800-4eb1-91de-a74892343606"], +Cell[1272585, 24810, 2761, 73, 283, "Input",ExpressionUUID->"d48b5f18-7800-4eb1-91de-a74892343606"], Cell[CellGroupData[{ -Cell[1236238, 24029, 2169, 44, 115, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], -Cell[1238410, 24075, 47554, 920, 345, "Output",ExpressionUUID->"b7f2b372-fe4a-440e-bb84-c204b0cb3a05"] +Cell[1275371, 24887, 2169, 44, 115, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], +Cell[1277543, 24933, 47554, 920, 345, "Output",ExpressionUUID->"b7f2b372-fe4a-440e-bb84-c204b0cb3a05"] }, Open ]] }, Open ]] } diff --git a/Manuscript/CASPT3.tex b/Manuscript/CASPT3.tex index e7d8b0e..8043cf3 100644 --- a/Manuscript/CASPT3.tex +++ b/Manuscript/CASPT3.tex @@ -159,8 +159,8 @@ We underline that, although a third-order version of NEVPT has been developed \c \end{figure} %%% %%% %%% %%% -For each compound represented in Fig.~\ref{fig:mol}, we have computed the CASPT2 and CASPT3 vertical excitation energies with Dunning's aug-cc-pVTZ -basis set. \cite{Kendall_1992} +For each compound represented in Fig.~\ref{fig:mol}, we have computed the \alert{single-state} CASPT2 and CASPT3 vertical excitation energies. +\alert{All calculations reported in the present manuscript have been performed with Dunning's aug-cc-pVTZ basis set.} \cite{Kendall_1992} Geometries and reference theoretical best estimates (TBEs) for the vertical excitation energies have been extracted from the QUEST database \cite{Veril_2021} and can be downloaded at \url{https://lcpq.github.io/QUESTDB_website}. All the CASPT2 and CASPT3 calculations have been carried out in the frozen-core approximation and within the RS2 and RS3 contraction schemes as implemented in MOLPRO and described in Refs.~\onlinecite{Werner_1996} and \onlinecite{Werner_2020}. @@ -501,8 +501,11 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err %%% FIGURE 2 %%% \begin{figure} - \includegraphics[width=\linewidth]{fig2} - \caption{Histograms of the errors (in \si{\eV}) obtained for CASPT2 and CASPT3 with and without IPEA shift. + \includegraphics[width=0.5\linewidth]{fig2a} + \\ + \vspace{0.01\textwidth} + \includegraphics[width=\linewidth]{fig2b} + \caption{Histograms of the errors (in \si{\eV}) obtained for \alert{CASSCF as well as} CASPT2 and CASPT3 with and without IPEA shift. Raw data are given in Table \ref{tab:BigTab}.} \label{fig:PT2_vs_PT3} \end{figure} @@ -658,6 +661,7 @@ The two principal take-home messages of this study are that: (ii) CASPT2(IPEA) and CASPT3 have a very similar accuracy. These global trends are also true for specific sets of excitations and various system sizes. Therefore, if one can afford the extra computation cost associated with the third-order energy (which is only several times more than its second-order counterpart), one can eschew the delicate choice of the IPEA value in CASPT2, and rely solely on the CASPT3(NOIPEA) excitation energies. +\alert{Of course, it is worth stressing that the present conclusions are only valid for small- and medium-sized molecules and that the present study does not cover transition metal complexes.} %%%%%%%%%%%%%%%%%%%%%% \section*{Supplementary Material} diff --git a/Manuscript/fig2a.pdf b/Manuscript/fig2a.pdf new file mode 100644 index 0000000..d28ab14 Binary files /dev/null and b/Manuscript/fig2a.pdf differ diff --git a/Manuscript/fig2.pdf b/Manuscript/fig2b.pdf similarity index 100% rename from Manuscript/fig2.pdf rename to Manuscript/fig2b.pdf diff --git a/Response_Letter/Response_Letter.tex b/Response_Letter/Response_Letter.tex index 128db85..73ec0a3 100644 --- a/Response_Letter/Response_Letter.tex +++ b/Response_Letter/Response_Letter.tex @@ -35,14 +35,19 @@ A few things need to be modified -- minor -- for the paper to be accepted. } \\ \alert{ +We thank the reviewer for these positive comments and supporting publication of the present manuscript. } \begin{enumerate} \item -{Table I should be moved to the SI. Key entries could be kept if explicitly discussed in the manuscript.} +{Table I should be moved to the SI. +Key entries could be kept if explicitly discussed in the manuscript.} \\ \alert{ +We would prefer to keep Table I in the main text as it is the core table of the present manuscript. +We believe that it would be unfortunate to move (parts of) the table in the SI as it would not be ideal for the reader to have to switch between the main article and the SI depending on the system he/she is interested in. +We hope that the reviewer will understand our motivations. } \item @@ -50,18 +55,21 @@ A few things need to be modified -- minor -- for the paper to be accepted. The very important classes of transition metal complexes are not covered.} \\ \alert{ +We have modified the conclusion to stress these two points. } \item {Make it VERY clear that the excitation energies are Single-State CASPTX excitation energies.} \\ \alert{ +The reviewer is right. We have added this additional information in the "Computational Details" section of the manuscript. } \item {The authors should point out the difference between dynamic sigma polarization and so-called left-right polarization (https://doi.org/10.1021/jp9528020).} \\ \alert{ +This has been clarified in the discussion section of our revised manuscript. } \end{enumerate} @@ -75,6 +83,8 @@ I have however some comments that I would like the authors consider. } \\ \alert{ +Thank you for recommending publication of the present manuscript. +Our response to Reviewer \#2's comments are given below. } \begin{enumerate} @@ -84,6 +94,7 @@ I have however some comments that I would like the authors consider. CASSCF has largest errors, sure, but it would be interesting to see how broad is the distribution in comparison to caspt3, represented in the same way.} \\ \alert{ +The histogram for CASSCF has been added (and discussed) in the revised version of the manuscript. } \item @@ -103,12 +114,18 @@ I would say the latter, so while the TBEs are useful, a comparison with the expe } \item -{Can the authors also discuss if there is any basis set effect? Are the TBEs obtained with the same basis set as their calculations? +{Can the authors also discuss if there is any basis set effect? +Are the TBEs obtained with the same basis set as their calculations? Probably not. The authors could be more a bit more specific about the method/basis set of each of the TBEs in the SI, so that everyone can compare for a specific molecule (if desired) the setups in which the values where obtained. Again, this should be discussed against the experimental value in order to convey a clear recommendation to the readers.} \\ \alert{ +All calculations reported in the present manuscript have been performed with the very same basis as the TBEs (aug-cc-pVTZ), as mentioned in the "Computational Details" section. +We have modified the corresponding sentence to stress this further. +Having an augmented triple-$\zeta$ basis allows us to describe faithfully all excited states (including the Rydberg states). +Therefore, there is no basis set effect between the CASPT2/CASPT3 and TBE excitation energies. +Moreover, because the basis set effects are extremely transferable within wave function methods, we can safely assume that the present conclusions would be identical in a small or larger basis set. } \end{enumerate}