diff --git a/Data/CASPT3.nb b/Data/CASPT3.nb index 7df33d6..92b8c29 100644 --- a/Data/CASPT3.nb +++ b/Data/CASPT3.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 193151, 3555] -NotebookOptionsPosition[ 191578, 3517] -NotebookOutlinePosition[ 191973, 3533] -CellTagsIndexPosition[ 191930, 3530] +NotebookDataLength[ 247290, 4790] +NotebookOptionsPosition[ 244516, 4730] +NotebookOutlinePosition[ 244912, 4746] +CellTagsIndexPosition[ 244869, 4743] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -31,7 +31,7 @@ Cell[BoxData[ InitializationCell->True, CellChangeTimes->{{3.7208031947801647`*^9, 3.7208032000677156`*^9}, { 3.7208034541742477`*^9, 3.720803455246439*^9}}, - CellLabel->"In[28]:=",ExpressionUUID->"5695e463-2d83-4840-b4cb-cf89fb9a3729"], + CellLabel->"In[15]:=",ExpressionUUID->"5695e463-2d83-4840-b4cb-cf89fb9a3729"], Cell[BoxData[ RowBox[{ @@ -49,7 +49,7 @@ Cell[BoxData[ 3.8417400605364723`*^9, 3.841740079592175*^9}, {3.8419851183906727`*^9, 3.841985119590111*^9}, {3.8566600295137777`*^9, 3.856660029558735*^9}, { 3.8566608900330772`*^9, 3.856660891911209*^9}}, - CellLabel->"In[44]:=",ExpressionUUID->"5a741cfd-e21a-46f1-b0b2-c292f9a72811"], + CellLabel->"In[16]:=",ExpressionUUID->"5a741cfd-e21a-46f1-b0b2-c292f9a72811"], Cell[BoxData[{ RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", @@ -63,22 +63,19 @@ mathpazo,xcolor,bm,mhchem}\>\"", "}"}]}]}], "]"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, { 3.733131339213026*^9, 3.733131352923026*^9}}, - CellLabel->"In[30]:=",ExpressionUUID->"f2aa5eeb-491e-4712-8186-cd8ae4c8f880"] + CellLabel->"In[17]:=",ExpressionUUID->"f2aa5eeb-491e-4712-8186-cd8ae4c8f880"] }, Closed]], Cell[CellGroupData[{ -Cell["XLS ", "Title", - CellChangeTimes->{{3.814677506125455*^9, - 3.814677506818686*^9}},ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-\ -a301789d5f95"], +Cell["Error histograms ", "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a301789d5f95"], Cell[BoxData[ RowBox[{ RowBox[{"Sheet", "=", "4"}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.856660154016405*^9, 3.8566601628895607`*^9}}, - CellLabel->"In[32]:=",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f"], + CellLabel->"In[5]:=",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f"], Cell[CellGroupData[{ @@ -211,7 +208,7 @@ Cell[BoxData[{ 3.8566608027725983`*^9}, {3.8566608694395113`*^9, 3.85666086948899*^9}, { 3.8566609083038397`*^9, 3.856660913835145*^9}, {3.85666105111029*^9, 3.856661110546945*^9}}, - CellLabel->"In[70]:=",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], + CellLabel->"In[19]:=",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], Cell[BoxData[ TagBox[GridBox[{ @@ -728,323 +725,323 @@ Cell[BoxData[ "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" -1:eJzt2/k3Vl8cL3BjRIakQpOk0qyiVPI+lfqmUlIyhJA5CRGphMyRIUWSKfM8 -zxzzPM/zPJPMmdJ11133rnXvf3DXcn55ns/aZ+999n7Os/dn//Dar/JCUo2K -goLiEB0Fxf/8/F/XFPm/v+3Qdrz0KLj1/8RPtFWER1xayQ+lEltf8CsgVFvo -sumbVjKhkXpN6qYSprSZRbaot5IdN34t3eBRwYVnAyI+Eq0k55iaOdMRVVg+ -Swf/pVbSzNuevuqJOsqeuRB5B1tJ35bTKdvKNLFNR/3KQ9ZW8uQLXl1d7WeQ -1xG+OrTcQqaqifbYiOoiSIftmslgC+kkYCTeGaWHSZ2Raww1LWQd206TZFkD -nHueLeqd3kIS7LkD5ocN8f65+/WTQS3k0dPm1BMcr1DyXPtGjnMLSfGSxin9 -lAlYdYn/JE1byNhlVynL56aQ1d1xc0C1hVT0/MuRUP8WAboTN1/dayFXzh6Z -m3j6HuO6eWL0F1vIvvK6Y7UsFhB44XnLi7eFPHOHFN9pZYm3L3RvH2dpIZmt -h9i1WKxQ+EL0TvZSM1nZEHhfOt4azHpc4hIDzaQ2ybDL5LktHulNifdVNZOt -rk6z26/Yw1ev6K5hWjO58/GPaucTHzGi531vU2AzKR6+W/3YWSec1jeQ8PzU -TArWGHJulXSGqf7N+0dfN5Nr7wzjDxe6IE9/r2Tm02ZyRXqOnPjlCkaDOcm7 -d5vJW+zGO68d+IyHBmUPeoSaybf/TT2lU3OHt4HfQ4MDzWQqTeV5uoQvGDR4 -JUXD3Ey69naXUTB54OTLO4++LjaRJS1FrQEGnjB+ySPN199EFhqWhjr2f0PO -y0Xp9Momcote9bG7T76D3rBK5k5qE1mgE/JQc9Ab9w0DZbsCmsh/9goDKkY+ -8DI0ldNzaiJLbzEdEKPzQ5+hxGMqkyaS153WeHeLH44ZHZJ3V2kin3xNnWyN -9Ieh0ar8IfEm0vquSfJ+6wBkGdUppJ5vInMvDdE5K/3Eplehird4mshMA52m -VJFA3H1l9qRjSxPpzPXo45l9QfB49VBJ908jGbfVeMyNMhg9r44qU/Q1kuc1 -udcUB4PBZ0yh4lbRSFJ9yvE4XBYCfeMmFd6URtJkZwrxJiYU6caRT5P9G8nP -1iomI+5hoDaxVL3p2EhqCNdZ/3sdjjsmMmptrxrJP4unnj9QjIC7yUl1HeVG -cjRMfsD0SiQ6TWg01m43kn9r1US3HojCoddtGi7nGknCycoohSoauq9jNXn2 -N5JWFc/q2XuikfLaRiuRsZHk7iima0mPAYWpvPaNhQbSxsZ04rFYLMRMzzxr -6WkgI8s/zaclxMLNlF5Hu7yBnBRmSdPeHYc20y6d1aQGUtnp6aj0hzgceJP4 -/JNfA6knuu+b3kgcdN446HJ/bCDfcoi9Drsdj8Q3Si/ijRpI+YhGpr+R8fj7 -5pyeqFIDaZnG2vJsSwJuvN2i33Srgbx2ovzVqlYCnN/26WsKrvenIZKZUZiA -lrepBsv7GsjF+si0zH2J4H736aUjQwOpKZXjwWOSCK13qoZ75+vJjv0yz1ar -EhH/7qJRbHc9OX1i7N4r3iQsv2N9dbWsnvSLHWnPNEnCNbOhVw2J9eTKrk11 -lBVJcDTLNFb3rSc1dJsT3u5NRqOZm8mifT15mJXfSVsvGXvfa752MKwn58st -opnzkqH+XsR095N6cq36i3rcthTEvGd/Ey1WT/a8V/vnpZaCxfdjbwiBevLN -XPKpvakpIMxz3tbtrSe3df8LdGZMhb3513eqm+vJXuqrBf8ppaLOXMdsYbaO -9Hvgfz0gORW7LK6+t+uqI819zpT9ZU6DqgWHOVdpHbnZ02Z/nlYaIi0mzSMT -6kiFPgGfW8VpmLcosBDxqSNT2Q8ILx9Oh4ill2WNXR1px+DDetExHTaWeh9U -XtaRAuFPDfXm0lFtecNqTqGOrPrElU+tnAGOD7utbW7WkXrHflXJ1mVA+cOM -NcfZOvLFy7MSzTczEf6hxCZ8Tx3ZkugpNVSQiZkPPrbC9HUkEtS02m9k4ZKV -oV3VTC25N2zLKGd1FqysbtkrddaSL8xtjVcVslFhxe0wU1xLZnmSVq2z2dhu -veBgFV9LDlyUqqNyJaFoXfFxx49a8veTgzp9XDkIsQ5wDLWtJXd5BHYL6Odg -ytrE6aJBLfm25gjxrTwHQjZ3P1XI15K+QfFnDx/NhYUNr7Pif7XkZN1f7WXH -XJTZLDtPna4lVSx4Ag7P5YLNtsbFcnctyUmreot8kofHtsGu7HS15AHHaYnK -6jwE2r51C56uIQfdlcdlRPPxy1bys1BHDSmvsDVYLSsf5+z43MuKakhR391H -f18sgJndmrt8XA1pRpvy7VdmAYrtGr5Mfq8hn3Qdv/vwWiFY7cO/mtvUkL1e -z/tZqwohY2/uwaZfQzo7bQtnVCiCv/0jz8DH6+UzCjGHp4owZn/827kbNWRw -NuPVa7bFOOtA5VXCX0M+F4qOJ3hK8NahxUtuVw25ZdyTti+nBAUO0d8naGtI -Zi/apjWVUnDt2Hzhb081ORHOP69MX4bIHUkX9ydXk/I1ncx1sWW4vFNZ+PrH -atI0QZeCTb4cVTuZRLSUqsmtv8cu9m6ugBJHGpwEq8kCftr7a2kVmOFQuxLH -UE0e1xAP4dGpxAfOrdcau6tIkc0Ue6i4q8DOlSW6lFhFGlGpZEs1ViGYS+vG -HocqUpBNjL7+YzWEdm2/eeVJFRm476aLx/4alO7KFVMTqCLLgs3TnN/VQG73 -89v2m6vIrzvlj0S11mBiN6d4VFclyRXUf7xasBZmewrv1iZUkpFupkuVrrVg -2asvMW9XST6kfFFu96sWfnv3SHIqVpIehy6V99ysw5l9pQ8un60kVetZxVN/ -1qFgn5GUMn0lSfwyo5/7Wwcp7v3S1p0VpGKtvdob6XoMcVfKhMVXkG2CigtC -sfUw2f9artK2glyaDPPfRd8ABp6D8tPyFSQHR0XL1icN8OapVdh+poKcerVQ -sDWpAccPvHtyga6CLLn09RQ7QyOyDxxRVugoJ2skcpe3KzZCgrdRxSKunGzk -3X+dI64RPbwWqkE25aSs51VrbuomGBw8oV76uJy0q5OIuPiwCTSHWjV+8ZeT -M/zn618GNuHrIWutrZvKyRu0dkc6ZpvAd/j0M8H2MnKBTqDN8WozUg936sjG -lpHH8u2e+7s04xafve476zLy/YF7Phe6mtHBJ6jnL1dGagrHnnp9rAU6R3r1 -C0+VkTr1VGm2Ji1YO+L0cpSmjCQmf3S6FrbA5egFI6a2UtI0j6Y9n60VPMcG -X52OKSXL+xSL7ym1IvGYq4mUVSnpHradWTu6FaLHL5u+li0lheJP7xH724qm -46NvfpwsJZPv64keFG+D5okv73KpS8nZwHIxIZ82LJ648n6wpYTMsO3ozZpq -g8PJX+abo0vIg1b7b8+JtmP3qW+WJz6UkGmbRdtYvrcj+tR1q/syJWS9GJPS -vdl2EPzT1kYnSsjL6nLXfol3oIb/h+03qhKyk/d4JE9EB1ROi9lnNReToqa7 -th1m7MTc6XmH3shiMi9qc+Mp3U5YnfF3pLUsJvfIH6c1bOjEjrPin45IF5MV -mjVr+0S6EHp2yVn8eDF5LkbjoEJEFy4KBLnqUxaTU5bTrdK7u1EhcP/zl6Yi -MmSo2kXQtRvygn/d0yKKyE7Vc62MtD2YFAz72mleRF6i+5LodK0H5uekPCkf -FZHRahxZx616wHqe0uvgsSKyNeaI/nxRDwLOR30XoygiSU+2unHGXggIyf54 -3lhInuY4VrTjQS+KhGh9XcMLSYeEtPbX3r2QuRDnl/S+kNQN+rNrx0gvRi4o -BLQ+LCRpFhSujwn2wfTi5sC/RwrJ33o2czPWfdhyKSlo/78CcvplRPKxlj54 -X1IOud5QQKq7vbRzOt6Pk8JMYVphBeR17xA+pg/9yBFOC3cyKyBfMn5u8Gvv -h+Rltci4BwVk7PDpbcLnBjBweWt0I18ByfE1Ya7GbQCGIlkxS3/zybs7QwUl -pgewCVpxe+rzSfVye5Ww+4PwxPaEK6H5ZLRFlHpVwiD4iNxEtXf5JPdh1nNh -O4eQTjxPtpfMJxMs2I4cfDeEO1c4U6MO55MPa6vV+QeG0HWlMK12NY88dYbw -Tr4zDL2r+hnztXnkzsvtjD+Th0FxbU8WZ0ge+UHvb0jP/hG4XSvNvvw2j/ws -On1U7tMIeEWNcpTv55FSErcsKFZHkCi6P8/6UB7pni2gnaA9ihvXK/PDVnLJ -RiarceW2UbRcf11YWZNL7thZRPPn1hi0bxwsng7KJW24GK0VMseweqO2ZPub -XPLiznZN85PjcPzvXdkFiVzyfBz/4C3/cey9eaRC4WAuKVwp9jOMfQKxNxsr -LZZzSOPeiwfs7SZAiFlUB1XnkEwTTYa1qxOoEztRWxqYQ07uJrX19X9B9VZr -3a/XOWQSg/uS1NAvLNyybth6b/3+7D5XnceTsLt9ukmQN4eMJsenA2omwe+Z -HpMwQ5Kvu69wjFz/jYff2BJWvEnSevQf/8mM3zDx0k6+9h9JSsyLFPNzTMHz -e17ax+lsMuzaNsU0ySlkenNl1X/PJndnJLw+6jSFnh8GObtuZJNbrfwD3hVP -gca3LP/pVBYpo+RCEUU5DT4/nuIIryxyZn+aTsKladz0Ny2bFc0ibTc/cnA0 -moZOQF3lpd+ZJA2nUYVQzDRcfh6t/fAtkzw0FG4dPTKN2EDLhvJrmaTK0Cnt -3/tn0BDU1rxtMoPkYolhWJGbwWLwmfbHnhnkPut7R+s+z2B3qEPXz6sZpKq/ -YcOrihkQYX294xPpJPfTRP0JmlkohV8cPOuRTp5cts4WujwLqwi3kTdX0klZ -xte7VIxmERo5Np4/nkYelTqqqRs1i5Koq78Zv6aR5KPVD5qDs5iI9pp5QKSR -XluEkx7vmQNr7Mz897FUMtp0bfGh1BwE4m4t9bunkjvS39A/dZqDTHzA6jGk -koqHh+W+Fs7BJGH538vRFHL2+X13qrU5eCdKUmd+TiHtBouD087NIycpfBON -SAoZqsZ8v/bFPHqSqRjujCSTntEFosph86BJlWNyd0smPy56iFn2z4MvLZ61 -QziZNNZ69P3u3gXcSWdg5x1OIjcTlom9sgvQy1DZqeOaRK66f/kt83UBLpnp -XImXksh4ruyU+voFJGax7V0dTCQ1GQeqn7P9QUu29n5Rl0SyIk/G6abkHyyS -ebyOFxPJ9q0HtK0+/8HuXC6+hoEE8tN/PIpXm/6AyDM4tts5gdzf0O/9k2sR -qvllJ1UvJJDlnFR+pUqLsCvgORPZH08asI/pN4UuIrTQVHDOKZ78qXylamxm -ERVFdULCQvHkvqBX+oewhKnio8JWfXHkx9OxFOFOS2AttUSFYxzpdcw1yr1r -CQJlbVfZz8eR3y4fDqU5swyZ8jM35HtjSemq1Yoddst4W+EgFvgxlpwR66cf -7lmGX2XfnQnBWDL46Z0bLsIrMP9h5KeZE0P+qzUIPvJ9BSW+B0MW2WPI51Zt -O8pWV8Aa0BhlpxVN3vent7JRXoVEoHUiR3YUGcoq9FW/dBWewYIZoWxRZFac -d8l3gb/oCR3MFdKIJKf259/b9vMv+CK+lJRkRJCB9B03BtjXoBd1vVqGNYL0 -imV/zOmwhtiY+cYR1XCSg27FKZnqHxbjgjpM0sLI7WLbfHLN/oFIlOqnZw4j -p//tIYTX/sE8mXbMUyWUPPbAlHQjKIiS1KQpvpQQcuBfeHLmBwqCNUPtTypj -CMmryfjXs4SCkMnavnZTKZh0HFW2PsBCSfiRhTStiUHknzqpcSlpSqIn14hR -a3MQ6dOYq8fnT0nwFRxkW1IIJAWHDaPcJigJvaJGDvv4n6RXx8f3DheoiNgS -632cdD/JlXJ9RRo7KmKxTPBQ2OMAMiqB+r/ZZiqCqBw8fiHWn7Rz5GUUO0JN -2FV/OVtK40+yFRSKLLyhJmpqr1+UlfUjw45Z8Y5WUxPcoeMWdY99SYWPvuos -B2mI2MjbzjM0PqQqU+pJqTc0BBEX4c0W7U1uOm4sFFRHQ+QkMYafkf5OXnbT -6B85SktIpD9LkaTwIp8QxeforWiJnuzyAoMwT9JC8S3TWCctoZd/rM5N0oPk -v/3oiKHQJoKi5GN3/MoXUk5VNsL+8ybCvGJ8oi7QnRw7xfiH6fcmgrX29vKM -+GdSsupBSt8tOsKvMYJu2x9X0oLofzYSTEdwtzFuP+vnQoplSButUdETSlnN -osFun0jKXcs81E/oCfMijydDAx/Jty+3bm1Ipyf8qqVND523J+l9r9wX37GZ -yGnZ+UXd3obsivfmv6W/Hvc2xwS3fyD9tWe+BZVvJnrGPMqGTliQ2fH7XC8c -ZCAoRmLKxCnekWFnXr3vfrceL5+iqAo0Jm89n2TSa2QgiC2xgnfFDMjmx+nX -C44xEhSXlZq827VIYT8O+0Tz9Tg/x/KimCJ5/lDhOY6G9ZjDMu5V8hWym/7l -t+KDWwgKmXcBtgfFMPidtsPLaAthftr3nTKFMqK6GuS089fLmXzZlFOewXlv -YCkzCxNhblj9gP/8S/gELCkpyzARhMq9vbFuJtgpoSsu7MtEUEhUj5yafIe8 -ZEFZ034moscnpLU50AKfy25qLPAyEzlfhrM9JK2QuEnEw+npeux4OFCawhYs -Quja48tM+H3QsN8ZbY87LR8+2zQzE+amIbrNjx0heTFCK3QLC2GuP/zAY7Mz -dvn4nFQXYSH4Ez97R7S7oJquUSlQh4Xwiznr/PGMGzxOOP+76cFCsEbUWzyz -/4yF7Wyywtnr9YNfGt7ucYdOaxy9Vi8LQRGwTePY+a/QmG2dUaBgJfR+JMgy -fvKAYfArDjZmVqLH88Gd8QFPmHi+zCnlZCWU3GdFyi95ITrswu33B1iJHOfP -pyPcvqPmIaPJyWOsBPHxLO/HUW9cPcTxo55/vdymfsczwgcZa8xizwVYCW7L -l5tve/iicvGJ8IogK1GTvdlsu7EfdBxyQ8zWY/NMWWNrHn+cYjM+uHxmvb30 -ML35Sn8c/qtXr3+SlaBIXdJSex0A7ncNz8YPsxKxSWJPG3l/YmmrQdPzfevP -n/BN/nrNTyjfXjKi3M5K8MeNSiW9CYSxhw9fLP36eKIv3Dt4OAiPPSevMcyv -z1ek/c0vdUH4EVBczdnIQiiFt16hNQuGrDXxJjxuff5Cj1wyOhKC318JtTYH -FqIm6LXAYEMIxss6XpYprc/nz9ITUuahcJuwFfM+y0IQ/pyHC4+FYasj1wND -6vX59dXiFmwOQ5OPO8vrGmYi1juNM8gyHN9oRZ7WeTETel6bt20/GQG908nf -w1SYCW5P2S3WrRFQimOr4uNjJnq+hNHOW0XCImAs7O04E+H3eWlNlT8K2rP1 -IzWRTISEq9hiQ3sUksQV30jqMBGszt+mRW2jodWSGHbyKBNR4zg6lngmBmal -cy1uQ+vvt8OFAd6uGGh2BUlE+m8huAsKdMtEY+G1dnEw5PH6+56v88zSKxbP -uOvo49m3EC257JoXp2LxdXHzt4UKRiI1J1N15nocjqo0rvhaMRIupKpy+Pc4 -7K76aNt8iZHQy96iqDIdh4wtedKFMwyERFaiHNd/8fiPlWnSOYyB4MuUl67z -jofyisFOeSUGgj6D5qHDTDxcfIz07uxkIHrSIiWu3kxAo3i9u2XV+vqQ+lB8 -+UcCfjed1thjs5nwS1kVi59NwLzxG5ELIpsJk+TAG9piieBJ6vs2tUBPyCTd -ucbjmwgtz4jox7H0hFDiHNrmEhHgdf6eizY9wZrgLex2Kwnt6ZyT/gfpiak4 -0Qu3/JIQvsvf3r+XjqiJnRCkWkiC9hOx/3x86IjQGPcz6beTIbfrTGygPB1h -Fy18ysA/GbI+y+bZu+gIpaiBY0f/JIP6xvKWufZNBBHpyNd3JwVqu2gkb//Y -RHBHCBz0CkgBpfXcvZInm4jFsI79kospwIXsSZ0Dm4iWUKu9DHdTwVh0KevC -CC0RG3J8V97PVDhHXS84EU1LuAQ37DRdSsWJrZM9143W1/Ogt+xn7qVBwPlg -/bvLtMTNQN6tY4FpMFX4KlyziZbg+1nBFLCchvNv4r+dq6Uh6AMMGeQk0uEv -HmEQ5k1D9PjtpmMLTsdZFTNZbq31/cS3gLpsJR33qlYC3M7REH4+OhSW9zPQ -YK6wuEBDQ5j8YP97ISQDVBcoVq42UBMy3plL06sZEJe74qITSE3wf1ddCJPM -ROeo3lMtI2qC1WvLrHJoJrjn+ChO/UdNTHkm/uZcy0TO6fDeeE5qosRDfqL2 -QRakH+mYjE1QEaFfaUbtw7KQe1bTqSKHijD/Ejl45V8WhKaNyu5+oVpfbx72 -LT3MRpCFkbWG9vr++nm1Ky48Gw5bm2OYCCqCwy2wXYuCxMipBTehHev7scud -lv2PSKjoZo93r+/fLc5zDa0RJHJY9n1YyackZP6rGimhyIG14TVPq++URMkN -nuHAYzloF9jSafiSkhC68WrQ/FEOarZ2qhTepiQCr5f1y1vkIL6255QeLyXB -fn1vn1BkDp7l8TLo/aUgzEUNetibcxBVOEWX00RBTF0r6pqizEXFGHPE41gK -QukaV2fF8VyI2TcqijhQEBVXddtDpXNxKufIEzVVCkL4al6rlWUuaIW5qipE -KIjQKztalKJysV/c30Cfk4LguKLdJNySi+mEkEq/kX+wI7IbOKjzYCv+cLrS -5x/mwFY/dyIPU+blUJP6B1Wo19bI5OGQ1OUs5S3/0CCSXh35IQ8poalfsvPX -QIgwV9lF5+EHc4KEyZv1/OuySoVqax6UDFyb7M+ugftychlBk49lmk9Kk+N/ -4SjMULr7VD72bk838w/8i9VLisWLsvl4cav+vY/CX2heii9ssMqHLNszx54d -f9FycVNBbEw+aG5vFVGuWcXNi3J5jm35OGLjq7vHYRWJF6JzNGkLcJbN0Z5V -dBW8F6hIUf4CUG/SUDy7tgIXoUdZ3I8LEEpluPQ+dQUUQuEZq9YF6FXYET5l -sAK982tpLbEF2GXWovr+xAo6zkmmJrYXgLJVdfOhkWXcORec7LKpEJmBx3va -A5aRKbicqHO6EIe3RV32U1gGn+DdhJvyhZBX/2OlzbEMT4GAOF7bQmRNtkgK -1C+BXmAhhiK+EN2rQ4KL6/m24dlb0R0dhRC2vT0de3MJA2d8IlPpitCvdSNO -lnoJEmdmwt3PFGHuXlnYr6zF9ff8RpieQhEojvsxaZksgv+0V8gduyLs2hI3 -VHZmEd78k0F8CUXwFSkJYfn1B1v4rwbSdBUhw9/OTDDkD0xOfQ3ooS/Ggevz -V4WV/2Dk5Jhf5tli7Mvw/MS76w9kTor4eioWI2rrA5aphgUUnHD7YWhfDOdT -Jhp+nxYgcGLou0RiMZo4R+0u3VxA4PGLXse7i+EqfP1bEeUCWI9/8qRnKMGe -ha3X/suYh/mxvq8DAiWoc7p3rtBwHlNHz33JeVKCUPktimIn5yF/1OGzt0MJ -urTn2zqH51BxpMvVJKkEhz3YF5z85yB05IzLw54SBO/rHlB5PIdQPptP/Iyl -uPj1wmX97XPYwdfmuOVcKSRV61/lV8/C+vDJjyNKpVCsIic1HWYxd8jSvuBj -KVZrZEr0r89C5VCTrV9yKX6/Fa6epJhFzcGjNm97S+GY6PZoOnMGOGhmJbOl -DJvL1BQdXs8gmrfOUuB8Gbh3T/FVnFs/7/IesmBVKQOD7YmisrlpOBwwfT/h -WIbzPpqhXxOmscRT9a4kpQzhZ988u/JyGpo8PG8D+8pQHdH8vePsNJr2vzI1 -ZyrHbidT7tfzUxDdX2YiL1QOwUvyZw6nTiGBe6+x0NNySLZmb5l/MwUebgMj -9k/lCDFkFpwlpuCyr+jlVGo5xsze5J2km8LaXi6Div5ypAxe3aP+4zee79XV -C2WuwKE4w87tp36jY0+ertWFChxh3Zn4Pn8St/bseK6kWgGPx+6mCXKTSN2t -/UzYuQIR6ttSs+Z+4fDubC2O9Ap8UDF8EeT6C193sWnODVQgdIlb0fj0L9Ds -UlevYalELc8PwbMNEzDgSleNvFiJ53bMzC2vJ9DLyfzUTq0SPU+K2lR4JiDB -qaKs6lIJtFzaXlk5jmyO5CdERiV2nVXlZ3o7juMcDIq7hyrhSCtTs/3EOL7v -VJRfZK3CoWka55aeMTDsjJdruFQF8ePb5K57jMFkxybZWPUqyD268vOGxBiG -tstJO7pWQZDrjUQR4xiktkdLaWZWoSjCXSeydBQF7FQPRYeroOd2S7PbfhRn -2B9JcrNVQ2H/IQXRO6Pw2xYusSpcjXipOyNZrKNg2bZ2t0WjGvs646ZON4/A -jE1SPNGtGt48c76WviOY2Bp82yWrGsy6KdKuWiOQ27ospjNSDZEoZxtCcASq -9Id5AzfXwE/EutiAagS76e8fYNtXgyXuL5sYa4dRT/eGx1ygBuPSE3ITfsNw -oAvaPylWA+uSohNL+sO4SlfNLf+kBg+j1rR3iw5jadPSvjLDGmS4UQ8L7RxG -7KYD+4QcasAWa8d7bnwIGpvE9wb71qBedefYKjmEvZuM97An1UA4nUfS+MsQ -mmj9d1uW1WDAdbLB5dkQnGjLd01110B681FWwatDEKWd51KcrwG1okrQA84h -rNLs46pgqEX64XizzqlBJNCIcV7krsXl83b9uSWD0KZ5yREqWAv+BuXZGb9B -7Kf5sXPH7Vo4H6CZf/p6EC3UxTuslGphysOOzZKDcKGe3j5jVAuW+7v2thwd -xH/Uu7YrfVwv9zljXkg9iDWq6+xVfrXY6duUXtYxgGSqF9uEk2sxEbQjvitp -AM+pvrGFl9dCl/6U8+KnAfBS5W/l6K3Fp+9fx1g1B9BO+YvVZqEWZz8vfOS+ -MgA3yp2sc4x1eND4S56bawC3KK+wqOyvw1Zp9X762X5QUj5jrjlXh0w5d6G6 -8n6kUnxhErlTh5LP3FdeB/ZDj4LcEqlch5bhKt25t/04TDHKyGVch7gySR9h -qX50/WNjtHOsg3Ohl9OtE/348k+YYcG/DinPizp20Pbjzj/1zaopdaA6obDN -q6MPNP9c6Osq6iBjeza8PKFv/ZySTkf01eEOX+mrIIc+GKwNbIr+Uwf7E7Wf -uJX7cHSNedNupnoI92/zFjjfh96/QrQOPPWwNraxatvSB8+/KjSL5+uhuTfT -grGvF/f+OlKri9dj3EJTODe5F5v+JlM1qNSjYMfB0XmHXmSv9lBeNanHTcXi -7T8Ve2G0ykAZ61SPUxfleItP9+L4qgDF3p/1eCL7V1yBphcDK4r/PqbWQ2H2 -55RKUw++r9itLVXWQ2RaIboppAeSK/F/NfrX678tk0k16cHmlY7VxsV6/JsU -o90s1oOc5U2r15gb4Jkr5FTG0QOTZf6VuAMNeDiglUxR041Ty3LL+y40IFZS -c0H1eTeGlqyWnO42YET7J1/55m74LEUvrjxtwGsqSt1rQV2QWmr5o/W6ATPX -peN60IUtS1R/mj81YGx0m2tqayfyF48vXA9sQLVYt0i/QSdMFx/NJ6Q1gLbR -Wt+UsRNnFs3n9lc3QP3AgIL3zw6M/gmfdR5oAOWR3imNSx3w+9Mw83epAd4r -5MpqXTtk/qxNP2NpRNAbn2fvtNvB8odvupW3EbTkg/+2ULWjaEFy6r+Ljbi+ -f1C28lsb3i28/Z10rxFZutqtA6fbILAQPHlArRHzNi4NBmWtmJiv+eVq2ghj -t1bFwKet+Dm/PPHPuRELBwVGPf62QG6ed+J5UCOeXpjwfuHZArb5u+Pt6Y2Y -Hfz38o5AC0rnTMbEahrREZuULl7bDPO5gNGUwUa4bnmR5/KiGefnKkYOrjRi -7yPmJ/wszZicXRj+zNoElTapg9djmxA8yz1MeagJrSYsKYOSTeu/662hF5ea -4F3yVIf3TyPYZw0HOyWaoO5++tTWH42omPEZuK3eBEVGqcJU0UZ8mCnpT3vT -hHfZX3N4JxtwcWam77BrE84erjd5/K0B09O7+74EN4GXoWK//I0GhE7f6KXO -bIKDCqvRifl6KE3r9ejXNqE8avxyRVA9dk57dXcPNeGI+1vdUzL1qJoq6BJf -bcLg5pkLd7fUw2ZqsjNjazPirZyt9uTV4fIUR+eRw834Lh3+2fl1HeZ+X+3w -EG6GrFu+rfuZOkT81mmnlWzGvkaVH1y/aqHy+2vbS41mcP5W1mcOqwXX75zW -3rfNWNjy5b/H6rWonRxruee2Xr6ULjnOWwu7SfaWrJBmXLIIWg0ZqAExKdJ8 -LKsZ45c+nzANqsGfX5pN3+qa4SCX63pLowbRv9wa6UaasSnewZ3yaA3UfmU2 -GP1tRuq+K0ms7dXY/Wuovp+tBXteMlO6Pa1GwwRr/X2+FuilccnJ/arCx4mL -deTlFni8+28RJlW4OqFae+JBC9aWd1/cRVOF5fFPNd81W/BOKXeyaH3fjBtP -rd5s1oJY9aefufdWQnO8r8r4cwtO5lsqbIqswL7xLVWDoS24+VAy4MnFCjSN -nat8kN2C9rEL79hLy/FpTKkit74FA+wcK5tlynF9zKH81GgLZmci5E4Ml2F1 -NLHsx1oL7Oe5ZV+8KkPiaFcpI3srAj6yL+fRluHZKH3p6yOtiL1FW77nSyl4 -Rs+UDIu0It0u29mItxStI/LFUg9bkdEZ2l2ZUAKXEZuifK1W6PExdO27VoKb -I7GFp9+3YuVER+ezumL8G24r8HVvBZew54NE5WIkD9MUMIW3omtENvDvVBF0 -h0/mvyFbsXjw8by4eREODsvkjTa0YqdWglQkSxE6hixzpcdaIS82Y8HjW4jP -Q5E5hf9a0cTEmpdxshC3hprIs9vb4PLxqY1ldgGohihI/6Nt0L4vcerD3QKk -DR7NZiHakChnN1fWlQ+9wYdZ76TacJaLs0rjRT74Bs0yx7Xb4PWhXkWTIh/d -A6EZsuZtuG1g8abFNQ9fB+rSi7+0IYYjpKbqQB7EB1bTBCPasL/BSF82ORc0 -A4fSfua04dRPPwM7sVxk9kukbm1qw/CBGY/nnTl42W+a8n58vb+rpvd3GeTg -aH9g8i+KdgQ9YikNpMtBX19V0uMd7fhi+ef5JWES3/oWE0uPteNyRKCqwLNs -SPTxJJ6/0o6Hr7wTVb2zQNd3JyHoUTtMRKJqF6ozkd37Kn6bTjsiBQhJrk2Z -eNXrF2dh0Y7/7rIyUCIDJ3rLYn9/bcc2TS/ebtN0DPTMxShErrd/0+XCeFoa -vHv2xpTntkM7/V2v7GoqHvTcjL7Q3A7BhjRhnaupYOgxiAqZaIf9BV9uVccU -5HZ7R26n6kBAalnj27ZkmHQXRXzY2YEjAji9dDwZ/N1T4dPHO3D68nuBvVZJ -GO7iCn9ytQPjiqldZ3oS4dMlGlYp3QEJxe8z768k4lGXbuil5x3wvssQdy80 -AUxdniFhlh34fWLG7hd7Ago684J3enZA+EhNZpBtPN50TgRZR3VgbdZ+rYAi -Hmc6dwTN5nXgrowqlad5HMY6iEDllg5QllExPKOLg3+H9s/qXx3wpX6laf8l -FjId7gGXqTtx5+yex8LHYsHake0fwdGJfRff//riGoPi9hE/zpOdiLW45P23 -Ixpm7Wx+ttc6MZfD8efkhWgItgv7zst0wm52xDUkOAoTbeo+T3U7cc95e0LH -wSgEtrn8qP3QCe6eGyIXUyLxuC3dG986oX84L3D/40iwtQ18j4pe789OqLZr -ayTKWpm/7yroxPUPspOl7RGwaBXysl/f5+ZvXunjSYuAUKvKtz+TnWCV5XjP -HB6B3y2Onmo0XbCx2OIcER2B4JZkj3rOLny9uW2ZvjgCii09X6+c6sKf2zs5 -D85GYHsLw9cY0S4YtT/b8+tMJCqaBb7sketCIuvFg+dtImHVrOj+8UUXuq4U -s7dMROJSs93nJasuXNq8eNhCPQozTfFuGl5d+HlTnGiaiUJYU4drY0wX9jYJ -j2q6RkOpaZPrtcIufNenqky5EgOOJn6XuLYuCHjVPvGgjEV1o5zzvqkuqGfs -LnHVjoVNo9UnJ9puMDlcn3veHguRxminFa5ueDc3ClQ+iMN8Q4ujFn836LLM -ei7VxyGygcqx+Xo3xGlX66/KxuNpw/GP1x93I6hsxl9lMB5cDY8cEvTW84pf -eb+2GSegrt7cfr/NenunpmuLmRJhXx9u5/y9GxkvFu6PhCaCqG+w/RvbjaSq -C80t/yVhsW7N5llRN6SrZ1MXRpMQU8dn09rejfOcsVXfPiVDvU7S+r/pbvR4 -cDJtF0wBs5ZInhx1D55JxB1P6UjBmGZ97lbmHrzbTS1XbpWKIk3N3JL1PEj8 -ecfkt+NpCND8m/P+QA/S+BbPatWn4Z2mW865kz2IjH9/1MwkHbKah3N+Ca3n -Uecj5ffsyoCAZiYZeK0Hbl6ZiR/TM8CqeZ98fLcHn/bIy7I8ysSExlA2m2wP -uDTefpqayESxxpvs0qc9+HDk4zdTsyz81GDNNtftwd7ulZ8rm7NhphGUdf51 -D2hU/SlKPmVDTuNi1uSHHlBlNl8X3kLinEZ1ZtCnHszL6OglW5Bg01DNlP/W -g3KZsTs+kyR+qS9lbAtcH1/34X+nj+SgRP1TRll0D54WGmsRj3IQqH4gwyKt -B8ZpovTCZjkwV09NFyroQdyp641jfjmQVxdP/13VAwYh+0e7snNwXr0vLbi1 -B7n1zy/5N+Zgm7pxmsJADy78fKv7YDgHk2pb0th/90C6xiN662wOytT8U8uX -ekDGss3nLeYgWO1cquV63uqhslD2cD22UCtPucDSCx5q35KM6RwoqCmlTHH2 -wixqKmJmIAdCavPJIby9KHv++NO/2hywqzkkK57qBWfC+JXx1BxMqe5L3n6x -Fy15T62Lv+WgQjUxqUK0F/2+1hejDHMQoiqW9OFeL+iM0pEplgNL1a7Ei3K9 -8FvYfHkXZw4UVV8mTqv2YjZfsnSykMRFVfrE0Be9IP/bdY/+Hokdqj8Snpj2 -gkp4X9Z8ZTamn55J2GHdC472kFqBa9mofFocX+nci8k8F3PxmCyEPpWPt/Lq -xdveewy1bFmwejoddymoF0PtB6hldTOh9NQmbiamF729CXds8jJw6emuuLD0 -Xqh82lH2lyUDO5/GxioVrs8PL8P0C+l0zKhcj91Z04sMqs2vP31LQ5VKW0xV -Wy+evDiVT9ecinCVFzHWg72QPc+s4sqaChsVmhjhqV5oL0586r2RAmWVb9Gz -y71I3R8uEWWaDGGVk9HhtH1gUvpvd2hkEjhU8qOUWftQpnukwrIzEXPKMlEc -u/ogpbc/cGz9/1ej/Cuy+mAfNEb0Ve1EEhChbBlpw98Hi8ny5/9exMNWeWfk -5Ut9iLSmXZwIiIOKcmTE3PU+HFferDDcvL4+KF+JiJDog3DopdfvWGLBpdwU -rvK4D++MnUV13KMxr/QsnFO9D/vvUmvv2xqFWiWK8Bq9PriPGxv9+xKBSKUv -YbZv+vBMWvLO4IFw2CkdDROx6QP9e/57HhmhUFUiQ+dd1utfP85fqhACQulh -aOT3PnQJvJ7fxRiMXUqjIU+D+6DnaHBob0EgFp6YhXDF9SEk/Jr4f/Y/Ufdk -W0htRh/6D6vEMz4OQPST0GC7oj5stvp5JPeCPxyeXA5G7Xp87lBFzEE/qD2p -C1po7wODcHAlj4gPrjzRCIoaWn/e85fVee54Y/eT1UDV6fX7XYvjvhl5YVHR -NXDXah8E2cT+had7okHxUGDdpn5UyIg1Ke/yQIxixk/7rf2w3JMhkuTxBR8V -JX4Su/sh2ZDM4nDKHeqKgwF/DvVjO7QuJ/W54aqiaUD06X7Y3hrbuxbrir2K -LAFqwv1w/7sjiNvLBcsKgf67/+sHXzvlos8lZzQqXPCvv9+Pt1w7eXSMnRCr -UOXnIN+PyE0FU3NDH+Go8NTvikY/8t9zyJnZO0BTYdF3Ub8fV/133RNTtIeo -gpNvzPq5Wm38mvMXVTvsU+DxVbftB21k2O7A77ZYkU/x2ePWj/Pvq+6kUdmi -Sf6OT4N3P9T1T77c+80G8fK9Pz6G9KPmBS/vAUUbfJJ/9eNqfD/M7BdZ9t63 -gZY844+lzH6wBPEbP9e3wXV5P+/Y4n4w5uhdNM62Abe8oLdGXT/MCXn70PO2 -WH1c9n1vZz92GK8KGHXYouXxk++Nw/3Q7j4Z8SjSDomP57wcZ/rhFWnjXxZs -D+fH9l7X/vbDRKz71f1yB2g/3uu1TDeAHSc8HuhwOuLG44RvcWwDoFth2Prd -xQk8j29+09wzAG3bF9Oy/M5Yk+v03Mc3ACqLMk+Wty5olTPwbDozAEbK84h8 -6YokOTpPp8sDoD0peDzRzA0uct4eojcHMCepkVLr/Rk6cqc9ViQHYOvlsRZc -6Y6bckVf4xUGsC3po1cF61cckHv8VUtzABWDTYo1ah74Jzv1hfvlAK6e1zoi -UOGJNlnrL83vBlAWp1qkc80LybJcXz7ZDcDv+fuJnrLvcJONcb/+eQBvOSek -RpR/QFdW1H31x/p4erWXyuh8ISbb+jkhdADFGcpnexT8wCur+1k7YQDSjWSg -sYg/KGSpP+/PHoCG4yGHcwcD0CHj6dZSMgDZY2/Gfbb+RKrMCTfn+gHkqApw -H6UOxGeZPNcbXQNglugeurkUiBcy0q5/RwbwQU/l89PZINySmXBJnB1AF/PK -g7apYBySsXB5tjaA6tvxjrTTIaCS2eHCs3kQKh2lN8/NhqJTOsK5ddsgTomr -5SYvhCFNmnB22TuIqadvF8uWw+Eu3fjpvyODYPOcVI9bi4CetPantbODsGR/ -kvmTMgp3pP85JYkMoolLpLqeKhp80u5OOmKDWOHNrDCljAG19BGnAw8HEf3J -06tkNQZdj7Id2xQHUaQewTD/Ohbpjx44umoNosbfnptuNhZfH418vGk4iAcH -kl+d0YqDwaN3H/+ZDeKexL0elo44iD9i+5hsP4gt9V4BF27H48ijEIfn7oMg -aTlXbyfHg+aRsAOv7yByF4vDB3cnoEeq1r49bBC0Ks56oWYJyJRSt3dLHMTV -pUb3C+0J8JBasRMjB2G/JqZy9UwiXkq52FGUDSLUc9pX70Mi7kodtEtpGMT8 -8UAa46pEHJVKt9XtHoSk465Apm1J2CR1z/bg2CAOebY9nJFIQt/DAZuOuUF8 -/HGOedQ2CVkPX9t8/jeI8smey5kpSfB8yGxzi2EIa/OK7Jd7kmD48Kc15fYh -3GafKr5GmQyJh0LWqfuGcHdYvzKGKxnHH1ZavTg6hOzRgU2a6+cDuocqVocE -h6DCHh/66Fwy+h/8Wc+Wh1Bz6cWn10LJyH7g+MH91hAEL3HlVZxJhteD/R9u -Sw1BrEz094ODyXj1INmSSmkIB8zsnuxmTcb9B7ct07SHoKxjsHRxNgknHvRY -6BkNweEqO09FVRLoHxhZHDYfwhHJqM+zAUkYkGSw6HIYAk9H+JGOF0nIkfQ1 -//JlCP0T9wJSBJPwXVLA/I7fEIrZ1R9lzyXCWLL0PXXEEMb5tIZPRiXigaTi -+/Sk9ecfjh0Qf5KIk5KzZvo5Q+gpO6apxpgIBkk7M77yIaSL340oiEvA0P09 -Zt2NQ+iVGXUnJROQez/+3deeIVy/GEZET8bjx/3/3omPD6FcfIvFhHU8TO53 -vKVZGEI0e5R8K0c8Ht7Xf5tBMYxryUW2TSFx4L+/6a0B4zC0vgy0/Xc2Doz3 -v785smMYi0ZJxW4ZsRiW4H/Twz0MOQ+Kyj1XYpEnUWjqcWwYlbbvGn3tYuAj -IWd699wwZJ8kneT+GA1Tid+vaa8Mg8tCUNfeIQpSElavM28Pw1FI7USwbSRO -S3C+fvloGGyxI/WXP0SASSLa5KjyMDzZuX23mYVj5N41k95nw2jSs08aNAlD -wb0WY89Xw/j7Lvo/HcNQ+N17bnzPYnj9/HwoR0Y/BG/uURlvchxG728GGim9 -YEjf83iV9XUYIVV7C6kMgnDm3vFXhv7D+LwvcGj5VSCY7+UaHYscRpJd0XzF -+58Yu/vIqC95GKrPhJLXHANQeHfc8Fvuen3tV/mMvv7wv2tuKFExjDbLiRtq -yX54e3e7IV3z+ngEaG36g30hczf8ZXbvMKzz8wY5f/2AwF28NJoYBud7zncs -hDdY7jYYHP8zDPwys5bw88K4uJZBP+UInjM5ND9g/oZi8TV9ry0joBssEn3j -4IEA8c/693eOoMPZbBv79q8wE+fTp+cZgU87lZd0tDvkxLP0yOMjYFSqWXj2 -6DMExSX1Xp0fwSHF0D5VJjdsFR9+ceLqCHZEeH8TrXfBxJ23LwbujGA6rzlm -6Z4zSu5sffFdegS6jAtV3TucEHgnWFdSZQSDHepG/csOeH/nku7m5yN4w8d9 -wG3FDo/v1DzPMR7BAKfGbWUOW5y7o/bc2HIELyonE2MlrMF2Z1nnpNMI9vgy -dlT8/IDJ2846gx4jCKTTuT/NaonS27w63gEjmNl7kPW2hzmCbqc9exC13j+F -m+P8MzNY3L77jCF1BNbbFHaebHkD+dv92rl5Iyg/tX2Tgv5rCN020TapHAEf -x1T+Z0FjsN9m0j7VMoKSmJ3p7TxG+H0rQGuobwRVjIfGL5x/ifJb57V+/BqB -njv/3Xg9fQTfqtB8uDiC+x+PVX7xegHLW8qajNSjOD2ucmLPVx0o3lrQyGMa -xdbXf2X21Wjhwq2PGq85RuH/h16iQVQD229xa/AfGEXaZ3mTj1OqmBJLUh8+ -MYqomIodMdUqqBC7pe4jtF6eUHatuEsJoWLdalLXRkE49ecsCijig5ih2pa7 -o2g+O3DgzD85PBHbrJYvMwqK/+ua+n/jDS+54SU3vOSGl9zwkhtecsNLbnjJ -DS+54SU3vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS+5 +1:eJzt2/k3V18YL3AZSmRIKtIgUZpVFJL3qTRQSoqQOYQkREklhJA5RZIp8zxn +yjHP8zzP8/Q1h9B11133rnXvf3DXcn75fJ6z9zlnn7322fvZP7wOqj+X1qSk +oKA4vIWC4n/+/q9jivzf/3bpOl6UDWn5P7GKrrrIsGsLebRMavtzPiWE6Qpe +MnvTQgY0Ua3J3FTFlC6j6DatFpL+5sTSdS51CD3tF/WVaiFvjGtaMBzVgNXT +dPBdbCHzfe1pK1W0UPrUlcjlaSEnWs/82lGqjR16WpcfMLeQcobc+vq6T6Go +J3JlcLmZDNMQ67YV00ewHstV04FmkuA3keyINsCk3vBVuupmcnLHbtMUeSOc +f5Yl5pPeTNKz5vRbHDHG+2ce104FN5MMZy2oxtleoviZ7vVsl2byvDG1U/pp +UzDrEzekzZrJgWU3GatnZpDX33WzX6OZ3OG1ypZY9xaB+uM3X95df/65o3Pj +j99jTD9XnFa4mUwuqz1ew2QJ/udeEt7czWTpbVJyt7UV3j7Xv3WCqZk8bTPI +qsNkjYLnYrezlprIjvqgew8TbMBosEdSqr+JfEvScZg++whZgynJ3som8o+b +0+zOy/bwMyi8Y5zWRPYr/KhyOfkJwwY+dzcHNZHd4Xu1jp9zwhlDIykv5yaS +q8aYfbu0C8wMb9479rqJvGFunHCkwBW5hvulMx83kX8fzpHjE26gN5qTvnOn +iTRmfbX76qHPeGBUer9bsImkvTn1eIumB3yM/B8YHWoif1JXXNiS+AUDRi9l +qBmbSKuerlIKBk+cenFb9utiI8nRUtgSaOSFVy+4HvL2NZJfjEvCHPu+IfvF +4sP0ikZy5XnV8Tsq30FrXCl3O7WRpH4W+kB7wAf3jIPkOwMbSV0HpX51E194 +G5spGDg1kgUSDIfEt/ij11jqEaVpI3nFg+bV3mZ/HDc5rOihvl7/a+pkS1QA +jE1WFA9LNpLGd0xTDtoE4rdJrVLqhfXrLw5ucVH9ic0vw5QluBrJVCO9xlTR +INx5aa7Svq2RfLxH9tPZA8HwfPlAVf9PA1mz/dWo+6YQdL88pkbR20C+0+Zc +Ux4IAe8rCnX38gZyzSnb80hpKAxfNapz/2ogPXf/It7EhiH9VdTjlIAGMsBG +3XTYIxxUplYaNx0bSGORWpt/ryNw21ROs/VlA9mxePrZfeVIeJie0tJTayDH +wxX7zS5HocOU+snarQbyb42m2PZD0Tj8uvWJ6/kGUtTJ2uQXZQz0X8dpcx1s +IPXLn9axdsfg12tbnST6BpK3vWhLc3osKMwUda8v1JNmtmbjj8TjIG529mlz +dz2ZVeY8n5YYB3czWj3dsnpyxyWmNN298Wg169RbSa4nlZwejzz8EI9Db5Ke +OfvXk7ZiB74ZDMdD742DPuenevIbm/jr8FsJSHqj+jzBpJ7UiWxgWI1KwOqb +8wZiqvWkRRpz89Ntibj+dptho0Q9eeNk2csVnUS4vO011BaoJyefiGZmFCSi ++W2q0fKBenKqLiot80ASON85v3Ckqyd1ZbI9uUyToPNOw3j/fB05flDu6Upl +EhLeCZvEddWRf0+O3n3JnYzld8wvr5TWkbFxw22Zpsm4aj74sj6pjlzl2Fy7 +qTwZjuaZr7T86kh7/abEt/tT0GDubrpoX0eeYOZz0jVIwf732q8djOtI1nLL +GMbcFGi9FzXbq1JHrlR90Yrf8Qux71nfxIjXkaPvNf95a/7C4vvRNwR/Hek/ +l3J6f+ovEBbZb2v315EMXf+CXOhTYW/x9Z3G1jpygOpK/g3VVNRa6JkvzNaS +SfcDrgWmpILD8sp7u85a8rnv2dJVxjRoWLJZ7CmpJVc9bQ/m6qQhynLSIiqx +llTq5feVKErDvGW+pahvLRnNekhk+Ug6RK28rartakknOl9mYcd02FoZfFB/ +UUsKRDw2NphLR5XVdes5pVqyzXlPHpVaBtg+7LWxvVlLWhyfqJSvzYDahxkb +tnO1pNuLc1JNNzMR8aHYNmJfLUmT7CUzmJ+JmQ++H0Voa0mhRE2dtuu/cdHa +2K5ypobcFb5thL3qN6ytJexVO2rItxYfX60oZaHcmtNhpqiGzPUirVtms7DT +ZsHBOqGGHBSWqaV0I6FsU/5p148ackKFR693TzZCbQIdwz7WkPs9g7r4DbMx +ZWPqJGxUQxpXHyW+lWVD0PaOc7liDekZnHDuyLEcWNpyuyjfqCFnald1lx1z +UGq77DJ1pobUtuQKPDKXA5aP1a5We2tIZhoNCVIlF48+hrixblm/v+O0VEVV +LoI+vnUPma4m5zzUxuTE8jDxUfqzYHs1qay0PUTzdx7O2/F6lBZWk9f89h77 +Tzgf5nZrHorx1eQrml/fJjLzUWRX/2XyezX5vPPEnQdXC8BsH/HVwraanPR+ +1sdcWQA5ewtPFsNq0sVpRwS9UiEC7GW9gh5Vk+0zSrFHpgoxan/i2/nr1WR8 +Fv2Vqx+LcM6B0ruYr5q0FoxJILiK8dah2VuBo5qkHvOi6c0uRr5DzPdxmmqS +wpumcU29BHt2bRVa7a4iJyL45tVoSxG1K1n4YEoVqVrdwVgbV4pLu9VErn2q +Ig0T9SlYFMtQuZtBVEe1iqT/b1S4Z2s5VNnS4CRQRWby0dxbSyvHDJvm5Xi6 +KpL/iWQol14FPrBvv9rQVUle2Uqxj5KzEqx7fostJVWSLyjVs2QaKhGyR+f6 +PodK8gyLOG3dpyoIcuy8eVmlkow7cNPV82A1SjhyxDX5K8m6EIs0l3fVUNj7 +7Jb91kry627Fo9Et1Rjfyy4Z3VlB7g3uO1ElUAPzfQV3ahIryDh3s6UKtxow +7TeUmrerIGU3PS+zm6iB//590uzKFeTXwxfLum/W4uyBkvuXzlWQT+uYJVN/ +1iL/gImMGm0FeWXCnHZutRYynAcf2nSUk5o19ppvHtZhkLNCLjyhnGwSUF4Q +jKuD6cHXChUfy8nFyfAADtp60HHxKE4rlpPMbOXN21Xq4cNVo7TzbDk58XIh +f3tyPU4ceqcitKWcLL349TQrXQOyDh1VU2ovI+ulcpZ3KjdAirtB3TK+jOzg +PniNLb4B3dyWGsG2ZaSS1xUbTqpGGPGc1Cp5VEZa1UpFCj9oBPXhlicTfGXk +PN+FuhdBjfh62EZn++Yy8gaN3dH22UbwHjnzVKCtlFzcwt/qeKUJqUc69OTj +SkmePLtnAa5NkOC1139nU0q+OXTXV6izCe28AgYBCqWkjkjc6dfHm6F3tMew +4HQp+ayOMu2jaTPWjjq9GKEuJUUnf3S4FTTD9ZiQCUNrCfkyl7otj6UFXMcH +Xp6JLSGre5WL7qq2IOm4m6mMdQn5LXwno25MC8ROXDJ7LV9C8iec2Se+2oLG +EyNvfpwqIZPuGYjxSLZC++SXdzlUJeRqUJm4oG8rFk9efj/QXEySH9t7fk+1 +wuHUhMXWmGKSy/rgrTmxNuw9/c3q5IdiMnurWCvT9zbEnL5mfU+umGwSZ1C9 +O9sGgm/axuRkMQkthasTku2o5vvx8RtlMdnJfSKKK7Id6mfE7X83FZESZhw7 +jtB3YO7MvENPVBGZH7214bR+B6zPBjjSWBWRuxVP0BjXd2DXOUnnow+LyCLt +6rUDop0IO7fkInmiiBSOfcKjFNkJYf5gN8NNReSU1XTLw71dKOe/9/lLYyEZ +MVjlKuDWBUWBVY+0yEKyU+N8Cz1NNyYFwr92WBSS2PIlyelqNyzOy3htki0k +EzTZfp+w7gbzhU3ePMcLyZbYo4bzhd0IvBD9XZyikMzwYqkdo+8Bv6D8j2cN +BSQf2/HCXfd7UChI4+cWUUA6J6a1vfbpgZxQvH/y+wLyefAfjl3DPRgWUgps +eVBAUi4oXRsV6IWZ8Nag1aMF5JSB7dyMTS+2XUwOPvgvn5x5EZlyvLkXPhfV +Qq/V55Oa7i/snE704ZQIQ7hOeD55zSeUl+FDH7JF0iKczPPJV/Sf6/3b+iB9 +STMq/n4+mTR0ZofI+X70X9oe08CbT7J/TZyrdu+Hsejv2KXVPPLO7jABqel+ +bIZO/L66PPJJmb16+L0BeGFn4uWwPDLOMlqrMnEAvEROkua7PPLQEebz4bsH +kU48S7GXziPjLVmO8rwbxO3L7KnRR/JIuZoqLb7+QXReLkirWckl+c4SPim3 +h2BwxTBjviaX5LjURv8zZQgUV/f9Zg/NJT8YrIZ2HxyG+9WSrEtvc8mvYtPH +FJyHwS1mkq12L5eUl5KwpFgZRpLYwVybw+vlWfy6ibojuH6tIi/8bw5Zz2A9 +ptY6guZrrwsqqnNI9t2F1H8kRqF7nadoOjiHtN9Db6OUOYqV6zXFO9/kkKK7 +27QtTo3B8ca7UiGpHFIonm9AImAM+28eLVfiySFRIf4znHUccTcbKiyXs0nz +HuFD9nbjIMQtq4KrsknG8UbjmpVx1IqfrCkJyiYn9pK6hoYT0JBoqZ14nU2m +0nksyQxOYEHCpn773WySJavXTe/RJOxunWkU4M4m48mx6cDqSfB5pccmzpDk +667LbMPX/sODbyyJf31I0m7kH9+pjP9g6q2bcvUGSUrPixbxsU3B63tu2qfp +LDLi6g7lNOkpZPrs+V33PYvcn5H4+pjTFLp/GGVzXM8id1gHBL4rmgK1X2ne +46nfpIKqK0X0pmnw+nMVRXr/JucOpuklXpzGzQCz0lmx36TdVlkHR5Np6AXW +Vlz8L5OkZjcpF4ydhuvPYzUfvmWSvIMRNjHD04gLsqovu5pJagye1v3v4Azq +g1ubdkxmkHuYYun+KsxgMeRs2yOvDJLT5u6x2s8z2Bvm0PnzSgapFWBc/7J8 +BkR4b8/YeDp58HGS4Tj1LFQjhAfOeaaTp5ZtsgQvzcI60n34zeV0UpH+NYe6 +ySzCokbH8sbSyOMyx7T1o2dRHH3lP/qvaWSO7MoH7YFZjMd4z9wn0sjv20SS +H+2bA3PczPz30VQyzmxt8YHMHPjjJZb6PFJJtvQ3tI+d5iCXELhyHKmk2pEh +ha8FczBNXP73YuQXOffsngfl2hx8kqSpMj//Ih0GikLSzs8jOzliM7XoLzJS +k/FezfN5dKdQ0t0eTiG9Y/LF1MLnQZ2qwODhnkJ+WvQUt+qbB29aAnO7SAr5 +Wkf2+539C7idTsfKPZRMMhJWST3yCzDIUN+t55ZMrnp8+U/u6wJcM9P3JF1M +JuP3ZP2qq1tA0m+W/SsDSaQ2fX/VM5Y/aM7SPSjmmkRW5co53ZT+g0Uyl9tR +OIls335I1/rzH+zN2cNb359Iut7gUr7S+AdErtHxvS6J5KH6Pp+fexahkVd6 +SkMokaxgp/QvUV2EXT7X2ai+BNKIddSwMWwRYQVmAnNOCWSQ2uXK0ZlFlBfW +CooIJpCcwS8ND2MJU0XHRKx740nnM3EUEU5LYC6xQrljPPn9uFu0R+cS+Etb +r7BeiCe/XToSRn12GXJlZ68r9sSRcpUr5bvslvG23EE86FMcOSfeRzvUvQz/ +it7b4wJxZOjj29ddRf7C4oeJv3Z2LPmvxijk6Pe/KPbjCV1kjSX1rVt3la78 +BXNgQ7SdTgwpHUBrbau2AqkgmyS2rGgyjFnwq2HJCrxCBDLCWKLJ3/E+xd/5 +V9EdNpAj+CSKnDmYd3fHz1XwRn4pLs6IJINp26/3s67BIPpalRxzJOkdx/qI +3WENcbHzDcMaEeSeLX+dUij/YTE+uN00LZzcJb7DN8f8H4gkmT5axnBy/t8+ +QmTtHyxSaEa91MPI4/fNSHeCgihOTZ7i/RVKDvyLSMn8QEEwZ2j+SaUPJbm1 +6Ve9iikIud87126qhpDOI2o2h5g2Ef5kAXVLUjC5WCszJvNwE9GdY0KvszWY +9G3IMeAN2ETw5vOwLCkFkeeHjKPdxzcRBoUNbPYJP0mf9k/vHYQoibhimwPs +W36SK2WGytR2lMRiqcDh8EeBZGwi1Y3ZJkqCqBg4IRQXQNo5ctOLH6Ui7Kq+ +nCuhDiBZ8gtEF95QEdU114Tl5f3J8OPW3CNVVARn2Jhl7SM/UumTnxYTDzUR +F3XLZYbal3zMkHpK5g01QcRH+rDE+JCbT7wSDK6lJrKT6SPOPvxOXnJ/0jd8 +jIaQSn/6S5rCm1Qhis7TWtMQ3Vll+UbhXqSV8luG0Q4awiDveK27tCfJd0v2 +qLHgZoKi+FNXwt8vpIKGfKT9582ERfnYeG2QBzlymv4Pw3+bCeaaW8szkp9J +6cr7v3olthD+DZFbdvxxIy2JvqfDIVsIzlb6nef8XUnxjIcma5S0hOrvJrEQ +d2dyE8cyF5UKLWFR6Kky2P+JfPti+/b6dFrCv+qh2eEL9iSt3+V7kru2EtnN +u79o2duSHQk+fBKG63FPU2xI2wcyUHfmW3DZVqJ71LN08KQlmZVwwE2Ih46g +GI4tlaR4R0aeffm+6916vHyaojLoFSnxbJLBoIGOILbFCdwRNyKbHqVfyz9O +T1BcUm30adMhRf3Z7JMs1uO8bCthcWVS6HDBebb69ZjNKv5lymWyi/bFtyKe +bQSF3LvAjzziGPxO0+5tso2wOOP3To1CDdGd9Qq6eevlDH4sar+ewmV/UAkj +EwNhYVx1n+/CC/gFLqmqyTEQhPrd/XHupmCT0pcU8WMgKKSqhk9PvkNuioC8 +WR8D0e0b2tIUZAmP0ptPFrgZiewvQ1me0tZI3Czq6fR4PXY8EvSQ4iOYBdG5 +z4+R8P/wxH53jD1uNX/4bNvESFiYheo3PXLEfeFInbBtTISF4dB9z60u4PD1 +PaUlykTwJX32iWxzRdWWBtUgPSbCP/acy6ez7vh60uXfTU8mgjmyzvKp/Wcs +7GSRF8lavz7khfGtbg/otcTT6vQwERSBO54cv/AV2rMtM0oUzITBj0R5emdP +GIe8ZGNhZCa6ve7fHuv3gqnXi+wSdmZC1WNWtOyiN2LDhW69P8RMZLt8PhPp +/h3VD+hNTx1nJohP57g/jfjgymG2H3V86+W2dbueEr7IWGMUf8bPTHBavdh6 +y9MP5YsqIn8FmInqrK3mO1/5Q88hJ9R8PbbIlH9lwxUAPpZXPMtn1++XHm4w +XxGAo6sGdYanmAmK1CUdzdeBOPiu/unYEWYiLln8cQP3TyxtN2p8dmC9/Ynf +FK9V/4TarSWTTTuZCb74EZnkN0Ew9fTljaNdf58Yobs8R4LxyGvyKt38en9F +2d/8UhuMH4FFVewNTIRqRMtlGvMQKNgQbyLi1/sv7OhFk6OhmPlKaLY6MBHV +wa/5B+pDMVba/qJUdb0/f5aclLEIg8f4R3Gfc0wEEcB+pOB4OFgc99w3plrv +Xz8dToGmcDT6ejC9rmYk4nzS2IOtIuBFI/q41puRMPDeumPnqUgYnEn5Hq7O +SHB6yW+zaYmEejxLJS8vI9H9JZxm3joKHwJHw9+OMRD+n5fWNPiioTNbN1wd +xUBIuYkv1rdFI0VS+Y20HgPB7PJtWuxjDLSbk8JPHWMgqh1HRpPOxuJ9yVyz +++D6+HYQ6ufujIVuZ7BUVMA2gjM/X79ULA7f14QHQh+tj/c8vadW3nF4yllL +m8C6jWjOYdUWnoqD5+LWbwvl9ERqdqbGzLV4HFNv+OtnTU+4khpqEd/jsbfy +08emi/SEQdY2ZfXpeKRvy31YMENHSP1OUthzIwE3mBkmXcLpCN5MxYe1PglQ +/2u0W1GVjqDNoH7gMJMAV18Tg9u76YjutCipKzcT0SxZ52FVuT4/pD6QXP6R +iKnGM0/22W4l/H+tiCfMJmLh1RtRIdGthGlK0HVd8SRwJfd+m1qgJeSSb1/l +8kuCjldkzKM4WkIwaQ6tc0n46X3hrqsuLcGc6CPiLpGMtnT2yQAeWmIqXkxI +wj8ZkRwB9gE9W4jquHEByoVkaKuI3/D13UKExXqcTb+VgkccZ+OCFLcQdjEi +p40CUiDvu2yRxbGFUI3uP37sTwpori9vm2vbTBBRjry9t39Bk4Na+taPzQRn +JD+Pd+AvUNjM3S1W2UwshrcflF78BQhlTeod2kw0h1nvp7uTim2FF38LDdMQ +caEnOHJ/psIl+lr+yRgawjWkfrfZUipObp/svmayPp8Hv2U9ezcN51x46t5d +oiFuBnFvHw1Kg5nSV5HqzTQE789yhsDlNFx4k/DtfA01QRtoTKcglY5AyUij +cB9qott/7xaWkHTwq5vLc+qsryd++VSlf9MhVfk30P08NeHvq0dhdS8D9RZK +iwvU1ITpD9ZVodAMUApR/L1ST0XI+WQuTa9k4I7CZVe9ICqC77vGQrh0JjpG +DB7rmFARzN7bZtXCMsE5x0tx+gYVMeWV9B/7Wiayz0T0JLBTEcWeiuM193/j +oaye6eg4JRH2lXrEPvw3cs9pO5VnUxIWX6IGLv/7DaFpk9I7XyjX55sHvUsP +shBqaWLzRHd9ff280hkfkQWH7U2xDAQlweYe1KZDQWL49IK74K719dj1dvNB +WRLq+lljXevrd7PLXH1LJIkcpgMf/uZtIuRuVA4XU2TDxviql/X3TUTxda6h +oOPZaOff1mH8YhMheP3lgIVsNqq2d6gX3NpEBF0r7VO0zEZiTfdpA+5NBOu1 +/b2CUdl4mstNZ7BKQViIGXWzNmUjpmBqS3YjBTF1tbBzalMOykcZIx/FURCq +V/d0lJ/Igbh9g7KoAwVRfkW/LexhDk5lH1XR1KAgRK7ktlhb5YBGZE9luSgF +EXZ5V7NqdA4OSgYYGbJTEGyXdRtFmnMwkxha4T/8D3ZEVj0bVS5sJB9MV/j+ +wxxY6uZO5mLKogyaMv+gAa2aarlc8Mhc+q227R/qRdOroj7k4ldY6pesvDUQ +ooyVdjG5+MGYKGX6Zj3/uqRertGSCxUjt0b7c2vgvJRSSlDnYZHaWXVybBWO +InQle0/nYf/OdPOAoFWsXFQuWpTPw3OJuve+SqvQvphQUG+dB3mWp47du1bR +LLw5Py42DzS3touqVa/gprBCrmNrHo7a+unvc1hBklBMtjZNPvhZHO2ZxVbA +LURJivHlg3LzE+Vza3/hKij7m/NRPsIojZfep/4FhWBExopNPvqUdkVMGf2F +wYW1tOa4fLCbN2u8P/kX7eelU5Pa8rGpRWPr4eFl3D4fkuK6uQCZQSe62wKX +kSmwnKR3pgC8O6Iv+Sstg1fgTuJNxQIoaf2x1mVbhhd/YDz3x/X6k83S/HVL +oOVfiKVIKEDHyqDA4nq+bXxOIqa9vQAXP96ajru5hP6zvlGpWwrRp3M9Xp5q +CVJnZyI8zhbiz93S8Infi+vj/Hq4gVIhKE74M+iYLoLvjHfobbtC7NsWP1h6 +dhE+fJPBvImF8BMtDmWa+INtfFeCqDsLkR5gZy4Q+gemp78GdtMW4eC1+Ssi +an8wfGrUP/NcEQ5keDlzc/yB3ClRPy/lIkRvv880Vb+A/JPuP4zti+By2vSJ +v/MC+E8OfpdKKkID+4jdxZsLCDoh7H2iqwiuIte+FW5aAPMJZy9aumLsX9h+ +9UbGPCyO937t5y9GrdPd8wXG85g6dv5LtkoxQhW3KYufmofiMYfPPg7F6NCd +b+0YmkP50U430+RiHPFkXXAKmIPg0bOuD7qLEXygq1/90RzCeG2d+ehLIPJV +6JLhzjns4m113Ha+BNIadS/zqmZhc+TUp2HVEihXkpPaDrOYO2xln/+pBCvV +csWG12ahfrjxo39KCabeilRNUsyimueY7dueErgkuctOZ84APObWcttKQVeq +qezwegYx3LVW/BdKwbV3irf8/Pp+l/uwJbN6Keg/niwsnZuGwyGz9+OOpbjg +qx32NXEaS1yV74p/lSLi3Junl19MQ5uL621QbymqIpu+t5+bRuPBl2YWDGXY +62TG+Xp+CmIHS00VBcsgcFHx7JHUKSRy7n8l+LgM0i1Z2+bfTIGL08iE1bkM +EcaMArPEFFwPFL6YSi3DuPmb3FNbprC2f49ReV8ZUgeu7NP68R+e7dc3CGMs +x7F4446dp/9D+75cfWuhchxl3p30Pm8SEvt2PVPVKIfnIw+zRIVJpO7VfSri +Uo5wrR2pv+cmcGRvlg5bejms1I2fB7tN4CsHi/ZcfznCljiVX52ZADWHllY1 +UwWquX4InKsfh9GedI0o4Qro2TEyNr8eRw8742M7zQr0qhS2qnONQ4pdXU3D +tQKXmy/urKgYQxZbigqRUQH2cxp8DG/HcIKNTnnvYAUcaOSqd54cw/fdyoqL +zJXgnaZ2ae4eBd3uBIX6i5W4e2KHwjXPUZju2iwfp1UJRdnLP69LjWJwp8JD +R7dKCOx5I1VIPwqZnTEy2pmVKIz00IsqGUE+K+UDsaFK6LlLaHfZj+Asq6w0 +J0sVlA8eVhK7PQL/HRFSKyJVSJS5PfybeQRMO9buND+pwoGO+KkzTcMwZ5GW +THKvgjfXnJ+V3zDGt4fccv1dBUb9Xw/ddIahsH1ZXG+4CkS0iy0hMAwN2iPc +QVur8VPUpsiIchh7ae8dYjlQjT+cXzbT1wyhbssbLgv+aow8HFcY9x+Cw5bg +g5Pi1fhQXHhyyXAIV7ZUcSqqVEM+ek13r9gQljYvHSg1rgbpTjUkuHsIcZsP +HRB0qAZrnB33+bFBPNksuT/Erxq1GrtHV8hB7N/8ah9rcjUupnNJv/oyiEaa +gL1WpdXod5usd306CCeaMo6prmrIbj3GLHBlEGI083uU56tBqawefJ99ECvU +B/aU09Ug/UiCecfUABKpxdmFOWsgesGuL6d4ALrUL9jCBGrAV682O+M/gIPU +P3bvulUD50PU849fD6CZqmiXtWoNXnOxYqv0AFyppnfOmNRg+z2O/c3HBnCD +imOn6qcamPmetSigGsAa5TXWSv8a7PJrTC9t70cK5fMdIik1mAzeldCZ3I9n +lN9YIspqoE972mXRuR/clHnb2Xpq4Pr96yizdj/aNk0w2y7U4MznhU+cl/vh +vmk38xx9Le41TChy7umHxKbLTOoHa8H8UKuPdrYPmzY9Zaw+X4tsBQ/B2rI+ +pFJ8YRC9XYuyz5yXXwf1wYCC3BalVoumoUr9ubd9OEIxQr/nVS0SS6V9RWT6 +0PmPhd7OsRZuBd5OEif78OWfCN1CQC3SnhW276Lpw+1/Wls1ftWC+qTSDu/2 +XlD/c6WtLa+F3MdzEWWJvev7lPQtRG8tbvOWvAx26IXRWv/mmD+1sD9Z48yp +1otja4yb9zLUAX07fPgv9KJnVZDGgasODq9srVu39cJrVZ168UIdnu7PtKTv +7cHdVUcqLck6jFlqi+Sk9GDzagplvXodinfxjMw79CBrpXvTFdM63FQu2vlT +uQcmK3Sb4pzqcFZYgbvoTA9OrPBT7P9ZBxX5VUkl6h70/1X+9ym1DqqzP6fU +G7vx/a/d2lLFenumlWIaQ7sh/Tdh9Unf+vVvS+VSTbux9W/7SsNiHdYmxWm2 +incje3nzylXGenjlCDqVsnXDdJnvb/yheij066RQVHfh9LLC8gGheiRLay9o +POvC4JL1ktOdegzp/uQt29oF36WYxb+P6/GecpP+1eBOyCw1/9F5XY+law/j +u9GJbUuUf5qc6zE+ssMttaUDeYsnFq4F1aNCvEu0z6gDZouy84lp9djaYGNo +Rt+Bs4sWcwer6qF1qF/J52c7Rv5EzLr014P5aM/Uk4vt8P9TP7O6VI8ff8m/ +K7VtkPuzNv2UqQFRb3yfvtNtA9Mf3ukW7gYwkfdvbKNsQ+GC9NQN4QZIHByQ +r/jWincLb/9LvtuAPH3dlv4zreBfCJk8pNmAP7au9UalLRifr55wM2uAlXuL +ctDjFvycXx7/59KARR7+Ec/VZijMc48/C26AltC4z3OvZrDM3xlrS2/AwsC/ +F7f5m1EyZzoqXt2A/rjkdMmaJljMBY78GmiA+7bnua7Pm3BhrnyY528DeGQZ +VfiYmjA5uzD0mbkRz1pleK7FNSJklnNo0+FGtJoy/RqQboTSrMTg84vr54sf +63H/aQDrrPFAh1QjdDzOnN7+owHlM779t7QaoUEvU5Aq1oAPM8V9aW8a8S7r +azb3ZD2EZ2Z6j7g14uKROtNH3+oxPb2390tII47QlR9UvF6PsOnrPVSZjXBR +ZzY5Ob8+jqYNug1rGlETPXapPLgOu6e9u7oGG3HS463+abk6VE7ld0quNGJs +64zQnW11sJ2a7MjY3oRUaxfrfbm1uDTF1nH0SBP8HkZ8dnldi7n/rrR7ijRB +3T3vo8fZWkT+p9dGI92EfQ3qP/ZM1ED9v6+tL540gfU/NUPG8Brs+S+7pedt +E6a3fbnxSKsGNZOjzXfdm3B8KV16jLsGdpOszb9Dm0BYBq+E9leDmBRtOv67 +CeMXP580C16ftye0G7/VNsFZIcdN4kk1YibcG7YMN4EiwcFj07FqaE5k1pus +NiHrwOVk5rYq7J0YrOtjaQbXC8ZN7o+rUD/OXHePtxlmaXsUFCYq8WlcuJa8 +1AzfdzcWYVqJK+MaNSfvN2Nlea8wB3Ullsecq79rN+Oras5k4fq6GT+WWrXV +vBlZWo8/c+6vgPZYb+Wrz824mWeltDmqHAfGtlUOhDXj+gPpQBXhcjSOnq+4 +n9WMvlGhd6wlZXAeVS3PqWtGLyvb361yZbg26lB2eqQZlLORCieHSrEyklT6 +Y60ZlvOc8s9fliJppLOEnrUFSZ9Yl3NpSvF0hLbk9dEWpErQlO37UgKukbPF +Q6ItKLXLcjHhLkHLsGKRzIMWpHWEdVUkFsN12LYwT6cFz3jpOg9cLcbN4biC +M+9bwHiqveNpbRH+DbXm+3m0gFvE636SWhFShqjzGSJa1u8jH7Q6VQj9oVN5 +b8gW7Dj8aF7SohA8Q3K5I/Xr9XUSZaKYCtE+aJXzcLQFuuIzllx+Bfg8GJVd +8G+9PQzMuRmnCiAx2Eie29mKj58e21plref9gxRkwLFWaNyTOv3hTj7SBo5l +MRGtKFCwmyvtzIPBwIPf72RaIbyHvfLJ8zzwDphnjum24ueHOnVtijx09Ydl +yFu0Qt7I8k2zWy6+9temF31pRQJbaHXloVxI9q+kCUS2Yk+9iaF8Sg6o+w+n +/cxuhdBPfyM78Rxk9kmlbm9sxZ9DM57POrLxos/s1/uxVvBdMbvHYZSNY31B +KRMUbfCXZSoJ2pKN3t7K5Ee72pBu9efZRRES33oXk0qOt8EiMkiD/2kWpHq5 +ki5cboPeS58kDZ/f2NJ7OzFYtg1WotE1C1WZyOp5mbBDrw2V/IT0ns2ZeNnj +H29p2Yabd5jpNiEDJ3tK4/772oZT2t7cXWbp6O+ei1WKasPxm65CY2lp8One +H1uW0waT9Hc98iupuN99M0aoqQ0c9WkieldSQddtFB063gYzIT9ODcdfyOny +idpJ2Q6n1NKGt60pMO0qjPywux3H+HFm6UQK+LqmIqZPtIPj0nv+/dbJGOrc +E6FypR2zyqmdZ7uT4NspFl7xsB2Syt9n3l9OgmynftjFZ+0IvkMXfzcsEQyd +XqHhVu04fmrGboI1EfkduSG7vdpx82h1ZvDHBLzpGA+2iW7H31n7tXyKBJzt +2BU8m9uO63IalF4W8RhtJ4LUmtsxVkJJ93RLPALadX9WTbQjgeqltv2XOMi1 +ewReourA9XP7HokcjwNze1ZAJFsHCOH3E1/cYlHUNuzPfqoD3ZYXfVbbY2De +xuL/8WoH5rLZ/pwSioFAm4jfvFwH/GeH3UJDojHequX7WL8DKi47E9t5ohHU +6vqj5kMHTnRfFxX+FYVHrek++NaBy0dygw4+igJLa//36JgOwE6wpnN7FEpb +GL9z5HdA7YP8ZElbJCxbBL3t19e5Y+KXe7nSIiHYov7tz2QHVuTY3jNGROK/ +ZkcvTepO6Fhuc4mMiURIc4pnHXsnnG/uWKYtioRyc/fXy6c7seX2bnae2Ujs +bKb7GivWiby2p/smzkahvIn/yz6FTrxiFua5YBsF6yZlj0/PO3H8ShFr83gU +LjbZfV6y7sShrYtHLLWiMdOY4P7EuxMZNyWJxplohDe2uzXEdmJTo8iItlsM +VBs3u10t6ESoIWXFr8uxYGvkc41v7YSwd42K56Y4VDUouByY6oR2xt5iN904 +2DZYOzvRdGGnw7W5Z21xEG2Icfq7pwv+TQ38FffjMV/f7KjD14Xtv827L9bF +I6qe0rHpWhdu0azUXZFPwOP6E5+uPeqCZ+lMgPpAwvp3KOuQaNCF0YnciR2v +ElFbZ2F/0LYLNqena4oYkmBfF2Hn8r0LJc8X7g2HJYGoq/+4GtcFslKoqflG +MhZr12yfFnZBsWo2dWEkGbG1vLYtbV0Ae1zlN+cUaNVK29yY7kK9JzvDToFf +YNQRzVWg6oayVPyJX+2/MKpdl7OdsRtue6kUyqxTUaitnVO8ngeJP2uf/HYi +DYHaq9nvD3UjjXfxnE5dGt5pu2efP9WNiIT3x8xN0yGvfSR7QnA9j7oQpbiP +IwP82plk0NVueHlnJn1KzwCz9j3y0Z1u2O5TlGeSzcT4k8EsFvlu7Hry1nlq +PBNFT95klTzuxsejn76Zmf/GzyfMWRb63Tjc9ffn361ZMH8S/PvC627s0wig +KHbOgsIT4d+TH7pBmdl0TWQbifNPqjKDnbuxKqdnkGJJguWJRqbit25kyY3e +9p0kMaG1lLEjaP35XUf+nTmajWIt54zSmG48LnilQ8hmI0jrUIZlWjfepInR +iphnw0IrNV0wvxu/Tl9rGPXPhqKWZPp/ld1gFLSX5cjKxgWt3rSQlm6U1T27 +GNCQjR1ar9KU+rsh8POt/v2hbExqbktj/a8bj6o9Y7bPZqNUMyC1bKkbyXEs +87mL2QjRPJ9qtZ63uqkvlD5Yjy01y34JMfVgH5VfccZ0NpQ0VX9NsffAPHoq +cqY/G4Ka8ymh3D2ofPbI+V9NNlg1HVKUT/dgZ+LY5bHUbExpHEjZKdyD1tzH +NkXfslGukZRcLtaDIT8b4WjjbIRqiCd/uNsDKpN0ZIpnw0qjM0lYoQe+C1sv +cbBnQ1njRdK0Rg/+5kmXTBaQENagTQp73oPyGxx3ae+S2KXxI1HFrAerFw/8 +nq/IwvTjs4m7bHrA2hZaw381CxWPixIqXHowmOtqIRn7G2GPFROsvXtg2nOX +roblN6wfT8dfDO7BTNshKnn9TKg+to2fie1BT0/ibdvcDFx8zBEfnt4DLedd +patMGdj9OC5OtaAHn7jppp8/TMeM+rW43dU9KKbc+tr5Wxoq1VtjK1t78OT5 +6bwtTamIUH8eazPQA50LjOpuzKmwVaeOFZnqwb3Fceee67+gpv4tZna5B9kH +I6SizVIgon4qJoKmFwyqN/aGRSWDTT0vWo25F7n6R8utOpIwpyYXzcbRi9sG +B4NG17+/arWJqCqeXsgOG2rYiSYiUs0qypavF/aTZc/+PU/AR7XdUZcu9iLT +hmZxPDAe6mpRkXPXesGttlVpqGl9flC7HBkp1YsTYRdfv2OKwx61xgj1R714 +9spFTM8jBvOqTyPYtXpx8g6V7oHt0ahRpYioNujF27FXJv++RCJK9Uv4xze9 +UH4ofXvgUATsVI+Fi9r2gvM9313PjDBoqJJh8669YL92gq9EKRSE6oOwqO+9 ++MP/ep6DPgQcqiOhj0N6oeJodHh/fhAWVMxD98T3wiXiquQN+5+oVdkRWpPR +i9kj6gn0jwIRoxIWYle4vo/78PNojlAAHFQuhaCmFyMCh8tjefyhqVIbvNDW +i7SLIRVcor64rPIkOHqwFxoXLmlx3fbBXpWVII3pXiy5FsV/M/HGorJbEMdK +L1hZxP9FpHuhXvlwUO3mPkTKiTeqcXgiVjnjp/32PvzclyGa7PkFn5SlfhJ7 +1/e99SlMDqc9oKU8EPjncB/mRHUuJfe644qyWWDMmT7wSIzuX4tzw35lpkBN +kT5Yr+4K5vR2xbJSUMDeG32gbdu06HvRBQ1KQgF19/pwgGM3l94rJ8QpVfo7 +KPbh1Jb8qbnBT3BUeux/+UkfqCzYFMztHaCttOi3aNgH9QCOu+LK9hBTcvKL +Xd9XU49ddfmiYYcDSlx+Wh/7MBAZvjfo+0f8Vfzlu8+9Dx7mlbfTKD+iUfG2 +b71PH2wNT73Y/80WCYo9Pz6F9qHnOTf3IWVbOCu+/HEloQ9d9otM++/ZQkeR +/sdSZh8CgvlePTO0xTVFf5+4oj6IZBsIv8qyBaeigM+T2j6oEor2YRc+YuVR +6ff9HX3Y/GqF36T9I5ofqXxvGOqDWdepSNkoOyQ9mvN2nOnDtmjbgNIQe7g8 +sve+utqHixJdL++VOUD30X7v5S39CDvpeV+P3RHXHyV+i2fpx4W/dNu/uzqB +69HNb9r7+lH28fm0PJ8L1hQ6vA7w9oPSstSL6a0rWhSMvBrP9mOZ4gKiXrgh +WWGLl9OlfuSfFDiRZO4OVwUfT7Gb/bh0/8mvGp/P0FM44/lXuh+y3p5rIRUe +uKlQ+DVBqR9UyZ+8y5m/4pDCo6862v14MdCoXK3piX/yU184X/Tj0wWdo/zl +XmiVt/nS9K4fCfEahXpXvZEiv+eLs10/VJ69H+8u/Q53+ViPa5/7sWvPuMyw +2g/oy4t5rPzox1C37lLpFj+Iy7d8TgzrR1GG2rluJX9wy+t/1k3sh08DGfRK +NAAU8lSfD2b1I8rxsMN5nkC0y3m5Nxf3w/74mzHf7T+RKnfS3aWuf31e5ec8 +RhWEz3K5btc7+3FVqmvw5lIQnss9dFsdXm+vgfrnx7PBkJAbd02a7ccC49/7 +rVMhOCxn6fp0rR+5txIcaaZDQSm3y5Vr6wBU2ktunp8NQ8fDSJeWHQO4JamZ +k7IQjrSHhIvr/gH8efx2sXQ5Ah4PG5xvHB0ArdekVvxaJAwe6jqvnRuAFatK +5s9N0bj98J9TsugASveIVtVRxoD3oYeTnvgAdvBklpttigXVw6NOhx4MIMfZ +y7t4JRadslmOrcoDyNSKpJt/HYd02fuObjoDaAmw59wyG4evssOfbhoPQPZQ +ysuzOvEwkn336Z/5AO5I3e1mao+HpCzLpxT7AfDUeQcK3UrAUdlQh2ceA0im +YV+5lZIAalkRB26/AeQvFkUM7E1Et0yNfVv4AFbUXAzCzBORKaNl7540ALGl +Bg+htkR4yvy1EycHYL4mrn7lbBJeyLjaUZQO4IfXtJ/BhyTckeGx+1U/gKET +QdSvKpNwTCb9o37XADQcOYIYdiRjs8zdjzyjA2D1an0wI5WM3gf9tu1z6/3z +4zzjyMdk/H7w2vbzv/X+mey+lPkrGV4PGG0l6AaxNq/Meqk7GcYPftps2jkI +fdapoqubUiD1QNAm9cAgNIYMK2L3pODEgwrr58cGUTjSv1l7fX+w5YG69WGB +QcizJoTJnk9B3/0/69nyIMiLz51fC6Yg677jBw+JQVy6uCe3/GwKvO8f/HBL +ZhAcpWL/3edJwcv7KVaUqoNYeWenspc5Bffu37JK0x3EHT2jJeHZZJy8321p +YDII5yusXOWVyaC9b2J5xGIQbNLRn2cDk9EvTWfZ6TAIzvaIo+3Pk5Et7Wfx +5csg8sfvBv4SSMZ3aX6L2/6DKGfVks2aS8Ir6ZL3VJGDKObVGToVnYT70srv +05MHoTsU1y+pkoRT0rPmhtmDyC49rq1JnwQ6aTtz3rJBFEjeicyPT8TgvX3m +XQ2DqJUb8SClE5FzL+Hd1+5BHBYOJ2ImE/Dj3o13kmOD6JTcZjlukwDTe+1v +qRcG8YU1WrGFLQEP7hm+zaAYwumUwo+NofHgu7f5rRH9EO5+6W+9cS4e9Pe+ +vzm6awjVJslF7hlxGJLie9PNOYQHnhQV+y7HIVeqwMzz+BCo7N41+NnFwldK +wezO+SFIqiSf4vwUAzOp/17TXB7CqIWAvr1DNGSkrF9n3hqCiqDmyZCPUTgj +xf76hewQxmOH6y59iASDVIzpMbUhuLBy+u0wj8Dw3aumPU+H0GJgnzxgGo78 +u82vvF4O4Yh5zA094zD433326q7lEGrZDmfLGYbizV3KV5sdh7D2Hx21jEEI +Ht71fPn76xDMKvcXUBoF4+zdEy+NA4agfiBocPllEBjv5pgcjxqCuV3hfPn7 +nxi9I2vSmzIEraeCKWuOgSi4M2b8LWcI33Rf5tH7BSDgjoWxVPkQJq3Gr2um ++OPtnZ3GW5qGEM9PY9sX4ge5OxEvsnqGkJqXO8A+8QP8d/DCZHwINO/Z3zER +PmC6U2904s/6+0+Y20j5e2NMUseob9MwQhkcmu4zfkOR5Jqh97ZhFPcXir1x +8ESg5GfDe7uHUeRivoN151eYS/Ia0nINg72d0vthjAcUJH8bkCeGkaFavfBU +9jMEJKUNXl4YBpTDejUY3LFdcuj5ySvDyIrw+SZW54rx22+f998ehlNeU+zS +XRcU397+/PvDYdBuW6js2uWEoNsh+tLqw7Bq1zLpW3bA+9sX9bc+G0YuL+ch +9792eHS7+ln2q2Fc3vPklhrbR5y/rfnsldUwIismk+KkbMBye1nvlNMwFn3p +28t/fsDkLRe9Ac9h/Nisd2+a2Qolt7j1fAKHceMAD/MtTwsE30p7ej96GFWU +7o7zT81heevOU7rUYZiyKu0+1fwGirf6dHNyh/GPb+dmJcPXELxlqmtaMYxZ +tqm8zwKvwHqLQfd08zBOxu9Ob+MywX8SgTqDvcOIoT88JnThBcokLuj8mBiG +pTvfnQQDQ4RIlGs/WBxGsOPxii/ez2EloaZNTzWC85PqJ/d91YOyxMKTXIYR +qL1ZlTtQrQMhiU9PXrONYG2NVqpe7Al2SnA+4Ts0gg9fFE0/TWlgSjxZa+jk +CMQTynfFVqmjXFxCy1dwBKZJpVeLOlURJt6lKXN1BNrufdmL/Mr4IG6sue3O +CN4J9x86+08BKuJbNfPkRkDxfx1T/2+84SU3vOSGl9zwkhtecsNLbnjJDS+5 4SU3vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS+54SU3 -vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJ/2+95P8AAkVy -uA== +vOSGl9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS+54SU3vOSG +l9zwkhtecsNLbnjJDS+54SU3vOSGl9zwkhtecsNLbnjJDS/5/62X/B+waIFE + "], {{{}, {RGBColor[0.24720000000000014`, 0.24, 0.6], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" @@ -1219,277 +1216,278 @@ RjGaMYxlHOOZwEQmMTnI/3/J/wH0z7AT 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" -1:eJzt2+k3lW/4KPAoSRFKCZEkIfkqSUkuoVJJpIRKZKwUEakooZBCZkKmbcg8 -zy7zPI/bPM/zmGnbP2eddV6c8x+ctTxv9r7WPT5738/9XPeLz/Fnhvd0KHfs -2MG1e8eO//X5v69Z/D/fOs8XU2wsz+DrnQJJn8mh4LRI/4BydAbXybIXqTkI -IJWsFrGnbQaz/pvW3ClGgEUTwvr+ihmMoO2SM1UiQLjwrPyhrBksj25hVntB -ALUFsWC26Bl8lJVvn/2JALRJX5eO+89gy5+NpWAXAuQZ18nyOs0gJ1+XG1Mg -AYzPsfkJfp7BmFPsb1hiCMAzrzNz3mgG5SdlTDPTCEBMiJe6rDmDvh58mhR5 -BHB8s+5x9d4M8rz6Ub9STACJs9fHbkjP4MyXHunocgLMzrqIy5+fwbpP/Oy8 -lQQIje9wvn9yBt8ZUCS9ryCAshHPgNrhGXzYY6ocV0oAGqE3FzSpZ3DPvz4N -YgEBsmeyHPRWppFzRkuKKpsAhnG7u16NTSNd/p6wG0kE4DJUFHrbPo0dql0N -KREEaBL0s/lQOY3KMcpPn/gRwH56uMUqexo3H0KzshMBxGLP8tvFTCMaGnJm -bP0eU68sLH8GTKOefVmC3ysCBJ4prXNznsY3EwmubI8IoDTFyO1rNY1it+jM -FW8QYHfM43eBb6bxv7+3mx6dI0C6QXhF2LNpNJy/Oap6lAAGAvPsMUrTmK7s -32BARQCOSfE3STLTqMOf+iV9KhTqo+yKMkSmsUyl2eZFcyjYvmxgzuOZxubP -Yoze2aEgepr9ZQnzNF6+atFmHBIK4+N6uVV7pnHjANvyye+h4Pc3kbFxdQqV -GNMcuo1CQeEFSbttfApbtW9kVz4MBUp+2fSejim0o/ybxAGhkDLmum+4ago3 -D76w33sqFPQju9Qnc6ZwjJ9woYg+FNie8ybOx07hKXcKR+vVEKjhNaFa/TOF -d9h2uHwaDAGr0RwVsssU6nq9DVusC4HzEXuiqayn8C8zmY0NQ2BYT4m8z2QK -P6veDz8bFwI+pwLuHdCeQudDNd/MgkJAbmSUcOTBFF52MaDm8wyBzTDhVY7r -U3hF43K9488QSNT9JHdSdArDvgp96rQLAW2e8j+neafQUOGG0uOvIXBk+ODC -WZYp7O6PoJX/FgIVBPXrF/dOYV+lgOnC9xCw1In0kVifxHu/nBec3EJA6OTi -pMzkJHqbD5tpBYZA/6CE5O2uSSQ7mG9EJ4SAZ6iDm2LNJD6nTl+PKQ0BWe2m -4Yc4iSP2azqE/hBYP3FMTD1+EnsMXk7XUYZC7MDzn9pBk3hb7XCDAW8oaIYk -975wncQvbx4GJSmFApMWWfiNzSTW7D2yr9s2FEq4btm9e7s13m+xv1xb/+eH -fvd2S51J9Dzi1pyyGgoCwT1nbJUn8Zm596PKKwTo0eT/8v3GJNLT3/nmbk8A -1+OmTS4XJ9G18JmdSDsBrvXhKS++SRSnSovtPBcGK4F7P/qzTqLibavweNcw -+KvxoCZk3yR+/hy6o3k1DNQ5A4//3ZjAZ9e/jhrqhwND7/jb+KkJbC3Nf+3R -HQ6Ff0TKUrsn8JrzQVPNxxFg9tSKLad2Aiuacwom+iKA71jl68K8CeQXHH11 -wzASOrsPFZQnTKDwhTG1r7v+glOAxqG64Am8N8hwMzHoL0ipR+m3uE2gCYkv -tvF6FCyyL2d12m61t6E3m1uIgvAuSfoB0wks7aUX2R8ZDWr+js/GdCeQKYvl -CZ9uDNA9aUmZeTiBc8b/mUqdjoW8o8dplmUn0K9dtObOSiwYd758vHFpAjnC -Z8Olq+OAxy81jvL0BLY1U5yjfRAPxEcUO2mOTmDVs8wI9dJ4cGSTU6anm0Ch -pyshLlcSQKLDM/LQ5jgmOLPqeKclwKxv3wbbzDi6uPkwvRRJhFA1AQWu3nFk -Yy5r3EhNBGXWdyG89ePoQXSrkRRPgr3t+cuCBeNod4jtDl9xEmT70N4SSRrH -yf8s3kQqJoOh6kP/y6Hj+Auv0cf1JQMXS/DsVY9x1DMXvnbaNAWaiJPSst/G -8f7rX750tKlg7y3qJf9uHEV29HbJhKWCmIr1+H39cfzxZ+RknnQaTDFXX3mk -Oo6Un283GQymQWAr8y/NW+Monf+TSdQ+HZS8ng3qXR7HZqPOEtr/MmD3wxjR -1wLj+IxuxamdmAHph1e+v2Ufxxs+2jk/vmaCQYtU94f948j78B0Ho0gWcHj+ -PPuFPIbO9HygMJIF9Q+ItnazY+g2UU2+4JcNtodOEH/2jSHpkWNEvFIOiDa/ -Ou3eMIaxf0pEIuhyYdw9/ZNv4RjOEkgKNBW54Hd/Z0Ng8lZ8Zwpz7BEUmORP -hhPG0Jb94etW7jygbPI2j/EcwzjqO9la3/IgxW2gMsluDIWevYlZGc0DfSXB -Y5nmW+3XT+51lMsHtoPvjfOej+GPL2F3GBLyoaahsLhEbQzDwy8rfzxcAFau -+1mqb48h61sjyLcoAOF7qgaN4mMoLsYg3jJQAMOModh2Zgz/Bl9Sib1dCD71 -0wd6OcYwQ/IcJSQXgtyvS7rD9GM4Qtei84G9CMgKthmTO8bwfjQXn5JdESQy -1NIuzI1iPsVMac5cEWjXsWis9o9ii0P8j5jHxcDsop1EbhxFhchR4qGyYqi4 -G7d7d/EoMvZNl08Il4Al/ZoqbeooKh8ht7AHloBQrUzMgfBR/DJtNBFIWwoD -Ts47WLxHkXqoN1HvfSl4yrcrHXMYRa7cnwXaw6Ugu/9k+MkPo0hpdiXPUakM -1qsN106/HEX7fvqy6rwyiP2Zeefc463xfpcvHhUsB807VEEX74zi/HKPgsHv -cmCiU1iUkBhFM5ohxdg9FVBa5Xvj2n+jKLri/77ZtALe/xjyvc05im8vcT5p -6q8AATmhaUXGUWy7KRTtf7cSevZ9vKpCOYoHbeovcmdXgmtlsbv6wgi6NC1t -qvFWwTVHhlHtwRGkfHNZQMS9ClZuPbr8snkEW41NV8PIVRC1N8zpTckIPlTy -Wwh+UQ1PKmb73qWNIKP20HX25mpg+H5Z5FPECHLvp7+zF2qg8OY3e1ufEazR -lg5Uj6gBM5r6ju/fRzD+iVEZPWMt8JWz/ffr4wgqGgjcZXpfC532utZeBiOo -bSZtpN5bC86yCc3+T0ZQhazMaXKiDq7u2eANlR/BIcfPIorKdbBYet3iL4xg -tUHDnmL7Ogi3+1UbL7RVP78MKzLrQO1GJ1fa8RGM3OAZfzJZB3TUp8xyDoyg -srXk8Af2esgreVNeuHPrftjPqnPI14Pxt+yjFYvDGPsijuvap3o4eZ3aqG5o -GNWP9WpPxtQDkepeYUvLMKau+XoydtWDY7Hf4a7SYfxm5leasK8BJL6OPB9I -H8bLej2HKi81wJzMuZyxyGGc5TF0f6TXAKG7LBlmfYfRmL/fTdO9AZSLSrWW -HYdRWFuZuSuvAWhsD6RtWAzjPN/VgIrJBsiWfrJ35+thpDb5lMx3pBEMd0Y8 -oXk6jG/2jA6tSjUCV+F8PL3CVnmseaDYq0Zotr6y6/DVYXQO8Kqf8GwEeyn7 -h0fPDSNVZ6ImXV4jiFE2/uU6MYyqOYZGAaONMJXPvsnLtHV//zGk/WFogsAv -+or/UQ2jpvigG+PFJlC6mhQqsjyExk8iXRbVm2A3xea/yyND+B+ln8rtr02Q -kSd7W4o4hOWW7D8PRjXBSyu3ANnyIZQvL7t6t64JOCS75+Qzh7Aj7PUCebEJ -6sm81x5EDWF4gvQmD0sz2KKJ9yO/IXxmQ89dKt4Mop9zJzR/DuF+cnVr39Nm -GJegAf1PQ3hYOkvDzLoZ/DeVXF8bDuEx/0dW9qHNcDc3YOitxhCO7DpgzlrS -DJSfxi5+VBzCvDGaHMGRZki5cv7HF6kh5Av4aFtG3QL6pE89dsJDGH+jrXHs -VAuw5ZSfc+IewkTdLmHPGy1QY8H0zf3QEH7nY9xVr9sCX8SftvnuHsKE7sh5 -/68tILwRKRD0bxAfzxz1oAhtgeGsxc/ho4M4HqvdTc5vAZ+P0BjTNohN7Y/t -/XpaQO7yd57kikH0Ct4Q7tpoAfJa0/vMrEF84SV2qZSlFRIzj1XnRQ/ipmy3 -ksaFVtD+8IKz1H8QP19T9ki61wrMYikm1U6DOP/rTG7u61aoWCWXNH4exCs9 -ndk/vreCZcYt1najQfzkpn72ZFgrCL33eNWrOYhDxnDIJb8VBi725g3fG8Qd -vEzprZ2t4LnCzzQlPYhfLtz7uXOlFWTTTfUWzg/iHl5tGbaDRFh/l5e5enIQ -/z46aMgvSIRY0X37dzAPIjFiv/vlm0TQ/PdAc/eeQTxvxdukqk0EprTAZNrV -AbQi0910+0yEUrMJ6oPjA8gpc1l4xpcIHy5ceMTSMYDXbnMZWqQSQWDZKvZY -1QCKCdfRyzYQoSelkoInZwAt7rEEPZ0mgqvp4QcCsQNY5Jdl0LC3Da6JaEac -+zOAQmekv8ecaoOVxaj1iy4DWNv6bx9Zpg2ikpfl4csAXpRWoWx91gZP3l4N -vmY8gInP1P/JfGkDhvM/lm5rDaB7v/mESmAbFC60yN67P4Ckk+dUufPawCzp -uJ/KtQEMEdIKTe5tAz4Tgxn1CwPomXU/jY2yHTrPpUnpnBpA2vK+/15wt4Pz -PIXnyyMDWFlQtrWG2uFqotzYG5oBJHSZyVAYtMPiGy9x87V+LJyPYXz5qx3C -z/Y7f5rox57HDe8309pBbU5gwLazH5kXkn2retqBLuHdBcfqfnxwoKRmaE8H -5BkVOPzK7Uet3Juv1YQ7wFiIrssrrh8LIpd4Lz/tgJOzD4UCAvuRhdvY1+NH -BxDjgm1Cf/WjAdsDig9ZHeBoONXy17ofMxkcxP9NdIDEfxf5E0z68aNhSwEb -RyfMTVtbpmn3Y8ahW53Lip0QGltdl/OgH1sn0gzc7TpB+fUR7qLr/ZjIq+tA -gZ1AI6j1rkK0H08YrN67vdIJ2VMxFXW8/Ui+OTNhKdwFhjEr7K0s/SgmKy5N -MOoCrlfSb7r29qNbXPWh6rguaBZwKhpY78OBNzsfbM52gf0kkXl8sg8jWO7/ -J3O+G8SiT7yc7erDChXx9xHvu2Hq5evc5Zo+DD+jGHI+vxsCT2cwkrAP14N9 -axb29oDSxE6dnQl9WJBlXjyh3AO7o+TTaYL78MeZerOThB7IeOGzj8GtD8XN -tZoil3rgJf+g+mHbPjQy+PVNkrsXOMYFE4+a9iG117/iNvleqI98T3VCtw9/ -MesUhH7oBdvnRSp8D7f6Lz/AQQjvBVE++uj/ZPvw6J9SkZ7mXhgfVSWLXOrD -p36j0g+p+sA/IvSeOH8fnuH9EMp4oQ/u6s8QpNj6MN1Yrvygfh9Q8oqtytL2 -Ydi/oXWN332QMmIrd5fUi4obj35s1vaBfnjtnwfTvQialiNzVP3Apse68Kin -F+vben9JXumHGh6d68/qelF3n2f+rGk/fBmO89HP70XpC4TMPfH9IBy2Nvk6 -sRcp8r5N/pzoh2Gda5KmIb14823UiB3vAPicdHH76N6L0w53l0i6AyA31D78 -5evWeJTU+f/CBoAcelLM3qwX94tEnfk8OgCJ2kY/nfR6MWd0meBzehC0ubN6 -3VW2+ptxWFMwGgTmQarzv2/2YnqWhH1s6iBUhCjYBYn14rG8t8VZm4NgqfW7 -Pfx0L5bJH/9jLTsEQieGz8Qe7cUWvsc0dO5DMNAv9CWZrhet9xoQtfuGQODa -vwhTUg9OrFYGuQsNg0vRj7vWPT1Yc+lyU9iXYViW5lp2yu9B86emg4SmYXhc -mOb3O6QHT3DIpvjzjUCB1B3piK89KECzj8LTagR4C/rHkvV6tvKXjE6fthFw -umrukn9zq/81FEw6PwqLeXSiNad70Dla5fHEr1FQkQzpaqfrwV5q7oLbc6OQ -ixdtR2a60UNVVa/z3hhwQw3/Yn03uuVKvwxNHYPvuVr1O5K78bdJ3p6oo+Mw -e2X1HZ1nN6YmeZxdth0H5RwnDlbzbnzodKL5+8w4ZIpzF/OodWOFveSv148n -gDM746WweDce1jUsDKycgG+X7x6Q5OjG21yLnNxXJmEyczBdbkc3Uv7+8X0l -fhLuiX14qtrfhcdGDOWPnpqC9Az63bpFXfjqfFHrjz9TwHGJEG0c1oV+Iyxm -MqzTYJ0upvTZvgupkl5lXvaahlHRulXHF114nPnn2xeHZ0A+TSfQW64LpUV/ -/iv2moHkC+vXCYJdePcre00g3SywprpMJTB0oe/UxWY9hVmwEuFxz53vxIrj -HEGC7rMwnJwlVtnUiYoxrqcmibNw67xiX2tqJ9I8Vq714JiD+KRhu0HvTuys -eDpyTGcODgtbCM596MSPO+3aLKPnwCKRsZn0uBO/kTK/By3OQf/Z8I97oROZ -dK/TW1yZB9kEcS7m451YTLfxgvRtHqKFGspO7OxEn9MMHkz183AgXs9QaKgD -TZsIXnFsC2D+H+nQldIOrLV6sS9bdwG6Y12zb0Z24AWOO3nciQsgI8irpezY -gUkr7340kxbgb0wOjdarDvxzzbU1/eYiMJxRije824GBd8NupnsswtvoUWWL -sx1IP2BPkdO3CO2nP5HsD3ZgblzI2bgzSyAZdTDUY6kdb9vJRpq9X4Iw/shb -wa3tGL+mOrBWtAS0fyXmYjPasVhseoqLYRmM+Zq8sn63Y5mhT1iz2jIQI55L -lFm2IzePfudq6DKI85IHm562Y1Hg6XjT6WUIDnd37Lvajh//Caz+J/oP9pzi -Pzd9oh01a/5Z0H/+B6/DkLhG1Y7TttFS68X/oOnkg8/Uo23Isus6uX3fCogR -xk8yVbShrvmRE54KKxDAbVXFGd2G/10K5TzkvgK7Qg+ZnHFqw3q1SbGrLSvw -4kQUi5hRGw4L5GrsYl6FumDJvOv32vB13eEPN5VX4QJXi67S+Tb04y5V2nBb -Bb+gl3Qah7fipOfNNHWrQHmcItlghYi672qPauxdA91AT7X37UTc0W7hOi21 -BlXHBCi+ZRMxL9lrg/B+Dc79yQ93DSDisXn7cfPYNfDmeCj/x4qIn1jue6n1 -rcGm/+Ri1DMilp/30ZU8sA7a7Na/02WI+JWHXu/41XWo8GOWKuYhorQPncTy -q3UQPBozWr+HiGXZSSoZ3uvg/lvKuXu8FQkhhh26+euwxkoUmahqxdzTbwI2 -RtZBw/dV57/YVmT1PvviA+0GlLDstNn1qxV9bAWq+gQ3QMDHm4/RpBX7AuWO -X7i7AS5HBOvYH7Ti4FBWr8WrDVj2KjTjF23FU8tjX7IdNuAxsyq7KEsrnqyi -IpJCNqDAc7pQer0Fq/7cv3c7ewN4D9u+UOhqQcvYL5vxDRvw04OF8Qm2IFV8 -m734yAYsMMWlPQ9qwYr8X6yk1Q1QdZdRN7NpQcmYGK2d+0iQe7B9l41OC6oJ -j2trspKA280wyvlGC4qc3W3Ez0uC7weo7vnxteAnMYk9JudJMPvLdyViXwvK -l8kwKQIJHjAK/UmZakajI01R7bIkyHIpvlZQ24zFt6penVIkwXGGR5M1Cc3I -+ozZ964KCb45z7p2uDVjENGQ2kCdBJP7v10aNW3G49/3HfHUIsE9J7bexYdb -7fNaTUf0SJBOl/CNQqwZ/QWfCnx4SQL2n9fP7D/ajLEx767rvyaBDW1nI+tm -E+4wy2qrNCLBmOObD6d6m1C3XpCYa0wC+X3Ux88XNGEpow3Lo7ckSP7uVyoZ -2oR2vhshGaYkYN177vWdb00Y7nHpyYIZCT47lDKp6TfhkS4tTU5zEgzteZKl -e6sJjz50P6DyngS37ec1TQSasOaVyZ6EDySIp7bfY7W/CY3dpPIkLUhw2I49 -7sdsI951KYti+0QCi91JD3waGlEzd/LEAysS9H+V3SAkN+K1772XyNYkuEHV -HZzo2YjUOzYj+b+RIMbW5CaaN+LFCjOZEQcSHNxFM1up1oik4dl9Uk4kMLcJ -8CSKN6IB5WrmDTcSdFOevzLE0YiiE6oHd/qQQMa6fGBuRyO+MYHLln9I8Jfi -6ffN/gY8SSNRkBNGAvovi0L7ihsw9e9Xo4pYEpju+N7KHN6Aj/cyqoenkaD9 -87FP3A4NeLZ7bd/DfBJIkpO5z75swMOOBIn2ShKEfbpVeeVOAza/42EUaiUB -7WbPm1v/NaBOcK208gAJ3liaHnnI2IBr5aepZGdJ0LqxF7UW6rHeMKieTCLB -FYtAHaPmeryjwXrTjHYTgtdFaC3T6rGE4ZJjMNsm7PlYmejgU4+6r/n8Ppze -hNdrGqqeH+sxkin+6fzlTWh6v0wOflKPk8zWQRtym3Bp1TEsDupROemppKP6 -JvwxP34n+3g9HqMeyHIy2gSqldSFsp31aHCpzXbZehNevJPzbR6qQ8Ilw0sJ -HptQt9wn2V9ah/EzrSVREZtwwezdyHRkHepZeu5pzNoEvyVap3XHOhRx1Gw/ -ULsJFKbB5/e8rsPPUtTGyv2boLco2sGkUIdaMpeD7Zc2ocqk+svxc3UYIHVZ -z20PGc4tPOMVZKpDrq+/PDXYyCA0NOtvOlmLRxRe1bWdIcPGANuEU3wttjQ7 -W44CGUr6r1+MeFuLypFHV00VyeDa9+Zr/sVa9B775vvyGRnUe/0a2jdqsNpg -ZDTRmAx8PaXHFvNqMOlso7OINRkWu+YN6L7W4JxzjnOXCxnyOtkzeW7W4F/S -ZzmPADI4dshSS9LV4N4LSyk3osig3G5yX7W+GmtlStl6U8nA1RYQZOxRjdFV -ekG38skw1Vo+7ahajZL0bP9MKsiQ0bJ4mcBejYKyxOCbDWSwbT7mkNtXhV8L -HKkziWS423SrpZVQhfYHWGSTu8jA1mh6Yu55FX4ume/m7SPDcH2g0V7BKqS3 -Ue7cM0CGxLrKnBPzlRhg+Mf++lZsWbu890pqJXr91bzWvFVftua4ivKHSpS7 -aZkZ2U0Gpmo5gqFEJWoLX9TJaCNDT+W7eXvKSnThWBNf35pPVEUwBJdUYI7z -czW9rfmalVf/yPpegQ2y/sz/kAxXy1bamuQrkFlFmZOQRAa60hOnpg9U4Bw7 -v+YrAhmIxfJvqVvLUSLtc66cBxlCi97nc/4ux/MxYSVXbchgWBi6X+xpObLN -kU/JGZJBrKD2kdKJcsxgEWg0UCXD7vy1CIORMrzmvzpFuEreWpknl79GlaHy -1f6ltVNk8M9VkP5jWIbPbAkuRrRk0M/56JIuXIa9Me+taGc2QTg7rKv+Xyky -VxTmNm+tN3JmPf9EVimOuIQoN8VuQkXGxrtdVqWYPUd+yvhjEzzTTxWzy5Si -Ts1HRy+9TdBMu3dAdE8pWg3/bXtzdRMEUi2fKlSV4P3Lu39Es2zCSnJE9HOX -Euz1P9R4f+v5LExqXLW+X4KNBmoD5sUkcE7cvO53pATp9tubnNraT9QS+NxT -OouRQfS+vNHW/nsy/n5fTWAxJp2SH9ISJ8Fc7GfBUe1iLFOdVTtIS4LsmL8f -KfiKsSHs9iuX9g2wj24uY50qwhPvNo2mwjdAKWrH4fMJRSjSw65z5e0GcPw9 -rXXHtAglaxkd3WADxiOU43UvFeHr35khO/duQEr4F9JnUiF2sj6sDGpchy9h -0bd88gvRdElQ1NpvHeQIrV6JXwuR1WBkKUN7HZhDKYcqbxbihpFHwROBdRgI -PnNuiK4QxQP3W1svrEFskMrnzfoClFjnk7mSuQYfAm2qmD0LUGnfE9EQqzW4 -9ieW5axaAUaPCiqVX18DhoA23VscBWjS7OFaRLsGnX67krX683Hd7nldZMMq -hP/+j8IyLB8dCCtpP71XwcRXTd7zRT7WsKhn2KqvgoTP199xgvnY/czPNZh7 -FWi840fL5vNQofjDxPr4CjR7doj0p+ZhQB1pICRhBQI9dtusf8jDERbxNzHm -K2DgfraOCfLwcRwn72nJFRB1e8wuuDMP7Xcvtwnu2cq3uOmbnZwQZW9RC1fU -/QO/4zqG+YcR18pe5+/3/QfnjmXRLAbkopEjvxqt9j+oOMoYynMqF296f49s -EPwHGqx6EqpxOfirUv6v0doyLDPnEB1Fc9BZ9r3hYskyOB06aJKL2bhcvNz0 -0n0ZuA8+p5u7kY2uFDnPBp4tQzYDhp+oy8Lydq5l3XPLoLD/kJSyShYGJZ72 -odi5DKP7Xnba92YiDcQ8yGlaAiuafLMs/Ux0qAx2CglfgiPUzIzTsxn40OBd -Q/bHJYje9SqK830G1oeOqzEoLoEMZeE1JYoMvOudHxB6agk6yUd6vzqkY8ET -nqOfyYtgRHr9IZ0xHSV5eG+FEBdhz3oR04RPGirujek/nLQIgSuscexcaehV -6CHR4bQI55eNbir8TcUr9A6Ncy8XoWqhZMD6XCp6Vb46+ujWImjPHf2Ukpmy -dV5ROH2YfxE2po2PjEqloMTli0PH9y2Cy2RZImtlMr72G2SxmFoA3nGOO3eU -kvHCI6o8zvoFyBt5O/K5IwmPxAzK7EtdgPtDFV8StZKQ/9WuQxf8FmCyn/Po -0EQizjEvcfraLIBtr1kq89tE9L56muuswQIc6a5SuLWRgHMll3bNP1iA+A6u -CQvbBJxU7zNrlFwA2Tbzr3G0Ccj9VOpmpcAC9LbUHOt3j8d3VzpO17AswNsm -7kwm9nhEYnpoHfVWf6FLEU634pAq7MbFkuWt88+foK4FtVj04Mq6GTQ8D0a+ -dw6ovozBkjNHqpRa57fW3+r13I/RWFM5s7O2bB7qXAgfT/yIQtZ/Hk92Zs3D -iqNivL3fXxSiPZjVFzMPvHakwanoSGwsrlFTDZoHFetIFqWcCCSWvDFT9ZgH -e8sH8unV4dgovjRU5zAP8eYUNuzdYfi4o2825tM89JrEpFlPE/AtV+XFHpN5 -YDBUnRzZDEWHU7It957Pw8UXVMfv0IciF1+L/bL6POjrJDxIPBaCmaoi/On3 -58Fb48l3ZqFgnDwV/u3rrXnIe0SDFpJBGHwx5ZGc5DzMKqcs9CkEor/aMt+6 -yDxIhhYoOBUEIG0hS9vn01v368uaqTLgh7arlzrKOLfquxifOLHrN0r0S88V -HZoHBbuKH1PcPpjFGLn8bO/W/C25ltOueeHu1J3jrptzsOPth6fWuh5ofTim -XGZ+DjReNJTJ2bnhjG415fOhOcjT4D/HHPELB+hp8mZb54Azdpdo4S9n/CHh -mlddPge9vsk0Ko2OWCz04Pl85hwE2ml3TjLZY/peumf3orb6e8sU90XZFt2D -uLX7fLfG0yz6ctjbCgNpOq64O8yB1e/RCOWk93jJQN1d491WuamsvNUFY0wZ -N7UQ194q91MYUTLRwdt1i9ycClvlElfL/IZvYpWccOLOy1vx+tPd+3YoQhav -t0gv91Z82+hi4ns9oLrS0xNHtxXLEc3iLpmAyIJh3qulrfO6sXn919QPoGGh -2X+ocyuWoz0cy/IFGhXbYwn5s9D79LE0C9EWqDge9LGGzQKnSbSRrac9MMYX -6rx1mAWNbxv+M/d/gGj2WabEl1v15cJ0YmhcwJE1T7ZJbqs/ZfmN/tFf8LIn -5lmXwFZ7jWXXI2VuIMaVFVS7bxbqngfwyYd7wIeNGbPHjTNgZHI9z+abF9Cb -UwWt/ZgBBstp5QwdH0hWYH5gIzMD8d88p6ZlfkOpw41yirVp0HCRsOXm9oef -Ntp2NjHTsMN3mFVt5x9QZ+BoOvR0GuoUS4k33gQC9yfu1tL90xChzBbarxEE -46q/iJHZU2D+yNDQUiEY6napWVbqT4GsRqHYEckQEKjuUJU6OAWcOsy7k/4L -haIIMwHO7EmYff6y/s4xAtQIky3MtSYh7zX6je4Pg2epA7VPaSbBxeSgvs1m -GDxwWWKciJkAfXM9YY7pcCjz6uj/T3ECLlpmbaZ3RUDkHWVrmYVx2GNNX6FU -HQmtirRECfdx6P2m5TGd/Rccup7LiJwfh3jHNA2H6Ch4cr3qqkTjGFi57BPg -9ouGdXGf/YZvxkDF4+m/XMcYKL51M7Z3/xjw+iYVqH6MBZrB8XMRUaOwEkDt -tPgiDhR6Gp07bozCYH1M9I0z8VBvN+TmMjACCk0PDxwixINaJduNzk8jkN5C -Yd5/NAFsA/Yda2IZAc62qK449wSQivTR+Jk8DD86Hkhb0ibC2TdnvrLdHd7K -T8kRt2wTQXt2kMN1bAge90buP7KRCOm8R0/vsh2Csn6lt0MmSbDmesvWmmNo -K18mtSVOJAFT+cGTXBmD4D0SDlZayUBWYDCYVxqEHeOKhDsdySCV3JW8c2YA -DCbX97IppYCiTV2qzvcBaJomGI1WpIBOXk4JD88AiM/dbUmRSoW7/8nsVi7o -h4iF1cs2makQsN6bTfG0HxiWQ4IUzqVBzRV6hgsbfWC+coea428a1HoNyJB9 -+mBw7Z/BxPF0CCBfmNa/2AdypKCGdJ90EEnw5LJs7YVk8u2L3xgzQHrD44Ls -u144Srnsr+SQAV5lruUNzL1gvytw53GKTFiYm9kjZ9wDs7tvPZ82z4QHpPjd -HqndoEKzWJM1mwlLTjl/nDe6oGhfwHkH/SxIbrP8LifTBQL7ZX2Ve7Ng846+ -V/vPTnBnmCefUMmGGeF3QtfbOmDHQT+dudpsuK0dv/SbpwP0D12vzL2RAxwK -gt9HTNuhjnlW6AfmwP5PJaLnSttAnNXXU1U0F26v0IY5srZB6FGZDZ64XFD4 -4bSyZkgE2mPTmos8CIsKDvkOpa3w9rh3aX4AwolVz+NXj7fCLGOQ5419edAt -2fqQz7JlKz8wuyl4Iw8iA+bsbnc0gwrT7Q0mmzwo5b/WEne5eSuf4Ixbz82D -Ff6rmU8CmqDg8JJm/1oeOFLLlz3e2bSVf1QwlV/Ih+DiTa7kF40gwPKnNM44 -H7pi1E+/aGrYylfefvCMzYei/dIf7SUbwJ3t5hnL8XxIKFLRZoqrh7KjHL1a -PAVw1LoolImzHjbYF1xvPSuAVs26Vme3Ojh/rOza2YACEJ8iaTvS1IE+p/8K -c3sBHCyS6+DYVbuVPxlHbR4qhIrXwv3Sa9VQx3VDfUixEA69jUCXpaqtfOso -Y9XPQtj5T5CHcbkSLp6cK0wsL4TNjAOZtesVYMBTYuZDVQSnc3jvtuyugNBT -v/msrhaBp/RqtTBzORB5jTp1LYtgo7ORZ0agDGj5rznfySiCh6HXfBhlS0Hy -NKvU+aWteM47K0S/BN4KzCyyni0G3kfqLFFOxRBxpiic4lUxHJBhXzqXWQSd -gj5qoxHFcPruJUfJiUJgEnpNVztYDFJeAheJxwtB9qx0XgpnCQSYqChuPikA -i3NHTPwel4BhrFRyyp98iBeeOmnjXQIeJ/iUd4zkweD5AuLzphI4kVJ9tk84 -D45c8HJUYCiFIh2jTzG0CAqiBhKicqWg/B/VYczOAduLV+fY7UvhzEe/0Ll3 -2ZB+6XDorqJSeJp6cEZUIgsmxSaUJ8ilwHBA38qFPhM4xfNoGi6XweKGxN3x -iXS4f8UjO/1dGVg8+E9YuDEN7CVeGP5JKgON+zK/HhanQh4A17eZMpiNmFGR -LEiBRUmmZoPT5bB6W5K1qTwZeKXG7JT0yiFhjUi10pEEj6VzxcRCykGfGPXB -cSURXGTcpjh7yuFRqjCfwbFEKLqmH0jNVgF815/1vlVIgJXrV5SmlSvgY8zz -X+8d40FI9sDuZtcK+L16aTY2MA60b46kZ9VUQL94nGXWlVjwvpX9MnhvJSTv -JOxOm4qGqtu/OByuVwI739ur4vFRsOOObr2hdSU0kAI8um3/wnn5y7bKuZWw -20o/SOhlJBjcZRC9slYJf84YWxc9i4BAhaGxExeq4N3f6XscL8OhSTHTb69x -FaTIKhcW2ITBHiXnu3MxW+tu2LT7XDQBxO9rUxLHqsBoVj9xYCAUjB5cSsk9 -WQ17jk1EafKHQqjyfn2CZjV0CtAePfo5BDofDrD+8K+G4rTgr3Z9wcCgml5t -3FYNLFNLvMyKwSCj9tNK9VANlPD0BV2qDtp6vz0TllSsgeWsuTeaD4Ig+rHo -MM/PGiDdc39NMRYIvU9ofejKa4DufJyujV0gMD3tu7249dyU/hyKvy8UCHIa -qZvtkrXg1sDQUVT8B6w0HRPyLWrh99Qd1kNX/kDyMw3tiPRasBGVTk0tDoBR -LRFm58VakOg5saylHgBO56iGxI7UQdbjtVPrVAHAm2QoIXihDvL8go+rZ/lD -kXC71/H7dfA189HQa0t/UE+WmWMyrgPYZ/mI9bY/rJyPu7XHpQ64KO8yKJ7w -B9cUltD1mDpYUac+TUnlDwIXbEnTlXUQ1i15hGfGD0pSp5X7x+oggXbIIrPX -DzREVeObqethKt3SJ5boBxtphTTlJ+tBusLX/WqLH3heFNTKlq4HlWNfTr/c -KhfK8M6O06wH5iPirje6/aDi0s7DIZ/rQdx0v8n6sB9oZ74y9PSvB9u0PVR/ -5vxgU4xY5pBVD63fpkK/kfzAO0uKy7KtHuJF8o02aPzhvHjMR6N/9fDhkrWR -6GF/qMlmbtY61ABWqzYDjsf9Qf+KteBD4QYQjKEcfHDaHyhzJ+1uKTaAGZX4 -salz/uAn8bDvimEDaJdT7VwQ9YcLmC929mcDRHy5qVd5yR8aQMCdO6oBrryK -CCJvlRvkeU4xl2/FVL0jJ7ba775KcWPfSAP8ZFRxrjzlD4H5LwM3dzWCoVdu -b+IRfxCTalmd42qEJSPvJudd/tBUIKk0JNkI+9W/hLBM+MFr6ahoonojZB9u -UGSt8oO9RYd2V1k0AitTlbROuB+Eylg9Rd9GWHWerW+28AOJ4vH0xPStfb7O -x1tdzg+I1x4cCGvZGo/il+7EIT8wLsGXPouNkKNHdH7X9htob/AX/zjQBIb3 -Hj2i9voNYaXuHFZCTWCRvrfIV/43SMmS35nIN8GttLnIxzt+Q2fZ83pdgyaI -PXbpiV60L5jdbOJX+94Eqwu/DxLv+QJDhYTtnYgm6BMRq2pb8IG/tyK7JEua -YE6PU/C3sw/IVB4UPT/YBFOPXhnf5fGB3tufXE5RNkOlcenRa+ne8KFqdIyV -sxkCv52kS7zmDUx3lKT3SzTDc9pK6s4aL4itzvGjeNwMReojvrT3vUBWnnd5 -8X0zfJ7b72fd7An9Na53R72aQbmUtBSm5AkWd0kRHSnNMKZx41pxjQccqdOj -rG1sBq216venb3hAokLDo4K5Zvh4JeqxYI47yNWLp6TQt0De+0s7OM+6w7Bi -+P7IMy3A7u5ocz/EDawaGPX9brfA6a+ui0JMbsCqZJHv/LwFHt+V+kO2cYXU -xmFWG7sWIGZWmzMt/AKF+4pvzQgtcMZBdk+B5i8Yb8qqfl7YAvzFZynu17mA -7QOeU0/6WoA3L9GPC1yAo8XFSoHcAt+4yIZTj50hXXm9TZq9FRaJetFCV5zg -XquOsOjlVrjJ+r7r97GfMP2w7ge/aiuUEp7bpuz6AfZEsWH2d60watwvT5r8 -DlyqBGD0aIUPK39xgugA2W30PruSWkEroGForswelNU+zP+rawUaVm6u9zl2 -MNs+eHtiuhUSdniv9ad+g++P7hK6aYmQKzD7xCTlK/B0ZmzW8xPhv87Py2EZ -tpD3mFulWJYItgpTTCmFNqDW5ZSQrksEt7yhsx2N1rD4ZHVvtC0RONmjau6N -fwGnbi3tP8FEKO174HyH+gvwPq3Jcc0jgu/13c+W+K2gqOci87duIpy4pa7e -9vcTqGuEGL3fIELmvCq3P50lrPTSVRhs5VXv82LOqX/6CK6a5ic0LrZB2aA+ -iyjpPQj091soKbfBBYuSRxzfzaHk2Z2W62/bwD+Wn/3ayXegMZD2n5hrG4i5 -py041JjChhaXw5n4NoCHb3Sav74Fz8Ef/Zw1bXA5rW+d+rYJCOn8u8w02QaO -GYezW9iNoWJI04N6bztcerjCIrRpBNq6VdNrp9rhcFGq8iGiIWwOX5CdvtYO -91trlMerX4G3XlBQn1Y7hKoEPFPoegnnR/etN31pB/FLvyaiqV5Ajb7Z/bI/ -7cB2zuzAo+v6oD/WG5OV0w6Sovv2xgToAuWL29RxHe0QT8f2eopOB/zGUzSC -V9uhl4A/Ndy04MJLzkwP5g6o7vkRfk3wGTRMfD/oINIBdlXeh4ldGmBgsGRg -odQBEp57ewKlnsLuqaclhm86YEgqi6Vy5jEEvqo4puW8lef+X9fs/xtve4ht -D7HtIbY9xLaH2PYQ2x5i20Nse4htD7HtIbY9xLaH2PYQ2x5i20Nse4htD7Ht -IbY9xLaH2PYQ2x5i20Nse4htD7HtIbY9xLaH2PYQ2x5i20Nse4htD7HtIbY9 -xLaH2PYQ2x5i20Nse4htD7HtIbY9xLaH2PYQ2x5i20P8f+Mh/gd+OdT/ +1:eJzt2/k31V/4KPBoUIZQSogkichHUUrymCpJIiVUhoxFEZGKklSGQhlCyHQM +GTPPj3mex2Oe53nMdJyvu+66P9z7H9y1vH8551nP3vvs8z77vc+zf3gdf2x6 +R59yx44dXHt27Phfr//7msX/865TpJhiY3kG3+0USHpPDgPXRfp7lKMzeGDH +jYtUHASQTtaI3Ns2g3n/TevsFCPAogVhfX/FDBJpuxQsVQgQITyreChrBpdj +Wpg1nhJAY0EshC1mBj9k5TtmvyMAbdKnpeMBM0gRtLEU4k6APPM6OV7XGRTi +6/JgCiKA+Tk2f8H3Mzh4iv0FSywBeOb1Z0TMZvDJpKxlZhoBiH8TpC/rzGCW +F58ORR4BXF6se0ndmUGlZ1/rV4oJIHH22th1mRkUsO+RiSknwOysu7iiyAw2 +vDvNzltJgLCEDre7J2cwzoQi6XUFAVTNeAY0Ds+gRY+lanwpAfYJvbigQzWD +sv/6tIkFBMieyXIyXJlGoRld6d3ZBDCN39P1bGwaBfP3hl9PIgCXqbLQy/Zp +3FDvakiJJECToP/HN5XTaBerqvXInwCO08MtdtnTeEQNmlVdCSAWd/b0l9hp +rDU15czYuh9Tz2xsvwVOY5Rj2V//ZwQIOlNa5+E2jQETf3+wPSCAyhQjt5/d +NL6Tp7NWvk6APbEPXwW9mMYLf242PThHgHSTiIrwx9PoP39jVP0oAUwE5tlj +VaaxRzWgwWQ3ATgmxV8kyW7lT6d+SJ8Kg/roL0UZ56dxUq3549PmMHAwbmDO +45nGzfdijD7ZYSDKz25cwjyNylI2beahYTA+bphbtXca6Q6yLZ90DgP/P4mM +jatT+IgxzanbLAyUnpL02sancFnvenbl/TCgPC2X3tMxhe6Uf5I4IAxSxn7Q +DFdN4XGmp47Up8LAKKpLczJnCg/wEy4U0YcB2xPexPm4KVT3pHCxXw2FGl6L +3au/p9CCbYf7u8FQsBvNUSO7T+HTny/DF+tCQSRyb8xu+ynMZCazsWEoDBuq +kGksptBR/W7E2fhQ8D0VeOeA3hRWHKr5bBUcCgojo4Qj96bwtrsJFZ93KGyG +C69yXNsaX/tyvcu3UEg0eKdwUnQKOz8Jvev8Egp6POW/+XmnMETpusrDT6Fw +ZPjgwlmWKTw4EEmr+DkUKgia1y5STyF7lYDlgnMo2OpH+UqsT+L3724Lrh6h +IHRycVJ2chJzrIetdINCoX9QQvJm1ySedrbeiPkbCt5hTh7KNZPoTJW+Hlsa +CnJ6TcP3cRL3Oa3pE/pDYf3EMTHNhEk88Mx4uo4yDOIGnnzTC55EK43DDSa8 +YaATmtz79MckRr64H5ykEgZMumThFx8nkZLmCE23QxiUcMl/efVyEi/7i/3h +2vo93/R7ttvqT2LDEY/mlNUwEAjpOeOgOok/rX0eVF4hQI/O6Q/O1ydRnP7W +Z09HAvw4btnkfnESIwoffznfToCrfXjqJ98kKu5Oi+s8Fw4rQdRvA1gnUeum +XUTCj3D4o32vJpRmEqPfh+1oXg0HTc6g4382JtDt2qdRU6MIYOgdf5kwNYFr +pfnPvbojoPD3+bLU7gm0cDtoqfMwEqy07Nhyaidwd0tOwURfJPAdq3xemDeB +GoKjz66bRkFn96GC8r8TqHthTOPTrj/gGqh9qC5kAl8OMtxIDP4D0prRRi0e +E+hB4otrvBYNi+zLWZ0OE6j9kd5qbiEaIrok6QcsJ3Cpl/78/qgY0AhweTxm +MIGXslge8RnEAt2jlpSZ+xPIafGfpTR/HOQdPb5vWW4CK9pFa26txIF5p/HD +jUsTyB4xGyFTHQ88/qnxlPwTONVMcY72XgIQH1Ds3Hd0AjseZ0ZqliaAC5uC +Kj3dBN7SWgl1v/IXJDq8ow5tjmO1G6u+T9pfmPXr22CbGcdfHr5MxucTIUxD +QImrdxzPM5c1bqQmgirrq1De+nEMJHrUSIonAXV7/rJgwTj+PsR2i684CbJ9 +aeXPJ43jyn82L6KUk8FU/X7A5bBxTMCr9PF9ycDFEjIr5TWONtbCV/ktU6CJ +OCkj93kc9Z9/96OjTQVHH9Gfiq/GUWFHb5dseCqIqdmP3zUaR//fIyfzZNJg +irn6ygP1cWR+f7PJZDANglqZv+vIj+Od/G9Moo7poPLz8aDh5XEcMOssof0v +A/bcjxV9LjCOb+lWXNuJGZB+eMX5Jfs4qvvq5Xz9lAkmLdLdb/aPo9j9VxyM +57OAw/vb2Q/kMYyg5wOlkSyov0d0+DI7hmET1eQL/tngcOgE8VvfGNI9dIlM +UMkB0eZn/J4NY5jzu+R8JF0ujHumv/MrHEMSgaS0ryIX/O/ubAhKHkMKxSnM +cURQYlI8GUEYQzf2+89bufOAssnHOtZ7DJOpbmXrfs6DFI+ByqQvYyj2+EXs +ymgeGKkIHsu0HsOV9ZPULgr5wHbwtXnekzH0/hB+i+FvPtQ0FBaXaIxhVMRl +1beHC8Dux36W6ptjyPPSDPJtCkD4jrpJo/gYSokxiLcMFMAwYxi2nRnDxJBL +anE3C8G3fvpAL8cY5kmeo4TkQlD4fslgmH4MJ+ha9N+wFwFZySFjcscYasVw +8al8KYJEhlrahblRLKaYKc2ZKwK9Ohbt1f5R7HRK+Br7sBiY3fWSyI2jqBI1 +SjxUVgwVt+P37CkeRba+6fIJ4RKwpV9Tp00dRa0j5Bb2oBIQqpWNPRAxig7T +ZhNBtKUw4Oq2g8VnFA8O9SYavi4Fb8V2lWNOo8if+61Ab7gU5PafjDj5ZhTp +rK7kuaiUwXq16Rq/8Sg699OXVeeVQdy3zFvnHo7i4V/li0cFy0Hn1u7gi7dG +cXG5R8nkVzkw0SktSkiM4rt9Q8pxeyugtMrv+tX/RhFWAl43W1bA669Dfjc5 +t/KXOB819VeAgILQtDLjKA7eEIoJuF0JPTRvpdQoR/HIx/qL3NmV8KOy2FNz +YQQ9m5Y2NXir4KoLw6je4AhSvbgscN6zClbkH1w2bh7BHnPL1XByFURTh7u+ +KBlBXRX/hZCn1fCoYrbvVdoIMusNXWNvrgYG58vn30WO4Nn99LeooQYKb3x2 +dPAdwWY9mSDNyBqw2lff4ew8gqmPzMroGWuBr5ztv+9vR/COicBtpte10Olo +YP/TZASNrWTMNHtrwU3ub3PAoxHUIKtyWpyoA6m9G7xhiiM44fL+vLJqHSyW +XrP5AyPYYNKwt9ixDiK+fK9NEBrBh/llWJFZBxrXO7nSjo9gzAbP+KPJOqCj +OmWVc2AE79tLDr9hr4e8khflhTtH8AH7WU0OxXow/5x9tGJxGOOfxnNdfVcP +J69RmdUNDaP+sV69ydh6IO6+U9jSMoyZa37ejF314FLsf7irdBi/WPmX/qVp +AIlPI08G0ofxsmHPocpLDTAney5nLGoYZ3hMPR8YNkDYLluGWb9hfHW630PH +swFUi0p1l12GUURPlbkrrwH2ORxI27AZxkU+qcCKyQbIlnlEvfP5MFJbvEvm +O9IIpjsjH+3TGkazvaNDq9KNwFU4n0CvNIx74qyDxJ41QrP9lV2HpYbRK/Bn +/YR3IzhKO94/em4YqToTdejyGkGMsvEP14lh1MgxNQscbYSpfPZNXqZh1PyP +Ie03QxMEfTBS/m/3MOqJD3owXmwCFamksPPLQ2j5KMp9UbMJ9lBs/rs8MoRn +Kf3Vbn5qgow8uZvSxCGssGX/djC6CYztPALlyodQqbxM6nZdE3BIds8pZg5h +e/jzBfJiE9STea/eix7CyL8ymzwszeCAFj4P/Ifw8Ud67lLxZhB9nzuh820I +D5CrW/u0mmFcYh8YvduKZbK0reybIWBT5cdz0yHkCHhg5xjWDLdzA4deag/h +0K4D1qwlzUD5buziW+UhLBrblyM40gwpV0S+fpAeQv7Atw5lVC1gRHrX80V4 +CGOvtzWOnWoBtpzyc67cQ/jXoEvY+3oL1NgwffY8NIRf+Rh31Ru0wAdxrTa/ +PUOY2h01H/CpBYQ3ogSC/w3iw5mjXhRhLTCctfg+YnQQR+P0usn5LeD7Fhpj +2waxpf2ho39PCyhcduZJrhjEnyEbwl0bLUBea3qdmTWIL36KXSplaYXEzGPV +eTGDSJLrVtG+0Ap6b55ylgYMov1VVa+kO63ALJZiUe06iAvfz+TmPm+FilVy +SeP7QZTq6cz+6twKthnyrO1mg2jroXn2ZHgrCL32etarM4jj5nDIPb8VBi72 +5g3fGURKXqb01s5W8F45zTQlM4gfLtz5tnOlFeTSLQ0XRAaRhldPlu0gEdZf +5WWunhzE6AcHTU8LEiFOlGb/DuZB7Ijc73n5BhF0/t3T2bN3EEXteJvU9YjA +lBaUTLs6gHZkuhse74lQajVBdXB8AE/IXhae8SPCmwsXHrB0DODVm1ymNqlE +EFi2iztWNYDiwnX0cg1E6EmppODJGcA3d1iCtaaJ8MPy8D2BuAEs988yaaBu +g6vndSLP/R7As2dknGNPtcHKYvT6RfcBrGn9R0OWbYPo5GVF+DCAl2TUKFsf +t8Gjl1IhV80HMO2x5j/ZD23AIPJ16abuAHr0W0+oBbVB4UKL3J27A0g+eU6d +O68NrJKO+6tdHcAQId2w5N424LMwmdG8MIC/su6msVG2Q+e5NGn9UwO4v7zv +v6fc7eA2T+FtfGQAqwrKMOF6O0glKoy92LfVv8tKlsKkHRZf/BS3XuvHsvlY +RuPv7RBxtt/t3UQ/dj1seL2Z1g4acwIDDp39yL6Q7FfV0w50f19dcKnux3sH +SmqG9nZAnlmB0/fcfjTMvfFcQ7gDzIXoun7G92Np1BLvZa0OODl7XygwaKs/ +t7mf19cOIMaHfAz73o9P2e5RvMnqABfTqZY/9v2YxeAk/m+iAyT+u3j6r0U/ +2pi2FLBxdMLctL1tml4/ZhyS71xW7oSwuOq6nHv92DGRZuL5pRNUnx/hLrrW +jym8Bk4U2An7BHVfVYj2I6/J6p2bK52QPRVbUcfbj5TyMxO2wl1gGrvC3srS +j1fkxGUIZl3A9UzmRRd1P3rEVx+qju+CZgHXooH1Phx6sfPe5mwXOE4Smccn ++/APy93/ZEW6QSzmhPFsVx9WqIm/jnzdDVPGz3OXa/ow5oxyqEh+NwTxZzCS +sA/XQvxqFqh7QGVip/7Ov31YkGVdPKHaA3uiFdP3hfSh65l6q5OEHsh46kvD +4NGHV6x1m6KWesD49KDmYYc+fGHy/bMkdy9wjAsmHrXsw70//xW3KfZCfdTr +3ScM+vAHs35B2JtecHhSpMZ3vw+Lyg9wECJ6QZSPPuY/uT48+rv0fE9zL4yP +qpPPX+pDHf9Rmfu7+yAgMuyO+Ok+PMP7JozxQh/cNpohSLP1Yaa5QvlBoz6g +5BVblaPtw7B/Q+vav/ogZcRB4TapF+9sPPi6WdsHRhG1v+9N96KEju3I3O5+ +YDNkXXjQ04v1bb3fJa/0Qw2P/rXHdb1oQOOdP2vZDx+G432N8nvx6gVC5t6E +fhAOX5t8ntiLFHmfJ79N9MOw/lVJy9BelH8ZPfKFdwB8T7p7vPXsxWmn20sk +gwFQGGof/vCpF8UpqfL/hQ8AOeykmKNVLzKcjz7zfnQAEvXMvrka9mLu6DLB +l38Q9Lizej3VevHmjNOaktkgMA/uFvl1oxczsyQc41IHoSJU6UuwWC9y5b0s +ztocBFvdX+0R/L1Ypnj8t73cEAidGD4Td7QXW/ge7qPzHIKBfqEPyXS9+Ina +hKjXNwQCV/9FWpJ6cHK1MthTaBjci77etu/pwfpLl5vCPwzDsgzXsmt+D1pr +WQ4SmobhYWGa/6/QHjzOIZcSwDcCBdK3ZCI/9SD/PhoKb7sR4C3oH0s27MFd +LzI6fdtGwFXK2j3/Rg+Or6FgksgoLObRidbw96BbjNrDie+joCYZ2tVO14O9 +VNwFN+dGIRcvOozMdKO3urph550x4Iaa04v1W3GujHFY6hg45+rW70juxiCL +vL3RR8dh9srqKzrvbkxN8jq77DAOqjmuHKzW3ajmeqLZeWYcMsW5i3k0urHM +UfL784cTwJmdYSws3o3MBqaFQZUT8Pny7QOSHN0ox7XIyX1lEiYzB9MVdnTj +nl9fnVcSJuGO2Bst9f4uPDpiqnj01BSkZ9DvMSjqwuciRa1ff08BxyVCjHl4 +F/4aYbGSZZ0G+3QxlfeOXUiV9Czz8s9pGBWtW3V52oXczN9ePj08A4pp+kE+ +Cl0oJfrtX/HPGUi+sH6NINiFSp/Ya4LoZoE11X3qL0MX+k1dbDZUmgW78zye +ufOdWHmcI1jQcxaGk7PEKps6USX2x6lJ4izIiyj3taZ2IvVD1VovjjlISBr+ +MujTiZ0VWiPH9OfgsLCN4NybTny980ubbcwc2CQyNpMeduJnUqZz8OIc9J+N +eEsNnXjQ4Bq9zZV5kPsrzsV8vBNL6Taekj7PQ4xQQ9mJnZ3oy8/gxVQ/DwcS +DE2FhjrQsonwM55tAaz/Ix26UtqBNXZPabINFqA77kf2jagOvMBxK487cQFk +BXl1VV06MHHl1ddm0gL8ic3Zp/usA39f/dGafmMRGM6oJJje7sCg2+E30r0W +4WXMqKrN2Q6kH3CkyOlbhHb+dyTHgx2YFx96Nv7MEkhGHwzzWmpH+S9yUVav +lyD8dJR8SGs7xq+pD6wVLQHtH4m5uIx2LBabnuJiWAZzvqafWb/asdTUN7xZ +YxmIkU8kymzbkZvHqHM1bBnEecmDTVrtWBTEn2A5vQwhEZ4ufVLt+PafwOp/ +ov9g76nT56ZPtOPjmn829O//wfNwJK7tbsdphxjp9eJ/0HTy3nuq0TZk2XWN +3E6zAmKE8ZNMFW1oaH3khLfSCgRy21VxxrSh0KUwzkOeK7Ar7JDFGdc2rNeY +FJNqWYGnJ6JZxMzacFQgV3sX8yrUhUjmXbvThqZ1h9/cUF2FC1wtBioibejP +Xaqy4bEK/sHGdNqH2/BX0pPmfXWrQHmcItlkhYgGr2qPalOvgUGQt8brdiJS +tNv8mJZeg6pjAhSfs4mIyT83CK/X4Nzv/IgfgUQ8Nu84bh23Bj4c9xV/2xHx +Hcvdnxp9a7AZMLkY/ZiIFSK+BpIH1kGP3f5XuiwRP/HQGx6XWocKf2bpYh4i +SvvSSSw/WwfBo7Gj9XuJWJadpJbhsw6ev6TdusdbMSzUtMMgfx3WWInnJ6pa +MZv/ReDGyDpo+z3r/BfXiiw+Z5++od2AEpadH3d9b0UfB4GqPsENEPD14WO0 +aMX+IIXjF25vgPsRwTr2e604PJTVa/NsA5Z/FlqdFm3FU8tjH7KdNuAhszq7 +KEsr8lTtJpJCN6DAe7pQZr0Fa37fvXMzewN4Dzs8VepqQZu4D5sJDRvwzYuF +8RG24O6ENkfxkQ1YYIpPexLcgpX531lJqxug7imrafWxBaViY3V30pAg92D7 +ro/6LfhQeFxPh5UE3B6m0W7XW1D07B6z07wkcD6w+44/Xwu+E5PYayFCgtnv +fiuRNC2oUCbLpAwkuMco9DtlqhnNjjRFt8uRIMu9+GpBbTMWy1c9O6VMguMM +DyZr/jbj0cfMfrfVSPDZbfZHh0czhhBNqUw0STC5//OlUctmPO5Mc8RblwR3 +XNl6F+83Y1Feq+WIIQnS6f5+phBrxiBBLYE3xiRg/3btzP6jzRgX++qa0XMS +fKTtbGTdbMIdVlltlWYkGHN58eZUbxPq1QsSc81JoEhDdVykoAlLGT+yPHhJ +gmRn/1LJsCb84rcRmmFJAlbqc89vfW7CCK9LjxasSPDeqZRJw6gJmbt0dTit +STC091GWgXwTstz3PKD2mgQ3Hed1LASasPaZxd6/b0iQQOW4125/E1p4SOdJ +2pDg8Bf2+K+zjXjbvSya7R0JbPYk3fNtaMTHuZMn7tmRoP+T3AYhuRGvO/de +ItuT4Pru7pBE70ak2rEZdfozCWIdLG6gdSNerLCSHXEiwcFd+2YrNRqRPDxL +I+1KAuuPgd5E8UY0oVzNvO5Bgm5KkStDHI14fkL94E5fEsjalw/M7WhEcwu4 +bPubBH8otJw3+xvw5D6JgpxwEtB/WBSiKW7A9D+fzCriSGC5w7mVOaIBNakZ +NSPSSND+/tg7bqcGFOpeo7mfTwJJcjL3WeMGPOxCkGivJEH4O/nKK7casPUV +D6NQKwloN3teyP/XgPohtTKqAyR4YWt55D5jA66W8++WmyVB6wY16i7UY6Np +cD2ZRIIrNkH6Zs31eFub9YYV7SaErJ+ntU2rxzKGSy4hbJuw921lopNvPRo+ +5/N/w78Jz9e01b3f1mM0U4LW/OVNaHq9TA55VI8zzPbBGwqbcGnVJTwe6vF+ +kpaki+Ym/LY+fiv7eD1yUg1kuZptwu6V1IWynfVocqnNYdl+E56+UvBrHqrD +8Euml/56bULdcp9kf2kd/p1pLYmO3IQLVq9GpqPq0MDWe29j1ib4L9G6rrvU +4UUXnfYDtZtAYRkisvd5Hb6XpjJX7d8Ew0XRDialOnwseznEcWkTqiyqPxw/ +V4eB0pcNPfaS4dzCY15Bpjrk/vTdW5uNDEJDswGWk7XIovSsru0MGTYG2CZc +E2qxtdnNdhTIUNJ/7WLky1pUjTq6aqlMhh99Lz7lX6xFv7HPfsaPyaDZ69/Q +vlGDNSYjo4nmZODrKT22mFeDSWcb3c7bk2Gxa96E7lMNLrjluHW5kyGvkz2T +50YNxpDeK3gFksGlQ45Kkq4GaS8spVyPJoNqu8Vd9fpqrJMtZetNJQNXW2Cw +uVc1xlYZBsvnk2GqtXzaRb0aJenZ/llUkCGjZfEygb0a/5MjhtxoIIND8zGn +3L4q/FTgQpVJJMPtJvmWVkIVOh5gkUvuIgNbo+WJuSdV+KFkvpu3jwzD9UFm +1IJVyPhRtXPvABkS6ypzTsxX4m/T347XtmLb2mXqK6mV6PtH52rzVnu5muNq +qm8qUfGGbWZUNxmYqhUIphKVqCt8UT+jjQw9la/mHSkr0Z1jTXx9az7RFSEQ +UlKB6PZEw3Brvlbl1V+znCuwWS6A+R+SQapspa1JsQJZ1FQ5CUlkoCs9cWr6 +QAXOsZ/WeUYgA7FY8SVVazmKp73PVfAiQ1jR63zOX+UoEhteIvWRDKaFYfvF +tMqRY458SsGUDGIFtQ9UTpRjBotAo4k6Gfbkr0WajJTh9YDVKYIUeWtlnlz+ +FF2GalL9S2unyBCQqyTz27QM9RwI7ma0ZDDKeeueLlyGfbGv7WhnNkE4O7yr +/l8pMlcU5jZvrTdyZv3piaxSHHUPVW2K24SKjI1Xu+xKMXuOrMX4dRO8008V +s8uWolHNW5efhpugk3bngOjeUrQf/tP2QmoTBFJttZSqSlD18p6vMSybsJIc +GfPEvQT7Ag413t16PguTGlft75Zgs4nGgHUxCdwSN6/5HylBuv2OFqe29hON +v3yeKZ3FyCB6V9Fsa/89mXC3ryaoGJNOKQ7pipNgLu694KheMZarz2ocpCVB +duyftxR8xdgQfvOZe/sGOMY0l7FOFSHPq02zqYgNUInecVjkbxFe7GHXv/Jy +Azj+8OvesixCqVpGFw/YgPFI1QSDS0X4/Fdm6E7qDUiJ+EB6TyrEHtb7lcGN +6/AhPEbeN78QrZYERe3910GB0Poz8VMhspiMLGXorQNzGOVQ5Y1CJJl5FTwS +WIeBkDPnhugKUSJov739whrEBau936wvQIl1PtkrmWvwJuhjFbN3Ad6jeSQa +arcGV3/HsZzVKMDoUUGV8mtrwBDYZiDPUYAWzV4/imjXoNN/V7Jufz5ufHlS +F9WwChG//qOwDc/Hz4SVtG8+q2Dhp6Ho/TQf61g0Mxw0V0HC99OveMF87Hns +/yOEexX2+SSMls3noVLxm4n18RVo9u4435+ah7/rSAOhf1cgyGvPx/U3eTjO +Iv4i1noFTDzP1jFBHj6K5+Tll1wBUY+H7II789B5z3Kb4N6teoubvtnVFfGG +PJVwRd0/8D+ub5p/GHG97Hn+fr9/cO5Y1r7FwFw0dzmtQav3DyqOMobxnMpF +BR/nqAbBf6DNaiihHp+DHpWKf8zWlmGZOYfoIpqDbnKvTRdLlsH10EGLXMzG +f8XLTcaey8B98And3PVs9KTIeTzweBmyGTDiRF0WlrdzLRucWwal/YekVdWy +MCSR35di5zKM0hh3OvZmIi3E3stpWgK7fflWWUaZ6FIZ4hoasQRHqJgZp2cz +UM3kVUP22yWI2fUsmvN1BtaHjWswKC+BLGXhVRWKDFT2yQ8MO7UEneQjvZ+c +0rHwEc/R9+RFMCM9f5POmI5SPLzyocRF2LtexDThm4Z3qGP7DyctQtAKazw7 +Vxr6FHpJdLgugsiy2Q2lP6koQe/UOGe8CFULJQP251LRt/LZ0Qfyi6A3d/Rd +SmbK1nlFif/w6UXYmDY/MiqdgpKXLw4dp1kE98myRNbKZHzuP8hiM7UAvOMc +t26pJOOFB7vzOOsXIG/k5cj7jiRkix2UpUldgLtDFR8SdZNQ4NmuQxf8F2Cy +n/Po0EQiLjAvcfp9XACHXqtU5peJ6CPFz3XWZAGOdFcpyW/8xfmSS7vm7y1A +QgfXhI3DX5zS7LNqlFwAuTbrT/G0f/GklvSNSoEF6G2pOdbvmYBWVzr4a1gW +4GUTdyYTewIWENPD6qi2xgtbinSVj8c94dcvlixvnX9+B3ctaMShN1fWjeDh +eTDzu3VA3TgWS84cqVJpnd9af6vXct/GYG3lzM7asnmocye8PfE1Gln/eT3a +mTUPKy7KCY7+f1CI9mBWX+w88H4hDU7FRGFTcY2GevA8qNlHsajkRGJryQsr +da95cLS9p5heHYHN4ktDdU7zkGBN8ZG9Oxw1O/pmY9/NQ69FbJr9NAFfclVe +7LGYBwZT9cmRzTB0PiXXcufJPFx8uvv4LfowPMHX4risOQ9G+n/vJR4LxSz1 +86fT786Dj/YjZ2ahEJw8FfH5k/w85D3YhzaSwRh8MeWBguQ8zKqmLPQpBWGQ +xjLf+vl5kAwrUHItCETaQpa29/xb39ePNVNtwB8dVi91lHFutXc3P3Fi1y+8 +0i8zV3RoHpS+VHyd4vbFLMao5cfUW/O35VpOu/oT96TuHP+xOQc7Xr7Rsjfw +QvvDseWy83Og/bShTOGLB84YVFM+GZqDPO3T55gjv+Mg/b682dY54IzbJVr4 +3Q1dJX7kVZfPQa9f8j61RhcsFrr3ZD5zDoK+6HVOMjliBjXd4zvRW+O9ZIr/ +oOqAXsHcen1+W5+nU/ThsI8dBu3ruOLpNAd2v0YjVZNe4yUTTU/tV1t5SzlF +uwvmmDpuaSOut5X3VxpRsdBHhbpFbk6lrbyEVJn/8A2sURBO3Hl5K17X2kOz +QxmyeH3O93JvxTfNLia+NoQ9V3p64um2YgWiVfwlCxBZMM17trR1Xje3rv+U ++gZ0bHT6D3VuxQq0h+NYPkCjcnscIX8WerUeyrAQHWAPx70+1vBZ4LSIMXPw +dtw6Vxfqv3SaBe3PGwEzd7+CaPZZpkTjrfYK4fqx+9zhK2ueXJPC1niqihv9 +o9/BuCf2cZfAVn/t5R9HyjxAnCsruJZmFuqeBPIpRnjBm40Zq4eNM2BmcS3v +4+efQGu9O3jt6www2E6rZuj7QpoS872PsjOQ8Nl7alr2F5Q5XS+nWJsGbXcJ +B27uAPj6Ue/Lx9hp2OE3zKqx8zdoMXA0HdKahjrlUuL1F0Fw4h13a+n+aYhU +ZQvr1w6GcfXvxKjsKbB+YGpqqxQCdbs0bCuNpkBOu1DsiGQo8Fd3qEsfnAJO +feY9Sf+FQXGklQBn9iTMPjGuv3WMADXCZBtr3UnIe47+o/vDQS91oFZr3yS4 +Wxw0+rgZDqruS4wTsRNgZG0ozDEdASU/O/r/U56Ai7ZZm+ldkRBzS9VedmEc +9trTV6hUR0GLMi1RwnMcej/rek1n/wHnriey50XGIcElTdspJhoeXauSkmgc +Azt3GgFu/xggifvuN30xBmpeWv9yXWKhWP5GXO/+MeD1SypQfxsH1IPj5yKj +R2ElkMp18Wk8KPU0unVcH4XB+tiY62cSoO7LkIf7wAgoNd0/cIiQABqVbNc7 +341AeguFdf/Rv+AQSHOsiWUEONuiu+I9/4J0lK/2t+Rh+NpxT8aWNhFEXpz5 +xHZ7eKs+JUfKOySC/uwgx4+xIXjYG7X/yEYipPMe5d/lMARl/SovhyySYPWH +vIM9x9BWvUxqS5xIAubygye5MgbBZyQC7HSTYYcyg8m8yiDsGFcm3OpIBkju +St45MwAmk+vUbCopoPyxLlXfeQCapglmoxUpYJSXU8LDMwDic7dbUqRTQfE/ +2T2qBf0QubB6+WNmKgSt92ZTaPUDw3JosNK5NKi5Qs9wYaMPrFduUXH8SYPa +nwOyZN8+GFz7ZzJxPB0CyBemjS72gQIpuCHdNx2E/3pz2bb2QjL55sXPjBkg +s+F1Qe5VLxylXA5QccoAn7If5Q3MveC4K2jncYpMmJ6b2atg3gOze+SfTFtn +giopYY9Xajeo7VusyZrNhEXXnN9uG11QRBMo4mSUBSltts4Ksl0gsF/OT7U3 +CygVjX62f+sET4Z58gm1bJgRfiV0ra0Ddhz015+rzYbbeglLv3g6wOjQtcrc +6znApSToPGLZDnXMs0JfMQcY3pWInittA3FWP2910VxQWqENd2Ftg7Cjshs8 +8VvxV9eVNVMi0B6b1lnkQVhUcsp3Km2Fl8d9SvMDEbhWvY9LHW+FWcZg7+s0 +edAt2Xqfz7Zlqz6wuiF4PQ+iAue+3OxoBjWmmxtMH/Og4vTVlvjLzVv1BGf8 +em4erJ6WynwU2AQFh5d0+tfywIVKsezhzqat+qOCqfxCPoQWb3IlP20EAZbf +pfHm+dATq8n/tKlhq155+cY7Lh9K98u8dZRsAE+2G2dsx/MhoUhNjym+HsqO +cvTq8hQAh31RGBNnPWywL/yQf1wAHTp1rW4edSByrOzq2cACuDxF0nPZVwdG +nAErzO0FwFyk0MGxq3arfjKP3jxUCJXPhftl1qqhjuu65pByIRx4GYnuS1Vb +9dZRxqpvhbDznyAP43IlXDw5V5hYXgikjAOZtesVYMJTYuW7uwiEcnhvt+yp +gLBTv/jspIogUGa1Wpi5HIi8Zp0GtkVA2dXIMyNQBrSnr7rdyiiCB2FXfRnl +SkGSn1VaZKkI7s/5ZIUalcBLgZlF1rPFwPdAkyXatRgizxRFUDwrBkZZ9qVz +mUXQKeirMRpZDGduX3KRnCgEJqHndLWDxSD9U+Ai8XghyJ2VyUvhLIEwCzXl +zUcFYHPuiIX/wxIwjZNOTvm9dd+Ep05+9CkB/xN8qjtG8mBQpID4pKkEeFKq +z/YJ58GRCz9dlBhKIV/f7F0sLYKSqImEqEIpKP23+zBm54DDRak5dsdSEH7r +Hzb3KhvSLx0O21VUurW/HZwRlciCSbEJ1QlyKRw+YGTnTp8JnOJ5+xoul8HS +hsTt8Yl0uHvFKzv9VRlY3/tPWLgxDRwlnpr+TioD47uy3+8Xp0IeANfnmTJY +j5xRkyxIgUVJpmYT/nLYvCnJ2lSeDLzSY19UDMshfo24e6UjCR7K5IqJhZaD +PjH6jctKIrjLekxx9pSDYaown8mxRCi6ahRExVYBx6497n2p9BdWrl1RmVat +gFexT76/dkkAIbkDe5p/VEDi6qXZuKB40Lsxkp5VUwEl4vG2WVfiwEc+2ziE +uhJSdhL2pE3FQNXN7xxO1yrhBN9LKfGEaNhxy6De1L4SSkmBXt0Of0BE8bKD +am4lHLUzChYyjgKT2wyiV9YqIeyMuX3R40gIUhoaO3GhCj79mb7DYRwBTcqZ +/tTmVRAlp1pY8DEc9qq43Z6LrYKpIcvuczEEEL+rR0kcq4Jns0aJAwNhYHbv +UkruyWpgOzYRrXM6DMJU9xsRdKphWID26NH3odB5f4D1a0A1dKSFfPrSFwIM +6unV5m3VcGxqiZdZOQRkNb7ZqR+qgXKevuBL1cFb/2+PhSWVa2Aua+6Fzr1g +iHkoOszzrQam73g+pxgLgt5HtL505TXAJhJv8PFLEDBp9d1c3Hpuur8NJdwV +CgIF7dTNdslaiG1g6Cgq/g12Oi5/821qwWfqFuuhK78h+bG2XmR6LdiJyqSm +FgfCqO55ZrfFWqDvObGsqxkIrud2D4kdqYPBh2un1ncHAm+SqYTghToo8A85 +rpkVAEXC7T+P362Db5kPhp7bBoBmsuwck3kdnKKxfcB6MwBWROLl97rXAT3l +bQblEwHwI4UlbD22DiS0qPgpdweAwAUH0nRlHTh1Sx7hmfGHktRp1f6xOkin +HbLJ7PUHbVH1hGaqelhJt/WNI/rDRlrhvvKT9bCjws9TqsUfvC8K6mbL1IPM +sQ/8xlt5oQyf7HideqA+Iv7jerc/VFzaeTj0fT2IW+63WB/2B73MZ6beAfXw +IW3v7t9z/rApRixzyqoH0uepsM8kf/DJkuaybauH0vP5Zhv7AkBEPPat2b96 +MLhkbyZ6OABqspmbdQ81gMvqxwGX4wFgdMVe8L5wA5yPpRy8xx8AlLmTX+SV +GyBqt/ixqXMB4C9xv++KaQNcKt+9c0E0AC5gvtjZbw0Q/eGGYeWlAGgAAU/u +6AZQeBYZTN7Km+R5TzGXN8C53b0jJ7b675GiuE4z0gB+jGpulacCICjfOGhz +VyM8/Znbm3gkAMSkW1bnuBphycynyW1XADQVSKoMSTbCcc0PoSwT/vBcJjqG +qNkIXocblFmr/IG66NCeKptG2M9UJaMf4Q9hsnZa6NcI+9xn65tt/EGieDw9 +Mb0RWOt8fTQV/IF49d6B8JZGCKL4bjBxyB/MS9DYd7ERgg2Jbq/afgHt9dPF +Xw80gfKdBw+ofv6C8FJPDjuhJrifTl3kp/gLpOXIrywUm0A+bS7q4Y5f0Fn2 +pN7ApAkyjl16ZBjjB1Y3mk5rODfB9MKvg8Q7fsBQIeFwK7IJVs+LVbUt+MIf ++aguyZImmDTkFPzl5guylQdFRQaboOnBM/PbPL7Qe/Od+ynKZogyLz16Nd0H +3lSNjrFyNkPd55N0iVd9gOmWisx+iWZ4QltJ1VnzE+Kqc/wpHjbDguaIH+3d +nyCnyLu8+LoZNOf2+9s3e0N/zY/boz+b4W0paSlcxRtsbpMiO1KaoV77+tXi +Gi84UmdIWdvYDFpr1a/5r3tBolLDg4K5Zrh8JfqhYI4nKNSLp6TQt0Dh60s7 +OM96wrByxP6oMy0w7eHy8W6oB9g1MBr532yBG59+LAoxeQCrik2+25MWgNvS +v8kff0Bq4zDrxy8tMJZZbc208B2U7iq/tCK0wAEnub0FOt9hvCmr+klhCxwv +Pktxt84dHO7xnHrUtxXnJfpzgTtwtLjbKZFbIJ+LbDr10A3SVdfbZNhbIYho +GCN0xRXutOoLi15uBU7W112/jn2D6ft1X0+rt4Ir4YlDyq6v4EgUG2Z/1Qr9 +5v2KpEln4FInAKNXK2Sv/MEJohNkt9H77kpqhZ2BDUNzZY6gqvFm/l9dK+xm +5eZ6nfMFZtsHb05Mt8KvHT5r/amfwfnBbUI3LRFWBWYfWaR8Ap7OjM3600Rg +73y/HJ7hAHkPudWK5YjApDTFlFL4ETS6XP+mGxDhbt7Q2Y5Ge1h8tEod40CE +Y+zRNXfGP4Brt67e7xAi6PTdc7tF9QF4tWpyfuQRYePansdLp+2gqOci8+du +IvDKa2q2/XkHmtqhZq83iBA9p84dQGcLK710FSZbddV3jD2n+e4t/NCxPqF9 +sQ3cBo1YREmvQaC/30ZFtQ3qbUoecDhbQ8njWy3XXraBU9xp9qsnX4H2QNp/ +Yj+26jKPtAWnGkvY0OVyOpPQBmOqL/SbP70E78Gv/Zw1bXAmvW+d6qYFCOn/ +u8w02Qa96YezW9jNoWJIx4uKuh2u3F9hEdo0Az2Dqum1U+3AWJSqeohoCpvD +F+Smr7bDXGuN6nj1M/AxDA7u022HGbXAx0pdxiAySrPe9KEd6C9+n4jZ/RRq +jKzulv1uBy9hqwMPrhmB0VhvbFbOVl6Uhjo20AAon96kiu9oh3e0bM+n6PTB +fzxFO2S1HTjD8Zu2hy5cMObM9GLuAL6+rxFXBR9Dw4TzQafzHWBW5XOY2KUN +JiZLJjYqHXDIl7onSFoL9kxplZi+6ABVySyWypmHEPSs4piu21ad+39ds/9v +vO0htj3EtofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0Pse0h +tj3EtofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0Pse0htj3E +tofY9hDbHmLbQ2x7iG0Pse0htj3EtofY9hDbHmLbQ2x7iG0P8f+Nh/gfn4nG +iQ== "], {{{}, {RGBColor[0.6, 0.24, 0.4428931686004542], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" @@ -1639,329 +1637,329 @@ EozghCAkoQhNGMISjvBEIGKQ//8Q/wPvaoQm RoundingRadius-> 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" -1:eJzt2/c31/8fP34ho+wUTZIKqaRU5vVREV5KKqQ0tIxSRsMokZSSQiSbELL3 -zsPe42nvvffMKPHxPd6f7znfP+F7jscvz+ftnMe5j8fjcb/fb7cfLrvvGFy6 -T01FRaVNT0X1//yuXhPk//1nUz5zWpa//v+NL5xhjQlhqidFKO8MT8WfxvZk -QR7m33Xk6+moymrGs+gTlv1k1FpH3kq96l/erYjY7zf/1ubVkdplgl9nLynD -YouZnkRkHZk4S5ORHX8RCh+d631c60g+Ze6N37xVwUkVKUdjWUfmpfpLfBq7 -gvanhXE6OnXkh3k/pqlYTYQNdu0uvVBHvhTkNMqevYXnN/85iJysI/uPxy5d -uHsHp6u5llx468izOqnmHVz3wawgqr/AUEdep5XLHeXRRUP6uaYbk7VkxwWz -ubfWDxF4REchu7GW5G7Y6dx01gAGQa8T92XXki4Ho+i5Uo0gud2L/2NoLdlS -53mxneEp6BwTv4x/qSUF0z/vuuL8HFW0lVSqL2rJuq/TndPXzeBtNvw4+W4t -ea3Vo5tK7yV0x9a37jhXSy4p0DxySLXEsbu8Sq+P1ZL7q38uiIa+xnK9RErv -jlry1zT7SROvNyg5p7b/v/W1pJZNCwdHwlu4Zhl8jRytIe+PFtplztjiznE7 -mk11NaTz6/b035p2OBgWaGSSUUMKRXKWVQ7ZY56HbG8OqiHTlfkOb/3ugFyX -xvOEQw25YUKD2AInODDOpAWa1JDSZgMuVplfoPmKRYhRq4bMlIh7yazqgn3T -Am6PFGrIBXF9s5z5r5jSOUNXJVJDDqznynwY8Q2/Wm48Pb61hlxUuLzDydAd -7y+adnmsqyHbf5nHWRKeUM3/orI8WE2ytm1IldvuDR7JiIy7VdVk2GYaoYQl -HwxHFQgXplaTttfETh996odE/i4P4YBqUiH068W2B99h7b7I4PSxmrzd/Lxs -5rY/zrNwmfx+Uk2+6de5/OdKALjfHOm9er2a/ODb9l5LKRA9c0qXM2SryX2C -9us/SvxAlL52Ft/BavJ4r0hw9Z4gvOi0Omy7uZoUyR6Cw/pgnFX39B7+V0Xm -HVX/xNEWDI6ShI0qfVVkFfW7e0lhIWgFxSy+vIo8cqZnsVP/J0Lih/q5k6pI -jQHH03S8oXgquF7dwreKVFKq54rICQV8eHI7bavIidE+fTP1MGzYJCF61rCK -fKzFv/lgfRjqbFX9QjWqyKFkgdMRsuHwX3zMwnqqijy2rf0TnU84Hhl9ePlE -sIp0S91madgVjpN9AUP17FXk28PGz1XYI0CrmaEh9aeSbGLknpEUikBFRUO+ -X1cl2euWKvRHOAIestPH1pdUkj2XuepttkZAO4U5QC+ukvzuVXSFYSIcoocE -2Ms9K8ljSnW03dHh+Od/2lLUppLcY2FcHHA9HIVcN0Zd9StJm0d6LAwzYXCx -N9H8q1pJ3mY9OTxvEoZb674U3ZKuJKPZblTYDoZC6Hn4idy9laT//TtfhhRD -MTuU/0OApZLskk/aZOLxE9m3Ojd9mqWQWzZamvm0hOBTzd/Xk20U8uCeuX0D -7CHQUNwyoVZAIeN7/lmPSAaDP0PkZmoUhYwccgq+cD0I46JKpbvcVmLtRo70 -pz+QGnxf4o0VhaQu0DFqfReIdzusQvp1KeQB8a1umi4BuOTkseXcRQqpOE6b -Xevjj510CTbR4hTyvV4Rf1vwdwyYV0xx8lHIwyUvJdfF+CF+fFDLbAOFTDpj -WHPDxBdLhQw+ab0V5EPx5TzpL974GittbpNYQYpY/NwlmeAJYS9j9fO2FaSK -zu0TLl3uyHkbLLpFo4Kk2/1Q4twON1wzaGFpF6ggM8uN5QXvuWJCg304eKGc -9Gi68D0uzQW2p88WGBaXkxburQ1i/M7YJfwiQNyznLTVMe/55eOEhM3RltT6 -5SSF3Z2NR9gR55Z7NEukykntTSXag+6f0D2w9aQLcznZrebLpUTzEeZVypw3 -2srIdxlx2hUu78GW/mZib1QZeXm73SY75XcI/pFcOma5Et/dQ0uI2EDGYTQk -SaWMdFd5aWwkbo1aU763VrvLyI5Hh17f07OC/p0rtxWnSskilY07tV5ZgOac -vTRHTinJRoid+fTEHB5iWVubnUtJ9dNqAdTRJhDhmf0dcK+U7NGfDPA48gwF -DAeq9MVKyYFRwbmI38a4OXUrUoyulDy2eIjFe8EQv5td7JbqSkj37WJa4c8f -wz6vSLsguITsrR8tdDZ6iD1RS6cdTUtI6++c0zc7dJHqdpTnqmIJWfDf54CD -mdpQsdb9u3tbCSl6pXHHZ9b76H/oXT80VEzanw/wrS69i1dqVXFxacVkXaP6 -m8i5O9gMeseX9sWkQ0KkdJDTHYQLSOnL3Sgm8/r+6p30voMzHEYKLIeKyceP -721Q2nUXjX9/8NcvFZGbnwnbyW27B8PeJiq/iiJSvTl9dL/bfdBXsLbq+hWR -nkFas75+OvBJlk05YlREcg+9GN0u8wBi/mZf/5wqIhm61ic3vXyE0o+RRjkc -ReS5UTqtlwmGuPus+7x9dyEpGzzyTYrpCRZucgupxReSYjb5T3+UPIOjwnm6 -XW8LSS2pMvojS6bYL2rd1adWSD4OG6pljXyJjO1JGVH7Ckn5gOIbdk+soLZ+ -xMN0roAUP1nhztFsjZExXpNThQUkda9VmI7LW7xpULu8wb2AjIoznY8Leo+t -2XaHq/UKyAVDLgvzrfaIDiM3ekkUkLUfvwSOzzhA/utM/72NBeQS0+Wnirxf -0PZKMPdgSz4ZyGhzQsPaBc90b/rNhueTpTUTPvX838B0yfklaZFP2vMUW45t -9ECAZKHGe+V88qbCdoUkSW+I7/137CJPPpmxl05563U/UFhE2bdN5JFSvnsV -Q0/7Q2dee7QrM498X0AQSpcDsdTpWRTmlEf+876wJ8ohCF9LKD+e3skjPbIZ -uTQXQiCcsN5a+mge6S9h2efjFIZsH4mbdLR5pCmX20+Hq5G4+t5AoqIml1wu -cRKk+hmNCaPALW4/csmXGdXlFdKxeK/ZOKX1PJd0tLujc2I4DrvkWCoE5XNJ -7qt7bY/GJCD+0JmwKa5csifgoKu9QxLOcZvapg3kkBU7dzk3vU1B17qIuzYp -OaT58hfmd85pMB/uxHm7HPIutXJFQdIvsNVu2bFFM4c8PNieTJkkEZShNN92 -IIdMztu6axdvFmRCrGqCF7NJbp6vMoMq2ahxSog2LMsmXSpy0j/b5UD/xZC9 -uE82afhlnvlUaS6o7/PoURtkk4yqoz48m/PhoawqV4Js8j79oy/S9wogcvLD -bhe2bLLGTEozMbkQ+bsz/l3vzCKXpJotH7IX4+bG6ca9sVlkSsjXU3qPSjAz -sz9xzDqL/GgWzx5ZUgr7tutfki5nkScUv76TOlAOvkKnx1b8WWQBK4cFz8cK -pMbk/6f4O5NM4/FSOvGMAhXPv/s48jPJJkkBWWH+SvTZiNA0u2aSA3+M29dX -VeLV4/vtATqZ5DrRQ4OGr6rAqeGRpn8yk/R63RvDL1iN8FMV38QYM8k2GSvP -/spq2KgzDCzGkeQBLz1dR9MaxAsa+31WI8n8qKxshp216Fhs1uCdyyBbeARo -VclaMFHk2GPdMsgJf7bCR7fqIBUQVXRGIoMUF3npbfmvDrrPt1rXNv8iXzIF -T/9yr4eb4hsJHYtfpFgw02vDYw3I3TE6Nb/rF+km+aptsqwBM+PqYXaZ6SS9 -qFJQjHYjeHMy7+64k06mSSw6H19uxDlXoR2RNOmkGrvg1b/fmvBSz6UGP9JI -+mvX9oUcaUaI1JJ95dk08m3fiwODpc1oYNWVuzuQSha6JPObPGgBbXflv5kP -qaSpuEjz5o2tOJYomfjuQCo5s91io2tUK7Q+/HjMXZZC+l/4ZVCl0Qb766z7 -Qx+nkEXxxvtc6duRftisXZIthSzbsf5DcXo7Bqi7v5XFJJOKgYLNP6U6wF13 -TuXW5WSyUZ6rZ6NvB2R/JjJMziSRN4uu/lpa34mnL3mzrF2TyDKeWKo5o074 -XbAz4zyZRB6/9WpKp7sTpXwzR4IaE0lB6Bz6da0Li79vDJ14kUhKb7bU123o -gkBRgX/RjkRSNpf1UN31bmh4HdHUzEgglzmChQwHumFj4Llp9FYCufHB/KjX -ix7En15f+mpdAlkdmjqQtaUXHZsNbNgC4slod2YPmdReMA02SPnLxpNcpqGa -utp9kEo//ftoXxwZKNIq5L69H7oO4RF5tnFka69LM19TP9zubNG+IhhH+tuk -C13yH0CumNWuweJY0tHQ4tHjp4OYYBiqM9ePJRM1dwemqQyBt+WyAxNLLBm7 -tyPu6YlhnIv6Je8TFUP+vtzRVCwwgpfW+6lELsaQZiyaouP8owhRc0rOmoom -P206s49ReAwNAn8NL7tEkxSpyfiTMuOgXbwn2CsWTe6qOcJUcnACWj7eOaOR -UWToxHjDtuwJZMoaHWOfiiQF26d1WK5PgntY9scxsUjyaciJMf+/kzB14t6i -YRpBuqUZGtT6TYFyYuTdi7RwUunKXICX0jRE2sg5n6UwsmmDWOrQ32m8t3HW -zT4VRu7/oKwaETODDiGdxl6bUHLMh3O+XP83iEqJ/xgLf5IbPdUPHj04CzcT -ljThjT/JhFTliylTs5jf2XVARTmE/HJj0kXm1xxUchO8njgFk0f5gxU97ecR -/eAD87eaIDLnBvemQK0FMLDfeJXKFURWvXMTFRL/A60kkfHWaz/I4sOjG5c2 -/0XmDVqtdT6B5LqT9KMDs3/BTdtA4e8MIMOXaA7FNS/CNDTslAJ/AOlirqyw -N/cfKCqWsQ91/ElZJgXG9dFLEJm7tMch9Dv5MHhsK5fvMt5773OJHfUjqY+t -j3RQoCI6zvyhrRPxI+15L32ZzKYirGo8h6f6fUj2LRV5TjLrCJHdZ8rEH3uT -xLtLLRfT1hETj4YirWY8yfDdzzZzilMTfqlOjgXmHiR1h6JNahI1oUUvbsyy -zp0M3SRmtv8EDcGm2nFZzfYb+cvihZV0Eg2R6Wcr5sXsSnJfNuPuOEFLWI0e -4up2diEfGQ3unUxeSZEk6uYFtzmT7KPqXpcl1hMT7yyaDP2cyLrCJ1ZDaesJ -v2r+9KR9jiTz7S1X3aTpiEzCTfLf1U9kzvRmAiQdwdvUt2SnbUfOW9MnZhL0 -hNUTsWzuJ7bkM7/ys0tZ9AQVs83bIEsbMjauxaPuNAOhFVSlcMz+Nan/iDFQ -IIeByLQ8zW1zxILkZzTaVnWakbCKbffx/c+EDCu6LBOVxUgQvS/3pt01IovO -Uv31wAbCSuSYRsSCNjkmktT3OH0DQSXcWlx4RZ2Uvn92nubkRoLKqiPUSYoT -AiFH1URiV2JpcSrNdg38iO2+WyzERFid7DJ+Lq2L6QQ7p+DvK/FgdazvemMc -/3bkp9cWZiIz8biwzYgJBj9el3n1YSV+4/5Dt9oCydOvGHb/YSasBF457Gt9 -jRv527dp6rIQVA6HS90oNhjLELq2roaF8PvdwbAx1xYvOYNjh6VYCd7rX+Qs -kuzQ11kfPO3PSmRmn7EeD/2EwrPTP/5QsxHRLubtIhcc4b1wW6FflI2YkK/+ -N1johG2RlXdEbrMRxN8DOwJOO+PXtankwk9shFWkjcT1dBcMzfvFBSSzEZTb -rRqbj7sivbcgLKmTjWDbfNykPOob0l4sRCwysBNahZ+/2gq6o5KlKk//EDsR -/aI/jgjwwJUZfiraS+zExCGiamGHFwbc+m9mPmEniC63iVhXbyhqGnR9d2Yn -rL5Osuiz+SKuqX78Zww7ocv/w5VDzg80LM5VzWXsBMOryr3j677DXuE8j9TA -Svv1/+JLMr6jdHOVC4WKg9A4IiQb8sIfGo2/W325OIh5O/Vqm5MBsNysohoj -zEH49Vjfuf07AAmFjgNMBAdByERNSscGondTOUvqRQ5i4Fuz1TaDH2j7qvA9 -8zYH8X6Snm3uQBAKWApoBAw5CBGlY77VA0Hw/WMyOfuSg2gI1DoU/SMYGxr4 -jxx9z0GYLtn/sr8Tgu88Na6dThwEr0bKOT2en1jvWde23oODyIzpbZZr+YkH -NP9Y/P04CN2NHA/53EPx87+3vEk/OAiG+zJ/ltTCwD6z00/2JwcRnfHgQzNH -OBLP67krhK3Mj/sbd3JFOHqibXzIlXjeKCfYxT4CZ6yWmX+ErsyvZPy4kWIk -HOrChaaDV+a3d0f+eboo/Od+z90/YGV+rxTUhHKiYJ2olxbmzUHI6ksY0xDR -WB/3j4POlYPgdqekGPlE40WHT0yIPQcxkqe9rmMxGvRndJ/bveYg0qcWFZQ1 -YyAyM6np/5SDcORxdkxPiUFp4q+Y/vschNY5wQYh7lisu2vAeUmNgzhmRvK4 -P4+F24P6Q02nV+YXpKZDXxuLhx8fjJodWnl+VcORz47GQXhA+JIwNwcRvvx6 -ttspDux/xFpGl9mJl8LcMpcm4nD21JOu9F52QuVq5NtM5XiAlu6zexE7wftO -tuxQRDyUQr6mvw1jJ2Zimzi9NyaAe6OO79uP7ERhu+H1jQ8SoCMr1+arx064 -MdEHmhUmoHmT2lSLHDuhL+493L8vEVd8gu3ledkJKe2jR9XfJuLNjwSfkfmV -79u5yDy3OxFXXSeEmyvYiA7yVrbo6ST8Eew8zP9jZT2N/Gb87pcEu3dO1k2m -bMT7rfYXWZeT0Jh5dppDiY3QOMvnbnEjGdP7bgR1b2cjBJ4kdwynJQNJaWqF -dawElZ+ywLVtKRiOEyy99oSVoJT2GBSapuDTw8KlGGZWwm/BPOl4fQqydj29 -Qx3EQhjuY18OFEsFaWke81qKhVC4HHx2k0sq3Drmz+hUMhPcVtKfX0+l4o/n -V5HBe8zEQHh17bhKGgglMUfpOSYis1Fv582oNKifjZ1wf89EONJR3S9lTkcn -neVb0a1MhNZR13AJ/XQ4/Gz4I/5zI3FSS3gmpDgdKkt8Fh0r+x3Dp2xJLsFf -UDxzhfFK4QaiIUXjzVvbXzCPeitZdGUDEdI3Vjzd+wuGxuLSt/tX9tdNbznu -yGbA0Ien56wJI6FCbL9G8c/A+5vdPL70jATvo5jvMutIJArynbV3YyDm3eUH -w2+RkGeN1DgoxEAU5reKbM8gIRws8v17Oj1RuiCeLsuSCcmlwWpqFXriGNv6 -jhfSmdjWvfhOr4eO8NtHoYnTzwTLTvnzI2Z0BIO05/4hz0wom6uG+LLREYaX -tZV2l2Qi8/fnJ64h64kWvSMGGn8ysVVPsabz1HpC1mrxi4NgFkovxlR8aaEl -wl0LEvM1shBJV8+RbEpLcEZ8afpnm4WGX01zt7asnG85N5aOJWXhX3zXHbcE -GmKgUYBPvy8Ljexm1x6r0xAqE9NyAZuzwW901mdsnppIpyP1mmSzIXJfhH+v -NzXBv9PuE/vTbAzoTvnwnqEm7I+qxSgEZEN4+zDVyNA6YkaRt9ayKhtbk0vM -nV3WEVpaw/OJ63IQ9llDYg+xjih8nrhjTCQHAVIGsUGjVITIp9fEXq0c0H77 -OSfgTUV4BZy7d90hByKdjifjlakI2lSu984ZOdDLqqJWo6Yi9CldYcWjOVAk -uYb3Gi6jpi+iYt3OXCxVc9mOtC+B+Gc6ffJcLs5EKkxvVF1CyCZZLsMXuZCg -6e3+XPoPbEKsksGhuVh4f9/qpeI/vCSabrY15mKn9hOFhuJF9Kj/sN7MmAeN -x1xPg1QWce6RYdC5k3kYHFuv1NH0F/FvJIvf6OSh30bdzkLvL3g96MZSXfNQ -Q+wOMlr8g/fRlexTeXl4fcxnLNT5DybyvcQEf+dhu/+/fxyH/+B6q85VLf58 -JCTu1HQoX0DutKjFt8v5uFrMG0djvADhDUt+5db5YJycu6S0dQEuvEW562Pz -MWB65BNy50F1wmVAqjMfOTQ/jBKN56F7/hbTU7YC2AbvV7PmnwflrpBIGAqg -pBb5wrhxDlLmvy93PS7Aqb0Mu9Wc5hDomGmy1acAvuzv/s4rzYEp+KOnSlkB -nuVb5exjnMPTX+qk7WIB6kVvRoUUzqKjend3xoFC/OgKl1K0m4XC0Ajd7LVC -iLHzFleen0U0VbLQQbtCmIf2JDJtmsUOrjfK91IKURQ8XZbf+Bs2B5WNPQcK -0awzr1zx/TdGzmx1reIqgt0NiYHpB7+heq0nhVG+CApLn7bTif1GpmFUK/G8 -CMi4TdO0PAMBW/N1pj+KwLUh3EeuZAaO3nJ7o2qKMN1MFcz7bQaLcWyKfTTF -OH+JaUDh7gzuFTfr7zxajF7y/jHfwzMo7QhyVL1TDOdGThaaxWkcmzOK/+hU -jD6hP7JXC6fhxyzdkJ1ZDPv5RpcPLtNg4GdYXBgvhpGOpecrrWkYSlTzHOEp -wWdDm2R+4Wm0qPic0VUugYIUk+ujuSnI6ujp+FqUQI/lSMW57CmEWxz7WBde -gi1impGJ9lPgdFmOZG4pwTvj/xQC1KdgFVpcJbuxFHfyasHMO4WBzK+zLyRK -4SKazj45MAmVeq1tcXqleOUWeeNczCTSRw/IDLmV4qC+M/Mes0nw087d3l24 -cn/G+0VTYhL227LfasyVwn97vOgl+knMiHz66bCvDB925h5KLFupT+Q1yvLV -yhDTHaYc6TyBwht7Jv/ZlIHueE6S3NUJiDwd4xSLL4M0wVxiu2sCXnYpJ/W7 -y9BwyzR7Q8FKvfPd5noARzk899xU9FIZh37SBaumU+UYKyt42NM4hpqybYHs -RuXwYhCPpr87BqKnt0DBrxxVpny2wiMr9dSf6GHLinLcc2kcMX82Cjb2l6xJ -S+XoDq5J3bq8Un/tlz86drACU98+Mpz4MIIeaY4re29UgNNq3Z7FTSM4p9pq -ft2+AsUzYtNOvsOIfxDi45xWgS12Xgx8wsPgff0ku3ioAozFL2dqUoaQq8Qz -TcVMQbxDdHulwhDm62jfevFTUPB26Kdk4yAO3RnaclKKAv0PPhoSDwdxZ7Qi -pPoyBZ2uWvSjSwNwNU2QMHhIgbI7S7ShywBKaTxLN7yhYIw/TKzjwACoHKxu -BnlQICawR/JyXj+ObdOeOBVLAaNl+mKr1kq9+kPJurWIgnAV6WMOS33wETnC -adZJwWv3d/tMffpQlbYliHOBgjLunRl+RB/o5BdPRLNV4uZpQUeW3l5IVXUW -KQlUonZh9nTux14Y3ijQ7Ecl1gfS7c461ovAgfBR6yuVmJqmklzX0YOGJ18s -dxlUQlnsPNOLTz1gWTZhT31XCaLt9D9B6R6ctrsRoOZTiUedO+qWxrrxfPMZ -scmEStD5+DMM+Xcj3E+gwL6sEmcocxeaNLrRcYDlqkBvJfbZXk1LY+sGZ9L0 -UM5iJXZ0Bpw1Le6CwunGl7c4q+Af97n099suvCrLYPl7oAoL33fl8J7pQqxG -oJ/rmSqYVTT/aVrXhb7uD6KimlXo9NhFoc/uxA4Dg9wy4yrYd7TQ2b3phMof -VXU9uyq4/lc/d+psJ2zeSgzQ+leBubaAi3VDJ5LZeM39UqpwR2ZjRkV5B8Y8 -1zNJVVYhIeCn412XDvDtH/auH6iClZZlaNC1DqjHUg4/oaoGc7mtx7PdHbCX -Tsxi4a7GtaLJxKuV7cgs9Lwcerga5y+eXb6g1Y6Zy6975eSr0TS74PJ2vA0C -7domnTeroTQ6Qka/asPNB+cYLZ5XY9b60EMn5jZ8+X3Ek/tzNYJNTIbaPFuR -b8V1MP5HNeZstxSoC7ZiceO/jAu/qvHmYNerlIQWiHzrUhmuqYbd0/hjJUQL -7vEVdr0bqYbf3iYO1eJmuEVEPOWjrUH0L1XwXmpG+UlnuoztNRhwqJWnb2gC -da6p29WjNeA+cWtPh2YTjl+4KfT7vxoYvI91+NjaCP2mM+mOd2qwm3jUO3m9 -EX73BZWFzWugxKviRdPUgJoJlo4CpxpcOZM3l6zaAIaXM0Z3f9Zgeppbh6Os -HjL0TTTLmTXQPTCtuftMPYy/kF89GmpgF7TuwGxiHYJ3/th/fKIGWZyC7ZEC -dWgOsUuppK8Fy+WdJU/casF2zFDpEU8tqo9Pmz6lq4UsqdbKcKIW28+lvx4y -roHZf5IGgcq1eJKN89xt1Yio5V1HaNeC+4ur+DmFanRp0Tk3W9RiIfrJv7qY -KnCNDPObfK2F3t4Ijk3bq6BkUpnIEVGL5sK69Ns2lbCiTlKIzK3FH9kULaGx -lXX+yatJsWVlL7V7XdGgQcEgt7V+73Qt2k/28fz6UIGdgTpLVhvroPjwl7be -/XJcOnzecceeOoi+9cr4LlcG21RRvmSJOmRbbaRoHihFmhx3/OVLdXh+3XP7 -F64STFD+yY3r1aHv8sgxyY3F4L/eXW/3ug4Xnr1bf5G+CFf7C/X2udchXDKR -pYSpEJ+NI/9mRdch4oTUuPeOAmT/c/50o7AOHF/3VCScyMfcezOehfY6eDsb -Zs7fzMMBzlsxLnN1CPx9PFvOORdavrJnRFjr0UeXd+lhbQ5chIRqS/bV43Pb -tl7hfTkoSmDV0ZGpx5z6wQDZd9lYIn7PU6vXI9mfc+ut2SyIljbZ+TyqB9ez -h4obTbKgcyVzh8Tbeiif4+ovZsiCZ9ePyFqvepg/+vOFNTwTlEcfCaP4etC9 -4nHmv50J2gXDKqbSeniy/mtTFMiEuI36vZDuehBvHr8LXJeJx6xSs2f+1kM+ -+eeLl00k/D12v2/naIDS5k/f1tWRqN9Lv+2FUAPkjDmHn/0msTFmJGzL6QYw -BT3227kjE4RUlXTs1QZE6u6/mqaciacFSRXnjRqQs4P6Bt2XTPy85H178H0D -8r68KFTvzURbq/W0jV8DXvfU7u+VzwKHnu5b3uQG+G2PZy1OzoL8zHmu9IoG -DAWqX6Q9kY0Xlkd/XulvwBYJpy1mWdmI3rBVcnqpAYtSUwcm1XPQ83Wp9POW -RlQKf5bnm83B1t09N4UONaIsmK8zyjsXyuFFE3lyjbAb2Odx4FwerE9EWd++ -0YjrQexCW6nykZTtwvnvaSN6n16pmk7Kx/B58yA3+0ZsiT1kc8S4ALyNt04e -C2xEjiwvq/zBQqjekyuuSGvE0em8C6H9hfgwLnT9YXUjTtc+T2jzLUKGOdsY -3XAj9joouxuoFmNq/aylP/XKuufqnZyjKcF+p2Z2mW1NEETDlEBECTR3ZAU0 -HmnCYV7Z0lLlUjgGB4k9U2yCHO2HT8X9pcgVtS9gu92EBEep6/tNyrDwy+hq -uGkTenVpUjkWy3BI8cqwvGMTAm52LLc8K8edGimL7uAmKPGV71juLse3W3ys -lmQTJjjX39t5tgIlQ/Tft9U3oSO38C29VwWono+KJo414dBRS7aU3gocW1ed -e5GuGRq9iXTh7BTo2Serj+5sxtdgzhAvIQp8uHwG3os149UHxd/D0hRU+b8x -5z/fDNevqh+HlSigP6THlHmvGXKyJ6uWVSmQTFH20XzZDMbWA5I+VykwlD0m -MufcjHruElOlaxQEVmzN/hLWjKVWN4rbFQoary1fPpTTjKtlDHH8lyhg6evp -LWpqRtgpDTmX/yg4bVRscn+qeeXcltd3PkWByWIU47oNLRDvVJmqPEFBmO1X -T6/dLZg0jSymOkRBB8eLgyfFW2DQQLyoWMkbOH20yGqVFuhtnaoa2EGBouDZ -iwa6LfCtl3s6vYWCV/EHujdYtSDp3KZiu00UxIL9WdC3FrB30dRgJe4vnqU7 -HdWCi1fWGbmu3L9DvcWtNb8FquryN2h2UaDSmSVk1tYCnsscr4YEKbDRD07n -nG1Bdax8g6cEBSlz9srRzK1IyOro1VBZyUOsjTuU9rYilEdFWnElT+Fj0TDu -l2qFWIc51+uPFFxxl6Z9o9qK+Y8uLMvRFNjz73Hdpd+KX6n63WHNFGRGMQik -vmlFuZbXl2sbKzEjMZaitnKOUcb+oy9cyTME86uVJmNb8dUnsdvHdCUvuZjS -al/cipukosSTlbzhS4uPgUBXK97c+GNQ8LsSBTo263IXWtFBkXZmEq/C4pSe -8y32NkxvUxsPeFUFkVcX9v4VaMNy9B9KR14V7jGKJbkSbdizjt9kA0s13F22 -KYpqtCEgh1Hopno1ynmomssM2hDGKGbM7lMN6rBefT3bNuTp9+qq9lTjxPGS -JVrfNpT6FG5TFaiBfla0o19iG85vj/otpVcDv3OufFLlbRg/07ZNOqgGNfUv -4ut72+C+6On7rq0GjHdvn33yrw3B/HI0quy1kBk728CyuR3qO80N+qRrYWwm -/CBUuB1+5TnsH+/WIpiWY1FOth0buGnlvF7XosVh7lOnZjskd/GbvPm2cv5t -b+WxeNIOS83cttTAlfMvKDuG+2M7KJZ8f8tDamF2JORMvH87nLr3NN4KqEVk -+qfaC6ntSJJT2MrnUosu+Sc6wyt5iYnlsbh281pwVWssvBtsx/naN09Nr9Ri -32FfOSeqDkiXe4p3CdYic8aJ5RZTBxgTVDsEpmpwLdWmXpi7A15X7vx+FF2D -GUsTvz97OrDhpOWugXs1cJB7oFd4uAOndjyQ7WKtgeDGG6Kukh24npNrlRpT -jVzKhb935TtQ1VRa0/FfNW66ns49crkDtDPJkbXNVZjXFPu0fLMD2nFisgL3 -q/Blt4B62YMOiDOxFT3tr4Rw/zYez+cdED339sOduyvfQzjzgK51x0o+Ojf+ -vZGC28ZUMcc/d8Das8NiaGU9Lp6YNqP16MDnx+mWkwYVcP3Xe7rqRwcWvDvf -c58ph0hOw0a/mA6cfvBNvIStDMXvS2oe/erA7mie1vdNJbinnOEtWdSBzmVb -8ZLvxVjeFKPNWNuBALn722l0i+DeGHC4vqMDt1SO7v16qBDHfF3nA0c6wMXn -OVQ3m4/yex+yjOc7YJMufpMpOw+6Qi/tCNpO1AaUu953ygX1xOPLLGydYHxO -P754PwfeCbd3tGzvREPns9e1RDZOvFDt/bm/Ex5WwVRNfFmoJOQjTY524l5f -02AzUyb06SRM5NCJIf6uXfuWf4GuVJjYpNSJnSZ0YxJzafBz4mHsVO8EQ0+V -7j/qVEhc4aiKvNOJvXsjtp3dk4zaHes9Xz7uRHO17EKaRiIMuubu/mfeicH7 -pdbVAfFgDBkS5n7XieX8LbZ1tHEIfNT6u9epE/wie+J6XsRA5iglI867E4rn -nzybZYhGw3y27eufnRBqZO5IvhIB44wElQsJnRjVUpz2KQwFs03I1p1ZnXi5 -uLGx7G4IghU9u4ZKV/Juv3NLYgJBOMX6OSy5oROGPO8OBHAGoqXG6um7nk6k -ff5J+2u/P557PJFWneiErnK00uItP7BpadPxLXZiVtSe45uJN0L3Xq0Yp++C -++Z0F+YnHpAbVnL7takLnALB94civ6E9Wub2R54ulDIEXgjY/xVmz48IXT3Q -BZel9aVhjV/AKcU/ve9EF7a4lL81yXJE5Dqu9JnTXRB3OWJKm/QJCgWMb7OV -u9Cr0PoiQsEOXfaL5x2vdeFf6yiN0BFbWFwa33JTuwtBH0CO6dmAi7ur/YBx -F35xafdEjLxGTGtNyIJFFz4KPcpO17bEuYACo4IPXZC+IbztjeEL9OmmSnz9 -2oVNXIMz5cMmsDoUQXP3exdmQ3cy3St/im0zvqUiEV2w/7jzfQSLMeJTvnxd -Su5CxwezKEt5A1ywfHuzNLcLgW6hn2M2PMSQrOl+D0oXtl2xEEm/ogObDQ8n -dFq6QEqVRSXw3sMuyo0UsYEu6Gl035/TuI3kryrWNDMr/Sdcs38zeAOXNM8o -VS53oWyTbdlSzVWM8B7n9N3YjaWQ3//F3VaHbZ9Aqz5XN2z1pDmfW14GX/j2 -IIk93fjuxLtZn/ci0o1YDBgOd6Mi0WzplZEy1E+sO1kn0Q07hjd/OCyUMLE4 -TRV4thvx2oyWZpcVYZfdV2R0qRtxobYn+Abkwf9+5aXc7Ma2vLncjiPyIM+X -ajI/6MaW1w1DhULyuLaJ5G9+1o2YmzaCzBR5zDTEjIa87gal3+td+25FfPYJ -THz+qRuqM447VPcoQeDeN0tZ924sF6Xl5TecR7agnQLHj26UBlGL/w1SwfXx -l+wd0d3oLv++mT//EubiDZoi0rtxUvjDIQcVNXwxvxPworAb47DyF1TWgDCh -pq9Y041DN+22zxdoIn+9ghhXRzfkRYqTaQpvQatEYqlnuBui3bPmUsJ38Mfx -YEHsXDekDlOeP8u5Bxd1Xkcrmh4I0h2RNYjSweEdm64qs/Zg/suT9JTZByju -XM+3Y3sPBGyit/L6Pca94PmhwX09UGNgvax41QhL+sNxSaI9YOeSvGHl8QRu -om0v38r04Mru6E3hW55DdJ4id/m/Hqim9OoZVZmi9FcOy271HpTv0mJWpbyA -zpvE+rHbPfh5dizq3iZLUCv+9Et/1IOUxYLnJy68hheLl56dWQ+c65mjp8Xf -4HjNZ1GNtz2Y3KPiOPLfW1DcX//d69SD4k/lLwetbfHg1tPcaa8e1EvaKz3o -+gDavTqfskJ6sHRVdb2Pnj18h66qO8SvjC8thOoatwMkos/x3MjswfmJ6hyG -OUfUPMOAUGkPRukddvU//YLHkqIx8/Ur46WX/MKx3gUM6/aa53f3gEjnofsW -9BX++VxnXMZ74Nd9xuymxjdI2W9guvO3B1pixX6T3O6ov/iv5jB9LzbEUT6E -9HnAmGvC+x9HLzyd1rF5k15gau3SLtnVC+FTb2+Hf/dBkH/tYXehXujH3syX -kvMDoVs4r328F2d4/n1OlvyOpoNpWcdO92LsxXxfn6g/nk1H2FEr96JHcW7n -BcEAsKb4XaZcXWl/6EbN/Z2BCH3lvMPn/kp7BjYUR+YfkJV91/vQqBfTX7YQ -B+Z/oI3RLFLcYqV9j11X7JqDYFrx0IT+Qy/a3T5KUicGr9RxN4lal15QsfsI -Dr8NQcS1i4wBfr2g3eGbFqT4E/K8slWG4b24YRgt/WP5J7p6j3vKJPdCYvbR -7wdBoXgZJniPKbcXXKaOsl+lwrDFaMfBpopenNIr/dSeGYbo46yzwc29K3l+ -ac5+0XD8t7iOfNbfC2jd/mjsEI7erBnbM9O9YItqah6rD4elbb8K+3Ivindm -b1jYEIFt55u2tm/ow3dbvqM7BSIQz1HWFb6lDxTu6GHuwxFQbiDDzPn6cPJu -wekWnggMeMc+VTjUh6AfjH8//AmH9d0f0lsk+mBNrUpvQoZjp6AbXY9cH/i5 -KhQEDcKRNGZXEXOxD/vvZH1V2xCOS/EWbpY3+lBo/XlTq1MYRswMb5/X64Pu -3fzJIrowvMNdoe3P+uDWfPqb0oNQ8K5Xnx6w6kOy/qJq7K+fSC1WSE+078Ov -P9rxD6h/Qs1R8q2NWx9c07JM58VDMK52SPlSYB8MNxQ/nLwfDLvtu7l4o/sw -KxHOMm8bBP7OTR2jaX1I2tUpn/j9BzKC6H6mFfQh33xgb0N8IDT0F4w+VPfh -bO2HMrqcAEwdGZG40t6H3+fehHSX+ePTXBvN3uE+jE7d7qep/479vypLp2b7 -Vt5PmvZIux+yrXO/ZlL3wzH06YYdNb64rpB08zNLP4jP04M2o96YZQ7df31b -P4LM5XmcWbzgWO01IbivH6T9w7ufxT0g5O6QMnekHz6pkVJvDN2Qd9PaOk+6 -Hzkj4TVEgitu8T9Tclbsh5r1q5orjF/xZ1CH87ZaP6B+QWLbY2e4RF1rPXS7 -HxYtxlxePU449Ox80KJ+PzSDvfgSHjmiUIIwKDbtx1yrJgsd52fcoTp60s2m -H78GtsU0PPmIf3l712k79mMm/cUuhb/v8e0jd/FRr37YPI4ZvBb6DqIXNzqv -C+lH6f3rhZlWNijdsqRZEdePj6UL75otrKHdMsHvTfbDq6AFhX5WoPLvHn1Q -0o83loXnKikW8NCpSzxZ349YhvumDUHmEDtYZEnX3Y9n9O5fYzNNUDGVplAz -1g+O+6zUB7Y/w4PkSHb/P/1Ijiw70hJrDNpX35sM6AZAfcmrXcbGED5nXAKk -OQZAWYqgMuR6hJOMtvobdw1A0yAr+7+PeqgqNxNrFBwALFMKKq9r45GL/lKQ -2ABY9Zu8e2zugv7arYKnpwYwZdHzzGFRC/48lxxPnx/ABSN6c1HzG5Dqlb3K -dnUAharch3ZZXUVd6Am+tnsDYOTVzvBYUoOhodBwmOEA+nmfpTANXcKG4zvj -zV4OwOJAePqnEyr48ZfVQv79Sn8pm4u7U5SALOqzm10GECheVO38XR5N736z -dPsOIO5vXGAupyyenhuojw4bgNKuKF0rmlNg4Wj2e5U0gF1Jx30NMqQQUl+m -dy5nJe74p6QrdhKnvTNFt1UMoEX+RSKz6jG03on72980gBkTmVNjtEdgIhCU -m9A3gDQz8+FkPWFwjLl9ejM1AHGbqhP2P/YjPO6j+sWlAVx2Tbyz2XcPzpq9 -4uHZMIisy46sgZK86JAxGhjZPIiM3PqszwXbYE57LyZ19yD+5TweWlq/BZuL -1c3fHxzEAw1KfA8LB6IcFM+oiw8Crbcvubxjxn9qUkz8coMwUq1z6mFjQM+2 -w7WTKoNQOEknl/aZBq86dvuQ1wchyLSUeCdmWYY7iFPnk+4gjh462nDBY0Em -9iG9iObTQYzmnwng8p2ROX/kz7yA1SCM7d1arzhMyPTPjmTNfhzE8zd/KNkN -QzLW6e12ud8GsfOvx51Lpb0yO6yrLn8JGMSu+/r+6WGdMonyeTu0ogbh6fiG -mamrRUaFObn3YNogir97yIVP1MsMVYVG/s0fxBLzx6vqSjUyb928TYqqBtG+ -5WfUckGlDM9NR+Jb20p8tPq1vCJFJnXPG8b7Q4MQppVpZHtRIaM6+KxKdHYQ -g28mdeV3UWTGInU9qaiHMLuYsnvJoFLm/VPNe+XMQ3D/fKId2dUyfBLKB722 -DuEZtcVncZF6mV/LxKze3iGMtjkmfe5slrmSd5Q8cWQIKdS2J0rWd8pM2e17 -v156CI8PmhKvFnpk7FW2XqxWGMKMcLNCdvegzL4tTNu+qw7B8jBrSzBlXCaz -eanrsdYQ6s56V8dXTstc+z4ZJqU/hJGufc4ffOZlfmv3PN1gOgSlDWzhyRZL -Mg7C9dINb4ZwRJ43V6OaGoJTRXRBDkMwHX1tf/0gPXKT0iueeA7hqmhb8sEn -TLhpEeV2KngImqrXxzJ12TF/2v82a9wQHDanlB+S2Qxnhq9CrRlD+E+DGKBp -2IqD5bbTocVDyBJ/2kV/lQcFzubppnVD4JGXMHKf4cPtq4/enu0aAu80L+vu -5n1Y3KWlzDk2hHMXrpcLmh+Aa88lrq6FIcT+Odr73UQEIqFyHVHrhzHGVnpt -MOIoSgxO/rRgH4aV9N8n0cYncF/sgLHSzmEcPTH5a75JEst/dkpuFRyG16bp -4U2WBDwy2Wj7jw3D4PTGW1tenMGxdzRl8cQwjA7yZlHGz6Jcafar9blhsG8c -YZsZ+Q+67IM3VTSGcW3B08bvzQXQ1Dfv33VvGM8/az86fvcSvL3KJ4YNhvFL -pO5J/D01nLiTlZLyYhhZI4ynmCs1ULU/3trWdhg9ar1zKXHXoT8apKTmPIwF -P450Q3st0MW5c+7xHUbEy7auH3R34Wdq3zoROgyFW27PBCruQ1LGMigjcRhM -b0Zedo7oopbG2MA+e2U8e+7oD2rrw6Do3slr5cP4wHN0UJLPEBscrqwTaBrG -7i++u3TPGiNQ9b/i373DK3XP/v2uAU8hs03aOWdyGKLLrNYXpU3Q0H74utO/ -YeQyK4fScZnjyQ++vbcYR+DmHL575qgFmB9uHhPePAL6w0PCn5SsECzCkPSH -dwR/hmIvfd1tjdOzfywLhUcwtjgeK7HTBi1powquJ0cwnpLb9HDldH/+uoP9 -nuwItNTVH9a8fw82+eqmIyoj4Cs2aK1esEMYU37AsuYIyh2TXj398glyVcn6 -ZToj4FXJ1D8i6Ij2b2Fink9GMBFg2Grs5QTzGz5LupYjqDETeveQzxmce5wK -jn8cQfOMcrNyqgsiB9440n4bQayx1m3Ou65QiHx+tcp/BIUezb+fbXdD9xM9 -Pr/IEdx72dU/1ukOC/Hrw49SR5D3xPt3WrwnuJaV4yXzR6BxdggtTt6IzT1l -wVg1Aq+m2VObTHxxzu7Y2frWEZyt6hn6He2Hvgv7WX8MjuDCg1UvYrV5W4Px -7xF0/M+TbG9m+k6sG8UOiVVvkuC3rMfCPIpdhase5YL2lGgL9yh26q56laED -vX9/8o/CdnjVs9hM1ueaiIwioHfVu+xKKv4kJzWKhf95mOSXv9Q3KYyCm2nV -y1w+Hc3TeXkUrQqrnmaUPmAg8tYoxHVWvY1t2deYlw9HsYFj1ePwOb83/89k -FAlsq14nXePFGe43o/B5vOp51Hc9Zur7PIr9r1a9z0S3Vm2cxyjun1v1QB9/ -XvZ5HTSKKe9VL7TX4KzOhdhR7FZb9UTkMXGRnRmjUPFY9UbX/hxYGCpaiTeu -eqQZcld2cu0orh1Z9Uqf37J/fNc5itK0Vc8koESrqjo6iufbV71TDtvcDr6F -UUikrnqoG3WDveO0Y8i4veql5jxbIn+xjWFhbNVTfbldYfJxxxjizq16K+H9 -2cRVgTFoD656rPyReMb9x8bgKbvqtbRig6tmMIZimlXP9dfEwzNbaQyhx1a9 -11fpT/ccr4xhd86qBztMY3Xw5t0x6PWterHiQuPZAwZj4BZa9WT3Pt8nF8xX -+vdb9WZLlzXeF7xb6W9g1aO5bVW6+PXLGGRbVr3a0XbpbXd9xlbyjlXPVhYo -0i0SOoYHmqveTefBnvClhDFUbln1cNQiW56VZo3hWPuql/P6zSDjUTYGGXLV -0x1P+0un2zgGu/9WvR3FaqxCrHcMXPSrHu/h2U43mskxyEmuer31TDW3KxfH -oCy56vl8K/OFfBnGEfU/7yfxLWVan3Mc3v/zgDXXw9MleMeBi6te8DGf71sG -4XH0/88TMgw4KdedGIf8m1VvGBBhwxV4Zhyvx1Y9ovQTkw6jC+PYabvqFetP -PvgJzXEwzqx6RuOl68bMOuPYULPqHZlyL0g2G4+D/r9VDxn04TTtz1fj4G1f -9ZLEBbGy53bjcHZd9ZTNnAKusq7j+L/e8lnTtlsc/uN4Ur/qMVn9mAU6Isah -cHjVa4bep5qMSBnHseZVzyl7YDrlRd44rM+ves+2iV5rxcqV+H8e1CyxQYmr -dRx3tVe96KaXJZy9A+PYKrLqSSNOZbTGzoxj++FVb/o/Hwuq/8+15mXXvOya -l13zsmteds3LrnnZNS+75mXXvOyal13zsmteds3LrnnZNS+75mXXvOyal13z -smteds3LrnnZNS+75mXXvOyal13zsmteds3LrnnZNS+75mXXvOyal13zsmte -ds3LrnnZNS+75mXXvOyal13zsmteds3LrnnZNS+75mXXvOyal13zsmteds3L -rnnZNS+75mXXvOz/P73s/wFpUS8g +1:eJzt2/c/1f8fP36yy06RFEmFVBoa1u1UFC+SMlJSmihlpIwSiUgKGdlERvbK +ztPKHsfee+89ivT1vXh/v5fL50/4XC6ev5xzv5xzHus8n4/H/f7Ddc9dg6sP +NlFQUDyko6D4f1/Xryni/3tnWzl3Tkag8f+PL59nSYhgbCS4K94Znk0+h51p +QrxM8w2E5lRcdS3DBQyIyHw0am8gBhOvB1f2yiPx663l+l8NRGG+kMfCVSVY +bjfXE49tIJYWqLLzkq9A7oNbY4BnAzGqzLXli78qOChiZamsGojdRLD4x4lr +6DQpTtLRaSCsl4IYZxI1ETXcs6f8cgNx+DCHUd7Cbby49ddZ9HQDkXgscfXy +vbs4V8u56s7XQCjey7Do4nwAJrlj+r/pG4hyCtmCcV5dNGUptmhN1xO8l80X +7Wwe49tRHbm85nqio2WXW8sFAxiEvUnZn1dP/DoUR8eZYQSJnX4CHyLridp6 +3yud9CagdUn5PPm5nmD8+Wn3NbcXqKGuplB9WU8YuM92z940h7/56NO0e/WE +YodPL4XeK+hO0LTzKNYT9/6jeuKcYYUT9/gU3pyoJ8Jrv/8+FvkG/xrF0/t5 +6gnqObbTpn5vUaaoduA/mnpCwa6Nnf2HHTxzDTxix+uI7vFix5w5e9w96Ui1 +taGOcLHpzJrXdMShqG9Gptl1REsMR0X1iBOWeInO1rA6gvsy/5EdX51R4N58 +ieRcRzBOaZC2wxXODHOZ30zriFWzIXfrnM/QfM0szKBdR4SJJ71iUnXH/llB +rydydcToGX3z/CUPzOicp60RrSOSaThzHsd8wc82LZOTO+qIRjkVHldDbzhc +MevxoawjzH5aJFmRfKFa+Fn533AtEdu+OUN2pz94JWKy79XUEkLbqIR/rAZg +NK5IpDijlnh9Q+zccZMgpAj0+IiE1BInIz2udDz6ChvvFXrXD7WEROuLirk7 +wbjEzGk6/6yW8BzUUflzLQRcb4/2X79ZS0QFdjhoK3xD36KCSrZMLdEp6ETz +QTwUcfoPc/kP1RIy/aLhtXvD8LLb+oj9tlpiPHcEzjThuKDu6z/6t4ZIP67+ +kb0jHOxlP7YoD9QQFZve3U+NikA7yObJlTUE3/m+lW7974hIHhnkSq0hFgdd +ztHyRcJEiEbdMrCGOKLQyBmTHwkE8BZ029cQzuMD+ubqUdi8VfzYBcMa4qq2 +wLZDjVFosFcNitSoIYbTBM/FyEQjeOUpM8vZGkKeu/MjbUA0nhi9f/VMqIbw +y+C2MuyJxumBkJFGthoi4YjxC2W2GFBrZmtI/qkmWDdzzUkIx6CqqqkwqKea +mPPKEP4jEgMfmdkTNGXVRKIKZ6Ptjhg8TGcK0UuqJnz8Sq7RT0Xj2GFBtkrf +aoJZoYG6Nz4af4PPWR2zrSZ2WBqXhtyMRjGn1rinfjVh/USPmX4uCu5OpprL +qtXEZ5bTo0umUbhN+bnktlQ14ceqVWU/HAnhF9GnCvZVEx0P7n4ekY/Ewkhh +qCBzNVF1MXWrqc935N3u3vpxgUzMb7YyD2iLwMe65TfTHWRimn9x/xBbBDTk +t0+pFZGJtL6/NmMS4RDIFr2VEUcm6kdcwy/fDMPkMYXy3V5kglGnmT3LJBQZ +4Q/E31qTib1FOkbt777hHY91xKAumbhzZoeXpnsIrrr6bFe8QiYuTFLn1QcE +YxftD9v4M2TCWK9EoCP8K4YsqmY4+MnE1rJXEpQJQUieHNY230wmhs8b1mmZ +BmK1mD4gs7+KwJl/v6Q++8MjUcrCNqWKoHn9fbfED1+I+BmrX7KvInR17pxy +7/FGvl34se0aVUQB32NxRR4v3DBoY+4UrCLUKo0vCt33xJQG22j470riUsvl +r0mZ7rA/d6HIsLSSyPBubxITcMNukZchZ3wriQkdi76fAa74sS3eapN+JcHL +7s3KK+ICxX99mmWSlYQLR9nDYe+P6B3acdqdqZIYUQ/kVKD6AIsaJQ6tjgoi +hkh6WOXuANast1P74ioIw52OWx2V3iE8NK18wqqCsLy3l5okagtp5/GIVOUK +YrPyK2OjMzaoN+O3s95TQYg/Pfzmvp419O9euyM/U06IKW/Zpf3aElSKTlLs ++eVE+1mx8x+fWcBHLHdHq1s5UXdWLWRTvClEeRfmQ+6XE9JPpkN8jj5HEf3B +Gn2xcuLFhNBizLwxbs3cjhWjLSdOrxxm9v9tiPlWd8fVhjJiiVtMO/rFUzj9 +KnlYFF5GXGocL3Yzeoy9cavnXMzKCNUQjtlbXbrI8DrOe12+jIhV/BRyKOch +lG10l/dwlxGNGs08n1geYPCxf+PISCnxVzkksLb8Hl6r1SQlZZYST5vU38Yu +3sU20Lm8ciollpJipcJc7yJaUFJfVquU8OtZ1jvtfxfn2Y3kmA+XEhVP729W +2H0PzcuhAo2rJYShsYijLPd9GPa3UARVlRD1nVnjB7wegK6KpV03qIToCNFe +CAzSQUCaTPpRoxJi8/DL8Z3SjyAWbO7x52wJsdhGk9by6gnKP8Qa5bOXEJfG +aLVf/TDEvee9l5x6iwmP8LEvkozP8PsWl7BacjERb1toElr2HC5yl2h32xUT +O6Qq6I6umuHAMZueAbViwi5mpJ4l9hWyd6Zmx+0vJvxCSrUcn1lDjWbMx2yx +iOg4XeXN3mqDsQk+07PFRcSTPusoHXc7vG1SU9nsXURkJpktJYU5YEee45Fa +vSJCxIjT0mKHE+KjiC1+4kVE+YfP3ybnnHHRY27w/pYiYoRRxUSe7zM6XgsV +HGorJFYZbE9p2Ljjue6toIXoQiK7biqgUeALGK+6vSIsCwkt3lKriS0+CJEo +1nBQKiQWLu6US5Xwx5l9f09c4S0knPfRKu24GQQy8zE27qlfxMPAffKR54Kh +s/RwvCfnF+FZRCIpqHzDardvSZTrL4I94PLeOOcweJSRQ03u/iKi8xg4NX9H +QOQHjY3U8V+Ej7jVQIBrFPICxG/RUv8iXnJ6fXe+HovrDgbiVXUFxGSZqxDF +93hMGX3b7hVaQKhn11ZWSSXCQbN5RvtFAXHf8a7OqdEk7JZlrhK6WEBwXN9n +fzzhB5IPn4+a4SwgCkIOeTo5p0KRy8w+cyifmN21263FLh09lDH3bNPzCYN/ +n5neuWXCYrQblxzzCYVNSlVFqT/BWr+dZ7tmPsEz3JlGniYQlq2w1HEwn0j/ +tWP3br5cSEdY14Wv5BHbeD2kh5XzUOf6I96wIo/wrcrP+uSYD/2XI05nAvII +o89LTGfLC7DpAa/eJoM8YkVlPIB3WyF8lFRly5BHaNE9+Sx1vwiip9/vcWfN +IxrMJTVT0opRuCf7783uXOKPZKvVY7ZS3Noy27wvMZf4GeFxVu9JGebmDqRM +2OQSdubJbLFl5XDquPk5VSWXOCrv8U7yYCX4i12fWgvkEmUs7Ja8H6qQkVD4 +n/x8DlHC66dw6jkZyr7L+9kLc4haCUEZEYFqDNiKUrV65hBDf4w7aWqq8frp +g84QnRzi79HDw4ava8Ch4ZOpfzqH+PSmP0FAqBbRZ6u+iDHkEL3S1r6D1bWw +VacfWkkiiP1+erouZnVIFjIO+qRGEBVxuXn0u+rRtdKqwbeYTbTwClKrEvVg +JMuyJXplE6PBrMVPbjdAMiSu5Lx4NnFa9JW/1d8G6L7YYVPf+pMwZwyf/end +CC/5t+I6lj8JsXDGN4YnmlDAMz6ztPsn8Unidcd0RRPmJtWjHHOyiM3HFMIS +HjaDLz/nHs/dLCJdfMXt5L9mKHoK88RSZRFqbELXl7+04JWeex1CM4mF6zf2 +RxxtRYTkqlP1hUzCeuDlweHyVjSx6MreG8ogCt3TBEwftYG6t/rv3PsMwvCM +aOu2Le04kSKR8u5gBvFnp+UWz7h2aL8PfcpVkU6EXf5pUKPRAaebLAcin6YT +NcnG+z3pOpF1xLxTgjWdKOaheV+a1YmhTb1fKhLSiAvfhFq/S3aBq0FR+bZK +GtFykbNvS2AXZL6n0E/PpRI3S67/XKXphskrvlwbz1SijDeRYtGoG0GXHc05 +TqcSx26/ntHp7UY5/9zRsOYUQhA6h3/e6MHKvNbIqZcphMQ2K33dph4IlhQF +l/CkELIFLIcbbvZCw++opmb2D+Ife7iw4VAvbA18t47f/kEwP1oa93vZh+Rz +NOWvKX8QVZEZQ7nb+9G1zcCWNSSZiPNm8pHO6AfjcJNksEwywW0Wqan7cACS +Wefmjw8kEd9E24W9dw5C1zk65pd9EtHe797K3zIIr7vbH14TSiJCbbOErwYP +oUDMevdwaSLxydDyyVOTYUzRjzRY6CcS6Zp7vmUqj4CvTcWZkTmRSNzXlWRy +ahSKcT8vBsQlEHMqXS2lgmN4ZXOAQvRKAmHGrHlsUmAcEWquabkz8cTHref3 +M4hMoElw2VDFPZ4ok5xOPi09CeqV+0L9YvHErrqjjGWHpqAd4J8/HhtHfJ+a +bOLOm0KOjNEJtplY4kDnrA7zzWlwjcqEnhCLJZ5FnJoIXp6GmSvXdg2zGOJL +pqFBfdAMyKfG3r3MjCYUry2G+CnMQrSDWAxYjSJaNotljCzPwsHWTTfvbBRx +4L2SakzCHLqEdZr7bSOJ8QCOpUr9eZCqxf9jKP5OMPmqHzp+aAFepsyZIlu+ +EykZSlfSZxawtKvnoLJSBOGiNe0u/XMRygU//J65hhMnBMLlfZ2WEP/oPdOX +ujDilxbX1m/av0HPpvU6gzOMqHnndUz4zB9op4pOtt8IJUqPjG9Z3baMHC1q +bcqAbwTlabrxoYVlcFE3kQW6Q4iYVarDSa0rMIuMOisnEEK4WyjJ7Sv4C7Ky +VeJjnWBChlGOgSZ+FaKLV/c6R34lHodP7OAM/AcH//3uieNBBNUJmlhnOQpS +1/k/1A2iQYQT39XP03kUJOs639GZwQCCfXvVL1dpSpLonvMVZ576E3h3te1K +JiVp6slIrPWcLxG95/k2jjObSEEZri5FFj4EVZe8bUbqJpI23RljZkpv4vtW +MfMDp6hIrKpdKmr2X4ifli+tpVKpSDlB9mJ+TJ4El4o5V9cpapL1+GHOXjd3 +Qt9oeN902lqKJN6wJMTtRrCOq/upiNOQpt5ZthgGuRL1xc+sRzJpSEG1Almp ++10Ipjvbr3tJ0ZJySF4Sf69/JPJnt5FA0JL4WgZWHR86Eks2dCk5JDqS9TOx +PK5n9sTzoMoLq7l0JAomW7swK1siKanNp+EcPUk7rEbuhNMb4vEThm+C+fSk +HKtzXLZHLQkBBiPumnMMJOvEzoDA/0yJqBIV6bhcBhKp/9W+zHtGRMkFimUf +bCZZi57QiPn9kJgQTR14mrWZRCHSXlp8TZ2QfnBhier0FhKFdVekqyQHhCKO +q4kmrsVSZyg0OzUQmth7r1SYkWR9usf4hZQuZn84uoZ/XYuHaxMDaYxx8svR +737bmUg5KSdFbMdMMfThpvTr92vxW+9Q3VpLpM2+pt/zh4lkLfjaeX/7G2gV +7uTW1GUmUTgfKfci22IyW/gGZR0zKWi+i35LgT1ecYQnjkqykPhufpa1THXE +QHdj+GwwCykn77zNZORHFF+YDf2ziZUU727RKXrZBQG/78gNHmMlTV2s/Ttc +7Aru2Oq7ondYSaTlgzwh59zw88ZMWvFHVpJ1rK34zSx3jC4FJYWksZLId9o1 +tp30RFZ/UVRqNyuJddtJ08q4L8h4+TtmhZ6NpF38ycNeyBvVzDW/9A+zkeJf +DiaRQnygPidAQX2VjTR1mFTzm8cPQ16Dt3KesZFIPV5TiZ7+kNM06Pnqxkay +9phm1mcNRFJL4+T3BDaSrkCoJ7tsEDYxu9W0VrCR6F9X75uk/AonuUu8kkNr +7Tf+TS7L/orSbTXuZAp2ksZRYZmIl8HQaJ5vD+RkJy05qtfang6B1TZl1QQR +dlJQn83dO/MhSC52GWIksZNI0nHTUolrde3WSuaMK+ykoS+t1twGoejwkPua +c4ed5DBNx7p4MAxFzEVUgobsJFGFE4G1Q2EI+GM6vfCKndT0TftwfGg4GJoE +jh53YCeZrTr9dLobgSDeOs9uV3YSn0a6oh7vd9D4NnTQ+LCTchL6W2XbvuMR +1V/m4CB2ku4W9sf83pGI+M+OLzWUnUT/QPrPqloU2OZ2Bcl8ZyfFZz9638oe +jZRLet5yUWvz4/rClVYVjb542wBiLV4yyg93d4rBOet/TKGRa/MrmzxpJB8L +54Zo4dnwtfnt4ym8RBuH/7zveweHrM3vtZyacH4c3qToZUb5s5Nk9MWNqUjx +oEn6y07ryU7i8ianGwXE42VXQEKEEztp7NdDyq6VeNCd133h+IadlDWzIqek +mYAjc9OawSbsJBdeN5es9ASUpfxMGHzATtJWFGoS5koE5T0Djqtq7KQT5gSv +94tEeD1qPNxybm1+YWo6dPWJePzh0bj54bX1qxmNfX48CQeHRK6KcLGTov+9 +Weh1TQLrH7G28X9spFciXNJXp5Ige/ZZT1Y/G0n5eqxdjlIypKlpP3mXsJH4 +3slUHI5JhnyER5ZdFBtpLrGFw3/LD3Bt0Qm0+8BGKu40vLnl0Q88lJHtCNRj +I3kx0n0zL/6B1q1qM22ybCT9M/6jg/tTcC0g3OkiHxtJ8uHx4+p2KXgb+iNg +bGnt/nYrsSjoTcF1zymR1ipWUhdxO+/YuVT8Eeo+IhC69jyNzTN8DUqF4ztX +mxYzVpLDDqcrLP9S0ZRzYZZdgZWkcYHf21IrDTP7tcJ6d7KSBJ+ldY1mpkE6 +NVOtuIGFRBGkJHiDOx1DSULlN56xkMjlfQbFZun4+Lh4NYGJhRT02yL1ZGM6 +cneb3N0Uxkwy3M/275tYBggri4Q3kswkOZXwC1vdM+DVtXRep5qJxGUt9enN +TAaWfT1Eh+8zkYaia+snlTNxTkHMRWqRkZTTrLfrVlwm1C8kTnk7MJJcaCke +lDNloZvWyu7YDkaS9nHPaHH9LDh/b/pz5vsW0mltkbmI0iwor/Jbdq3td/Qf +8yQ4hX5C/vw1hmvFm0lN6Rpv7ex/wiLOTqLk2mZSxMBE6Wz/TxgYn5G6M7i2 +v261Y78rkw2DAN6+C6YMJGXSzhvk4GzY3+rlDaRjIPE9SfgqTUnghxD/BScv +etKS98Xh6NsELrDEahwSpicVF7aL7swmIBIu+vVrFh2p/PeZLBnmHEisDtdu +UqYjnWCl6XoplQPu3pV3en20pKD9ZKok/Rww77p4acyclkQv5XtgxDcHShaq +EYGstCRDlYcKe8pyQMx/euYZQUNq0ztqoPEnB1x68nXdZ2lIMtYrn52FclFx +JaHqcxs1KdqzKKVQIxdxtI3saWbUJI6Yzy1/7XPR9LNl8fb2tfMtX2v1RGou +VpN77nr9oCINNQvy6w/kopnN/MZTdSqS8tSsbMi2POwzuhAwsbSJlEVL6LXI +5EH0gajAPv9NJIFdjh/ZTPIwpDsTwHd+E8npuFqCXEgeRHaOUoyNUJLm5Pnq +rWrysCOtzMLNnZKkrT26lEKZj6hPGuJ7SZSk4hcpPBOi+QiRNEgMG6cgiX58 +Q9qnnQ+aL98XBf0pSH4hivdvOudDtNvldLISBYk6g9PBLTsfj3JrNqltoiDp +k3uiSsfzoUhwju4z/Ie6gZgqyl0FoKzjtB/rXAXpr9nsacUCyMTKzW5RXUXE +VhlOw5cFkKTq7/1U/heswiwS4ZEF+O3wwPqV/F+8IrXc6mguwK6Hz+SaSlfQ +px5qs43hF64/5TQJU16B4hPDMMXTvzA8QaPQ1bKM5LcSpW91fqHfVt3RUm8Z +fD60Exmev1BP2hNmtPIHDvHVbDO/fuHNiYCJSLc/mCr0ExOa/4VdwX//sh/5 +g5vtOte1BQqRkrJL07nyNwpmj1l+USnEjVK+JCrj3xDZvBpUaVMIuunFqwo7 +fsOdr6SAJrEQI2ZHP6JgCRSn3IckuwtRQBVqlGK8BN1LtxlNWIvgEH5AzUZg +CeR7wqJRKIKCWuxL4+ZFSFrMq/Q8LcLZffR71FwX8c0lx3RHQBEC2d4tLyks +gjH8g69yRRFMC63z9zMswuSnOmG/UoTGY7fiIooX0FW7pzf7YDHCeqIl5R0X +IDcyRrtwoxgn2PhKqy8tIJ4iTfiQYzEsIvtSGLcugIfzrdL99GKUhM9WFDbP +w/aQkrHvUDHadJaUqr7OY+z8Ds8azhI4aIkPzT6ah+qNvnSGiyWQX/24k1Zs +HjmGce2kFyVA9h2qln9zELS3oDQLLcGOzdEBsmVzcPGX3RdXV4K5Vopwvi9z +WElilR+gKsXlq4xDcvfmcL+0VX/X8VL0EQ9OBB6ZQ3lXmIvq3VJ8buZgplqZ +xYlFo+QPrqUYEP4jc714FkFMUk15OaV4v9Ts/t59FvQC9Cu/J0thqGPl+1p7 +FobitbxHecvgZGibJiAyizblgPO6SmW4KMno+WRxBjI6ejqBlmXQYz5apZg3 +g2jLEx8aosvAIaYZm+I0Aw73f7FMbWV4Z/yfXIj6DKwjS2tktpTj3q96MPHN +YCjHY+GleDk8jmWxTQ9NQ7lRmztJrxyvvGK1FBOmkTV+UHrEqxyH9N2Y9ppP +Q4B68c6e4nK4ZzusmJGm4cSdZ6exWI6vO5OPXaWbxpzox+/O+ytgv6vgcErF +Wn1yUaOiUK0Ccb1RSrFuUyjW2jv917YC9CfzU2WvT0HUZIJDLLkCUiSmMvvd +U/BzTD+t31uBpttmeZuL1uqdr7Y3Q9gr4b33lryf8iT0Uy9bt5ytxGRF0eO+ +5gnUVXB/YzOqhD/9mXi6exMg9fUXyQVVosaM315kbK2e+hM/alVViTvuzWMW +z8fByvaKJXW1Eh3hdRk7/q3VXwcuHp84VIXZLx/oT70fQ58U+7V9WlXYak25 +d2XrGBRV2y1uOlWhak5s1jVwFMmPIgLcMqvA5ehHzy8yCr43z/JKR6qwufTV +XF36CAoUeGcpmMhIco7vrJYbwVIDtZ2fABmFdiPfJZqHcfjuyPbTkmTovw/Q +EH88jLvjVRG1KmR0eWrTja8OwdPsh7jBYzIueTPHG7oPoZzKt3zzWzIGBaLE +ug4OgcLZ+laYDxlignslVH4N4gT3w6mziWTQW2WttGuv1auhCjbtJWSEKUud +cF4dQIDoUQ7zbjJsvN/tNwsYQE3m9jCO32SUce3KDiINgPbiyql41mponxNy +Ye7vh2RNd4mCYDXIvxfOFXzoh6FWkeYgqkHzjXZP7ol+fBuKHre5Vo25WQoJ +yq4+ND37bLXboBrKYpcYX37sA/M/U7aMd9UgdZz7KyTVh3OOWiFqAdXQ6+Zp +WJ3oxYtt58Wmf1SDOiCYfiS4F9FBgkVOFdU4T1683KLRi66DzNcF+6uxz/56 +ZiZrLzhSZ0fyV6rB0x1yway0B3Lnml/d5qhBWNKn8nm7HryuyGZePliDxa+7 +8/nO9yBR41uQ5/kavKhq/dNC2YOB3vfHjmnWoNNnN5kurxs8BgYFFcY1cOhq +o3V82w3lP6rqeo418PivcfHshW7Y2okPUQfXgLG+iJNlczfSWPksgtJrcFd6 +S3ZVZRcmfGkYJatrkBry3eWeexf4D4z6Nw7VwEbbKjLsRhfUE8lHnlHUgqHS +3uf5ni44SaXkMnPVQqVkOuV6dSdyin1VIo/UQunKhX+XtTsxp/KmX/ZiLRoW +frvbTXZAsPOhafetWiiMjxHxrztw65Eig+WLWgzaHH7sytSBz/NHfbk+1SLG +1HSkw7cdhdach5JDa7Fiv71IXagdK1v+Zl/+WYs3h3pep/9og+iXHuXRulo4 +mCSfKCO14T5/cc+7sVoE72thVy1thVdMjAk/dR1+/FQF39VWVJ52o83eWYde +5/qLdE0t2FRg5nX9eB24T93e26XZgpOXbwnP/1eH5w6Jzh/am6Hfcj7L5W4d +9pGe9E/fbEbQAyElEYs6KPEp+1G1NKFuirmryLUO187/WkxTbQL9qzmje9/r +MDPLpcNe0Qhpuhaqfzl10Dk4q7nnfCOMPxMePk11eB9GeXAhpQHhu0IPnJyq +A8Eh1Bkr2IDWCMf0arp6bFPZVfbMqx6sJwwVnvDWo/rkrJkJbT1kCLV2+lP1 +2KWY9WbEuA7m/0kYfFOqx5M8XOLqWFu3ej5K0sN6sH/2PKMoV4sebVq3Vst6 +LMY/+9uQUAPOsVEBU496PNoXw751Zw0UTKtT2GPq0VXckHXHthrWm1LlYgvq +sSqTri08QUbyR78W+ba19hzfVDVpkDHMZaPfP1uPitMDvD/fV2HXN51V6y0N +kHj886Heg0pcPXLJhWdvA47b+WV/lV3bJzOO8aeJNyDPegtZ82A5MmW5klWu +NsDspu/Oz5xlmCL/lZ3Ua0CHytgJiS2lELjZ2+j4pgGaz9/RXKErwfXBYr39 +3mvrJJHCXMZYjE/Gscu58Q2IOSU56c9ThLy/bh+1ihuwxWNv1Y9ThVh0MOf9 +3dkAfzfDnKVbv3CQ43aC+2IDgudP5sm6FUA7UOa8KEsj+mh/XX1cnw93YeH6 +sv2N8Ozg7hfZn4+SHyw6OtKNoL52KETmXR5WSfNLm9QbURDMseP2Qi6Olbc4 +BjxpBM/zx/JbTHOhcy2HR9yuEUqKnIOl9Lnw7QmNrfdrhOmTP59ZonNAfvKB +ZJTciK2ved0E7uSA+rdhDWN5IwJY/nbIC+bgjK36/YjeRki+ffruG2UOnrJI +LpxfbsTNtO8vX7UQCPbZ49DJ3gTFbR+/UDYQaNxHx/1SuAmqxhyjz+cJbEkY +i9p+rgl0YU+DdvHkgCRZI5V4vQlRugeuZyrlwKQoteqSUROKeDZp0X7Owfer +/neGHZpQ8fllsXp/DjrabWZtg5rwoa/+QP/FXLDr6drxpTUhdWcyS2laLi7O +XeLMqmrC0jf1K9Sn8vDS6vj3a4NN4BR33W6em4f4zTskZlebsCw5c3BaPR99 +Hqvln7Y3o0Hk00X+hXzs2NN3S/hwM8rC+bvj/AugFF0y9Uu2GU5D+30OKv6C +zak4mztazdAMYxPeQVGI1Dx3jr8mzVgyuVYzm1qI0UsWYV5OzWBJPGx71LgI +fM23T5/41oxSGT6Wi4eKoXpftrQqsxkis78uRw4W4/2k8M3Htc2Qr3/xoyOw +BNkWrBO0o83Y56zkbaBaihmaBavgTS2g4eyfXqQqwwHXVjZp7haIomlGMKYM +mjy5Ic1HW3CBT6a8XKkcLuFhYs/lW3CJ+v3H0sFyFBxzKmK904IUF8mbB0wr +8Pun0fVosxaM6FJlsK9U4LD8tdGLLi0Iv9X1r+15Je7WSVr2hrdAib+S519v +Jb7c5mexIlqwyEFzf9eFKpSN0H3lbmxBd0GxHZ1fFShejB9LmWiBxHEr1vT+ +KpygrC24QtsKzf4U2mg2MvSc0tTHd7XCO5wjwk+YjADOgCEHsVY8fy8/PypF +Rk3wWwuBS63w9FD9MKpABt1hPcac+62QkTld80+VDIl0pQDNV63Y2n5QIuA6 +GYYyJ0QX3VrRxlVmpnCDjG9VO/I+R7WCpsOL7HWNjOYb/1QO57fidgV9ksBV +MpgH+vpLWloRdlZD1v0/Ms4ZlZo+mGnF8qeL+m5nyTBdiWOg3NyGs93KM9Wn +yIiy9/D129OGRbPYUorDa3kA+8tDp8+04XkT6WXVWt7AEaBN1Cq34cmOmZoh +HjLkhS5cMdBtQ3CjrMnsdjJeJx/s3WzdhnjFraWOW8lIBNvzsC9tYO2hqsNa +PFi6QHsurg2Xr1Eaea59n0e9zau9cC1Wv6hFtZsM5e5cYfOONuxRYX89IkSG +rX54FsdCG9oSLzb5ipORvuikFM/Ujqzcrn4NZTImbIy7FPa14zuvspT8Wp7C +z6xhPCjZDukuC843H8i45i1F/Va1HZRO7sz/4slwEtjruVu/HdkZ+r1RrWTk +xNELZrxtR7W23+cbW9byCPGJdLW1c6xy4j+64rU8Q6iwVmE6sR3eASm9AWbV +uHUlvd2ptB33CXnxZ2t5w+e2AAPBnnbYa/0xKJqvRpGOLWXB73Z0kqXcGM/U +YGVGz+02WweWuNUmQ17XQPT15X3Lgh3YlPCH3PWrBvcZxFI9SR04QClgupm5 +Ft7u3PLHNDoQkM8gfEu9FpW8FK0VBh1IYBAzZguoxaaofn09+w4U6vfrqvbV +4tTJslXqwA7UBhRzqwrWQT833iUopQNqO+PmJfXqEKToyS9Z2YHp8x3cUmF1 +qGt8mdzY3wGfFd/Adx11YLh358Kzvx0IF5ClUmWrh/TEhSbmbZ24ucvCYECq +HsbmIo8iRTrxtTKf7cO9eoRTs6/IynRiCxe1rN+berQ5L37s1uyE9G4B07df +1s6/ne28ls864aBZ0JHxbe38C8tL4PrQiQor/uXKiHqYH404nxzcCefevc23 +Q+oRm/Wx/nJGJ9Jk5Xbwu9ej5+IzndG1vMTc6kRSp0U9OGs1fr8b7oRy/VsT +s2v12H8kUNaVogtnKn3P9AjVI2fOlfk2YxcYf6h2Cc7U4UaGbaMIVxfCrt2d +fxJfhzkr06A/e7vAdtpq99D9OjjLPtIrPtKFszyPZHpY6iC0ReuYp0QX7uQX +WGck1KKAfHn53sUu1LSU13X9V4tbnucKjqp0gXouLba+tQZLmmIf/93qgnGS +mIzggxp83iOoXvGoC1KMrCUmg9UQGeTm9X3RBTFFu/d3763dD9FMQ7o2XZAX +W5z82kzGHWOKhJOfuvDWt8tyZO15XDk1a07t0wXXp1lW0wZV8Pzbf64mtAuL +/t0OXOcrIZrftCUooQtqj76cKWOtQKlDWd2Tn10QjOdtd2gpw32lbH+Jki6M +/7M/U/a1FP+2JjxkqO9CiOyDnVS6JfBuDjnS2NWF28rH93kcXqtTAz2Xvo11 +gZ3fd6RhoRCV99/nGi91wTLrzC3GvF/QFX7lSKLuxlBIpecD1wJsmnqqwsza +DYYXdJMrD/Lh/+MOT9vObtR0P39TT8rDqZeq/d8PdMPbOpyihT8X1aSLsabH +u2E80DLcypgDfVpxU1l0469Az+79/36CtlyEtFWhG9tNaSfEFzMR5MrL0K3e +jU19Nbp/N2VA/Bp7TezdbvDvi+G+sDcN9Tw0vq+edmOwVuZ3pkYKDHoW7/1n +0Y22B+U2tSHJYIgYEeF6141tRdvtG6iT8O1J+3y/azfERfcm9b1MgPRxcnaS +fzduXnr2fIE+Hk1LefZvvndDrZmpK+1aDIyzfyhf/tEN6jvyswHFkWCyjdix +K7cblitbmivuRSBc3rdnpLwbCUGKq2KCYTjL8ikqrakb93nfHQzh+Ia2OmuT +d33deP3pO/XPA8F44fNMSnWqG55K8Qort4PAqv2Qln+lGxzHndi/mPojct/1 +qkm6Hkhvy3JneuYD2VEFr59be/DsQPiDkdgv6IyXvvOBtwfZ9N8uhxzwgPmL +o8LXD/bAbZWmPKr5MzgkBWb3n+pBvVulnWmuC2IpObPmzvWA7HbUjDr1I+SK +GOzylHrAIt/+MkbOET1OK5dcbvRgqX2cSvioPSyvTm6/9bAHnQ4gJvRswcnV +03nQuAfM2x/2xYy9QUJ7XcRvyx68EnmSl/XQCoohRUZF73twQUuE+63hSwzo +Zoh7ePTAbtvwXOWoKawPx1Dd+9qDT5G7GO9XmoB7LrBcNKYHbE67HGKYjZGc +/tljNa0HJ+3N46wuGuCyld2t8oIehLpHfkrY/BgjMmYHfMg9MFezFM26pgPb +zY+ndNp6YClREfeD7z52k7XSxYZ60Kba+2BR4w7SPJRtqOZ6sCvxhtPbYS1c +1TyvUP2vBxEs9hWrddcxxneSI3BLLyKi5v9LuqMO+wHBdn3OXtjrSXG8sFIB +f/TOMPG9vTDw4tumz3cFWUbMBvRHenEhx3z1tZES1E9Rnm4Q78XQ5rd/2C0V +MLUyS/HtQi9qtRiszFXk4Zg3UGJ0tRcB8fan+IcuQsBh7U+51YusvMWCrqMX +QVwq12R6tNa/a9NIsfBF3NhKCLQ+74X8bVshJvJFzDUljEe86cWXcr93nXvk +8SngW8qLj73AHxce1b0KELz/xUrGuxc5rZm/CpsuIU/IUY49tBfb4jadWQ5T +xs3JV2xd8b0oKfq6TaDwKhaTDVpisnqxe9/7w87KavhscTfkZXEvzslaBwsp +aUCEpKYvX9cLm3uOO5eKNFFIIyfG2dUL/ROlaVTFt6FdJr7aN9qLvI4FC0mR +u2vDOFSUuNiL18fIL57n34e7Op+LNVUf2mmOyhjE6eAIz9brSix92OTyLCt9 +4RFKu2n4eXb2wcshfgdf0FPcD18aGd7fh6wtLCry142wqj+alHqsD6rbJbSs +fZ7B61jHKzvpPrzjj98avf0Fji2RZVX+6wNbRr+eUY0Zyn/mM+9R78NePm0m +VfJL6LxNaZy40wcV+Ym4+1utsEn+e1DWkz5cXCl6ceryG/gx++k5mvehvJEp +fvbMW5ys+3RMw64PVnuVXcb+swPZ+83yPtc+XP9Y+WrYxh6PbpsUzPr14aSk +k8Kjnveg3qfzMTdirX1NVZoAPScEjlxXd07uw5bMCIobXM4Qj1fk1crpg8xU +bT79ogvqnmNIuLwPivTOuwdNPuOpxLGEpca18dJLfGancQc95T6Lwt4+mGXx +0n4J80BwIed598k+fOw9b35L4wsknTYz3l3uwwGx0qBpLm80Xvlbd4SuH8aJ +5PcRAz4w5pzy/8veD19XSlZ/wg+M7T0Py3b3w/Gs3Z3orwEIC64/4i3cD4fE +W4WSskEg6RYvPTzZj5e8fz+lSXxFy6HM3BPn+sHxamlg4Fgwns/GOG5S6kex +/OKuy0IhYEkPUiFfX/v9iFbdg13fEPnajSfgQT+uG9iSXZhC1/LOd/2Pjfoh +7baddHApFB0M5rFnLPvh7LP7mmNrGMyqHpvSve8HjfcHiU0p4WD3uEWqd+/H +GbYAoVG7CMTcuMIQEtQPKZ7AzDD577jIJ1NjGN2P04bxUqH/vqOn/6SvdFo/ +3i08mX8UFolXUUL3GQv6oWzmIuMhGYXtRjyHWqr64aRX/rEzJwrxJ1kWwlv7 +4c5Tnn/gWDT+W6Ekng/2Y4f2nQ/GztHoz52zPz/bj5HYltaJxmhY2Q8qs/3r +x9SuvM2/N8eA+1LLjs7NA0i25z++SzAGyewVPdHbB9DLFT/KdSQGSk1ElAX/ +ABTuFZ1r443BkH+iidzhAZSFMiy//xO99tyESm0XH0DEJlU6UyIau4S8aPtk +ByDAWSUnZBCN1AnHqoQrA1C8m+uhtjkaV5Mtvay0BkD59tPWdtcojJkb3rmk +NwDde4XTJbRReId7wjufDyCq9dwXhUeR4KNRnx2yHkCo/opq4s/vyCiVy0px +GsDPPw+TH236DjUXCTtbrwFkZuaaLZ2JwKTaYaWr3waQtbn08fSDcDju3MPJ +Fz8AHolo5iX7MAh0b+0azxxA6e7uiylfQ5EdRvs9s2gAXy2G9jUlf4OG/m+j +97UDuFD/voI2PwQzR8fEr3UOYF7xbURvRTA+LnZQ7RsdQNHMnUGqxq848LO6 +fGZhAHfNMh+OdQYhz6bAI2fTIJ5FmWzmqQvETbnUW5+YB9H4aXbYdtwfC0yR +B25yD2LG4iKvG7MfXGr9poT2D4Jwenzv0xkfCHs7py8eHURARqzkW0Mv/Lpl +Y/NLahD5Y9F1pB+euC3wXMFNfhCn376uu8bggT/DOhx31NbaV78szv3UDe5x +N9oP3xmEZZsxp1+fKw4/vxS2oj8IzXA//h9PXFAsTjIoNRvE7XZNZlqOT7hL +cfy0l+0gfg5xJzQ9+4C/v/ZRPnQZxN7sl7vllh3w5QNX6XG/QSQZJAzfiHyH +Y1e2uFFGDGL54c3iHGtblG9f1axKGsRI+e93rZY2eNg2JeBPDCK0uA3FQdag +CO4df1Q2iETrYsVqsiV8dBpSTjcOQprxgVlTmAXEDpVY0fYOIpfO2yMxxxRV +M5lydRODYH/Asungzud4lBbLFvxnEL5xFUfbEo1B/fpriwHtEDZd9euUtjVE +wHn3ECn2IZxfjqEw5HyC0wz2+lt2DyHWJDfvvw96qKk0F2sWGoKYTXpR9c2H +eOKuvxomNgQW/Rb/Ptt7oLtxu8jk7BBOmvc9d17RRjDvVZdzl4aw5QWdxTEL +LUj2y1xnvT4ENi2uw7utr6Mh8hR/x/0hRO16mO2zqgZDQ+HRKMMhhOx7ns44 +chWbT+5KNn81hC/HorM+nlJG6DKL5UWHIZyJ2Vbam64A5G66sM19CLelS2rd +vl5Ey7t55t7AIfCPJn0r4JCBieJQY3zUEBR2x+laU50FM3tr0OvUIVz5dTLQ +IFsSEY0Veor5Qwhr+KugK3Ya5/xzjnFXDUH1yssUJtUTaL+btDzYMgSOq9Jn +J6iPwlQwrODHwBAYd1qMpumJgH3C6+PbmSE8Uqg55RR6ANFJH9SvrA6BvSfl +7rbAvbhg/pqXd/MwDBNdWL5J8KFL2mhobNswlsObcj8VccOC+n5Cxp5htA8/ +HVml2Y5tpeoWDoeGceMxObmPmR1xzvLn1c8MI+jxnavu75jwn5oko4DsMEzY +mlz7WOnRx32kflp5GDWjdLKZn6jwumtPAHFzGFeOUqTeTfgnzRXGofNRdxgS +ZNGmyz6/pRMf04lqmgyjZKdsCGfgnPSlo3+WBK2HYezk1X7NeUp6cGEsd+HD +MJ52r5DzmkakbbI6HQu+DEPpceDdq+X90jw2NSqfQ4bht6IfnBXVLZ1y8ReP +dtwwRJktmRh72qSVmdL6D2UOo9LYWzZ6qlF6pCYydrlwGL3qbtfVFeqk7bz8 +TUtqhqHGGB33r6hamveWC+lLxzA6j9e+uShPls7Y+5bhwcgwRKilm1lfVkmr +Dj+vObYwjGuNC7oXd5OlJ2J1fSk2jUC2uHjPqkG1tIOJ5v1KphFsSZLoRF6t +NL+40iG/HSPoVbP5dEa0UfrnP9KC3r4R6IR+Tv3U3Sp97ddx4tTREfgrOJ8q +o+mWnnHc70AjNYLuK69Ir3/3STsp77hSKzeCe9Zdcnm9w9L7tzNyf1Udwclm +trZw8qR0Tutqz1PtESzw+dcmV89K3/g6HSWpP4Jy+gNu7wOWpOcf9plsNhvB +eV326DTLVWlnkUapprcjmPrMV6BRuwlCMyW0Yc4jSPj31unmIToUpGZVPfMd +wQOlzrRDzxhxyzLO62z4CH7p3pzI0WXD0rngOyxJI2i4ll55WHob3Og9hNuz +R3CKjjRE1bQDhyrtZyNLR/DkikkP3XVeFLlZZJk1jEDojriR9xw/7lx/Yneh +ZwRJA3wse1r3Y2W3thLHxAiaDG5WClkchGffVc6e3yNgoTzR/9VUFKKRsl1x +NKMwpSu/MRxzHGUGp79bso2CTWn5WbzxKTwQO2issGsUGrunfy61SODfn10S +O4RG4cM5O7rVigSfHFbqwROjaDq75fb2l+dx4h1VRTJpFLeO8OWSJy+gUmHB +w0ZxFCqbx1jnxv6DLtvwLWWNUXyf9rUNensZVI2tB3bfX2vv88MnJ+9dhb9f +5dSowSgoRBueJd9Xw6m7uenpL0fRNslwlqlaAzUHkm3s7UdRpN6/mJ50E/rj +YQpqbmvjC2TPMnTSBm2SN8fewFE4vOroCaW9hyAzp/apyFGE3/Z6Llj1ABLS +VmHZKaNIeTv2qntMF/VUxgZOeaNI23dXf/ihPgxK7p++UTmKK7zHhyX4DbHZ ++RqlYMsoyl0Cd+teMMY31f9K5/tHUeV44IBniAmkuaXc8qdH0U/BanNFyhRN +nUduuv4dhROTUiQtpwWehfLvu80whlse0XvmjluC6fG2CZFtYzA7MiLyUcEa +4aL0qX/4xpAzknjVY48Nzi38sSoWGcPD5clE8V22aMscl/M8PYYr6QUtj9dO +9xdvutjuy4zBUV39cZ2DA1gv1rYcVR7D3lKD9trfjohiLAz5pzmGJefU1yaf +P0K2Jk2/QmcMy5dz9I8KuaDzS5SY77MxNIQYthv7ucJCK2BV12oMHubC7x7z +u4Fjr2vRyQ9jKJ1TalXKcEfs0FsX6i9jUDXWvsNxzxNysS+u1wSPodindf75 +Ti/0PtPjD4pd6/9Vz+BEtzcsz9wcfZIxhoRn/vOZyb7g/KeULFE4BpoLI2hz +9UdiwVlLhpoxSLcsnN1qGghFxxMXGtvHwFPTNzIfH4SBywdYQofHsP/Ruhex +3sbdZDw/hvL/eZKdrYxfSZTj2C++7k1+BP3TY2YaB2Pxuke5/HDmWBvXOCh1 +173KyMH+5e8C4/gwuu5ZbKcbC0xFx1HQv+5ddqeWfpSVHAeNwLqHSXv1U32r +3DgYGNe9jMq5eN5ulXHEy617mnG6kKHY2+Nr5/e6t7Gv8Eh49XgcpWzrHoff +zcHiP9Nx/GZd9zpZGi/Pc70dh+/Tdc+jvvsp48CncRx4ve59pnq165N8xvFC +cd0DffiuEvAmbByx/uteaJ/BBZ3LiePoU133RMSJM6K7ssdh6rPujW78Ofh7 +pGQc0lvWPdIcsTsvrX4cEkfXvdInO7YP77rHUZS57pkEFahVVcfH8XrnunfK +Z13k4f89jr0Z6x5Kq2G4f5J6AiF31r3Uom9b7E/WCfRPrHuqz3eqTD/wTOCj +4rq3EjmQR7ouOAHj4XWPVTiWzHDgxAQcZNa9lnZieM0cJpBDte65lk19fPMU +JuB7Yt17eUh9vO9ybQJn89c92BEq60O37k1AemDdi5UWGy8cNJjAgNC6J7v/ +6QHx22IC4UHr3mxVRcOh6N0EbIfWPZrXDoUrHp8ncKZt3asd75TivhcwgX// +82wV30R7RSMn8Ehz3bvpPNobvfpjAm7b1z3cJtHtz8tzJyDSue7l/ObppX0q +JuCUve7pTmYu0+o2r/X/37q3I1tPVIn1T2A33brHe3yh24tqegL2Eutej4ax +7k71ygTUJNY9X2B1oXAg/ST8zde9n/iX9Fl9jknk/88D1t2MzhLnm0Sv8roX +fMofaEcvMonjseuekH7IVanh1CTGbNe9YUiMLee385M4MLHuEaWemXYZXZ7E +63frXrHx9KPv0JwEy/88o/HqTWMmnUncrFv3jowFlyVajScx+T8PGfb+HPX3 +15MI/Z+XJF0Wq3jhOAktz3VP2coh6CnjOQnD/3nL5y3ct9mDJ/G+cd1jsgQx +CXbFTILmyLrXjHxAMR2TPonp/3lOmYOz6S9/TaLx0rr37Jjqt5GvnsQI9boH +NU9pUuBsXxvv/XUvuvVVGUf/0NrnR9Y9aczZ7PbEuUkUHln3pv/zsaD4P64N +L7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vh +ZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe8 +7IaX3fCyG152w8tueNkNL7vhZTe87IaX3fCyG152w8tueNkNL7vhZTe87IaX +3fCyG152w8tueNkNL7vhZf/v9LL/D7bZK8Y= "], {{{}, {RGBColor[0.6, 0.5470136627990908, 0.24], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[PolygonBox[CompressedData[" @@ -2113,333 +2111,333 @@ itWsYS3rWM8GNrKJzUH+/8v+DxCPxQM= RoundingRadius-> 0]}}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}}}, {{}, GraphicsComplexBox[CompressedData[" -1:eJztm3dMVNHboOkdBCwgNhALFgQUFBDmvSIgICBYAbEiCIqKCoiCSJEiTXqT -3nvv7dB7GfoAQ+9NutLZ2fzyfSabbLLZbPYv5p+ZJ+e957zn3nNPSebhef7u -tjYFGRmZGi0Z2f/8/s9nHv3XLzyf0D2FIeJ/M4fexL35WiJauBG0apciC49j -g+97pxOR1pPgn2Pz8hAxef+BRAAR3Xj7rVzFVwlmzrCoDX0novXJZwcsCSpw -8VWFmv0bItoUdgn7ffwOfI4zU79wn4gg6IWTcOo9KJ66pNGGI6J8OemHOj/U -gPbctMaX00Q0QyZ7aCT1ISi/DnvIzUpEcm8eOd4TegKe8eqalas9iPvOy1lV -u2dAnGZ9pD/Yg6TmLv42idGC4+erH7HX9qD8qneKNTvaoKf/7XFOWg+aaiMe -2HHVhZSEy08e/+pBrae5jYaevIa/M7NPqL73oNJuOlXM4C3g+COfxun3oJ/8 -4UwLQwZg80bzmco9Er8euyWV9gHqE/c+/yPZg7bUN5nGow2B/Xft84BTPag2 -/EFUaIUxqF+w0pLa04PS1LzXjjB/hpC3Yi8m/nYj5aRpselvpjCeNP/CZaAb -bbkEfTU6Zg4X5qK1hWu6kcB1F9tvxhZgJPBEpzu1G3U3SJfWL1tCwbsDLy38 -u5Fdru2bPY7WQJHS8PKUdTe6pxV/0UvMBuTnv+vWv+5GBgferNiT2YGroITe -h7vdyPOo68e5fnvoNFjS45TsRnfUtukiOh3gaGrcq6KT3ehnv3rkvXEn0F54 -9voFSzeq+KxP/p3lJyQIHdRn+NuFDj21dMNFucLie7x+Sn8Xun+rI4gf7wZi -aXZv7ld3ISYmqW+WVB5gsYh7u5nShV4tSfK5SXlC1cU/b8P8upBK93iLzw8v -YPmY+E7Oqgs9E9uZyCB4w730Fwa/X3WhnRPHYOaCLwQsHXrveacL1RgqhZxy -9IOhS63vxSW6UHLM38SLM/5w1tDhw8CJLpTRrHagUiUADDKufbRlJuUzyXT8 -W3YgZC+vfjz/h4DWLyr4jh0Nhm3hFMOWPgIqI5/byJEKARmjl0YmVQRUkN9C -VrYcAk6ZR42PphBQs9lkVUFEKLSstBuX+xLQ78Y/6vWqYcB12fnTK0sCOv9+ -D8O+jTB4aixtwvqKgGwdXCAjOByiszZMsm4TEBPNq/sNuAj4/Sfts+ZVAmJt -NXC17IwAkSuvvlCcICCRY45sf3UjwewTj2kMEwHl3s8ZUF+MhNJsgqnySicy -u399vPdDFDCs/jRb7u1E+5rNxosno0BF9MZX/8pOJEiNvVC8Hw0+JttfseRO -1GDh86EzOxr6cjLNx3w6ke5x2nfVzDFwck3/m5NFJ7oVoOTq/SAG9MVOWFzU -60Rfv3ap1nnGQNrnHguCaid66pOWQlkRA+u57pbm4p2ox+zy5YXxGMDW5a1O -8HaiekJevcZWDNiJk1vXMnYiDus5jSPUsdD4JcfaYLkDFXqn8J7fiYH9+e++ -H+jtQAu/uidcp2NAc+OUTUFFB9pj/Qv/ujYGwq722TxP6kDarlHMS79iYMrU -y5bOpwPVhfrf/PA0BgQLFO2SvnUgVf6GQXnOGDDZpLS/q9uBxE2/N82WRUOR -RL79ukoHql80tBnRigbqrx9+hIh1ILtTTJYVq1GgWHjGQfZ4B7ohlFl0xToK -3LcGHGYYOpCHx5sjy5RR0C3p6+i+1I6kfBT0s0wjgdv8lpMosR29C7M4KT8d -AbpFNM595e3o9IQXp+WdCEjaLnT+ntiOQt5nuF3JDIcVnJHLWe92pK1XRKfA -Fg4S387/xJu3oww9wZO+umFgjYZ/Gr9sR7VUevXkBaFQu+PvelilHfW338a0 -mUKBFbvtVirajqatd+4EaoSAmgW9uy5PO/o4Z268oxwMQcXF7iwM7ei71qOl -rPFAGCUz8chYbEMHTY9M/bYIgPPXBDw1etpQhsgVzeOHf8FHyzFPsvI2FBif -Jp2d5wd5JYFeUQltyKZWIXXzkS+QUdzzVvRqQ7mJCpfO0PqAnBSTz+LXNoTN -bsWoZ3uBi1WZj69OGzIQx564vvOE9tIvvrhbbUjSyuJHhqAHHKa86DdypQ01 -a+szu2+4gdb1ST8H7jYkrfo1fwLvCnHWIf6C9G3IicKq2PT5T5gve/CrY6EV -ZeYHMbGJO4Mo1Z4As+5WJOgt76dzxhHMpSsDjpe1IrNr3+XZhX5AxfevgdXx -rcio53mxmaodMFUIB731bEUHRQbejjjYwB3qmaB9X1vRBRGe6ae91uAvEx6c -p92K/N5yWY/JWcGAjUbIU+VW5M/UsynfYAF8lWyhNFdakV2+5W/7NnN4S1MT -mnCsFSVv0hT+xplBpqxF2G26VlQUGdY8QPgMm7ZXwlfnW9AaAbgfhn6C61W/ -w4O6WlAvtaqYqY8RONBGRUiXtiCVkcKZntyPgL/xKHIqrgXNmhiu8tN+AE77 -fVGuHi1I94lB/GNzA3hcXRd12YwUz78c9k3iLUTRWUcTX7SgM+ufzjypew0z -cuIxVkotiBoc5SWj9eDSj4UYvsstCP05PXWu8SV8qYmJbTzagvYcDTpigtOB -YvqncYa0LehrlMlo+p8XQKfAEc8134x0vlHtRStaoOzQGF9MaEaMBbZSTeJa -4F1rk6BT0owOHAiZN654DkQGyUSmuGa0bv8+Lt7rOfDeXE5Mc29Gz+rwj94k -PIdXjvFJaqbNqOtJ/5dlei1IrXuevK3VjFQrLhPYkrVglZErJUKxGYUaBZ4f -DnwBOMXmFAWRZuTK2n7alaANtk72qfNHmpFUsYFs9rOXUF8Pad40zYjb9C3P -Wwk92Mv8N01iDo/kWcOzY/Vfg4ZSUvpQJx4ptoqOsP95A6HO2hn2xXh0N54j -/eVbA5hoOJx5IRaP5mLq4+j2fgABlrbMNjc8ItqZEbynP4KRsmPWly94FKES -KrywbgQFLlLZ3Fp4RK3FnMAnbQKUTWvZlTfxSCCHQb+m9gso7EnN0RfGI6Nv -iYaU7l/B7ZZuLvsRPLJ5JlLtqWwBhJ/H8nKo8cgg6AMD56ol4EISjQqJTchb -7ozI5yprqOU+/Ik+qQlVuy5dyiiyAbVQB5N735rQFNWtEXy/HYzxrH0OVWlC -mC/jMBu/AxiGvTSd5WlCn98Iy+rHOAEFb4eZ2FIjMhoUcWu48xNcw6XNbcob -kWd8IDvidIOjJ9K/NXs1IjmjamgKdYe4CB7LIy8bUVg4JnlK1hNET7pa6Yk2 -Iq+Z6bd4Gm+ojNy2zqRvRM8Ys8WWR3zg7qk3NuQ9DShy4jeF1SBpfYzqsVVK -aECxeYWKD7Z+gcFpBXu/rw1o9K+1pY1YEGxH5/wYVW5AVs/onpjfJK13fKcd -hbgbEHt80d3bjqHAGevl9HWhHl3zKhxOJIZB1Bkql5rSeiQRqpzMhEWAcNyH -n/s961E+RSJrbSZpvTo76PpMux7xFA4JCeGiQSX+lnvi5XrEycYundgVA33n -ijzWaOvRqtTp1572caCfcN5LpqsO/dnQSL5yMwFWz//ydourQ3PX5E4N8ySB -bSK9b69pHUpVkaw1oUmBfRdM/M4o1aGQue5DyjSpEJY05m90tA65Sr8esGZN -A0GBewElc7XoJpmT37WT6VCUXBbIXFKLsgfWa8KlM0BR8GKwunstMh59UVvx -NhMIKSEhkVq1iG71+tHS8CzQEdoTtiBcix7/rBEuG86G5dSv4ZI0taig/8ix -gQu5YHVxJuJHZw26k2Lhvs8mD1jTNaLaY2qQoGGg98+xfAi6VBPN86UGnRft -PPj2TiGcz7gS++ZmDbofeamzsa4I8oSj4nIPk65/uPf15OlikM3cl0D9uxqN -cRYatc4VQ5uIdaIqqkbvdijisgtL4HnWQlKgazX6QkzYF+FWCvOXn6ZMPqtG -hZbs/pmvy8A8uzFV5BIp3mjuJ41iOTCJSqZbUlWjETlf5oyLFeCfE5/R0F6F -rp88KNh3rBJOiXFlHYyuQiWhlJJpe6sgI9c+W9ukCnmJ1ozeZakGKfG/Oany -VUjj3ommvj01gM/TztviqkI5xyPHHDhr4fHVtnz5mUpkd3fJ3YmvDmbypQq9 -CiuRHNXTqkNYPXyRSC0adKlEh1QxcaMnDUBTeKyY/2klMmFTix6xbQRPSZeS -z0KVaPa+THRyVhMcL9osraCoRLc2tSntPuEhBfe6nK2tAh0dC1UQ4GwGHOqq -eBRZgZzpr+uZFTZDPchVxRpXoApVz42Aly2gUZxVvXKjAsnpsX8vPdAKE9jJ -2msHK9CjB8eun6prBcMSjzrnqXLEB3HuO9/bgEKKoqErvxxNGS0ym0u3g2up -QeNJ53Kkk2iUP0rfAUev9ze9f1yOJmqHpozbOyChTKm5UKAc6UuYNBhGd4K4 -dEELPXk5Etj7SPekBQGqy8+23WspQ6PyHOZtT7rgroxfe2h4GUpolB9ukO2G -oQrazlnDMmRBrfRETaQHDGSNCWKyZejL1eid6nNE2K4c6bLhKEPnwvbgP5zt -Bacbd3qaJ0pRi+XY8XihPuCqLiEeyStFlvJKBjXX+iFGTrBPz7EUxVpThHny -D4BwTVB/pmYpelIqeG0vGoBSeeZB8gul6OHtq2pO9wZBpdZ0SGmnBH1n5RoT -XBiEPoWpYT88iWVfbQi6D4F+ndroaGgJCtCqki8UHYb1m1VjQh9LkFaNMQvt -6DDY14tMfJUuQRTHT3pd8xmBfUoRkzX7S9AXBSv/4FujENbAPr1/vBh1aBmX -KLOMgaCy5cyznGIkJvz9yffWMShqnJtN/FGMFjba+D4Gj4PircdzaxrFiI4p -tlnpwwR0N9XPy5wvRkYvDi3JKk4CPsR4hHcDIVaNqHU3/imYCb0znh+IkHaU -guuzA9NAFS44dQdD6OSgb+8wzQxwRzDPTg8VoW0RnrabOzMgETk1Z21ThK6d -Xcqs2ZkFtaiqxUN8RcjTorzHiW4ODKMjVtJrC1HC5nLZINM8uMZYrt58U4gs -EiVDG/zmISH28cbwnkJ022Vu49i5BSiPu7ptmlaA2l+l5c8UL8BAPCf5vnsF -CD+bpSH3cBE2E1YoE/7mI3lnkXiZ9UXgTGqhkfbPR82VUtifwCUQTk6mJ0rk -ozfdF2+8kl0GlRQnJsP+PHT2l59HytIy6Kfq7WGyykMeiX2SHZEr8D1Nlj3i -RB4qqVZ9O6r5B0LSefdLVOUiqauRpuOcf6Egg4yzTS8X8cwc3Brq+guEzF4u -faZcFNuRTUcMXoXlrLwjVMk5yOjj883WV2vAmuPDHaCag7Jv5DbWiK/D+VxD -XuHlbHQgL/N17p4NkMtTPVXvnY3OSlk+8J3cgKf5F868EMtGy6miBzWrN8Gs -gPH8Zk8WOvVrlHMlfgt8CycueJpnIYGthzG3PLcho6hC6DxPFvots1x9x3IH -8ChMuLwsExXas8V8ECPDZoq/XdHUyUQeE+dL3meQYXSlmuLLdJnoY9GHCx5C -5Bh3mZikU3wGog7kzS1JIcckyg9gJ5QzkPPUPN2oEAWmVrEkVTCfjlo+btIO -ZVBghpV4mbse6agvgKPZX4wSc61KlJsRSUeFZ7/V/0aUWEK1w83vhDR0SdU7 -IO8GFVZd81L5sGkaes7MndOBp8IGaqVVM46kITcKJnquh9TYZh3PXcXiVFR1 -ABjUxqgxzobt+yPPUxFHRdONZx9oMOHGHnUz6lQkePe+HuUODabSlKO5LyYF -xXC16NE70WL6eK8nCQop6IqYQsbVg3QYa/houX13Mvo4FFz2OIoOk4sMrs05 -loz0hRrIL1+ix0yi1fETL5JQjGjRtiWix1Ji93ZwxiUix9xNLvKbDNhEfEOP -3FwCkig/lP+unQHjTrIbNBFOQOTMVr72jxkxtZRr4zGf41E1/ske6jFGzDVt -Y4ZQFIcSI65qB7xmwqozMhfpqOLQND6NSD3HhK1mvVsVlY9FgfV9VX/fMWOC -uWe2dV1iUN19gQt8v5kx3fxhSr/WaDSfWX9KSY8FCykMpK/hjEaHl5+oHBlk -wQjowZ61R1FIkFzvlsq9PRhrKdv+M+GRKOVo+VRgxR5MrryOS30iAnW0Kt8b -4GTFTCptuH/wR6DHlGSaeYqsWEo1nMr9EI7aQtTvSJizYhO1a+cms8MQXuXG -b9lEVoy7IV3o4FYoImP49L2gixVTa3pzRV4qFN2Z/W5sScmGuTaflvxsF4LY -xbIemJ4lcXSZzW2/YESzHZrgrsyGkSVccUvjDUKftGfZ0t6xYU9T4gPYkwKQ -npl9WKUzG4bPOBbzQfQXmnpPf7g4hg3Dcj3SW0r90AR5NZlbMRuWUkiLLir5 -IlEf0ZwL7WwYd6lprXunN5I2f2TnNkZqr3KuffGZF9rZ5OrIWCa1V6c1eHvG -A7FuCXH57JDaa+qcSTN2R06imeNitOwYvvXmKju5GwqbcFoKZWTHLFK+0Y4d -+IkIxpv7OplInPvyaNQ5JxT3p1VxhIEdw0pviehgP9APdaZ7ndTspPqvKJ66 -Z4uCvU+dK9kitdd2TGtMzxoVNbG5ZC6yYcVE2i9R5hZo877Veu0IG2ZR18/T -cMoUFXGH2nO1keJ7k28pqRghDpqGMkTqH1nfzrr/0lsUon+ESIgjMXnI/V+y -Wiic9fMlG3cSu5LVvNVRRsE2bsNjn0g8YF79UwkD+ZQX5jwPSXx253yVxRN4 -v924V0OCxO/7xbXevIYMsberWYdIHB38Tsj5I+Sx2bo+WWPFyLyarqVqfQbB -DWZRs3ZWzMJ6Z6+Q+DcgVF5UEUkhledyfFSztwJf2aOHMn6QOEVA0/ejDZxk -saniec6KYdE3ZAiP7eHaHsKzaDESBz25wKngCE7yuX5vWEn1eX3iUBNxgbLX -p6jEGvZgWOUNMkVXVwgrt7mTbbIHGyhpXZ6mdodjyopbobx7MIvCJ5OOph6w -nyLv4/VGFlL7073nFjzhIoHv4LAJabxnfGqp0/GGIn+T8xW8LBh3CmXVa6IP -HHk+YHS2iRkrjv+Zz3jbD4ouU+zcMmUm5XcoJb7KHxhPBlC942PGBsKiI25K -BsDGrERNfgcTZhF0yW86LRAeb6IKHVsmjMwfOTvyBYNSCrn3rytMGL72ZMn+ -WyGg+3ySyXKK9P5WvybtO0Jh7nPQQbFgRuxpZWpmZnko7PcN8h64x4hxl/9N -tvkWBiP7r5X8ZGHE5ksk4+6JhwM5v5Gleg0DVoysI06uhMPt0vjmm7YMpP7W -BK0kR4AbPWfXOxkGTCV/j1/Fq0iYlc/7W0PDgLHm3vPwOhkF+XKMU+q19NhA -1i9n7YEoaL94f5DLlZ50PwbtRH5FA5wR56NSo8cM0k5bUd+PgS8q1R/ojtNj -WMob0mONhS9duRQcv+kwsqR048i6WNATq3Y6VECH4ePXDIxs4yDzfKXXtiMd -5hoLr2WuxcOXN8UVkY/osKfRNtr7N+NB0KaYZ1mQDuOOrHsympUAh+J0WOuo -6bD5MDaNzPeJIPrwxH16Ii2WEvLgrs35JNC3X6h0Sqcl3d9A5XvjSYDIrrFf -JM2/KgHDcifDkgH5rIu2a9NidA2eoV8upEAx780ZVYwWm6/LDhpyTIGJPt8y -60O0pPvf/UthMgWw95HnbvylwXJqtnzTZFPB0dmB6nMrDeZbze3NFZEK345p -nfibTINZVF33sCJPg08PynpDnGgw3Uod16nHaXDKavj0Az0aTK7ih/PtgjSg -PdvXvylDgwmWJzjkHUyHYKeyVuPjNBhrWZPd8U/pcCaoKiRhmxpbLVn87tCW -Dgs18zz23dQYoXi/1aJQBhyUivdbyaQmPU/Rbxo/M+DH9S6REVdqLKbooVnp -TAZMZCkvybymxuwLzT+fVciErRSm2D0y1JhBQaixe3QmhEXh2kSPUpOed/nH -daosmHpHq1fwhwoTzRs3eP48CwTDhtN9GqkwzlyGt7UoC0gbVs/aSCqMLIf/ -9cUj2bBU8ir9gRkVNpGlouv/JRtG2i8ISd8mrZ+ZH7UpCNlwkyH9q89pKiwl -w/v5K5EcMD3K/Vtjk7T+puc+aXHPgWuT8Zg/nhIzSSNqis/nwEW/50xaEZSY -WuqOephSLgh73Uko+0RJGj/HHzDE54K5jtjhegVKjC9Z5u4HujyYfqet5nyE -EqNL0lXt1s4DspNXDx+cp8DmExyVpcry4NP41TOWpRSk8ZV0M447HwrV1DUI -nhRYTlyzHLt5PowZbfQLvaTAfGOXZb705EPjkRqOYDEKzCKG4/qQaAEsnqAI -FGKiwHSjxTEF7wKIz+KXXe8jx+SiHkmmLRVAzMzqNF0aOSYYaSHOpVoIDJzE -9dc25BhrRPgVq6RCqBu8eVJInRxbDasUnmIsAgFlCs4X/OQYIXRS6LZeEYxS -zXiwUJBjxSFMAnmVRRAtrFIm2kmGhQQLnD9+AsHrAtauiQQyzD7o9hkHSwTU -RYvkvNZkmEGg0anFPgQRKye7J9TJMD7lejb+o8Vgy/k1R1yIDAtoeMQ6qFgM -jTKTPzjoyTAmpTkWL9NiQLo+75ZLd8Ci3oJZPq4YxgWPCOQa7sD8TXamLUIx -WLUs8rw5vQMv6sIZUmlLwDnnseFm9zYQFETotS+XQEHS02Xln9sgV1tJe1C7 -BCaME3luSm9DgbwaTYNHCRy52crWsbYF52smqSxLS8DgAcG1MXkLQuRMKUUW -SiD+MuuXvTpbwFrNRDF5rBQir4VesDq8Bd9vBJEFKpfCozf32f62bMJqpcCO -ytdSGPvlzqT0YxN0ZUu2qBJKYTOVvPgpbAKx4vZmTncp3GZQfcm6sgGKMiPr -+vRlcPHijQdX4jaguNxojVu0DCYU3kDG4w0QlKZdbdMpg1L7r/4v2Tcgosz3 -j71XGfDE2J8QrlgHzutnVyTKy0CSeztq23gd7Evzl+YXy6C4x/tiyul12Lym -tBjBUw7+15SeinSugX5J37yaSjkYUJYqmNmswQBmMMf0rRysf7Yxm1xcA5Vi -8t/FieWwXv4h4ljfKpSDx4whsRzKDJ5zvLVfBVF0YpqPsQLqhh/yPhdahRhc -1iRRrAKOJd7i2SH8hcNFNyZcdSvgZfXndKVvf8FJsmtM2qcClPMZj6ud+Atk -ha9GVysqIHDtgBt/9R8wkNgcTliuAPu3s5UDr/7ASL7z0FPeSqikYV6wY/oD -alePDe67XQnqi7WFVxNXoDovpb/aohK0lY9pciqtgIS4VJ9ZciWQtVCl4GaW -ISG3lSjYVwlfNhh6GhyWgVtMu2eEqQoudHyyneBbBtecP12+V6ugplWzPq1y -CahE7QmKr6qgqHmNoPpiCQyzD3aS+VVBoq7+8WnyJZi4HN+eUVUFd0sWeCOD -F0EzS6JN9w+p/PoMLlpyEepFGlsOn6yGOp+HcIC4AFjmk2b8nWoweqpmymG6 -ACnCC03frarBTo1DuYlrAU5kWDWKplaDVSLf+NP8efC8tK9hpr8a9uLdumY1 -54EuPbIuhKUGzpzvcj+/MwdmF6/U3pWsgWMqK7gl2TmYSa2uptOvgcQ3Ao4v -3X7DUyGNqgL/GtCL3S4t6psFfMp0hUFNDXSam58+KzAL0oJfy0+s1kDoYYWB -DqsZyEhmKSOcqgWLIO+o2a5p4BMIKXG6VwuibZ/8PYSnISBJqBj7XgshC4W/ -p9yngOlCWdFyWi2UJBxu3bMyCRaJdwtjBmuh/Zzc8qGHkzB/fixfk7UOThQs -fzlZMQEvEj7lsUId1C28eACXJqDtHH1u+Zs6CD92I8Ikchzk4v2zTQLqQHZ7 -R6Lv0DjknT2fdb6uDgIO9a+Ze48Bf1xhxsBaHQzTrEg83T8GwWdupXvy1YOu -oq6fve8osMUOpMo9qAc/8kOlm8dGwZrvQ8qmTT1cZz3djOJH4E80ZXJKRj1E -+oUPtlwdAd3TXokvhutBXeAry2X8MHRHnUrgZG+A/R884qd1h0HxVE5cPdYA -038nEuaohwFFysdavGuAew9vmUD0EAid7IkWDmoAw880HzoVhyA8Qj9qor4B -OLOz9qf/GYQDJ7YjAjYaIOuYmV59xCDYh/8MVznbCOMFA0qHHwzC+nGeMCr1 -RtCqrJkOYh4E/bC0kBy7Rkje6NSUrx6Afh7pYP2sRvBOSV9hsxsA1dD2QO7R -Rrikb1w0Kz8AZdwvA9r2NoFeS9tdPOsAXA5Z9beXaoLwzd9+97P7IeaYg5/E -+yZo8jnymni3H7iCD/nOBzeBj3Rv9YH1PnA6mugd0dgEaXfcse6oPtgOxHmp -bTUBa2Ks3KZGH+SwTMjTHMDDV9Wmw8oH+uBDo6D8U348qD6a9wgg9MI5l89y -edJ46MNJ6SeH9sKIUumNfZp4kByePSr/vhcCmRlvvP2IB67pNlv+G71wv+GO -bLUDHsgelE/u5e2FPc4BMsfD8GBjI8aVRtUL1Yqj0ma5eAiSuvM6d5oIVkwX -pDvweNDP2Onq6CTC1Xrj64ITeBBO3QhLqybCsiOSctjBwwrudth8IRESb9JJ -jRxoBpGzM9FXsomgw6h6DXehGaIfxJ49nkGEY3V+mK9MMzzVfb99k8QEhyFY -1GwGtplxU2VSvLvCOVA0bIbKjZHLJQVE0jpviItybAbFvrAqsXIiUNUWSJKF -N8PnKVE9xQYiFP6gltTIa4ZQzbJaL1J+xvLKEhnNzcAid6AtaogIAvQ+V1km -m2Fo72Ujjt9EmKjuF9cla4GkxwcZLNeIEGbPJ17K0QI8ez+/+Ubqv4bce7HD -Ai2wlsZqm8rSC/vo8kSNZVtgPtolN5ejFxqqKETxj1ogw0NLEDvWC7Z2N6+c -NWoBjQwdmfkTvQA3PC9/d2qB2ZbCj6Z8vbBK0yvSF06Kvxp0xu9ML6RVnhQR -zW+BzMgIMVpS+Svbt8LuLS3wq9yHyoH0PE7IZl+amWwBCjNn7plDvdBLTXZJ -lrwVHGbUf1Oy9YJ3hdzFEM5WMBD3ZYqj6IVbNm5C6wKtYJx7tK14ngh0Mt2C -d2+0gtSQlfrFHiKUUPEKJj1uBQbGBJ35EiJ8KX8tQGfcCpL994hLEUQQ/p5x -4blzKxxqtVYW/06E2etb/AURrXCYwrKt7QkRoihl+Q8UtEJlGEtr/RUiPClz -OW/Q2grFlqY5V5iIwGndea52qhVGQmt3BHt7oFmK+9wJijbITWFM74rrAQcK -vbPmB9vgW+ejXw+MekC6NPUMQbANOHd46VolemDLcp3volwbPDj77bQFeQ9k -XbvO5/SkDapMKyidy7rhHbnT6THjNjA9vFnAb90NfCVtpzCXNpCIdNLwxbph -0OLIKf/INnCvfHKKarML/DGdk8sFbcBcs9gck9kFd8mSTyi3tYGiJ89S/psu -YC7+yxsz3QZOR3LmvpzogspvGC8FZTucYuW15OwmwDf4cVyTqx1q1u4+q3Eh -gOhOM0+WUDs8C2u4VixFgIUiLh5W+XZgr/XW4//TCXHmWtyvnraDyQaHHC62 -E17gEo6Vf2oH/EU0dkizEw5vLx89+rMddlhGHyywdEJHoeRRkyhSfBKF6UBJ -B/z8anukpbAd9mg+oWAw6gA5yabD59vbYcqa/rojXweQb3Ectp1pB0fv97Lm -xHbIK3h6aICyA9LP3B9Zc20HQ7NYLvFDHZCYrWbIJtsO5yUWD3pe7ACaqCi1 -zo02GNsQP/hbvgOWV9wN1NPaIDjfmlPuWQc8YZY7GaHXBmqm9RxhJh3AOvlo -q4SnDdiu7ufY/NkBLxMXF/O7W6F2/dGB+9EdcP/yUJmfZyt8z4van1LUAdv0 -9y8/u9UKEl/m9jF0dAAbtc6NQ4yt8EdMdN+LWVJ8IiGovqoFktcs9hZRdQJ/ -bYOJqU0L6ObWsHMe7oQlOx2tC9Kk9+4zO/uHS53wjrHBaIayBbpFH7LVK3RC -8bnRT4XlzeC5Gs566nknSKwNS8TYkuaBnJk9Fp87QdatRDlPvhloTET2dLt2 -wq0Pv5o2mJsBXTFnEY7phEHtPiaTVjyY/K1kdkGdML6gx3HVHw9C2XuYJzo6 -gfC3OkD1OR6mjNWYpH53wrkG5fTqc3iIuBzKGEBNgHjahQ312SbQ/DPJ8Ocw -AZIqzw8ftG2CA1kXGVSECXBDIWpygqcJGo1M6eNuEqA/2SCvr7gR7EXK6ai0 -CLCu2hrEqtUI11aY6B5/IcCiYXmaK10jrGfco81xI4B92zeuN6kNkGEYRMMe -S4B3qaa0SY8aQF94nFq/mAC8rtRb6swNcGpZgLqykwDix0Wuvimuh750Eyru -OQKofrrj1mdcD74fSyi/0JDGueSBd4GC9aB6iYGy7UgXDBYceeE2WwcMS7cp -Loh0wZKjfIVfYh2Upf0it1fsgrxenv2OBnVg9mGEbEirCx4ayCDRy3Vw+SI/ -mYRpFxB4c/Da27Xwe8Fox8u9C5zfPQxuqq6FmNSi7bnYLvjAaBVwzqsWnr2n -3ZYv6YKYXyWJp7VqgUtIZSuc0AUSdkdqX12shdZ5382tuS54I56Q60VRC04p -gxsPaLvh+MGXK9dba0DW4OxG6tFuMHQUjGCKqIFtgY/rjJe7gf7q91RrwxrI -mctf01bqhotjRWvi0jXwPplqDb3ohvitT3Zl7DVw9p3S6kGzbpifp+9NIu3T -hi94//3o0Q1F3twyrnHVEPC7709DXDdEzK6e2P5QDfeTTv85XdoN6a+nFTxE -q4HlrcGKZVc3BDgPXZpfr4Jq/tzlnvluGNlnJVWQWwWWs+TLInQ9MOa6MxRl -WAXiiQpLP4/1AP1Bch/dc1WwpO+xOHm5ByQa2H4U91ZCwnniwnXlHngh++68 -tWMl6MycWAjU7gGGGjRsI1wJRxPezP816wFM+IJQIqECCK+z5lQ9SfPg2Vyd -qU8V4HZu53d8fA+0Z57+cJW9AhSmb/ymLuuBkpCBybjocqCMd5190t0DVmF6 -87dEy6HgVddM7kIPOOnpzimRzhnGZ4/P7KUnwnp89Lm2m2VwYerV9BtuInza -iwkfaSqFidj0qSrSPG5+z0vgLelcFKK3OclziwhqNmr0B2pLQOOMzKSpDhH2 -vRWw0Zcqgb2TzhPtX4nA7vzlJD67GOpjOsYFvIiwarFkEnuWdC7UPTb+I4EI -RtvjpZWXEeD4dMeGy4igsKqx1rOvCFbHU0YlSeuQcayO0+f5AkiJXhvxWSTC -lS8jTxxq8+HVS6mRBfpemKYJIa6H5wHvacfhmzy9cDR7Uj3tay4Qx1qHIkV7 -QfpwDk2YWg54RR0e2rnVC5I36tViRbJBWUd7UP1lL5jyd9uH788CulNJA+nm -vdASPOWttZYBxaN/+pm9e4FRKqkydTAdvkRC/8vEXgi+VMSn0JQGl7Tt+0rK -e+FrqAtXe2kqzJxo7j1E7IXJMoOHOwUpEDlysNdoqRdUkvLLY8yS4XHEc2IT -Qx9oc8mIR7skAseL+J4zx/vA+G40a09KPDTzLndbi/UBld5TTqqRWHAYluju -VemDjYeNK8V8MXA93Kbrim4f4NcNTH9+i4LN540Et299kLAxpNEwEQGZxzkI -09594LGRfCL3RTi8HXrSKZPUBxP7rF0+LoXC6bCYjuCKPhDfSvlD5hUCg88W -2teIfaDunnzF2z0I/HnE2+8s94GSh862DHcA3Bm0aktk7AeiXCzepsUPmELr -Wml5+0FxSZoiNMYHKp7ua30m3g86LiUURaFeYM79qCVftR8iiXOlQwUecGUg -snm/Xj8Uu9ofXFt1g4Xg3/h3Fv1QNFHA2XrXFeKeXMHX+PTDowUm18dBzqB1 -zKKJN7kffp+o2aPR4ACH+6sbv1b2g6x7zuJhYXtoD2Jr7OwllZez5VU32YDL -Y40GoZV+4JzjLbcMtIYTP1XHZGgG4C6DcuFHf0sgm1sZXWQbgN92Db/87b5B -r7L/aPCRAdhn7fnTgd8M8pJwo4pnBoCNV/ArjuczeLMMj6wJD8AVwYgDTx4Z -w4e3diNR2AAEK10yKyR+hFuN50buKA6AmT8vtbr/ezh/AT9MpjYAa7fwS1XH -3wGdi+FwotYAkH0PCHD58hpGZzmHNd4NwHOLQILCJV0oVSocojUdAO9Etv1m -0toQlPhsKMN2ABqsKV/URD2HL8w0Q8/cB4A8Y3Ot6PZTePAmbpAlaACOPnb7 -QLTSBOEG5cH82AH4m3fJZI6gBqz8SwO6mQMgN7K+MfTrHsw6+QzsLxmAc4yv -+KqKb0PtzNWB0voBCOJ7Hc4uqQJRigP97wgD8Pp0lmMZqyJYJXzvPzwyAGNc -agmUwnLwhOlMf83cAGmfEF+wr00aJPQb+ow3BsBNbkVnYegacNa/7+OlHYSz -0yxhddE4WD53oA/PPgg2xuSei5fFocUxr/fr0UFgFr5zbljzMiRNP+49e3YQ -uJu5K7QZLoHDTcreTpFBWHrKY815QRBexkcTv18bhFeGVd0lBudAmlGRKKQ0 -CJ9yI0Mui54G7tfzPX1qg3CuP4Tv2i9e2Kz17HF8MQiJ1x7UydhwQ/dZsR5R -g0Ew/rp3Wqj6EGQ59HaPmg6CHBn3IatbHOA+ZdntbjcI/gZ5xp+/74V3Cqe6 -wWMQBIS+cvxSZgXFuNqumaBBWCta0zkkxAh8DO+6/OIGQbnFz9g6mAaoXu3t -ks0i5U/TPYCrpoChmmzCUskgGM1FKy0e3cEVndEkhDQMgugp2c0XeWs4/x9k -BKWuQUh7eG3LWWwF92kyonN9ZBC8pC3zqD4v4O7Ky3dGzw/C4s7VQ1sZMzjB -2NmOu5v/M/+cfBn7cRwTvXsHOd0QXDn2K2UUhnGTupc7kvYOQX3aZyamN/24 -yuru9ofHhqBf9cD2Xr8uXBjft3a6c6Qz0M9Qt2+Nbbhv9rztmZeH4MHmvcb7 -A3ic5kRV23OpIdhRYuGPUK3Dicrpt+1RHgL2jio2N9ZK3L4Y1rYC9SGY969P -sK0uwS3QZrbqaQ8B7UJVdMKfPFzjS/XWA++HgOJ9ycR2RwYurmqrpcxsCG6/ -Sf+ll5WCszsd1mJgPwQvQ5OHvqE43As72ZYjnkMwdtHWevphJA4bn2quDR6C -I9RXjJapQnGHb/xs/hQ/BAo15f7erL9wa1GXmk9kDwETN+dns7uWuA4aAr65 -dAj+6//XaTpmePPGISBMJpK3quVI/Kzkxp/r/leuf6qiiTD6j+Vs9ZpsFv7x -iTHmpotb/5hcNq2xn274v7kv8n6j075/nEe90SDG/Y99tIMbxs79Y8OK6w0e -V/6xysmJeuz6Pz5v41Q/q/yP6UcF6/01/vGYdHvdDZ1/XBrxuW75/T8Opjpa -F/r1H5u9KK1V/jEMDrOs56kVMiTUynVqNzz/lQufYKyNCfnHbN+Ta+4l/OPf -w3dqKHL+ce311erksn8cHR5Qrdn0j79TXqum7/nHT7VGq7LGhuHqwsf7V66m -SEiU/ajSWvxXfpD3QhXr9jAMH9BS2/9KBffHqqWykH4EBE7WqVlr/MC1DBlX -vto/AhSpC5uXJ37ikqUOVXLwjEAe8UxVPZ0nzikMVZSfH4GvmPPoIpcfTpfi -RcV70RHY9JVe+fgiGCf9nK7iqPQImCdflanwCsfxlCaU190aAZyDzqUj9TG4 -bR7VcpOHIyCyJb22opSG67ZcKTv5cgRuLH32TCrOwmUP+pW1fBiBqqN1/AOi -BTjPa7iyb+YjQDkcV6n9qQRnEDpUet5hBPoF9jAtuVfgFMntSru8RsDHqbLG -wKcWd+bZuVLb0BHg6zpYYamBx9GUNJVcShwB40fnmMzY23BD3IYlAzkjQH5a -IirOi4BDFpwlzuUjwCkg1nqXqQ8XMFBQLI4fgW5Bur80d4ZwJtiz4vGeEXi0 -s2rxXmkMdzeEuthzfARs78sPqR2YxgmRxaFrSyMwg1Grnns1j2N5qox+b4/A -Ecb3l2S6l3BTaLHoF8MoTPx8+LZ65S+u6phPkdyBUTBT3RJV7NnERXy7WrTC -Mwpbpl+9Tj4gB4v+/sIw/lFgpCi2G6+jAk34XnhLbBSC4pV++QzTgVgwX+Gm -9Cj4UIoIvs9lhgM79QWxKqPgyflSVT2LDRYfvy+4r0mqj3Ug2pl1PzQW7S+g -1B2F64Lx6nk7nJBwNC8/5eMo4Cvr3+/9dQTszR/nP/o2Cu37A7mNzXngRR9F -PoPjKAh8ZLazDT0B13DRedneo7B04DW/3Q0+OBp0M+9F2CgojchWaFqfh/Wt -uVy2pFHg56MNO5QpCB2PPHOLckch4hyP2fCPS5BRKJr7umIUDqZBpVjDZXA9 -0pvD2TwKxu4nbtQ6i4P+V8ucCuIoEH/wmrb34EC+92TOhwlSuY9JRdTINTgl -WZt9bHkUbOWTnNYypIEi8G12/c4osJitFeVM3oC+Tfbsz4xjQPV4Zq3A5SYU -aGZnneIYg1GOWP/fKbfAt+BhVuvxMdI+400+n8BtMDxMlmVxYQwmApV9aFvv -gqpZRCa/+BhI+R3uh/oHcIEol9ktMwYGQVKrPrwPgUFiNsNOdQze2flGfRh6 -DGO/3DKEH40Bl6955csfz6BsQyRjUHcMPmlGkkX2a0HIw+50F8MxcGF/uO3w -WQfM8s3Tr1qMQfvNbpMtTT1QP8SbPuFIqk+1mO+Uqz5cNq1K8/IZgyAbzeFs -JgNg73mdJhU+BvR7Jglo5z38FmdNm0saA4neAnafE4ZQ55+RGpA3BlUxbMZF -5sYQs66WKl85BmERvlDJ9hm+a5A2is1j8OGAW/mNQVN4lheaEt47BkzjdM/7 -5s1Bkks2RWVyDNT3H2zYc9wSuL5MJW8tj4G+wych+Tkr+NvlkhxHNg66Bkc6 -Wga/Q6vYpeQHTOMwfu/dvjsbtpDi15lExTkOKc0L6eqSP8BpzTQplXccHnCl -8GnEOoKeOnfSY4FxsL1T6hKJuYBMbnki49VxMPgiK3rRypV0DtRLzJEdhwN3 -ci9Vr7vBjglzovbtcUg4/LTN2MEDegipCeyPx0Hmroy8lZAX5IjeT0B647BG -sR3FPO8Nnr7r8fpGpPgU5iaOSl94vxoUf9ByHLw60j6bpPuDktr1+EqncTio -UP62NzsAzuaMx330HQeGFJ/1qpYgoOV0iuOOGAesmeJ+hWUIDH8SjGtIHgeV -GKmM8IhQKO5si/2ST8rPw3LBuDkMAq58jj1dNQ4bnCVYIG0EfPY5EtvWQuov -x/M+DdlIuPe3JMaybxyqNFkpup2i4OIDnZgLU+OwQy3Eca47GvZkM8T0rIzD -La1PIMMfC9MHkqPtySfAN/DpcVqbOKg2vhMtwjwB+mzqjKID8RDR8TdqiHMC -atfFH/yQTATLywFRP09MgJJyiqDvryR45I1FSQhOwPTnRr+51WQQ/zMSOXl1 -ArS8KZ9Sx6UAx/0fkd43JoDR4GRd/L1UWMrkj7x+ZwJCnu90BmynAn5/S8T8 -4wkwG+eKp4lIgwQj44jAVxPAK1j4cr9MOvxo54pQMJ4AMnzGxPJAOmiLoPC/ -lhNQoST6o8U4A6S8tMIjnCegb8FrtY86E46t0Iar+k1Aoyv3XhXnTNi4mxC2 -HTEBU1M2ec+ZsoCQoRIWnzIB4bc8ojWtsiBj30qoWsEEPCF7LODyOwvcDP1C -qatJ159qWrmjkg1v2iRD01on4FRwth1ndDYoCA+FPOmfAOtjjR33FrPhtKdt -CNP0BBxsUnX3FsoByuWzIbl/JuDmypcHn17kwMCdpmAdikngk9HLjHbIgYL0 -j8F7WSZBV6GLbDo8B/z2cgYXH5wEn16vZc6UHDD6WBD05uQkPFe7e/hocg7c -bn0axCU0Cda07+g2Q3LgwiXqoCqJSZC3LZSvsckBRo/YQEO5Saj/6C+S+igH -JhaVAnnuTsLgq5UPS3w5UH57MaDxySQIGR66PTyeDaFp3gGmrych2yN8Ycw/ -G76yXw3g+zQJTRMRl4ylskHjQ/+vdqtJcByisjvYnwWXW6x/WblMwgr/9R+6 -77Ng70W+XwL+kyCXH29Dt54J8271/sTISWhUvd4Z9zkT6hcM/H+kTkIvHccl -xoUMiFXd73+5cBJOfGoemH2aATapuX7D1ZNw5I/v+JHadHjO9tjPtW0SAgcx -kdf86YB7T+EnOTAJ4lXlFTGOaXCoOcp3anoSVGi78HGjqbAqeNPX5+8kvFs5 -SCkjkQptrnM+0pRT8H6BoVrONQVS5z18FlimQJZT/Q5tRTI4q4j6BHFNQY/i -jIfpyyR4lUL0vnlqCkZbfy8Z0CeCLKul96rQFFCuRQ2rJ8QDr8FJ70jJKVil -0FTzVo0jjbsar9vyU2C1RNv4fj0GiAJvvXbuToF6lbc3T0w05P5k90p4OgXJ -qhdMyh5Ggddclqe6/hRIi1f7ax6IhA+3HnrSmEyBs6F0OYEQDsrJOx7p1lMw -xMEwSB8RBuf2RHg8/TkF+ydud0SbhALdOzkP5l9ToK/42F/lQQiMNM6450VN -QWU3w2E2yyAoueDm/jJtClQ/MZ401guAQBcR931FUzC1NyLeWNcfvvzuciup -mQLJ6rggB3NfuK9s7va2nRRf5d+wFe8Nl5KOux0anIJ4feOvi/OewMpS5Vo9 -MwUyAaVXXih5wMyb165Gq1Ow8Ce+8myJG9Q07HE9TjUNzCyFqls3XSGSP+Nn -055p2DfPfXS62xmsnNV+mh2ahlsRfBsnFRzh8eymy5nT02C3YnHVbMQeriqF -unRcnAYOWRacT4wtcCTKuFjjpkHj8PfFbc/vsMw05SyoMA1d4k1tx2KsoFnf -xbn3Hom/VIWrDFhAYv1FZ4dn0/Cpms01+ZM5OJzvdLryZhp0i6bKBt6bgo6T -qdOIyTSkSk3MBcabwPWZY05u30n5clBY3OQxhmOK5Y4412mofbhJodr0ETbj -dR2nf02D9ceZQ9xp76GLkdnRN3oaXo6oSBs5vYPM16kOMunTsH92a/Qdqz64 -191zWCyaBrbXvH/cJ3Xh7bn1H8G103AhMmDbjE0HbjoG/VDsmIbtN86PWay0 -4PS01I+1wWmouCvA+VbkGVDdHLePmp0GpwznYi7FxzAY52h/Z20abAPS2O8G -akAhg6A9GfUMuFx4URd89wH4v2qzS2SdgVnvl5/SdO+Cca2JncbhGej8WNlE -xKvCnbNH7Gj5ZmCfiu3RvQy3QMChxDbj0gxE5uG5DDcUgGlK2/YZkLjvdhil -7g2YlGewZbk589/77f985v9X3vVXd/3VXX9111/d9Vd3/dVdf3XXX931V3f9 -1V1/dddf3fVXd/3VXX9111/d9Vd3/dVdf3XXX931V3f91V1/dddf3fVXd/3V -XX9111/d9Vd3/dVdf3XXX931V3f91V1/dddf3fVXd/3VXX9111/d9Vd3/dVd -f3XXX931V/8v/dX/+KoxEv+//NX/+JkhEv87f/W/8vl/5a/+pz1XiV1/dddf -3fVXd/3VXX9111/d9Vd3/dVdf3XXX931V3f91f9Tf/V/ABBZCwY= +1:eJztu2VUlF/4sEuXoICFDYKKhYCAgDj3I4LSgqICYoIIgoooiBISIind3d3d +m+4YeoChO6RRmjPv+p/3/a11Pp4v53zg+TJzrX2vfe+aZ++91lwcrz8+eENB +RkamQktG9r8+/+dZQP/7G56b75HMMPH/8FGdyUcLdUTkJBm8Zpt6F57HhTz2 +ziCiAL0Ql/EFaYicevxELJCI2PV/VCj6ysPsxf0qwz+JiH721RFLgiLwv6tU +sXtPRMz8zuFzZx/Ct3hTVZ7HRJQYrOkkkPYISqavq7XjiGhWVuKplr0K0F6e +Uft+gYgekt89MZr2FBR0w5+yMxORw7tnjo/4XoBngqp61VovWnr89o+S7Ssg +zjA/0xvqRVIr/HPGsRpw9krNM9a6XmRU+1GudvcN6Oj9eJ6bToonEI/sumpD +aqLQi+cBvYjjErvh8Atd+Df75wXVz170kkinhOl/ANzVqJfxer2olieCcXFY +H2zeq79SfNSLXPTG74unG0BD0sHXf2+R6nu6xTgR8wVY5+peB54n5Yt4Eh1W +aQSqPFYa4gd6kZaq9/oppm8Q+kFEc/JfD8pLnhGZ+WECE8kLms6DPWjaJdjM +8Iw58MzHvBGo7UE8d5x//TCyAMNrL7R60nrQsyaJsoYVSyj8eOSthX8Pcs77 +9f6AozVQpDa+PW/dg/g0E/i9RGxAeuGndoNuD6I9+n7VjswWXHnFdAyUexDl +GdfP8wN20KW/rMN2qwe9Vdmhi+xygNNp8e+Kz/UggwHVqEcTTvBm8ZWu5v4e +5PBdj/znfhdI5Dumx/CvG4m/tHTDRbvC0ie8XupAN8q73xl8Fe8GIum27x/X +dKMjjOI/LKk8wGIJ92ErtRtpL9/idhP3hGr+vx/C/bpRXM9Eq4+9F+z/nPRR +yqobvRXZncwkeMOjDE39uXfdSOzcGZjl8YXA5ROfPB92I35D+dDzjn4wfL3t +k6hYNyqP/ZfEP+sPl744GAxydSPDFpUjVYqBoJ95+/Mvpm5EM8149kdOEOSs +rH2+8peAvK7L+I6fDoEdgdQvrf0EVEI+v5krHgqShm8NjasJ6GRhK1n5Sig4 +ZZ02Op1KQJRmU9WFkWHQutphVOFLQBea/6o2KIXDcaHfX99ZEpD+pwMMhzbD +4aWRhDHzOwKKdXCGzJAIiMneNM5+QEC3ad49bsRFwtzf9G/qN0n1t+m7WnZF +guCNd98puAjI+Iwjyz/tKDD9ymESy0hAHY9zB1WXoqAsh2CisNqFQh/fmegz +iAaGNRfTlb4uxNhiOlEyFQ2KwvfM/Ku60GtqTFPucQz4GO+YYSldaM3Cx6Ar +Jwb6c7PMx326UPRZ2o81TLFwbl3vh5NFF/ILlHf1fhILeiJcFvw6XcjHrFup +3jMW0r/1WhCUupCLT3oqZWUsbOS5W5qLdqFFUyGhxYlYwDakrbg4uxBnd36D +2nYs2IqSW9ft60I7VvNqp6jjoOl7rrX+SifCe6dyXtmNhcMFH38e6etE3IE9 +k64zsaC+ed6msLIT3bYOwOvWxUL4zX6b18mdKNE1mmk5IBamTbx+0fl0oqIw +f1mDl7HAWyhnm/yjE5lebRySZosF4y1KO2XtTvTQ5Gfzn/IYKBYrsNtQ7ESb +S19sRjVigNrMwD5UpBPlnme0rFyLBrmiiw53z3YiXb6s4hvW0eC+Pegwy9CJ +0j3en1qhjIaeW76O7ssdyNpHRi/bJArYze87CRM7UES4xTnpmUjQLqb53V/R +gSwnvdgsH0ZC8k7R759JHSjrU6bbjawIWMUZOl/y7kBOOsV0MiwRIPbjigve +vAMl6fCe89UOB2s04mL0tgNNUuk0kBeGQd2uv+tJxQ5U0PEAe8MYBszYA7cy +4Q40Zr37MEgtFFQs6N21OTqQ5Ly50a5CCASXlLjvZyDFazxbzp4IgjEyY4/M +pXbU8f3U9JxFIFy5fc1TrbcdiQrdUD97MgA+W457klW0o1OJ6RI5+X6QXxrk +FZ3YjpbqZNK2nvkCGcUjbzmvdhSTJHP9Iq0PSIkz+iyZtSOOP9uxqjle4GxV +7uOr1Y5qRbEXrh89oaPsuy/ufjsysLKwz+T1gJOU/H6jN9oRv5Yek/umG2jc +mfJzYG9HQkpmBZN4V4i3DvXnpW9HDymsSkxeu8BC+ZOAzsU2tFQQzMgi+huE +qQ4Emva0ITkvaT+ti45gLlEVeLa8DbGK/5Rm5bOHyp9mQTUJbegT8XWJqZIt +MFYKBH/wbEPBgoMfRh1s4CH1bPAhszZELsgx87LPGvwlI0Ly37Qh7MNx63Ep +Kxi0UQt9qdCGuhh7t6QbLYC7iiWM5kYbGiywnLNrN4cPNLVhiWfakNU2TdEc +zhSy7lqEP6BrQyOR4S2DhG+w9etGxNpCK0roBvanYV/hTvVcRHB3K+qgVhIx +8TEEB9roSImyVqQ5UjTbm/cZ8PeeRU3Ht6Jt4y9rV2kNgM3uULSrRytye6Gf +8NxcH57X1EcLmbYimmsr4T/EPkA0nXUMUbMVra9+vfiiXhdmpURjreRbkaOY +o/StGB24br8Yyy3UijL+Xpi+3PQWvtfGxjWdbkWyZ4JPGeO0oIT+ZfwX2lZ0 +KMx4LOOvJtDJHE04vtCCrKyoDqJVDVBwaEooIbQgSfRLvFlUA7zrbBK1SltQ +B2voglHlayAy3EpijG9BF+w/xSd4vQZO2ZWkdPcWdKQa/+x94mt455iQrGLS +gu48H/i+Qq8BafWvU3Y0WtBCuRCBJUUD1vYdT42Ua0FHDYOujARpAk6uJVVG +kBR/oOOCK+EN/HKyS1s41YKmkP7dnFdvoaEB0r1pWtAD4w8cH8R04CDTv3Sx +eTw6xRiRE6enC2ryyRnDXXgU3CI8yvr3PYT9fpNpV4JHG/FHM95+0IfJxpNZ +PHF4lBHTEE930ACu7W/PanfDI2pbU4L3zGcwVHDM/v4dj/gVwwQWNwyh0Fk8 +h10Dj2w1mBK5JYyBsnk9p0oWj/KzGPRq676DzIG0XD0BPDpknvSF0t0M3O5r +57GewqPaV4I1ngoWQHA5k59LjUfewQYMbGuWgAtNMiwiNiPbexcFv1VbQx37 +ya/0yc0o2GX5emaxDaiEORg/+tGMNKnvj+IHbGGcY/1bmGIzWvfZN8Jy1QG+ +hL81+cPRjLrfC9zVi3UCCs5OU5HlJoQbFHRrfOgCrhES5jYVTcgxIYgVsbnB +aa6MHy1eTWj1Sw00h7lDfCSH5am3TcgiArt1/q4nCJ9ztdIRbkK1MzMf8DTe +UBW1Y51F34Se7ssRWRn1AeXz723IexvRt8k5Cqsh0v4Y3ftLPrERfc4vknuy +HQD6F2Ts/MwakdE/a0sbkWDYicm1H1NoRA9e0b0wlyXtd9wXHPnYG9FgfLHy +A8cwYIvzcjJbbEB1nkUjScRwiL5I5Vxb1oDYwxRSGLFIEIg3cDns2YCUKJKY +67JI+9WlIddXbxrQhaJhPj5cDCgm3HdPEmpAO8ysEkndsdB/udhjnbYBdYlf +0PW0iwe9xCtekt31qHtTLeWGbCKsXQnwdouvR9W3pc6PcCTDryR63z6TeuSg +eKvOmCYVDvEY+12Ur0e/5ntOKNCkQXjyuL/h6XpkKaE7aM2cDrzXHgWWztch +ITInv9vnMqA4pTyIqbQO2Q5u1EZIZIIcL3+IqnsdejSmWVf5IQsIqaGhURp1 +6N+/O6fLIrJBi+9A+KJAHXrvUitQPpIDK2lmEbdo6lDcwKkzgzx5YMU/G2nf +VYtUUi3cD9nkA3OGWnRHbC068yXI22W8AIKv18ZwfK9FB4S7jn14WARXMm/E +vZetRapR17ua6oshXyA6Pu9kLZJ8elB36kIJ3M06lEg9V4N62YoM2+ZLoF3Q +OkkJ1aC3uxTxOUWl8Dp7MTnItQa9JiYeinQrgwWhl6lTr2pQrCWrf5ZuOZjn +NKUJXq9BuobzLjRyFcAofCvDkqoGTUj5MmXyV4J/bkJmY0c1Ejh3jLf/TBWc +FzmefSymGmWHUd5KP1gNmXl2OW+Mq5GdcO2Y8v4aEBf9l5smXY0ePeJq7j9Q +C/j8N/nbx6tJ54eocQe2Onh+s71AerYK2Skvuztx18NsgXiRV1EV4qF6WX0C +a4DvYmnFQ85V6LASJmr4ohFois6UXH1Zhb6yqMSM/moCz1vOpd/4qtDQY8mY +lOxmOFu8VVZJUYXub72htP2Kh1ScbgVLeyU6PR4mc42tBXCou/JZVCUyo7+j +Y1rUAg0gVR1nVImKlTw3A9+2glpJds3qvUokocP6s+xIG0xi5+puH6tEL56c +uXO+vg2+lHrU/56uQCch3n33ZztQiFM0dhdUoGnDJSZziQ5wLdNvOve7Amkl +GRaM0XfC6TsDzZ+eV6DRuuFpo45OSCyXbym6VoFeihk3fonpAlGJwlZ68gp0 +6eAz7XMWBKipuNT+qLUcjUgfNW9/0Q3Kkn4dYRHlKLpJeqTxbg8MV9J2/flS +jsyp5V+oCPaC/l0jgsjdcmR4M2a35jIRdqpGu22OlqPz4QfwBpf6wOnew96W +yTLUaDl+NoGvH47XlBJP5Zehr9Ly+rW3ByBWirdfx7EMRVtThHteHQSB2uCB +LPUy9KyM9/ZBNAhl0kxD5Dxl6OmDmypOj4ZAsc5kWH63FFkxHx/nXRyCfpnp +ET98KbK8+26T130Y9OpVxsbCSlGARrV0kfAIbMhWj/N9LkUatUb7acdGwK5B +cNJMohTtcJzzuu0zCofkI6dqD5ei7zJW/iH3xyC8kXXm8EQJatUwKlXYPw68 +Cpazr3JLkIjAzxc/28ahuGn+T5J9CVrYbOf+HDIBcvefz6+rlSAaxrgWeYNJ +6GluWJC8UoI+a55Yvis3BfhQo1HOTYT2q0VvuF2dhtmwhxMFQQi9iJZxfXVk +BqgieKcfYghxDPn2jdDMAnsk05+Z4WK0KcjRLrs7C2JR0/PWNsUILi1n1e7+ +AZXo6qUT3MXI1aKi14luHr7ERK5m1BWh+K2V8iHGBXCNtVyTfV+EfiTdCmv0 +W4DEuOebIweK0APn+c0zlxehIv7mjkl6IWp9l14wW7IIgwls5IceFSL8n2w1 +qadLsJW4Spn4rwDd+y2YILmxBGzJrTQS/gWopUoc+xu0DAIpKfREsQKk18N/ +793dFVBMdWL8MpCPuAP8PFKXV0AvTecAo1U+ckvqv9UZtQo/0++yRnLlI1Sj +9GFM/S+EZnAeFqvOQ3AzymSC7R8UZpKxtevkIfbZY9vD3f+AkNV3XI8xD8V2 +5tARQ9ZgJTv/FFVKLvr8+fVW27t1YM71YQ9UykVZ9/KaakU34EreF06BlRx0 +KD9LN+/AJkjlK51v8M5B3OKWT3ynNuFlAc9FTZEctJImfEy9ZgtMC/dd2erN +RmcDxthWE7bBt2iSx9M8G13bfhp733MHMosr+a5wZKMZyZWah5a7gEfhAhXl +WajQjiXWQIQMmy35cUNdKwu5T14p/ZRJhtGVqYuu0GWhz8UGPB585Bh7ucgt +p4RMRB3EmVeaSo6JVRzBuBQykdP0At0YHwWmUrksXriQgZo/b9EOZ1JgX6rw +ksoeGYgYeLTFX4QSc61OkpoVzECFl340zCFKLLHGQfYnIR1dV/IOzL9HhdXU +vlU4aZKOXjGx53biqbDBOgmlzFPpyIWCkf74U2psq55DWa4kDVUdAQaVcWqM +rXHn8ejrNHS4svneKwMaTKCpV9WUOg3xKD/WodylwRSbc9UPxaai2OOtOvRO +tJge3utFokwquiEik3nzGB3GHDFWYdeTgj4Nh5Q/j6bDpKJC6nLPpJDuH43k +QtfpMeMYVfykZjKKES7esUT0WGrcwU62+CTkmLd1nFyWAZtMaOyVmk9EYhUn +Cj52MGDsybZDxgKJaJfRytfu+T5MJfX2ROy3BFSNf3GAenwf5pq+OUsojkdJ +kTffBOoyYjWZWUt0VPFoGp9OpJ5nxNayP64JS8ehoIb+6n8fmTDevIs72s6x +qPbxNR7uOSZMu2CE0q8tBs1nNZyX19mPhRYF0deyxaATKy8UTw3txwjoyYH1 +Z9GIl1znvuKjAxhzGcvhixFRKPV0xXRQ5QFMqqL+uOpkJOpsU3g0yMaMGVfZ +sNtfjUTPKcnU8+WYsdQaOJ9nEIHaQ1UfipkzY5N165encsIRXvHe3N0kZoy9 +MYPv2HYY2qX/+rOwmxlTaX5/Q1o8DD3489PIkpIFc225cOubbShiFsl+YnKJ +xDHlNg/8QhDNTliiuwILRpZ4wy2dMxgZvfnDkv6RBXuZmhDImhyItE3twqt+ +s2D4zDOxBsIBaOoT/cmSWBYMy/PIaC3zQ5PkNWRuJSxYahEt4pf3RTd8hHN5 +Olgw9jKTOvcub3TH/Jmt2zgpX9V8x9IrL7S9dbwzc4WUr15j6MGsB9q/zXfc +Z5eUr7lrNt3IHTkKZ02I0LJi+DbZNVZyNxQ26bQcto8Vs0j9QTt+xAV1GW0d +6mIkcd7b09GXnVD83za5UQZWDCu7L6iF2SN7VcZHXdSspPpvyJ1/9AuFeJ+/ +XLpNytd+RmNcxxoVN7M4Zy2xYCVE2u/R5hZo67HVRt0oC2ZRP8DReN4EFbOH +2R1vJ8X3pdyXVzREbDSN5YjUP7L+3Q3/5Q8oVO8UkRBPYvLQxwF3NVAE87fr +Nu4kdiWr/aClgEJs3EbGv5J40LzGRR6De6ma5hxPSXxp90q1xQv4tNN0UE2M +xJ8GRDXe60KGyIe17BMkjgn5yPf7M+Sz/HJ9sc6MkXk1307T+AY8m0zCph3M +mIX17kE+0R9AqOJXFEwllecd/axiZwU+d0+fyLQnceo1dd/PNnBuv001x2tm +DIu5J0l4bge3DxBexYiQOPgFD5uMIzhK5/m9ZybV5/X1qIqgM5TrnqcSaTyA +YVX3yORcXSG0wuZhjvEBbLC0bWWG2h3OKMhth3EewCyKXkw5mnjAQYr8z3ea +9pPyz/RdXvQEPgL3sRFj0nrP/Npar+UNhf7GVyo592PsqZTVukQfOPF60PBS +MxNWkuBSsO+BHxQKUezeN2Eite9EakK1P+w7F0j1kZsJGwyPiZS9FQibf8Rq +CzoZMYvg634z6UHwbAtVav1ixMj80W9H7hCQSyX3DrjBiOHrzpUevh8Kb19P +MVpOk36/Nbqkc0cYzH0LPiYSsg97WZWWlVURBod8g70HH+3D2Cv+pdj8CIfR +w7dLXfbvwxZKb8U/Eo0A8quGlqq1DFgJso48txoBSmUJLbK/GEj9rQ1eTYkE +N3q27o+SDJhiwQG/yndR8Ec6/18tDQPGnPfIw+tcNORL7ZtWraPHBrMDfr8Z +jIZ2/sdDx13pSeMxZCsYEAO4i6LcVCr0mH76BSvqx7HwXbHGgO4sPYalvidN +axyYdOdRHJ2jw8iSM4yi6uNAR6TG6UQhHYZPWNc3/BUPWVeqvHYc6TDXONCV +vJ0A39+XVEY9o8Nexti8ObyVALw2JRwrvHQYe1T9i7HsRDgWr8VcT02HLYSz +qGV9SgLhp1yP6Ym0WGroE2WbK8mga7dY5ZRBSxrfIIVHE8lQTHablZ/0/lUM +HJE6F54CRT4bwh1vaDG6Rs+w7zypUMIpO6uE0WIL9TnBw46pMNHvW259gpY0 +/j0BMlOpAJ+iLt/7R4Pl1m77pt9NA/vfDlTf2mgw3xp27+ORaWB2RoPrXwoN +ZlF9x8OKPB2MnpT3hTrRYNpVWq7Tz9PhvNXIhSc6NJhUpf3vB4XpQHepf2BL +kgbjrUh0yD+WAUFO5W1GZ2kw5vJm27NfM4A7uDo0cYcaWytd+unQngELtQsc +dj3UGKHksNUSXyawiSf4rWZRk+ZT+IeaSybY3+kWHHWlxmKLn5qWzWbCZLbC +sqQuNWZXZP7tkkwWbKYyxh2QpMb0C8OM3GOyIDQa1y58mpo03xWfN6iyYfoj +rU7hXypMOH9C//XrbLgWPpLh00SFseUxfKhD2YDGpD3roqgwstyruvyncmCp +9F3GE1MqbDJbUdv/ew6MdPDwSTwg7Z9Zn99QEHJAhiHDzOcCFZaa6f36nWAu +mJ5mn1PbIu2/GXkvWt1z4fZUAuaPp8SM04nqogu5wOf3mlEjkhJTSdtVDZfP +g+teDxPLv1KS1s/ZJwwJeWCmJXKyQYYS406RVDagy4epj29Ufp+ixOiStZV6 +3uQD2bmbJ48tUGALiY4K4uX58HXi5kXLMgrS+kqWjWcvgEIVVTWCJwWWG98i +xWpeAKOGmwN8bykw37gVye+9BdB0qvZoiAgFZhF79M6wcCEscFEE8TFSYNox +opiMdyEkZF+9u9FPjklFP7uVvlwIsbNrM3Tp5BhvlIXocaUioGMjbujakGPM +kRE3rJKLoHZI9hyfKjm2Fl4lML2vGK4pULBpXiXHCGFTfA90imGUatZjPwU5 +VhLKeC2/qhiiBBTLhbvIsNCQa1fOciHQLWTunkwkw+yCH1x0sERAVbxEzmlN +hukHGZ5f6kcQvnquZ1KVDONWaGC5eroEbNjMckX5yLDAxmfMQ3Il0Cg5ZX+U +ngxjlJ/f72VSAkXaPh9XynbBosGCSTq+BEZ4T13L+7ILC7KsjNuEErBsXeJ4 +f2EXNOsjGNJoS8Ex9/mXrZ4dIMgI0r8RKoWC5JcrCi47IFVXRXvsTSmMGyVx +yErsQKG0Ck2jRymckG1j6Vzfhiu1U1SWZaXw4QnBtSllG0KlTCgFF0shXoj5 ++0GtbWCuYaSYOlMGEbfDeKxObsPPe8FkQQpl8PT9Y5Z/rVuwVnVtV9GsDMYC +3Bnl7bdA+27pNlViGWykkZe8hC0gVj7Yyu0pAyUGpbfMq5sgJzm6oUdfDrz8 +957ciN+EkgrDdXbhchiTeQ+ZzzeBV4J2rV2rHIrszPzfsm5CZLnvXzuvcjgd +a8clULkBbHcurYpVlIMY+070jtEG2JUVLC8slUNBrzd/6oUN2LotvxTJUQG+ +t+VfCnatg15p/4KKYgXoU5bJmNqswyCmP8/4owIsXNqZjPnXQbGEfK4kqQL+ +VhhEnulfgwrwmP1CrIAy/ddHP9itgTDimuHeVwl1I085X/OtQSwue4ooUgmn +ku5z7BL+wcnie5Ou2pXwpuZbhvyPf+B0q3tcwqcSZAv2nVXh+gdkRe/G1ipJ +9/T1I25Xa/6CvtjWSOJKJfz68Kdq8N1fGC34PfySswrKaJgWbRn/gsrNM0OH +HlTB46W6optJq1CTnzpQY1EFGgpn1NnkV0FMVLzfNKUKdluoUnGzK5CY10bk +7a8C402G3kaHFWAXedM7ylgNlzu//prkXgHX3L/dvjerobpNvSG9ahmohO0I +cu+qIb9lnaCkuQxfco51kflVQ7y23tkZ8mWYFEroyKyuBuXSRc6okCVQzxZr +1/5bDQl3ZnExt5agQbCp9eS5Gqj1eQpHiIuAZb1owT+sAYOXKiZHTRYhVWCx ++adVDdioHFVoPr4IXJlWTcJpNWCRxD3xsmABPK8fapwdqAFWvFv3H/UFoMuI +qg/dXwtcV7rdr+zOgyn/jTrlW7VwQnEVt3x3HmbTamro9Goh7v01x7duc/CS +T6260L8WtOJ2yor7/wA+daZSv7YWWs3NL1y69gckeM0quNZqIeikzGCn1Sxk +puwvJ5yvA/Ng7+g/3TPAfS201OlRHVxv/+rvITADgcl8JdjPOvBfLJqbdp8G +Rp7y4pX0OihPPNl2YHWK1G7lotihOmi7LLVy4ukULFwZL1BnrofThSvfz1VO +gmbi13xmqIfaRc0ncH0S2i/T51W8r4fgM/cijaMmQCrBP8c4sB4kd3bF+k9M +QP6lK9lX6uvB/8TAurn3OFyNL8ocXK+HYZpVsZeHxyHk4v0MT+4GeCun7Wfn +OwYscYNpUk8awJf8RNnWmTGw5jZI3bJpgNvMF1pQwij8jaFMSc1sgAi/iKHW +m6OgfcErSXOkAVSvme0Xwo9AT/T5RDbWRjhk4JEwoz0Ccudz4xuwRpj+N5k4 +Tz0CKEo6zuJjIzx8et8YYoaB71xvjEBwIxh/ozHokhuGiEi96MmGRjiWk304 +4+8QHOHaiQzcbISsM6Y6DZFDYBfhEqF4qQmmCgflTz4Zgo2zHOFUqk2gUVU7 +E8w0BHrh6aG5tk2QstmlLl0zCAMcEiF62U3gk5qxymI7CEphHUHsY03Ar2dU +/Ed6EMrZ3wa2H2wGrdZ2ZTzzIAiFrvnbiTdD2Nac3+OcAYg94+An9qkZGnxO +6RKVB+B4yAnfhZBm8JToqzmy0Q9Op5O8I5uaIe2hO9YT3Q87QTgvle1mOJQU +J7Wl1g+5+yelaY7g4YdS80mFI/1g0MQr/fIqHh4+W/AIJPTBZedvUvkSeBjF +ieulhPXBqHzZvUPqeMCN/Dkt/akPgpj23fvwGQ9HZ9p/Xb3XB48bH96tccAD +xZOKqYOcfXDgd6Dk2XA8mNmIHE+n6oMauTEJ0zw8BIk/1M2bIYIVI49EJx4P +7zJ3uzu7iHCzwegO7yQeeNM2w9NriLDiiMQddvEwh3sQvlBEhCRZOvHRIy0g +cGk25kYOEbT2Kd3G8bRA1JO4S2cziXCm3g/zlWyBZ9qfdmRJTHAYhiX1FmCd +nTBRIMW7y1wGuS8tULE5KlRaSARZhi+4aMcWkOoPrxapIAJVXeEtsogWMJ4W +1pFrJEKRPfUttfwWiFMvr/Mitc9IWkEss6UFmKWOtEcPE+Eavc/N/VMtMHRQ +yPDoHBEmawZEtclaIfH5MQbLdSKE23GLlh1thTMHv73/Qeq/mtQnkZPXWmEt +nflX2v4+OESXL2x0txXmYpzz8o72QWM1hTD+WStkeWjwYmf64Jet7I1Lhq3w +OFNLcoGrD+Cep9BPp1aYbS36bMLdB2s0fYL9Ea2QeTP4ot/FPkivOicoXNAK +GVGRIrSk8ne/Pgi4t7aCX4UPlQNpPrju5lyfnWoFCtPf7LMn+qCPmuz6XfI2 +sJ1VnaNk6QPvSin+ULY2MBL1ZYyn6IP7Nm58G9fawDTvdHvJAhHoJHt4le+1 +geSwlSp/LxFKqTh5k5+3AfW+RK2FUiJ8r9C9RmfUBsIDj4jLkUQQ+JnJ8/p3 +Gxxqs1YQ/UmEP3e2rxZGtgEbhWV7+wsiRFPevXqksA0qwve3Ndwgwoty5yv6 +bW1QbGmSe4ORCGzWXZfrpttgKKxul7evF1rE2S9zUbRDVuq+jO74XnCg0Llk +fqwdzLqeBTwx7AWJsrSLBN52OLbLSdcm1gvblhvc/FLt8PzSjwsW5L2QffsO +t9OLdqgzqaT8Xd4DH8mdLowbtYPhya3Cq9Y9wF3afh5zbodbUU5qvlgPDFmc +Ou8f1Q6+VS/OU211gz+mdW6lsB2YapdaYrO6QZkshUuhvR0UPTmWC953A1PJ +P87YmXZwPJU7/52rG6p+YJwUlB1wgZnTkq2HAD/A/qz68Q5oXld+VetMAOHd +Fo5svg54Ft54u0ScAIvFxzmYpTvgcJ23ztW/XRBvrsH+7mUHfNk8KoWL6wJN +XOKZiq8dgOdH4yfUu+Dkzsrp0y4dQHVg7Mni/i7oLLp12ji6A4yTKUwGSzvB +xezXqdaiDjio/oKCwbATpG41n7zS0QEz1vR3HLk7gXz76Mlfsx3g4P3prjmx +A/ILX54YpOyE7IuPR9ddSXlN446LnuiEnByVLyx3O+CK2NIxT/5OoIuOVuna +bIfxTdFjc9KdsLrqrq+a3g4hBdZsUq864QWT1LlInXZQMWk4Gm7cCfumnm2X +crQDy83DR7dcOkE3aWmpoKcN6jaeHXkc0wlqQsPlfp5t8DM/+nBqcSdQMTwW +enW/DcS+zx9i6OyEQ9Ra907sa4O/IsKHNP90gkoSIbihuhVS1i0OFlN1wY26 +RmMTm1bQzqtlZTvZBX9ttTR4JFqB4xsrq8H1Lvi2r9FwlrIVeoSfsjTIdEHx +5bGvRRUt4LkWwXz+dReIro+Ixf5qAbnc2QMW37pAxq1UIV+6BWiMBQ/0uHbB +c4OA5k2mFkA3zPcLxHZB35t+RuM2PBj/q2JyRl2wtKhz9KY/HvhyDjBNdnbB +6L+aQKXXeJg2UmEUn+sC3kaFjJrLeIgUCtsXSE2ANNrFTdU/zaD+d4rh70kC +BFRdGTn2qxmOZPMzKAoQ4LlM9NQkRzM0GZrQx8sSYCBFP7+/pAnsBCvoqDQI +QPmgLZhZowlurzLSPf9OABrDinRXuibYyHxEm+tGAIf2H8ffpzVC5pdgGtY4 +AuilmdAmP2sEPYEJar0SApxzpd5WZWqE8yvXqKu6CABnBW++L2mA/gxjKvZ5 +Anz8+tCt34i0z34upfxO0w2vbh35GMTbAErXGSjbT3XDQuEpTbc/9cCw/ICC +R7AbthylK/2S6qE8PYDcTq4bSvs4Djvq14OpwSjZsEY3vNCXRMJC9SDEf5VM +zKQbhjlz8W926mBu0XDXy70bvD4+DWmuqYPYtOKd+bhueL/PKvCyVx28+kS7 +I13aDckBpUkXNOrgOJ/idgShG4RtT9W94yedQxZ8t7bnu8FMNDHPi6IOnFKH +Np/Q9sCFY29X77TVwl39S5tpp3vA2ZE3kjGyFnaufd7YJ9QDjDd/pll/qYXc ++YL1N/I9cH28eF1UohY+pVCtI80eQNtfbctZa+HSR/m1Y6Y9QLFI35dMOqeN +8Hj/++zRA+Xe7JKu8TUQONf/tzGeFP9njWvHoAYeJ1/4e6GMxLozMh7CNbD/ +g/6qZXcPxP4evr6wUQ01V/NWehd64M8hK/HCvGqw/EO+IkjXC0TX3eHoL9Ug +miSz7HKmF1iOkftoX66GZT2PpSmhXhBtZLEv6auCxCvExTsKvaR7xccr1o5V +oDXLtRj0phcO1KIRG4EqOJ34fuGfKSlegIcviVAJBN3seSXPXiC/nKc1/bUS +3C7vziUk9EJH1gWDm6yVIDNzb466vBeqQwen4mMqgDLB9c+Lnl5wD9dZuC9c +AYXvumfzFnvBU0d7Xp50zzC6dHb2ID0RDiXGXG6XLQee6Xcz79mJYHEQEzjV +XAaTcRnT1aT3uMMjr2sfSPeiUJ2tKY77RFC3UaE/UlcKahclp0y0iHD6wzUb +PfFSODj1e7LDjAiMv7+fw+eUQENs58Q1LyIsWSwbx10qgV/aZybsE4lguTNR +ViWEAMetPT5SToSHa2rrvYeKYW0idewWaR+KjtNy+rZQCKkx66M+S0Tg+T76 +wqGuAN69FR8lTR3M04QSNyLygfOC44gsRx+w5EypppvlAXG8bThKuA8ETubS +hKvkglf0yeHd+32gea9BJU4wBxS03gypvu0Dv6s9dhGHs4HufPJghnkfLIRM +e2usZ0LJ2N8BJu8+eCCeXJU2lAHfo2DgbVIf9Fwv5pZpTofrb+z6Syv64HeY +8/GOsjSY5WrpO0Hsg51y/ae7hakQNXqsz3C5D/iTCypiTVPgeeRrYjNDP8wd +lxSNcU6Co5oJvRfP9kOKcgxzb2oCtHCu9FiL9MNZnZdsVKNx4DAi1tOn2A/n +1ZtWS7hj4U6ETfcN7X7Y3tA3cfkRDVuvmwhuP/qhf3NYrXEyErLOHiXMePdD +9GYKV55mBHwYftElmdwP/IetnT8vh8GF8NjOkMp+8NtO/UvmFQpDrxY71on9 +UOuecsPbPRj8OUQ7Hq70Q7OH1o4keyA8HLJqT9o3AG+k4/A2rX7AGFbfRss5 +AE7LEhRhsT5Q+fJQ2yvRATByLqUoDvMCc/ZnrQVKA9BLnC8bLvSAG4NRLYd1 +BqDK1e7Y+pobLIbM4T9aDED1ZCFbm7IrxL+4ga/1IdW3yOj6PPg3aJyxaOZM +GYDCc7UH1Bod4ORATZNZ1QC0uucunRSwg45glqauvgFYqmDJr2m2Aefnao18 +qwOQOs9ZYRlkDVwuSuOSNIOwyaBQ9NnfEsjmV8eWWAbhgV1jgL/tD+hT8B8L +OTUIHj89XRyumkJ+Mm5M7uIgGJ3jNcNxfAPv/SOj6wKDcI838siLZ0Zg8MF2 +NBobBLz8ddMi4me433R59KHcIHQHcFKr+n+CKzz4ETKVQXishF+uPvsR6Jy/ +jCRpDMIbm8BA5++6MPaHbUTt4yDkWAYRZK5rQ5l80TCtySBQprAcNpV4A8FJ +r4Yzfw2ClyWlZm30a/jORDP8yn0Q3mVvrRc/eAlP3scP7Q8eBGN1NwOilToI +NCoMFcQNQn7BdeN5ggowX10e1M4ahH1zG5vDAY/gj5PP4OHSQdg+8I67uuQB +1M3eHCxrGARWHt0I1luKEC03OPCRMAg7x7Mdy5nlwCrx58DJ0UH4fFolkVJA +Cl4wXhyonR8EXHNC4aF2CRDTa+w32hwE7VurWovDt4Gt4VM/J+0QiC3sD6+P +wcHK5SP9eNYh6LpL7rkkJAqtjvl9ZqeHQAR7eHlEXQiSZ573Xbo0BJfb2Svf +MFwHB1nKvi7BIXhqxmHNxsMLbxNiiD9vD0GhQ3VPqf5lkNgnR+STH4KM2qhQ +IeELwK670NuvMgQ0HaHctwM4YavOs9dRcwhCbj2pl7Rhh55LIr3C+kMglH5w +hq/mBGQ79PWMmQxB4DP2E1b3j4L7tGWPu+0QKKrnG337eRA+ypzvAQ9Se9nM +jgYoMINcfF33bPAQcDBvaJ3g2wfcDB+7/eKHYHjDz8g6hAao3h3svps9BNV/ +ugdxNRQwXJtDWC4dgodH4+WXTu/iii+qE0Ibh8C+5u6WZv46zt+ejCDfPQSG +xtj2b5FV3NepyK6N0SFQeWWRT/VtEacsLd0VszAEJfuxE9uZszjeuD+dyluk +9m7mFEjaTeAY6d07yemGgetlQOoYjOCmtIU6kw8Ow7mzhoyM7wdwVTU9HU/P +DENu25Gdg37duHDuHx10l4eB8DPY7UdTO+6HHWdHltAwmH9/1PR4EI9Tn6xu +fy0+DFlGx65GKtXjhKX02g8oDINRLmJxY67CHYplbi9UHYbo8q7EXzWluEXa +rDadN8NAf6Q1JvFvPq7prWrbkU/D0BrZPLnTmYmLr95uLTcdhjmHggCd7FSc +7YXwVn27YagS8Rj+geJxmrZ3W095DsMxLivrmadROGxiuqUuZBhs+e4YrlCF +4U7ec2n5mjAMyQmF/t7MAbj16OstXDnDkLf/yndTZUtcJw0B31I2DP/7/9fp +WqZ486ZhuLn4+fGNmyViLlXs+Ms9/5Xrna9sJoz9x1K/dJptFv9jrnGmZv7t +/5j8bnrTAN3I/+H+qMdNTodG/u/6U8XyqTcbRdj/K/d5E9I4fvk//lJ5p9Hj +xn+seG6yAbvzH1+xcWr4o/Af04/xNvir/cfjEh3197T+47LIb/Urn/7jEKrT +9WFm/7GpZlmdgv1/rFKhVbfp+R8LcO2riw39j1l+ptQ+SvyP50Ye1lLk/sd1 +d9ZqUsr/45iIwBr15v/4J+XtGvre//ilxlh19vh/LFZuX62x9B8f4+SpZt4Z +ASZpZeXD7xRxf61aq4roR+Fe5CsVazV7XOuwUdW7w6NgHx27JTTpgksRP1F1 +lGMU8okXqxvoPHFO4aiy4soooANVY0vH/XDaFJqVn4RHgccBW/2sGYKTeE1X +eVpiFKIZD0hWekXgOMoSK+rvj8L7xyrXTzXE4nY4lCqMn47Cu4Oy66vy6bge +y9Xyc29HYePvd8/kkmxczpBfeavBKKxUpl8dFC7Eed7Glf8wH4UeCKt687UU +px82XHbFYRRuVhxiXHavxMmR25Z1e42CmWV5rb5PHe7iq8tlv8JGoVWXqdJS +DY+jKW0uvZ40CgucVxlNWdtxw+xfSgdzR+EYk2B0vBcBhyzYSn9XjEJUpmib +MmM/LnCwsEQUPwo/Ain+0Twcxhljr0omekeBs2zd4pP8OE45lLrEc4IUbyc5 +rHJkBsdHFo9uL4+Sxpda6fK7Bdz+lwpobmcULpq/vy7Zs4ybRkvFAQxjYHj4 +2Yea1X+46jM+xVJHxkD80I6wXO8WLvLHzeJVDlL5R3Ovc0/IwWJgoCj86hgU +8ZfYTtRTgTr8LLovMgYvVmUDfEboQCSEu2hLYgw+pgvwfspjgiO7DYVximNg +36ylpJrNAkvPPxU+Vh8DTpeBmN/Mh6Gp+HAhpfYYHNRJUM3fZYPE0/kFqZ/H +gP9Rw6eDAafAzvx5wbMfY5B4NYjdyJwDNPspChgcx8DxCZPtrzAuuI2Lyc/x +HoMa0L1qe48bTgfL5muGj8GbrbuV6tZXYGN7Po8leQw8+GnDT2TxQuczz7zi +PFJ+Og7TEfvrkFkknKdbOQZzOaRXTqMQuJ7qy2VrGQOfAK57db9FQc/MMreS +OAZmkZwmHb04kO47l2swScrvaFwZPXobzt+qyzmzMgZ64slO65kSQBH0Iadh +dwyirdaLc6fuQf8Wa863feOgrjm7XugsC4XqOdnnj44DF02c/1zqffAtfJrd +dnYcCr3eF3BfewBfTpJlW/CMw5Czgg9tmzIomUZmXRUdhxj/kwPQ8AR4iFJZ +PZLj8DpCfM2H8ykwiP3JtFUaBw8732iD4ecwHuCWKfBsHBJ9zave2r+C8k3B +zCHtcbj4LIosakADQp/2ZDh/GYcdpqc7Dt+0wLTAPOOmxTjwKPQYb6vrgOoJ +zoxJx3F49qiE+7yrHgiZVKd7+YzDkp36SA6jPrD26qaLR4xDC+MUAe1+gjlR +5vT55HH4Rixk9eH6AvX+mWmB+eMgGctiVGxuBLEbKmnSVaT8kb5QxfINfqqR +Doot46B10K3i3pAJvMoPS43oG4eFMbrX/QvmcOv43VTFqXHYOnis8cBZSzj+ +fTple2UcrO2/8knPW8G/bueUeLIJCP9wqrN16Ce0iVxPecI4Ab7KHw893PwF +qX5dyVRsE/C5ZTFD9ZY9OK2bJKdxTgDlsVRutThH0FFlT35+bQIcH5Q5R2HO +IJlXkbTv5gSwf78rzG/lCmeP6STl3p2AOw/yrtdsuMGuMVPSmwcTcOTUy3Yj +Bw/oJaQlsj6fAFZlSWkrPi/IFX6ciHQmQIBiJ5ppwRs8fTcS9Awn4GEqU/PR +Kl/4tBaccMxyArQ6078ZZ/iDvMqdhCqnCbgtXfGhLycQLuVOxH/2nYBnKT4b +1a3BQMvmFM8eOQHKLRSPKy1DYeQrb3xjygTwxopnRkSGQUlXe9z3ggkIdLdc +NGoJh8Ab3+IuVP+v/pViQbSR8M3nVFx76wTcO/q6X+1uFDz6Vxpr2T8B3urM +FD1O0cD/RCuWZ5o0PtR8Ry/3xMCBHIbY3tUJ+KLxFSSvxsHMkZQYO/JJiA16 +eZbWJh5qjB7GCDJNghyL6j7hwQSI7PwXPcw2CfgN0Sf2t5LAUigw2oVrEmbl +U3l9A5LhmTcWLcY7CdHfmvzm11JA9O9o1NTNSRD1pnxJHZ8KRx/bR3nfmwQ6 +/XP1CY/SYDnratSdh5OQ8Xq3K3AnDfCHWyMXnk/C54njCTSR6ZBoaBQZ9G4S +qHmL3h6WzAD7juORMkaTMNKcObkymAFvBFHEP8tJ8JIXtm81ygRxL42IyN+k +9i16rfVTZ8GZVdoIJb9JyHJlP6j4Ows2lRPDdyInoXHaJv81YzYQMhXDE1In +wfS+R4y6VTZkHloNUymcBFmy59ec57LB7YtfGHXNJDSdb159qJgD79tvhaW3 +TQJXSI4tW0wOyAgMh74YmISPZ5o6Hy3lwAXPX6GMM5Ow06Tk7s2XC5Qrl0Lz +/k4C8+r3J181c2HwYXOIFsUUsErqZMU45EJhxueQg/un4IFMN9lMRC74HWQL +KTk2BU/7vFbYUnPB8HNh8PtzUyClonzydEouPGh7GXycbwq+0n6k2wrNBZ7r +1MHVYlNw61eRdK1NLuzziAv6IjUFuZ/9BdOe5cLkknwQhzKJ360aLHPnQsWD +pcCmF1NA8+XEg5GJHAhL9w400Z2CGI+IxXH/HDBjvRnI/XUKiicjrxuJ54Ca +wUBAh9UUGA5T2R4byAahVusAK+cp6L16x177UzYc5OcOuOY/BUcLEmzoNrJg +wa3Bnxg1BZlKd7riv2VBw6K+v33aFLTQHb2+bzET4pQO+wsVTcGWUcvgn5eZ +YJOW5zdSMwXUf30nTtVlwGuW536u7VPgPYQJ6l7NANwnCr9bg1NwtrqiMtYx +HU60RPtOz0wBN203Pn4sDdZ4ZX19/k2B2uoxSkmxNGh3nfeRoJwGs0WGGinX +VEhb8PBZ3D8N59lUH9JWpsBvRWGf4OPToCE362HyNhnepRK9Zc9PQ3Hb3LI+ +fRLcZbb0XuObhrG16BHVxATg1D/nHXVrGsgo1VW8leKBDF/r9UB6GtSXaZs+ +bcQC8doHr13laVit8vbmiI2BPBdWr8SX0/BDice4/Gk0eM1ne6rqkfKL1vir +H4kCg/tPPWmMp0Hni0QFgRABCim7HhnW01BylGGIPjIcLh+I9HjpMg1/Jx50 +xhiHAd1HKQ+mgGkQkXvur/gkFEabZt3zo6dBqofhJItlMJTyuLm/TZ8Grq/7 +zhnpBEKQs6D7oeJpcD8YmWCk7Q/f57rdSmunIaQ6PtjB3BceK5i7feiYhidV +/o3bCd5wPfms24mhaVjSMzJbWvAE5v3VrjWz07AbWHZDU94DZt/ruhquTUPR +34SqS6VuUNt4wPUs1QwYMxUpbcu6QtTVTJfmAzNQNsd+eqbnN1j9VnExPTED +gpHcm+dkHOH5ny3nixdmIGnV4qbpqB3clA9z7uSfgTuS+3E+sb/gaJKkszVu +Bn6c/Lm04/kTVhinf/PKzAD1zeb2M7FW0KLn/Lvv0QwYfa+OUBy0gKQG/t8O +r2Ygv5rFNeWrOThc6XK68X4GfqLp8sFPJqDlZOI0ajwDD+5MzgclGMOd2TNO +bj9ngPUIhYUshxGckatwxLnOwLDKFoVS82fYStB2nAmYgdMGsyfY0z9B9z4m +R9+YGdCdVJQwdPoIWbppDpIZM/Dpz/bYR2Y9cK9/5LBUPAP6Opx/3ae04cPl +DfuQuhkoiQzcMWXRAlnHYHu5zhlY//D7+X4rDbgwI26/PjQD95WvsX0QfAVU +shN20X9mYC35d8lxuecwFO9o93B9Bip90lmVg9SgiIHXjox6FrSuaNaHKD8B +/3fttknMs3DK7+3XdG1lMKoztlU7OQuET1XNRLwSPLx0ypaWexbc1H+dPshw +H645lP7KvD4LOQh//MumDDBOv/n1CmaheexBOKX2PZiSZvi1X3b2/5y3/+dZ ++H/ynr+656/u+at7/uqev7rnr+75q3v+6p6/uuev7vmre/7qnr+656/u+at7 +/uqev7rnr+75q3v+6p6/uuev7vmre/7qnr+656/u+at7/uqev7rnr+75q3v+ +6p6/uuev7vmre/7qnr+656/u+at7/uqev7rnr+75q3v+6p6/+v/SX/0fnzRU +7P8v/ur/lLuK7fmre/7qnr+656/u+at7/uqev7rnr+75q3v+6p6/uuev/n/l +r/5fQa770Q== "], {{{}, {RGBColor[0.24, 0.6, 0.33692049419863584`], Opacity[0.3], EdgeForm[ None], GraphicsGroupBox[{ - PolygonBox[{{746, 748, 747}, {754, 756, 755}, {730, 732, 731}}], - PolygonBox[CompressedData[" + PolygonBox[{{730, 732, 731}, {736, 738, 737}}], + PolygonBox[CompressedData[" 1:eJwN0tdCiAEAQOG/IbuEIpKyqURWCqGyMrMqChEyyioRJRGSrMheoeEFPFgZ IX0X38W5P0llVQWVoUEQhPCdPvEtLAh66aGbLr7yhc908omPfOA973jLG17z ipe8oIPnPKOdpzzhMY94SBsPaOU+LdzjLndo5ja3aOImjdyggXquc406rnKF @@ -2543,10 +2541,756 @@ sZo1Qf7/r/4PV0bAFw== GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{1}}, "Rows" -> {{2}}}], "Grid"]], "Output", - CellChangeTimes->{{3.8566607518237257`*^9, 3.856660758243332*^9}, { - 3.8566608033664207`*^9, 3.856660827259779*^9}, {3.856660882264852*^9, - 3.856660916332078*^9}, {3.856661061596984*^9, 3.8566611117201*^9}}, - CellLabel->"Out[73]=",ExpressionUUID->"666714f9-dc02-4a2d-8747-a117dbcb1427"] + CellLabel->"Out[22]=",ExpressionUUID->"3e201298-ee71-49d6-a572-3484e73e6e41"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Error wrt TBEs", "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Sheet", "=", "4"}], ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.856660154016405*^9, 3.8566601628895607`*^9}}, + CellLabel->"In[5]:=",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"WFT", "=", + RowBox[{"{", + RowBox[{ + "\"\\"", ",", "\"\\"", ",", + "\"\\"", ",", "\"\\"", ",", + "\"\\"", ",", "\"\\""}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"MAE", "=", + RowBox[{ + RowBox[{"Import", "[", "\"\\"", "]"}], + "\[LeftDoubleBracket]", + RowBox[{"Sheet", ",", + RowBox[{"3", ";;", "286"}], ",", + RowBox[{"39", "+", + RowBox[{"{", + RowBox[{"19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], + "}"}]}]}], "\[RightDoubleBracket]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CASSCF", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CASPT2IPEA", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CASPT2NOIPEA", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "3"}], "\[RightDoubleBracket]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CASPT3IPEA", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "4"}], "\[RightDoubleBracket]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CASPT3NOIPEA", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"MAE", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "5"}], "\[RightDoubleBracket]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "284"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"CASPT2NOIPEA", ",", "CASPT3NOIPEA"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\<# excitation\>\"", ",", "\"\\""}], "}"}]}], + ",", + RowBox[{"PlotMarkers", "->", "\"\\""}], ",", + RowBox[{"Joined", "->", "True"}], ",", "\[IndentingNewLine]", + RowBox[{"ImageSize", "->", "1500"}], ",", + RowBox[{"AspectRatio", "\[Rule]", + RowBox[{"1", "/", "6"}]}], ",", + RowBox[{"PlotLegends", "\[Rule]", + RowBox[{"Placed", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"(*", + RowBox[{"\"\\"", ","}], "*)"}], + RowBox[{"\"\\"", ",", + RowBox[{"(*", + RowBox[{"\"\\"", ","}], "*)"}], + "\"\\""}], "}"}], ",", "Right"}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"Frame", "\[Rule]", "True"}], ",", + RowBox[{"Axes", "\[Rule]", "False"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "286"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.2"}], ",", "1"}], "}"}]}], "}"}]}], ",", + RowBox[{"GridLines", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"BaseStyle", "\[Rule]", "20"}], ",", + RowBox[{"FrameStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Thick", ",", "20", ",", "Black"}], "]"}]}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{ + RowBox[{"Export", "[", + RowBox[{"\"\\"", ",", "%"}], "]"}], ";"}], + "*)"}]}]}], "Input", + CellLabel-> + "In[477]:=",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{}, {{{}, {}, { + RGBColor[0.9, 0.36, 0.054], + PointSize[0.0055000000000000005`], + AbsoluteThickness[1.6], + CapForm["Butt"], + LineBox[{{1., 0.13000000000000078`}, {2., 0.08999999999999941}, {3., + 0.10000000000000053`}, {4., 0.17999999999999972`}, {5., + 0.29000000000000004`}, {6., 0.25}, {7., 0.11000000000000032`}, {8., + 0.13999999999999968`}, {9., 0.009999999999999787}, { + 10., -0.11999999999999966`}, {11., 0.4899999999999993}}], + LineBox[{{13., 0.1200000000000001}, {14., 0.14999999999999947`}, { + 15., -0.11999999999999966`}, {16., 0.020000000000000018`}, { + 17., -0.08000000000000007}}], + LineBox[{{19., 0.03000000000000025}, {20., 0.21999999999999975`}, { + 21., 0.040000000000000036`}, {22., -0.009999999999999787}, { + 23., -0.020000000000000462`}, {24., -0.019999999999999574`}}], + LineBox[CompressedData[" +1:eJxdkL8OAUEQhydK9Wn9eQYdjh/uHE7DI0jU1KoteAMNhUhoNBKJBJVL1BKJ +4lpqL2H3di45O8ll8+XbvZn5FYbjwShFRHn5qVNXCZQ5eJ/p4qa5HHNNcwUI +txM7fWa2oc83cxViqerKXIOw0/LFgxmg3Pzbvxw0CyD4u1+HyEZe9xeSLdV/ +x74BSvYXBlMTZCXmFzHP2DvGe8eY1wWi+yf2Lvs9+xY2yftC8kQtGLD38FS/ +D1/sPbz7F7nRkX0bKKq6s2+DBknfMebrGPt3jfy6Rv4+KMpvzd6P82Tfi/Pg +fCSv9H4/B7GLBQ== + "]], + LineBox[CompressedData[" +1:eJxdkb1LA0EQxQdLa7FU7AL+DeLrrIz3fRewEqxNnWqLWGtho5VgZXMgCEaQ +uAq2opVgFWuxTO/u7VvYvYUjPCa/N29mto5OsuMVEdk2n/3tntqHRG8IWW/3 +fibTZ1cfAmtW3++6+gF0Ots4/b1zWhm9HByevb6xnsQaCVTIK6Mv7Xt0WieQ +zPq9kE+hjUpnc/Ip676f0V83453VB/JGd/5T8hn5d/IZPro8f+QzLML82v9/ +7uaVHAj9kff658x/Sz6P/aSAbFq/lnzh83KfBRYTG/ibfNHbfwkd+qPEdbgv +VXLeC+envea9pOrtr4KY6ZeDJ/JVPI+u4vtI7fs7P9RQnV/L/DXn/SRfx/uQ +Jr4Hmjivasjz3rrBedhPRr4f+RHkyvn/AwQm0RU= + "]], + LineBox[{{104., 0.03000000000000025}, {105., 0.10000000000000053`}, { + 106., -0.03000000000000025}, {107., 0.4299999999999997}, {108., + 0.13000000000000078`}, {109., 0.010000000000000675`}, { + 110., -0.04999999999999982}, {110.65217391304348`, -0.2}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGCQBWIQLbrO/WHVlWiHWTNB4OR+BjCIcWCQb30duGMehO8A +5IuAFLbYg/kNcHkI/wAanyHWQeH64gJbru0QvkOswwE5kPw+qP5YhwaweVsg +5h+IdXDYAVJwAqo/zoEhCCSwEao/ziEBoh6qP87BwBgEDkPtj4O6bwpUfzyq +exziofYtgeqPd1gA8S9UfzyqfxkSHB5UgTScgsgrJDgwyCGbB+Qj+y8hARY+ +EP0NCQ4NYPXrIPIL0PgHElDD4wHMvONQ9yc6NNhyAUXOQu0H8sHuXQm1PxHV +PwmJcPsBZl2OXw== + "]], + LineBox[{{141., 0.010000000000000675`}, {142., + 0.020000000000000018`}, {143., 0.019999999999999574`}, {144., + 0.009999999999999787}, {145., 0.03000000000000025}, {146., 0.}, { + 147., 0.10999999999999943`}, {148., 0.019999999999999574`}, {149., + 0.009999999999999787}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAQA2IQDQYPkhwa5FpfB+5YZw8RSHZgAPPnQfgKyQ4NIuvc +H1ZN2Q/mOwD5M0FgJYSfAOdD1DckOySA1S+ByC9IhpkP4R+AmdcC4T9IdlgA +1r8Tan+Kg8PDKqCKi1D7U1DNd0hxYAjaATRxI4SfkAK17wjU/hSoffsg/AVo +6g8A+aJg/0D4D9D0M6RC3bcEaj+MfwVqf6oDgzxS+CSkOjiAjA88AbU/Fere +k/YAI8lw8A== + "]], + LineBox[{{176., 0.13000000000000034`}, { + 177., -0.009999999999999787}, {178., 0.08000000000000007}, {179., + 0.14000000000000057`}, {180., 0.05999999999999961}, { + 181., -0.03000000000000025}, {182., 0.10999999999999988`}, {183., + 0.1200000000000001}, {184., 0.040000000000000036`}, {185., + 0.20999999999999996`}, {186., 0.11000000000000032`}, {187., + 0.34999999999999964`}, {188., 0.5}, {189., 0.10000000000000009`}, { + 190., 0.08999999999999986}}], + LineBox[{{192., 0.0699999999999994}, {193., 0.22999999999999954`}, { + 194., 0.010000000000000675`}, {195., 0.22999999999999954`}, {196., + 0.41999999999999993`}, {197., 0.20999999999999996`}, {198., + 0.05999999999999961}, {199., 0.10000000000000053`}, {200., + 0.4800000000000004}}], + LineBox[{{202., -0.009999999999999787}, {203., + 0.11000000000000032`}, {204., 0.019999999999999574`}, {205., + 0.04999999999999982}, {206., 0.16999999999999993`}, {207., + 0.1899999999999995}, {208., 0.13999999999999968`}, {209., + 0.16999999999999993`}, {210., 0.03000000000000025}, {211., + 0.2400000000000002}, {212., 0.3200000000000003}, {213., + 0.1899999999999995}, {214., 0.41000000000000014`}, {215., + 0.11000000000000032`}}], + LineBox[{{217., 0.14999999999999947`}, {218., 0.07000000000000028}, { + 219., 0.040000000000000036`}, {220., 0.08000000000000007}, {221., + 0.009999999999999787}, {222., 0.1900000000000004}, {223., + 0.1299999999999999}, {224., 0.08999999999999986}, { + 225., -0.019999999999999574`}, {226., 0.04999999999999982}, {227., + 0.040000000000000036`}, {228., 0.1299999999999999}, {229., + 0.15000000000000036`}, {230., 0.020000000000000462`}, {231., + 0.06999999999999984}, {232., 0.08000000000000007}}], + LineBox[{{234., 0.08999999999999986}, {235., 0.04999999999999982}, { + 236., -0.03000000000000025}, {237., 0.2699999999999996}}], + LineBox[{{239., 0.14999999999999947`}, {240., -0.1200000000000001}, { + 241., 0.08999999999999986}, {242., 0.06999999999999984}, {243., + 0.1200000000000001}}], + LineBox[{{245., 0.08000000000000007}, {246., 0.05999999999999961}, { + 247., 0.2999999999999998}}], + LineBox[{{249., 0.020000000000000462`}, {250., 0.07000000000000028}, { + 251., 0.08000000000000007}, {252., 0.5200000000000005}, {253., + 0.020000000000000462`}, {254., -0.020000000000000462`}, {255., + 0.04999999999999982}, {256., 0.029999999999999805`}, {257., 0.25}, { + 258., 0.45999999999999996`}, {259., 0.020000000000000462`}, {260., + 0.020000000000000462`}, {261., 0.07000000000000028}, {262., + 0.019999999999999574`}, {263., -0.08999999999999986}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAQAWIQDQYTChwaRNa5P6yash/MX1Dg4BDTf+irxh57MH9D +gQODGEi+BcI/AOTLt74O3DEPwr8A1w/hP4Dxl0D4HwocPgTukGt9fRHCZyh0 +cDAGgcMQvkChQ4It1/XFBWchfIVCBwZkYFDosKAApOACRN6h0OFBFciCUxB+ +AJAPNv8ghJ9Q6CABsl7kGYRfADQPaLot13EIvwFo3kwQOAnhTyh0EAB5R+4q +hL+gEOZ+SHhsKET17wGEfQA612KL + "]]}, { + RGBColor[0.365248, 0.427802, 0.758297], + PointSize[0.0055000000000000005`], + AbsoluteThickness[1.6], + CapForm["Butt"], + LineBox[{{1., 0.11000000000000032`}, {2., 0.06000000000000005}, {3., + 0.03000000000000025}, {4., 0.2400000000000002}, {5., + 0.2400000000000002}, {6., 0.2400000000000002}, {7., + 0.17999999999999972`}, {8., 0.08999999999999986}, {9., + 0.03000000000000025}, {10., 0.050000000000000266`}, { + 10.806451612903224`, -0.2}}], + LineBox[{{13., -0.03000000000000025}, {14., 0.45999999999999996`}, { + 15., 0.}, {16., 0.1599999999999997}, {17., 0.2600000000000007}}], + LineBox[{{19., 0.29000000000000004`}, {20., 0.03000000000000025}, { + 21., 0.2400000000000002}, {22., 0.3200000000000003}, {23., + 0.2999999999999998}, {24., 0.27000000000000135`}}], + LineBox[{{26., 0.16999999999999993`}, {27., 0.09000000000000075}, { + 27.935483870967744`, -0.2}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGCQA2IQXSRzvFCG3cZh1kwQOLmfAQxsHSD0A3sIbefgYAwC +h6F8e4cPgTvkWl9fhPIdHA581YjpP3QUwm9wcFgAMQ8q7+igANEPMb/B0YEh +CKR/I1TeyaFBZJ37w6ojUP1ODg/A5h+Eyjs7MIDlW6D6naHqt0DlXRwY5Ftf +B+6YB9Xv4nAgENl8V4cGsHtWQuVdHRhEQfqnQOXdYOZD5d0cJqC4392hQQ5k +/jqovLuDAUp4eDgIXF9cYMt1HSrvATVvCjQ8PdHs90S1j8EL6p8lUP95oYW3 +N2p4NHjDzIfK+zgsANm++ABU3gcaHuvsAT4eh4Q= + "]], + LineBox[{{59., 0.10999999999999988`}, {60., 0.1999999999999993}, {61., + 0.009999999999999787}, {62., 0.04999999999999982}, {63., + 0.23000000000000043`}, {64., 0.16000000000000014`}, {65., + 0.15000000000000036`}, {66., 0.16000000000000014`}, { + 67., -0.17999999999999972`}, {68., 0.3100000000000005}, {69., + 0.1299999999999999}, {70., 0.28000000000000025`}, {71., + 0.0699999999999994}, {72., 0.27000000000000046`}, {73., + 0.5300000000000011}, {73.8021978021978, -0.2}}], + LineBox[CompressedData[" +1:eJxdkK0KQkEQhQejYNMm/jyDGMUDBqvef5sIZq2aNugbWDSIcM0XBEGTLmjQ +ZtNqMPkS3r07wb0Dy3KY+c4cpjoYWcMMERXjp/7WJPepLyyslqruZ1IlLfSP +pfm3e2smmmzo/6E1bHSS/ktrYWMzbmSfodRa2hCqfYyYd0w/OOzHJRzm2V/G +/fI/70ImfifmXVSeYUwceL8LkY/a7+mVedfMQ56ZByktPN63Zt5jvy3zPqig +9EzfB745L3zzHjLu/+ejAGSpgR3vT2kRQOj7Mx9gk+Rb633U4zx75ntATdWl ++QMXdYMV + "]], + LineBox[CompressedData[" +1:eJxdkjFIw0AUhg/Hzp01hQ4dBefgv7najskleRE669zpFmdnt4B7QRCsIHgW +iigqSoeuyezcvXe5Z8ndgxD+3Pve/34ug4vLyfRACDE0j327SiCOrv/Gi/lp +K5Gg3o7kzXLltDLnm7uruPfmtE6gDjv9IsV5M+vPz36ZT6GMamYPzKf+PJ0i +cvNeHC9Bcc98+WJeQnv+EmKyMI73zEve55H9M8B0b0fPzGeox7b/lfnsP5/z +05nvJ3KoW1tPzAda5fix8ZoP9s+D/EXgXyBq9SfzBe+7Yb7A8YmtNfPk64jY +/53nEaquJgryEXS7z7fTFfn+OuDrQIvS56PSvz+Ufj4q9//LDukps78= + "]], + LineBox[{{141., 0.08000000000000007}, {142., 0.08000000000000007}, { + 143., 0.08000000000000007}, {144., 0.08000000000000007}, {145., + 0.09999999999999964}, {146., 0.040000000000000036`}, {147., + 0.1200000000000001}, {148., 0.04999999999999982}, {149., + 0.040000000000000036`}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAQA2IQDQYPkhwYri8usOU6bg8RSHZQMAaBwxC+QrJDg8g6 +94dVLfvBfIdkBwa51teBO+ZB+AnJUP3bIeobkh0OIMsvAOoH89dB+AfQzHuQ +7CCAYn8KVH4J1P4UhweBO4AmHITwHVIcEkDcwBMQfkKKwwGw/Eao/TD9R6D2 +pzhc+KoR03/oKkT+ANC8KpCCUxD+A5j6LVD7U2Huhdqf6sAAcS/U/lSo//ZB +7QeqnwkCK6H2I/gATuRwPA== + "]], + LineBox[{{176., 0.020000000000000018`}, {177., + 0.23000000000000043`}, {178., 0.07000000000000028}, { + 179., -0.1299999999999999}, {180., 0.16999999999999993`}, {181., + 0.08999999999999986}, {182., 0.009999999999999787}, {183., + 0.07000000000000028}, {184., 0.35000000000000053`}, {185., + 0.23000000000000043`}, {186., 0.0600000000000005}, {187., + 0.33999999999999986`}, {188., 0.4500000000000002}, { + 189., -0.020000000000000018`}, {190., 0.05999999999999961}}], + LineBox[{{192., 0.14999999999999947`}, {193., 0.2400000000000002}, { + 194., 0.20000000000000018`}, {195., -0.05000000000000071}, {196., + 0.17999999999999972`}, {197., 0.2400000000000002}, {198., + 0.0699999999999994}, {199., 0.08999999999999986}, { + 200., -0.08000000000000007}}], + LineBox[{{202., 0.3200000000000003}, {203., 0.13999999999999968`}, { + 204., 0.1200000000000001}, {205., 0.17999999999999972`}, {206., + 0.009999999999999787}, {207., 0.1299999999999999}, {208., + 0.15999999999999925`}, {209., 0.05000000000000071}, {210., + 0.16999999999999993`}, {211., 0.17999999999999972`}, {212., + 0.23000000000000043`}, {213., 0.1299999999999999}, {214., + 0.33000000000000007`}, {215., 0.1200000000000001}}], + LineBox[{{217., 0.09999999999999964}, {218., 0.08999999999999986}, { + 219., 0.2699999999999996}, {220., 0.3099999999999996}, {221., + 0.41999999999999993`}, {222., 0.4500000000000002}, {223., + 0.28000000000000025`}, {224., -0.17999999999999972`}, {225., 0.25}, { + 226., 0.27000000000000046`}, {227., 0.14999999999999947`}, {228., + 0.35999999999999943`}, {229., 0.20999999999999996`}, {230., + 0.10000000000000053`}, {231., -0.07000000000000028}, { + 232., -0.06000000000000005}}], + LineBox[{{234., 0.08999999999999986}, {235., 0.3899999999999997}, { + 236., 0.22999999999999954`}, {237., 0.16999999999999993`}}], + LineBox[{{239., 0.08999999999999986}, {240., -0.08000000000000007}, { + 241., -0.07000000000000006}, {242., -0.040000000000000036`}, {243., + 0.08999999999999986}}], + LineBox[{{245., 0.09000000000000075}, {246., 0.2599999999999998}, { + 247., 0.10999999999999943`}}], + LineBox[{{249., 0.16999999999999993`}, {250., 0.03000000000000025}, { + 251., 0.13000000000000078`}, {252., 0.5}, {253., + 0.08999999999999986}, {254., -0.040000000000000036`}, {255., + 0.009999999999999787}, {256., 0.029999999999999805`}, {257., + 0.28000000000000025`}, {258., 0.21999999999999975`}, {259., + 0.0600000000000005}, {260., 0.0600000000000005}, {261., + 0.20000000000000018`}, {262., 0.22999999999999954`}, {263., 0.}}], + LineBox[CompressedData[" +1:eJxTTMoPSmViYGAQAWIQDQYTChwabLmuLy44aw/mLyhwOCDX+jpwxz4If0OB +A4M8iL8Owj8A5AftAKrYCOFfAOoXWef+sGoJhP8Axp8C4X8AqgfzW/ZDLCx0 +SABpDzwBkRcohKo/AuErFKK6x6DQgQHIs+U6DuE7FDo4IOsPKHSYcOirRkz/ +JQg/odDhxBkQeALhFxQ6KMT0A1WcgfAbgPqNQeAwhD8ByAfbvwXq/0KHB1Ug +gVNQ/6PZfwCufz8Aa+tlDQ== + "]]}}, {{ + RGBColor[0.9, 0.36, 0.054], + PointSize[0.0055000000000000005`], + AbsoluteThickness[1.6], + CapForm["Butt"], + GeometricTransformationBox[ + InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3., 3.}, {0., 0.}]]}, { + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3., 3.}, {0., 0.}]]}}], StripOnInput -> False, + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.0055000000000000005`], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], TraditionalForm], {0., 0.}, + Automatic, + Scaled[9.75]], CompressedData[" +1:eJxdVztsHVUQvUADVC4MSoHMghBCCCGj8BNgMiEJzgfCe/7Hfrbv83t+/89u +m+oWUMcFDRRopaSAxjISEkFCcAkgPgJkAsQSCNg0NBGSG3revj0Le2ZlyZo3 +O3dmzpyZO/vA1nBu+w5jzF23GTP6M7eb/Dk85sOZuw8u+2P4QZIbl0e/fAj5 +TvFvpc9HkCfEHKT6ryBPys61fx6pXLoO+Yhk//ch3ydSuTR642PIgSTlq1Nv +3PoM8oNiJndnb158HfJDEo+05auffJrJD0spNa/8Cf2j4jM95MckOJo+n0N+ +XNlPixuf/yb0T0D+APqjYu5P338H+iclGMf7HeSn8P4VyE/n8cL+GTH3jM+H +/Cz0ufyc0j+fyzjvBZGDIt4zwC+B/KI4wv+YuLRc4feQBfHvZrITVa/j4sZ4 +7Gb+3XGVz0uoJ/w7JZsTnI87oep1UtmfVPGeEsnwhv4U9O9B/7LExffdSCY+ +zsp+evzBT9DPgj/vQ39apFh/d1rMXFF/RsV3RuV/VuF3VuF/TsxUgR/uXI4n +9K8wH9xIfruQn3sV5+XPeTH3Ft8/z/iY18QX83MjOW2va19CX2JZSjmf8X6J +8fcl4JH3W5n7R8qMlyszXr6s6j0H+x9gPyf743j+hv0c18fn7+f9OM98l3nl +f5754edVvRe4XrKQxws8FyS5mAb8K+wXFP6L6A+cL4uKf4vMd7+o+n1J4bck +pjjf3BLn45e4PmY595+dJ8uqP5eR74+wX1b9ssL1kBXVnys8X/2K7BT9mQvM +X7nAfDWrPA9lleeJ+08PfFbF3Uod/gb7NaH7RNZyvsN+Lc8H9mtymOWL+Cp8 +vlQ4X1fh+LySzboExK91rpdb5/nv10VS9+WvYb/B9ZMNsdRfGzJdnDd+I8cf +9psKv02eN24TfPsG9pucr7Hg77eZPrA8f8Ryf1qr5o/l+sZK9pbxSKy6z6t8 +vwRV5p9UOR9bZf9xlevtq3z/JlWF1xbXN9hS+I3k4mO3VL9t8XmxOi/ZUvO6 +xngGtTw+8K3G/LQ1zt/VwIcryLfG/evz84BHUuP5YuoiN9MCo7+DusK3zvyz +dfj7Av7r8If6xep9X+f9IlH2ZpvrF+Tyz/C/zfjbbe4Pt414wV/TkL1ivwcN +5oM0eP7ZBt9HrqH42lDzpYF9DPVOGmr/a6p8mtw/0uT90zbFNtLnBvw3JTsH +933c5Hr5ptqHWnw/By2xxX6RFvPfKr1r8f0Utzhe32I8kpba59rI/w/4azPe +ts35urbqj7a6X9u8TyRtNQ87fJ8EHbV/dBRfOrwfuA7zK+7w+X4kp/DMAI+k +w/EHXd7vpav6o6vma5f5Fnd5Hviu2KL/pKv2zR7XO+jx/So9xs/2lP8enxf3 +eD/1PdWfPbXf9Dl+6at531fzqM/9Evd5viR99X004H0sGPD5MuB47ID7LR5w +fH6g+DrA/Yh9PRhyvjJU9Ruq/XUo747xy/tR2fshf08lQ7UfhYgHfJwIJfsd +36NBKOPjw98zeTpU8Sm5FKp4Q+6nMOT9cyfk+yQOmc97obofQ+6f/VDdlyHz +6zDM9yXkGzG/JiKeN0GE/PFMR+An8JCI508p4n63kRxJ3U/+hXwj3hdcxPvM +TiQTaTpTv6B+UR5/hsdepPa3//39C4JS3bI= + "]]}, { + RGBColor[0.365248, 0.427802, 0.758297], + PointSize[0.0055000000000000005`], + AbsoluteThickness[1.6], + CapForm["Butt"], + GeometricTransformationBox[ + InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, { + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}}], StripOnInput -> + False, GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.0055000000000000005`], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], TraditionalForm], {0., 0.}, + Automatic, + Scaled[9.75]], CompressedData[" +1:eJxdV0toXFUYPupGXWVRwYXEq4ioiETqC7Xm7zN9WWcmzyaT5GRmMu/M3Nl2 +dRa6bhbd6EIu1I2bUkGwgthjrVilSnxGROEG3LnJpnvn3nxH7vcfAuGb//zv +17lP1IaVzQeMMQ/dZ8z4z9xvwtmflurlW/ee+WIaP4iffO/f8o1rwA+KeTzD +HwJPgP4j8CGFH1X4MTG7V+MjD38LHAF/Bvykkv+U+Pez8zHw03J9fHv36s7N +A/xcuA/8vOTk+G/cf0EMnSmJD12b2bt0G/QXgzzgw7I99r56+Wfgl5Q9Lyt/ +XhGXy/sV+FWZOpydX4BfE7t3aXzjJ+DXxWfib30D/IYI+f+mRHn878KfI7A/ +Bf0tkVz+18DTsl++MbYoyBeW70SSPH7fgX5UogP+A/nuqJhKxv8J6MfgD+Lj +jkmay/8K9ONicvq74D+O+5+CfoLj5U6ILxflnxRXzKc7KeaRjP8K6KeCfNBP +yTbZPyOuWI9uBvEO8TgtE3k8d0E/DXlXEM8zSv8Z1mfOwp+P4N9ZFe9zHA93 +LsgH/bwkeT150M8jHsHet5Hf0F8XYA/8cxeUPe8oe8c4r+8fQC9xvqTE9jpF +96XQf4hHWdI8XKhXKSv7y1xfvqzyWZFSsb6lIubZzEHUq6vIUna9/MeBPl8R +m+M74J+Vg//oP5mV0sF98M+yPX6W82/mWJ7MQR6OmwM/5Ps5zoeZRz9/Cf55 +iYr96OZV/ObZHrPA9ojCboH7wS+E+gL/Iuof/SSLqn8WOR5+Uc3LJe5fUdgt +cX35JUkmi/PyIvevXFT1vszxkmVJab4s8zz3yyo/K6o+VlifW2F5fgXxD/VZ +FVusd6mq+VZlf31VxWdVaJ/Jqurf1eAf6nOV9Zk1xO9z8Cvs1mQnc2/ve+hf +U/6vK/3rYb6Dfx32Yl75dbU/LOPIcj7F8ny3VvlneV8llvV7xZ8qbDaYP9pQ +9bLB/tkNrpdE3fcKpwqbGuOopuJf4/6xNe5fV+N5maj7aU29P+phH0JfHfdD +P9bFFPvF1rm+XB36QU/qIf+oJyUvrWM/Bf0Nti9qcP6kwfPNNnj+usB/G/ob +spP3x2+I91hesT7Thor3JtdrtMn7RzY5vnZT7SOFTRPysQ+jJu8raXK/2maY +p9i3Te7vpMnx9k22L1XyTEviZnZ+h/6W0t/i+rQt6EO8XEt27mbnL+hvBX+Q +z5bq77aqnzb3i7RVf7bFfJDHC/62uR4Txe/bnO+0reZbJ+QT9drh96jtqHnQ +4XwmHTW/Oyq+HbXvumKL+zDqBn/gb5fzZ7ss33U5H0lX7feuRJl5k8hH2mV7 +o56aBz2Oh+2JFPeN68lO8X2T9NAPf0Jfj/Od9tR7us/vpWiM8xPeK33eb7bP +9eD6PN+TPvej7+P7Bv6k/VDP2H9b4fsL+d1S/m7Jfhbue+G9tMX7K9nifKSK +3wy4fqIB/Id+GfB72A6YPxnw94sf8HsrHd8v7odoyPbIkN87dkyn9+cQ8cZ7 +MhmqeTBk+9Khej/H6FfIn4g5v1HM+3AqVu8dhUux6ueY4x3HsBdnO1b1HnM9 +X1fyfczzbCdW+yvm+bof8/eYGfG+mBjx+zUasT1TI+5PGYkU+Usj/h62I7mT +98s/8Hek3jMjfj9uj3Fx3yQjrv/rSr//n//mfyP27cY= + "]]}}}, {{}, {}}}, + AspectRatio -> NCache[ + Rational[1, 6], 0.16666666666666666`], Axes -> {False, False}, + AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, BaseStyle -> 20, + DisplayFunction -> Identity, Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{ + FormBox["\"Error (eV)\"", TraditionalForm], None}, { + FormBox["\"# excitation\"", TraditionalForm], None}}, FrameStyle -> + Directive[ + Thickness[Large], 20, + GrayLevel[0]], + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> {1993.066650390625, Automatic}, + LabelStyle -> {FontFamily -> "Times"}, + Method -> { + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, PlotRange -> {{0., 286.}, {-0.2, 1.}}, + PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}}, + Ticks -> {Automatic, Automatic}], + FormBox[ + FormBox[ + TemplateBox[{"\"CASPT2(NOIPEA)\"", "\"CASPT3(NOIPEA)\""}, "PointLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + LineBox[{{0, 9.75}, {20, 9.75}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + InsetBox[ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3, 3}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3, 3}]]}, {DefaultBaseStyle -> {"Graphics", { + AbsolutePointSize[6]}, + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]]}}], + NCache[ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}], + Scaled[{0.5, 0.5}]], Automatic, + Scaled[1]]}}}, AspectRatio -> Full, + ImageSize -> {20, 9.75}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.09205128205128206] -> + Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + LineBox[{{0, 9.75}, {20, 9.75}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + InsetBox[ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}, { + DefaultBaseStyle -> {"Graphics", { + AbsolutePointSize[6]}, + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]]}}], + NCache[ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}], + Scaled[{0.5, 0.5}]], Automatic, + Scaled[1]]}}}, AspectRatio -> Full, + ImageSize -> {20, 9.75}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.09205128205128206] -> + Baseline)], #2}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Times"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.0055000000000000005`", "]"}], + ",", + + TemplateBox[<|"color" -> RGBColor[0.9, 0.36, 0.054]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.0055000000000000005`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.365248, 0.427802, 0.758297]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3, 3}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3, 3}]]}], ",", "9.75`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}], ",", "9.75`"}], + "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"True", ",", "True"}], "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellLabel-> + "Out[484]=",ExpressionUUID->"f0aa608e-f12c-48f1-ba63-9aaf3960f615"] }, Open ]] }, Closed]], @@ -3513,11 +4257,480 @@ Cell[BoxData[ "Out[119]//TableForm=",ExpressionUUID->"b7b5c954-23f1-476d-83c3-\ e63def1b3658"] }, Open ]] -}, Closed]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Timings", "Title", + CellChangeTimes->{{3.856791700157078*^9, + 3.856791702460801*^9}},ExpressionUUID->"61cd51bf-e012-4d32-bf6d-\ +b9b9c71fc72c"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"timings", "=", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"3.86", " ", + SuperscriptBox["10", "6"]}], ",", + RowBox[{"1.49", " ", + SuperscriptBox["10", "8"]}], ",", "12.50", ",", "33.25"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"4.79", " ", + SuperscriptBox["10", "6"]}], ",", + RowBox[{"2.04", " ", + SuperscriptBox["10", "8"]}], ",", "13.24", ",", "49.36"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"1.46", " ", + SuperscriptBox["10", "7"]}], ",", + RowBox[{"1.82", " ", + SuperscriptBox["10", "9"]}], ",", "193.93", ",", "282.62"}], "}"}], + ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"6.95", " ", + SuperscriptBox["10", "6"]}], ",", + RowBox[{"6.38", " ", + SuperscriptBox["10", "8"]}], ",", "29.58", ",", "174.96"}], "}"}]}], + "\[IndentingNewLine]", "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"tPT2", "=", + RowBox[{"timings", "\[LeftDoubleBracket]", + RowBox[{";;", ",", + RowBox[{"{", + RowBox[{"2", ",", "3"}], "}"}]}], "\[RightDoubleBracket]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"tPT3", "=", + RowBox[{"timings", "\[LeftDoubleBracket]", + RowBox[{";;", ",", + RowBox[{"{", + RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ratio", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"tPT2", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "1"}], "\[RightDoubleBracket]"}], ",", + RowBox[{ + RowBox[{"tPT2", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"tPT2", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}], "+", + RowBox[{"tPT3", "\[LeftDoubleBracket]", + RowBox[{"k", ",", "2"}], "\[RightDoubleBracket]"}]}], ")"}]}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"Length", "[", "tPT2", "]"}]}], "}"}]}], "]"}]}], + ";"}]}], "Input", + InitializationCell->True, + CellLabel-> + "In[494]:=",ExpressionUUID->"232f4366-aa1b-4672-92d3-a933a006cf71"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"tPT2", ",", "tPT3"}], "}"}], ",", + RowBox[{"PlotMarkers", "\[Rule]", "\"\\""}], ",", + RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", + CellLabel-> + "In[498]:=",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{}, {{{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + GeometricTransformationBox[ + InsetBox[ + BoxData[ + FormBox[ + StyleBox[ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3, 3}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3, 3}]]}], + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]]}, StripOnInput -> False], + TraditionalForm]], {0., 0.}, Automatic, + Scaled[9.75]], {{{1.49*^8, 12.5}}, {{2.04*^8, 13.24}}, {{1.82*^9, + 193.93}}, {{6.38*^8, 29.58}}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + GeometricTransformationBox[ + InsetBox[ + BoxData[ + FormBox[ + StyleBox[ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}], + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]]}, StripOnInput -> False], + TraditionalForm]], {0., 0.}, Automatic, + Scaled[9.75]], {{{1.49*^8, 33.25}}, {{2.04*^8, 49.36}}, {{1.82*^9, + 282.62}}, {{6.38*^8, 174.96}}}]}}}, {{}, {}}}, { + DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> + Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], + Method -> { + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, PlotRange -> {{0, 1.82*^9}, {0, 282.62}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + TagBox[ + FrameBox[ + StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"], + TagBox[ + FrameBox[ + StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"]}, + "PointLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + InsetBox[ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3, 3}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3, 3}]]}, {DefaultBaseStyle -> {"Graphics", { + AbsolutePointSize[6]}, + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]]}}], + NCache[ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}], + Scaled[{0.5, 0.5}]], Automatic, + Scaled[1]]}}}, AspectRatio -> Full, + ImageSize -> {10, 9.75}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.09205128205128206] -> + Baseline)], #}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + InsetBox[ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}, { + DefaultBaseStyle -> {"Graphics", { + AbsolutePointSize[6]}, + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]]}}], + NCache[ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}], + Scaled[{0.5, 0.5}]], Automatic, + Scaled[1]]}}}, AspectRatio -> Full, + ImageSize -> {10, 9.75}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.09205128205128206] -> + Baseline)], #2}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + TagBox[#, HoldForm], ",", + TagBox[#2, HoldForm]}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + GraphicsBox[{{ + GrayLevel[1], + DiskBox[{0, 0}, + Offset[{3, 3}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + CircleBox[{0, 0}, + Offset[{3, 3}]]}], ",", "9.75`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + GraphicsBox[{{ + GrayLevel[1], + PolygonBox[ + NCache[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}]}, { + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}]}]]}, + AbsoluteThickness[1.5], + Dashing[{}], + JoinedCurveBox[ + NCache[ + Line[{ + Offset[{0, 4}], + Offset[{(-2) 3^Rational[1, 2], -2}], + Offset[{2 3^Rational[1, 2], -2}], + Offset[{0, 4}]}], + Line[{ + Offset[{0, 4}], + Offset[{-3.4641016151377544`, -2}], + Offset[{3.4641016151377544`, -2}], + Offset[{0, 4}]}]], CurveClosed -> True]}], ",", "9.75`"}], + "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"False", ",", "False"}], "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellLabel-> + "Out[498]=",ExpressionUUID->"78f19f3a-3b03-4fef-956f-b581dd1020b9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListPlot", "[", + RowBox[{"ratio", ",", + RowBox[{"PlotMarkers", "\[Rule]", "\"\\""}], ",", + RowBox[{"PlotLegends", "\[Rule]", "Automatic"}]}], "]"}]], "Input", + CellChangeTimes->{{3.856792247668261*^9, 3.856792251919592*^9}}, + CellLabel-> + "In[499]:=",ExpressionUUID->"acc5833b-2f80-4264-a5d5-ccfd9fbe2536"], + +Cell[BoxData[ + GraphicsBox[{{}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[{ + {GrayLevel[1], DiskBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}, + {AbsoluteThickness[1.5], Dashing[{}], + CircleBox[{0, 0}, Offset[{3., 3.}, {0., 0.}]]}}], + StripOnInput->False, + GraphicsBoxOptions->{DefaultBaseStyle->Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]]}], + TraditionalForm], {0., 0.}, Automatic, Scaled[9.75]], {{{1.49*^8, + 0.273224043715847}}, {{2.04*^8, 0.21150159744408945`}}, {{1.82*^9, + 0.40694575595425453`}}, {{6.38*^8, 0.14461718979172775`}}}]}, {{}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 1.82*^9}, {0, 0.40694575595425453`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellLabel-> + "Out[499]=",ExpressionUUID->"b392a4f1-326f-44b6-a678-b2e6b02a558b"] +}, Open ]] +}, Open ]] }, -WindowSize->{1440, 847}, +WindowSize->{2300, 1008}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, -FrontEndVersion->"13.0 for Mac OS X ARM (64-bit) (December 2, 2021)", +FrontEndVersion->"13.0 for Mac OS X x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"85b7a10d-2875-445d-bac3-ec6fc5ce6624" ] @@ -3542,21 +4755,43 @@ Cell[1993, 53, 575, 12, 68, "Input",ExpressionUUID->"f2aa5eeb-491e-4712-8186-cd8 InitializationCell->True] }, Closed]], Cell[CellGroupData[{ -Cell[2605, 70, 147, 3, 72, "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a301789d5f95"], -Cell[2755, 75, 245, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f", +Cell[2605, 70, 89, 0, 72, "Title",ExpressionUUID->"7bca69e7-ea88-42f1-8cb1-a301789d5f95"], +Cell[2697, 72, 244, 5, 46, "Input",ExpressionUUID->"717b96b6-16dc-49c5-8f1c-5691e5e5da0f", InitializationCell->True], Cell[CellGroupData[{ -Cell[3025, 84, 5547, 129, 304, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], -Cell[8575, 215, 126258, 2333, 531, "Output",ExpressionUUID->"666714f9-dc02-4a2d-8747-a117dbcb1427"] +Cell[2966, 81, 5547, 129, 262, "Input",ExpressionUUID->"919b4508-e93a-4c58-acbd-bccf8883719c"], +Cell[8516, 212, 126002, 2331, 531, "Output",ExpressionUUID->"3e201298-ee71-49d6-a572-3484e73e6e41"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[134567, 2549, 86, 0, 98, "Title",ExpressionUUID->"a87d4be2-7864-4d6c-a2e3-36b4dcb9831f"], +Cell[134656, 2551, 244, 5, 46, "Input",ExpressionUUID->"106aeec9-b1fc-431a-b4b9-d3a7cdcac07d", + InitializationCell->True], +Cell[CellGroupData[{ +Cell[134925, 2560, 4382, 127, 283, "Input",ExpressionUUID->"0f8cc5fb-1a0b-4172-b346-6b0a3699cd11"], +Cell[139310, 2689, 30050, 603, 399, "Output",ExpressionUUID->"f0aa608e-f12c-48f1-ba63-9aaf3960f615"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[134882, 2554, 152, 3, 72, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], +Cell[169409, 3298, 152, 3, 72, "Title",ExpressionUUID->"adbad97c-5cc1-459d-b662-b85d0910cb88"], Cell[CellGroupData[{ -Cell[135059, 2561, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], -Cell[138390, 2633, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] +Cell[169586, 3305, 3328, 70, 94, "Input",ExpressionUUID->"5d41447f-af63-414c-a72f-279d73505b87"], +Cell[172917, 3377, 53160, 880, 5156, "Output",ExpressionUUID->"b7b5c954-23f1-476d-83c3-e63def1b3658"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[226126, 4263, 150, 3, 72, "Title",ExpressionUUID->"61cd51bf-e012-4d32-bf6d-b9b9c71fc72c"], +Cell[226279, 4268, 2473, 71, 227, "Input",ExpressionUUID->"232f4366-aa1b-4672-92d3-a933a006cf71", + InitializationCell->True], +Cell[CellGroupData[{ +Cell[228777, 4343, 338, 8, 30, "Input",ExpressionUUID->"88c5defa-ce5a-47a9-9104-0124f20e76a8"], +Cell[229118, 4353, 13074, 310, 249, "Output",ExpressionUUID->"78f19f3a-3b03-4fef-956f-b581dd1020b9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[242229, 4668, 353, 7, 30, "Input",ExpressionUUID->"acc5833b-2f80-4264-a5d5-ccfd9fbe2536"], +Cell[242585, 4677, 1903, 49, 249, "Output",ExpressionUUID->"b392a4f1-326f-44b6-a678-b2e6b02a558b"] +}, Open ]] }, Open ]] -}, Closed]] } ] *) diff --git a/Manuscript/CASPT3.tex b/Manuscript/CASPT3.tex index e289e00..f919aae 100644 --- a/Manuscript/CASPT3.tex +++ b/Manuscript/CASPT3.tex @@ -1,5 +1,5 @@ \documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1} -\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,wrapfig,txfonts,siunitx,longtable} +\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,wrapfig,txfonts,siunitx,longtable,pifont} \usepackage[version=4]{mhchem} %\usepackage{natbib} %\bibliographystyle{achemso} @@ -65,6 +65,11 @@ ]{hyperref} \urlstyle{same} +\newcommand{\cmark}{\ding{51}}% +\newcommand{\xmark}{\ding{55}}% +\newcommand{\Y}{\textbf{\textcolor{green}{\cmark}}} +\newcommand{\N}{\textbf{\textcolor{red}{\xmark}}} + \begin{document} % addresses @@ -85,9 +90,9 @@ % Abstract \begin{abstract} -The present study assesses the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states. -Based on 284 vertical transition energies of various natures extracted from the QUEST database, we show that CASPT3 provides a significant improvement compared to its second-order counterpart, CASPT2. %, with a reduction of the mean absolute from X.XX to X.XX eV. -As already reported, we have also observed that the accuracy of CASPT3 is much less sensitive to the infamous ionization-potential-electron-affinity (IPEA) shift. +Based on 284 vertical transition energies of various natures extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states. +When one applies the infamous ionization-potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of 0.11 eV. +However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespectively of the type of the transitions, with a small reduction of the mean absolute errors to 0.09 eV when the IPEA shift is switched off %\bigskip %\begin{center} % \boxed{\includegraphics[width=0.4\linewidth]{TOC}} @@ -185,18 +190,7 @@ deviation of the errors (SDE), as well as largest positive and negative deviatio \label{sec:res} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%%% FIGURE 2 %%% -\begin{figure} - \includegraphics[width=\linewidth]{PT2_vs_PT3.pdf} - \caption{Histograms of the errors (in \si{\eV}) obtained for CASPT2 and CASPT3 with and without IPEA shift. - \label{fig:PT2_vs_PT3}} -\end{figure} -%%% %%% %%% %%% - -A detailed discussion of each individual molecule can be found in Ref.~\onlinecite{Sarka_2022} where we also report relevant values from the literature. -Here, we focus on global trends. -The exhaustive list of CASPT2 and CASPT3 transitions can be found in Table \ref{tab:BigTab} and are represented in Fig.~\ref{fig:PT2_vs_PT3}. - +%%% TABLE I %%% \begin{longtable*}{cllccccccccc} \caption{Vertical excitation energies (in \si{\eV}) computed with various multi-reference methods. The reference TBEs of the QUEST database, their percentage of single excitations $\%T_1$ involved in the transition (computed at the CC3 level), their nature @@ -220,302 +214,311 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err \endfoot \hline\hline \endlastfoot -1 &Acetaldehyde &$^1A''(n,\pis)$ &V &91.3 &4.31 &Y &4.62 &4.35 &4.13 &4.44 &4.41\\ -2 & &$^3A''(n,\pis)$ &V &97.9 &3.97 &Y &4.28 &3.94 &3.71 &4.06 &4.03\\ -3 &Acetone &$^1A_2(n,\pis)$ &V &91.1 &4.47 &Y &4.77 &4.44 &4.19 &4.57 &4.55\\ -4 & &$^1B_2(n,3s)$ &R &90.5 &6.46 &Y &5.50 &6.46 &6.35 &6.64 &6.67\\ -5 & &$^1A_2(n,3p)$ &R &90.9 &7.47 &Y &7.46 &7.80 &7.55 &7.76 &7.68\\ -6 & &$^1A_1(n,3p)$ &R &90.6 &7.51 &Y &7.03 &7.67 &7.46 &7.76 &7.75\\ -7 & &$^1B_2(n,3p)$ &R &91.2 &7.62 &Y &6.44 &7.56 &7.47 &7.73 &7.76\\ -8 & &$^3A_2(n,\pis)$ &V &97.8 &4.13 &Y &4.47 &4.13 &3.89 &4.27 &4.24\\ -9 & &$^3A_1(\pi,\pis)$ &V &98.7 &6.25 &Y &6.22 &6.24 &6.07 &6.26 &6.22\\ -10 &Acrolein &$^1A''(n,\pis)$ &V &87.6 &3.78 &Y &3.48 &3.58 &3.46 &3.66 &3.66\\ -11 & &$^1A'(\pi,\pis)$ &V &91.2 &6.69 &Y &8.84 &6.93 &6.28 &7.18 &7.05\\ -12 & &$^1A''(n,\pis)$ &V &79.4 &6.72 &N &6.76 &6.79 &6.34 &6.88 &6.80\\ -13 & &$^1A'(n,3s)$ &R &89.4 &7.08 &Y &7.20 &7.21 &6.98 &7.20 &7.16\\ -14 & &$^1A'(\pi,\pis)$ &V &75.0 &7.87 &Y &7.01 &8.10 &7.75 &8.02 &7.95\\ -15 & &$^3A''(n,\pis)$ &V &97.0 &3.51 &Y &3.25 &3.28 &3.15 &3.39 &3.40\\ -16 & &$^3A'(\pi,\pis)$ &V &98.6 &3.94 &Y &3.89 &4.01 &3.78 &3.96 &3.91\\ -17 & &$^3A'(\pi,\pis)$ &V &98.4 &6.18 &Y &5.89 &6.20 &5.93 &6.10 &6.02\\ -18 & &$^3A''(n,\pis)$ &V &92.7 &6.54 &N &6.67 &6.65 &6.21 &6.74 &6.66\\ -19 &Benzene &$^1B_{2u}(\pi,\pis)$ &V &86.3 &5.06 &Y &4.98 &5.14 &4.66 &5.09 &5.01\\ -20 & &$^1B_{1u}(\pi,\pis)$ &V &92.9 &6.45 &Y &7.27 &6.65 &6.23 &6.67 &6.58\\ -21 & &$^1E_{1g}(\pi,3s)$ &R &92.8 &6.52 &Y &5.90 &6.70 &6.57 &6.56 &6.51\\ -22 & &$^1A_{2u}(\pi,3p)$ &R &93.4 &7.08 &Y &6.14 &7.21 &7.07 &7.07 &7.02\\ -23 & &$^1E_{2u}(\pi,3p)$ &R &92.8 &7.15 &Y &6.21 &7.26 &7.12 &7.13 &7.08\\ -24 & &$^1E_{2g}(\pi,\pis)$ &V &73.0 &8.28 &Y &8.10 &8.31 &7.82 &8.26 &8.16\\ -25 & &$^1A_{1g}(\text{double})$ &V &n.d. &10.55 &N &11.44 &10.24 &9.33 & &\\ -26 & &$^3B_{1u}(\pi,\pis)$ &V &98.6 &4.16 &Y &3.85 &4.22 &3.92 &4.14 &4.08\\ -27 & &$^3E_{1u}(\pi,\pis)$ &V &97.1 &4.85 &Y &4.85 &4.89 &4.51 &4.87 &4.80\\ -28 & &$^3B_{2u}(\pi,\pis)$ &V &98.1 &5.81 &Y &6.75 &5.85 &5.40 &5.90 &5.81\\ -29 &Butadiene &$^1B_u(\pi,\pis)$ &V &93.3 &6.22 &Y &6.65 &6.76 &6.52 &6.72 &6.65\\ -30 & &$^1B_g(\pi,3s)$ &R &94.1 &6.33 &Y &5.94 &6.49 &6.32 &6.43 &6.38\\ -31 & &$^1A_g(\pi,\pis)$ &V &75.1 &6.50 &Y &6.99 &6.74 &6.30 &6.73 &6.66\\ -32 & &$^1A_u(\pi,3p)$ &R &94.1 &6.64 &Y &5.95 &6.74 &6.64 &6.70 &6.67\\ -33 & &$^1A_u(\pi,3p)$ &R &94.1 &6.80 &Y &6.12 &6.95 &6.84 &6.90 &6.86\\ -34 & &$^1B_u(\pi,3p)$ &R &93.8 &7.68 &Y &7.93 &7.60 &7.30 &7.62 &7.54\\ -35 & &$^3B_u(\pi,\pis)$ &V &98.4 &3.36 &Y &3.55 &3.40 &3.19 &3.40 &3.35\\ -36 & &$^3A_g(\pi,\pis)$ &V &98.7 &5.20 &Y &5.52 &5.32 &4.93 &5.29 &5.19\\ -37 & &$^3B_g(\pi,3s)$ &R &97.9 &6.29 &Y &5.89 &6.44 &6.27 &6.38 &6.33\\ -38 &Carbon Trimer &$^1\Delta_g(\text{double})$ &R &1.0 &5.22 &Y &4.98 &5.08 &4.85 &5.20 &5.19\\ -39 & &$^1\Sigma^+_g(\text{double})$ &R &1.0 &5.91 &Y &5.84 &5.82 &5.58 &5.92 &5.89\\ -40 &Cyanoacetylene &$^1\Sigma^-(\pi,\pis)$ &V &94.3 &5.80 &Y &6.54 &5.85 &5.47 &5.89 &5.81\\ -41 & &$^1\Delta(\pi,\pis)$ &V &94.0 &6.07 &Y &6.80 &6.13 &5.78 &6.17 &6.09\\ -42 & &$^3\Sigma^+(\pi,\pis)$ &V &98.5 &4.44 &Y &4.86 &4.45 &4.04 &4.52 &4.45\\ -43 & &$^3\Delta(\pi,\pis)$ &V &98.2 &5.21 &Y &5.64 &5.21 &4.86 &5.26 &5.19\\ -44 & &$^1A''[F](\pi,\pis)$ &V &93.6 &3.54 &Y &4.30 &3.67 &3.47 &3.64 &3.58\\ -45 &Cyanoformaldehyde &$^1A''(n,\pis)$ &V &89.8 &3.81 &Y &4.02 &3.98 &3.67 &3.94 &3.89\\ -46 & &$^1A''(\pi,\pis)$ &V &91.9 &6.46 &Y &7.61 &6.79 &6.43 &6.77 &6.67\\ -47 & &$^3A''(n,\pis)$ &V &97.6 &3.44 &Y &3.52 &3.46 &3.25 &3.51 &3.50\\ -48 & &$^3A'(\pi,\pis)$ &V &98.4 &5.01 &Y &4.98 &5.25 &5.03 &5.16 &5.12\\ -49 &Cyanogen &$^1\Sigma_u^-(\pi,\pis)$ &V &94.1 &6.39 &Y &7.14 &6.40 &6.03 &6.46 &6.39\\ -50 & &$^1\Delta_u(\pi,\pis)$ &V &93.4 &6.66 &Y &7.46 &6.70 &6.35 &6.75 &6.68\\ -51 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.91 &Y &5.28 &4.85 &4.46 &4.95 &4.89\\ -52 & &$^1\Sigma_u^-[F](\pi,\pis)$ &V &93.4 &5.05 &Y &5.68 &5.07 &4.75 &5.11 &5.04\\ -53 &Cyclopentadiene &$^1B_2(\pi,\pis)$ &V &93.8 &5.56 &Y &6.71 &5.96 &5.62 &6.06 &5.99\\ -54 & &$^1A_2(\pi,3s)$ &R &94.0 &5.78 &Y &5.21 &5.88 &5.78 &5.81 &5.77\\ -55 & &$^1B_1(\pi,3p)$ &R &94.2 &6.41 &Y &6.08 &6.59 &6.44 &6.47 &6.41\\ -56 & &$^1A_2(\pi,3p)$ &R &93.8 &6.46 &Y &5.78 &6.55 &6.46 &6.45 &6.41\\ -57 & &$^1B_2(\pi,3p)$ &R &94.2 &6.56 &Y &6.16 &6.72 &6.56 &6.61 &6.54\\ -58 & &$^1A_1(\pi,\pis)$ &V &78.9 &6.52 &N &6.49 &6.63 &6.13 &6.59 &6.50\\ -59 & &$^3B_2(\pi,\pis)$ &V &98.4 &3.31 &Y &3.26 &3.34 &3.09 &3.31 &3.26\\ -60 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.11 &Y &4.92 &5.14 &4.78 &5.10 &5.03\\ -61 & &$^3A_2(\pi,3s)$ &R &97.9 &5.73 &Y &5.53 &5.91 &5.74 &5.81 &5.75\\ -62 & &$^3B_1(\pi,3p)$ &R &97.9 &6.36 &Y &6.05 &6.56 &6.40 &6.43 &6.37\\ -63 &Cyclopropene &$^1B_1(\sig,\pis)$ &V &92.8 &6.68 &Y &7.48 &6.86 &6.58 &6.85 &6.77\\ -64 &                   &$^1B_2(\pi,\pis)$ &V &95.1 &6.79 &Y &7.47 &6.89 &6.47 &6.96 &6.87\\ -65 &                   &$^3B_2(\pi,\pis)$ &V &98.0 &4.38 &Y &4.60 &4.47 &4.27 &4.46 &4.40\\ -66 &                   &$^3B_1(\sig,\pis)$ &V &98.9 &6.45 &Y &7.08 &6.56 &6.32 &6.55 &6.47\\ -67 &Cyclopropenone &$^1B_1(n,\pis)$ &V &87.7 &4.26 &Y &4.92 &4.12 &3.75 &4.40 &4.38\\ -68 & &$^1A_2(n,\pis)$ &V &91.0 &5.55 &Y &5.64 &5.62 &5.31 &5.67 &5.64\\ -69 & &$^1B_2(n,3s)$ &R &90.8 &6.34 &Y &5.68 &6.28 &6.21 &6.41 &6.44\\ -70 & &$^1B_2(\pi,\pis)$ &V &86.5 &6.54 &Y &6.40 &6.54 &6.20 &6.63 &6.62\\ -71 & &$^1B_2(n,3p)$ &R &91.1 &6.98 &Y &6.35 &6.84 &6.70 &6.99 &7.01\\ -72 & &$^1A_1(n,3p)$ &R &91.2 &7.02 &Y &6.84 &7.27 &7.03 &7.26 &7.24\\ -73 & &$^1A_1(\pi,\pis)$ &V &90.8 &8.28 &Y &10.42 &8.96 &8.11 &9.21 &9.07\\ -74 & &$^3B_1(n,\pis)$ &V &96.0 &3.93 &Y &4.72 &3.65 &3.28 &4.00 &3.98\\ -75 & &$^3B_2(\pi,\pis)$ &V &97.9 &4.88 &Y &4.39 &4.76 &4.60 &4.76 &4.74\\ -76 & &$^3A_2(n,\pis)$ &V &97.5 &5.35 &Y &5.40 &5.36 &5.06 &5.44 &5.42\\ -77 & &$^3A_1(\pi,\pis)$ &V &98.1 &6.79 &Y &6.59 &6.93 &6.61 &6.86 &6.82\\ -78 &Cyclopropenethione &$^1A_2(n,\pis)$ &V &89.6 &3.41 &Y &3.44 &3.43 &3.14 &3.46 &3.40\\ -79 & &$^1B_1(n,\pis)$ &V &84.8 &3.45 &Y &3.57 &3.45 &3.17 &3.52 &3.46\\ -80 & &$^1B_2(\pi,\pis)$ &V &83.0 &4.60 &Y &4.51 &4.64 &4.35 &4.66 &4.61\\ -81 & &$^1B_2(n,3s)$ &R &91.8 &5.34 &Y &4.59 &5.25 &5.15 &5.25 &5.22\\ -82 & &$^1A_1(\pi,\pis)$ &V &89.0 &5.46 &Y &6.46 &5.84 &5.32 &5.88 &5.75\\ -83 & &$^1B_2(n,3p)$ &R &91.3 &5.92 &Y &5.27 &5.93 &5.86 &5.92 &5.90\\ -84 & &$^3A_2(n,\pis)$ &V &97.2 &3.28 &Y &3.26 &3.28 &3.00 &3.33 &3.28\\ -85 & &$^3B_1(n,\pis)$ &V &94.5 &3.32 &Y &3.51 &3.35 &3.07 &3.42 &3.36\\ -86 & &$^3B_2(\pi,\pis)$ &V &96.5 &4.01 &Y &3.80 &3.97 &3.75 &3.99 &3.95\\ -87 & &$^3A_1(\pi,\pis)$ &V &98.2 &4.01 &Y &3.83 &4.01 &3.77 &4.00 &3.95\\ -88 &Diacetylene &$^1\Sigma_u^-(\pi,\pis)$ &V &94.4 &5.33 &Y &6.13 &5.42 &5.01 &5.45 &5.36\\ -89 & &$^1\Delta_u(\pi,\pis)$ &V &94.1 &5.61 &Y &6.39 &5.68 &5.30 &5.72 &5.63\\ -90 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.10 &Y &4.54 &4.11 &3.67 &4.17 &4.09\\ -91 & &$^3\Delta_u(\pi,\pis)$ &V &98.2 &4.78 &Y &5.28 &4.82 &4.45 &4.86 &4.78\\ -92 &Diazomethane &$^1A_2(\pi,\pis)$ &V &90.1 &3.14 &Y &3.27 &3.13 &2.92 &3.09 &3.04\\ -93 &                   &$^1B_1(\pi,3s)$ &R &93.8 &5.54 &Y &4.59 &5.50 &5.30 &5.48 &5.45\\ -94 &                   &$^1A_1(\pi,\pis)$ &V &91.4 &5.90 &Y &5.65 &6.21 &5.92 &6.18 &6.13\\ -95 &                   &$^3A_2(\pi,\pis)$ &V &97.7 &2.79 &Y &3.02 &2.87 &2.67 &2.84 &2.79\\ -96 &                   &$^3A_1(\pi,\pis)$ &V &98.6 &4.05 &Y &4.27 &4.10 &3.88 &4.06 &4.01\\ -97 &                   &$^3B_1(\pi,3s )$ &R &98.0 &5.35 &Y &4.45 &5.34 &5.15 &5.33 &5.30\\ -98 &                   &$^3A_1(\pi,3p)$ &R &98.5 &6.82 &Y &6.34 &7.00 &6.76 &6.96 &6.91\\ -99 &                   &$^1A''[F](\pi,\pis)$ &V &87.4 &0.71 &Y &0.72 &0.69 &0.52 &0.66 &0.62\\ -100 &Formamide &$^1A''(n,\pis)$ &V &90.8 &5.65 &Y &5.95 &5.66 &5.45 &5.71 &5.67\\ -101 & &$^1A'(n,3s)$ &R &88.6 &6.77 &Y &6.17 &6.80 &6.64 &6.82 &6.81\\ -102 & &$^1A'(n,3p)$ &R &89.6 &7.38 &N &6.74 &7.45 &7.32 &7.46 &7.46\\ -103 & &$^1A'(\pi,\pis)$ &V &89.3 &7.63 &N &8.80 &7.88 &7.13 &7.95 &7.78\\ -104 &                   &$^3A''(n,\pis)$ &V &97.7 &5.38 &Y &5.89 &5.36 &5.16 &5.41 &5.37\\ -105 &                   &$^3A'(\pi,\pis)$ &V &98.2 &5.81 &Y &6.10 &5.88 &5.62 &5.91 &5.87\\ -106 &Furan &$^1A_2(\pi,3s)$ &R &93.8 &6.09 &Y &5.26 &6.16 &6.04 &6.06 &6.02\\ -107 & &$^1B_2(\pi,\pis)$ &V &93.0 &6.37 &Y &7.78 &6.59 &6.02 &6.80 &6.71\\ -108 & &$^1A_1(\pi,\pis)$ &V &92.4 &6.56 &Y &6.73 &6.66 &6.10 &6.69 &6.62\\ -109 & &$^1B_1(\pi,3p)$ &R &93.9 &6.64 &Y &6.07 &6.79 &6.63 &6.65 &6.60\\ -110 & &$^1A_2(\pi,3p)$ &R &93.6 &6.81 &Y &5.87 &6.87 &6.77 &6.76 &6.72\\ -111 & &$^1B_2(\pi,3p)$ &R &93.5 &7.24 &Y &6.54 &7.11 &6.84 &6.96 &6.88\\ -112 & &$^3B_2(\pi,\pis)$ &V &98.4 &4.20 &Y &3.94 &4.26 &4.01 &4.17 &4.12\\ -113 & &$^3A_1(\pi,\pis)$ &V &98.1 &5.46 &Y &5.41 &5.50 &5.09 &5.47 &5.40\\ -114 & &$^3A_2(\pi,3s)$ &R &97.9 &6.02 &Y &5.57 &6.16 &5.99 &6.05 &5.99\\ -115 & &$^3B_1(\pi,3p)$ &R &97.9 &6.59 &Y &6.04 &6.76 &6.60 &6.62 &6.56\\ -116 &Glyoxal &$^1A_u(n,\pis)$ &V &91.0 &2.88 &Y &3.42 &2.82 &2.51 &2.97 &2.94\\ -117 & &$^1B_g(n,\pis)$ &V &88.3 &4.24 &Y &4.68 &4.21 &3.89 &4.36 &4.31\\ -118 & &$^1A_g(\text{double})$ &V &0.5 &5.61 &Y &5.92 &5.37 &5.21 &5.53 &5.55\\ -119 & &$^1B_g(n,\pis)$ &V &83.9 &6.57 &Y &7.35 &6.52 &5.98 &6.76 &6.72\\ -120 & &$^1B_u(n,3p)$ &R &91.7 &7.71 &Y &7.04 &7.61 &7.34 &7.78 &7.81\\ -121 & &$^3A_u(n,\pis)$ &V &97.6 &2.49 &Y &3.06 &2.41 &2.12 &2.57 &2.55\\ -122 & &$^3B_g(n,\pis)$ &V &97.4 &3.89 &Y &4.61 &3.90 &3.53 &4.04 &4.01\\ -123 & &$^3B_u(\pi,\pis)$ &V &98.5 &5.15 &Y &5.46 &5.14 &4.91 &5.17 &5.14\\ -124 & &$^3A_g(\pi,\pis)$ &V &98.8 &6.30 &Y &6.69 &6.32 &6.02 &6.33 &6.27\\ -125 &Imidazole &$^1A''(\pi,3s)$ &R &93.0 &5.70 &Y &5.04 &5.88 &5.66 &5.74 &5.68\\ -126 & &$^1A'(\pi,3p)$ &R &90.0 &6.41 &Y &6.18 &6.69 &6.45 &6.61 &6.56\\ -127 & &$^1A''(\pi,3p)$ &R &93.6 &6.50 &Y &5.43 &6.57 &6.47 &6.47 &6.44\\ -128 & &$^1A''(n,\pis)$ &V &89.0 &6.71 &Y &7.13 &6.94 &6.57 &6.92 &6.85\\ -129 & &$^1A'(\pi,\pis)$ &V &88.9 &6.86 &Y &6.73 &6.88 &6.46 &6.89 &6.83\\ -130 & &$^1A'(n,3s)$ &R &89.0 &7.00 &Y &6.36 &7.10 &6.91 &7.09 &7.07\\ -131 & &$^3A'(\pi,\pis)$ &V &98.3 &4.74 &Y &4.55 &4.78 &4.52 &4.73 &4.68\\ -132 & &$^3A''(\pi,3s)$ &R &97.6 &5.66 &Y &5.03 &5.86 &5.63 &5.72 &5.66\\ -133 & &$^3A'(\pi,\pis)$ &V &97.9 &5.74 &Y &5.69 &5.85 &5.48 &5.80 &5.72\\ -134 & &$^3A''(n,\pis)$ &V &97.3 &6.31 &Y &6.58 &6.44 &6.10 &6.43 &6.37\\ -135 &Isobutene &$^1B_1(\pi,3s)$ &R &94.1 &6.46 &Y &6.21 &6.74 &6.59 &6.64 &6.57\\ -136 & &$^1A_1(\pi,3p)$ &R &94.2 &7.01 &Y &6.90 &7.32 &7.14 &7.24 &7.18\\ -137 & &$^3A_1(\pi,\pis)$ &V &98.9 &4.53 &Y &4.66 &4.59 &4.41 &4.58 &4.53\\ -138 &Ketene &$^1A_2(\pi,\pis)$ &V &91.0 &3.86 &Y &3.98 &3.92 &3.70 &3.90 &3.85\\ -139 &                   &$^1B_1(\pi,3s)$ &R &93.9 &6.01 &Y &5.22 &5.99 &5.79 &6.00 &5.97\\ -140 & &$^1A_1(\pi,\pis)$ &V &92.4 &7.25 &Y & & &&&\\ -141 &                   &$^1A_2(\pi,3p)$ &R &94.4 &7.18 &Y &6.38 &7.25 &7.05 &7.19 &7.15\\ -142 &                   &$^3A_2(\pi,\pis)$ &V &91.0 &3.77 &Y &3.92 &3.81 &3.59 &3.79 &3.74\\ -143 &                   &$^3A_1(\pi,\pis)$ &V &98.6 &5.61 &Y &5.79 &5.65 &5.43 &5.63 &5.59\\ -144 &                   &$^3B_1(\pi,3s)$ &R &98.1 &5.79 &Y &5.05 &5.79 &5.60 &5.80 &5.77\\ -145 &                   &$^3A_2(\pi,3p)$ &R &94.4 &7.12 &Y &6.35 &7.22 &7.01 &7.15 &7.11\\ -146 &                   &$^1A''[F](\pi,\pis)$ &V &87.9 &1.00 &Y &0.95 &1.05 &0.88 &1.00 &0.95\\ -147 &Methylenecycloprope&ne$^1B_2(\pi,\pis)$ &V &85.4 &4.28 &Y &4.47 &4.40 &4.12 &4.39 &4.33\\ -148 & &$^1B_1(\pi,3s)$ &R &93.6 &5.44 &Y &4.92 &5.57 &5.44 &5.46 &5.41\\ -149 & &$^1A_2(\pi,3p)$ &R &93.3 &5.96 &Y &5.37 &6.09 &5.97 &5.97 &5.92\\ -150 & &$^1A_1(\pi,\pis)$ &V &92.8 &6.12 &N &5.37 &6.26 &6.16 &6.17 &6.13\\ -151 & &$^3B_2(\pi,\pis)$ &V &97.2 &3.49 &Y &3.44 &3.57 &3.34 &3.55 &3.49\\ -152 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.74 &Y &4.60 &4.82 &4.58 &4.77 &4.72\\ -153 &Nitrosomethane &$^1A''(n,\pis)$ &V &93.0 &1.96 &Y &2.12 &1.84 &1.60 &1.94 &1.91\\ -154 & &$^1A'(\text{double})$ &V &2.5 &4.76 &Y &4.74 &4.69 &4.67 &4.71 &4.71\\ -155 &                   &$^1A'(\text{n.d.})$ &R &90.8 &6.29 &Y &5.87 &6.32 &6.07 &6.34 &6.31\\ -156 &                  &$^3A''(n,\pis)$ &V &98.4 &1.16 &Y &1.31 &1.00 &0.75 &1.12 &1.09\\ -157 &                   &$^3A'(\pi,\pis)$ &V &98.9 &5.60 &Y &5.52 &5.52 &5.37 &5.54 &5.50\\ -158 &                   &$^1A''[F](n,\pis)$ &V &92.7 &1.67 &Y &1.83 &1.55 &1.32 &1.66 &1.62\\ -159 &Propynal &$^1A''(n,\pis)$ &V &89.0 &3.80 &Y &4.00 &3.92 &3.64 &3.90 &3.86\\ -160 & &$^1A''(\pi,\pis)$ &V &92.9 &5.54 &Y &6.62 &5.82 &5.49 &5.81 &5.72\\ -161 & &$^3A''(n,\pis)$ &V &97.4 &3.47 &Y &3.52 &3.48 &3.26 &3.52 &3.50\\ -162 & &$^3A'(\pi,\pis)$ &V &98.3 &4.47 &Y &4.69 &4.59 &4.30 &4.54 &4.54\\ -163 &Pyrazine &$^1B_{3u}(n,\pis)$ &V &90.1 &4.15 &Y &4.76 &4.09 &3.66 &4.31 &4.30\\ -164 & &$^1A_u(n,\pis)$ &V &88.6 &4.98 &Y &5.90 &4.76 &4.26 &5.10 &5.10\\ -165 & &$^1B_{2u}(\pi,\pis)$ &V &86.9 &5.02 &Y &4.97 &5.13 &4.65 &5.09 &5.03\\ -166 & &$^1B_{2g}(n,\pis)$ &V &85.6 &5.71 &Y &5.80 &5.68 &5.27 &5.73 &5.70\\ -167 & &$^1A_g(n,3s)$ &R &91.1 &6.65 &Y &6.69 &6.66 &6.27 &6.81 &6.80\\ -168 & &$^1B_{1g}(n,\pis)$ &V &84.2 &6.74 &Y &7.16 &6.61 &6.07 &6.78 &6.76\\ -169 & &$^1B_{1u}(\pi,\pis)$ &V &92.8 &6.88 &Y &8.04 &7.14 &6.72 &7.20 &7.12\\ -170 & &$^1B_{1g}(\pi,3s)$ &R &93.8 &7.21 &Y &6.73 &7.41 &7.27 &7.24 &7.18\\ -171 & &$^1B_{2u}(n,3p)$ &R &90.8 &7.24 &Y &7.49 &7.34 &6.93 &7.43 &7.40\\ -172 & &$^1B_{1u}(n,3p)$ &R &91.4 &7.44 &Y &7.83 &7.55 &7.08 &7.64 &7.59\\ -173 & &$^1B_{1u}(\pi,\pis)$ &V &90.5 &7.98 &N &9.65 &8.59 &7.96 &8.68 &8.57\\ -174 & &$^1A_g(\text{double})$ &V &12.0 &8.04 &N & & &&&\\ -175 & &$^1A_g(\pi,\pis)$ &V &71.0 &8.69 &N & & &&&\\ -176 & &$^3B_{3u}(n,\pis)$ &V &97.3 &3.59 &Y &4.16 &3.49 &3.08 &3.72 &3.71\\ -177 & &$^3B_{1u}(\pi,\pis)$ &V &98.5 &4.35 &Y &3.98 &4.44 &4.15 &4.34 &4.28\\ -178 & &$^3B_{2u}(\pi,\pis)$ &V &97.6 &4.39 &Y &4.62 &4.44 &4.09 &4.47 &4.41\\ -179 & &$^3A_u(n,\pis)$ &V &96.1 &4.93 &Y &5.85 &4.73 &4.21 &5.07 &5.07\\ -180 & &$^3B_{2g}(n,\pis)$ &V &97.0 &5.08 &Y &5.25 &5.04 &4.66 &5.14 &5.11\\ -181 & &$^3B_{1u}(\pi,\pis)$ &V &97.0 &5.28 &Y &5.15 &5.29 &4.92 &5.25 &5.19\\ -182 &Pyridazine &$^1B_1(n,\pis)$ &V &89.0 &3.83 &Y &4.29 &3.74 &3.36 &3.94 &3.92\\ -183 & &$^1A_2(n,\pis)$ &V &86.9 &4.37 &Y &4.83 &4.29 &3.87 &4.49 &4.48\\ -184 & &$^1A_1(\pi,\pis)$ &V &85.8 &5.26 &Y &5.12 &5.34 &4.87 &5.30 &5.25\\ -185 & &$^1A_2(n,\pis)$ &V &86.2 &5.72 &Y &6.26 &5.73 &5.19 &5.93 &5.89\\ -186 & &$^1B_2(n,3s)$ &R &88.5 &6.17 &Y &5.99 &6.18 &5.90 &6.28 &6.27\\ -187 & &$^1B_1(n,\pis)$ &V &87.0 &6.37 &Y &7.16 &6.50 &5.94 &6.72 &6.67\\ -188 & &$^1B_2(\pi,\pis)$ &V &90.6 &6.75 &Y &7.54 &7.26 &6.82 &7.25 &7.17\\ -189 & &$^3B_1(n,\pis)$ &V &97.1 &3.19 &Y &3.60 &3.08 &2.72 &3.29 &3.28\\ -190 & &$^3A_2(n,\pis)$ &V &96.1 &4.11 &Y &4.49 &4.01 &3.59 &4.20 &4.18\\ -191 & &$^3B_2(\pi,\pis)$ &V &98.5 &4.34 &N &3.92 &4.44 &4.13 &4.30 &4.24\\ -192 & &$^3A_1(\pi,\pis)$ &V &97.3 &4.82 &Y &4.93 &4.87 &4.48 &4.89 &4.83\\ -193 &Pyridine &$^1B_1(n,\pis)$ &V &88.4 &4.95 &Y &5.43 &5.15 &4.81 &5.18 &5.13\\ -194 & &$^1B_2(\pi,\pis)$ &V &86.5 &5.14 &Y &5.03 &5.18 &4.76 &5.15 &5.09\\ -195 & &$^1A_2(n,\pis)$ &V &87.9 &5.40 &Y &6.30 &5.46 &5.03 &5.63 &5.59\\ -196 & &$^1A_1(\pi,\pis)$ &V &92.1 &6.62 &Y &7.90 &6.92 &6.27 &7.04 &6.93\\ -197 & &$^1A_1(n,3s)$ &R &89.7 &6.76 &Y &6.40 &6.90 &6.67 &6.97 &6.96\\ -198 & &$^1A_2(\pi,3s)$ &R &93.2 &6.82 &Y &6.60 &7.08 &6.87 &6.88 &6.80\\ -199 & &$^1B_1(\pi,3p)$ &R &93.6 &7.38 &Y &7.12 &7.70 &7.51 &7.48 &7.40\\ -200 & &$^1A_1(\pi,\pis)$ &V &90.5 &7.39 &Y &9.49 &7.66 &6.63 &7.87 &7.70\\ -201 & &$^1B_2(\pi,\pis)$ &V &90.0 &7.40 &N &7.45 &7.92 &7.67 &7.80 &7.73\\ -202 & &$^3A_1(\pi,\pis)$ &V &98.5 &4.30 &Y &3.98 &4.40 &4.06 &4.29 &4.22\\ -203 & &$^3B_1(n,\pis)$ &V &97.0 &4.46 &Y &4.65 &4.48 &4.21 &4.57 &4.55\\ -204 & &$^3B_2(\pi,\pis)$ &V &97.3 &4.79 &Y &4.83 &4.86 &4.53 &4.81 &4.74\\ -205 & &$^3A_1(\pi,\pis)$ &V &97.1 &5.04 &Y &5.11 &5.09 &4.63 &5.09 &5.02\\ -206 & &$^3A_2(n,\pis)$ &V &95.8 &5.36 &Y &5.94 &5.33 &4.96 &5.53 &5.51\\ -207 & &$^3B_2(\pi,\pis)$ &V &97.7 &6.24 &Y &6.93 &6.40 &5.99 &6.43 &6.35\\ -208 &Pyrimidine &$^1B_1(n,\pis)$ &V &88.6 &4.44 &Y &4.85 &4.44 &4.07 &4.58 &4.55\\ -209 & &$^1A_2(n,\pis)$ &V &88.5 &4.85 &Y &5.52 &4.80 &4.36 &5.02 &5.00\\ -210 & &$^1B_2(\pi,\pis)$ &V &86.3 &5.38 &Y &5.28 &5.42 &4.98 &5.41 &5.36\\ -211 & &$^1A_2(n,\pis)$ &V &86.7 &5.92 &Y &6.70 &5.92 &5.32 &6.16 &6.10\\ -212 & &$^1B_1(n,\pis)$ &V &86.7 &6.26 &Y &7.20 &6.31 &5.65 &6.58 &6.53\\ -213 & &$^1B_2(n,3s)$ &R &90.3 &6.70 &Y &6.86 &6.85 &6.50 &6.89 &6.86\\ -214 & &$^1A_1(\pi,\pis)$ &V &91.5 &6.88 &Y &7.69 &7.31 &6.94 &7.29 &7.22\\ -215 & &$^3B_1(n,\pis)$ &V &96.8 &4.09 &Y &4.45 &4.05 &3.67 &4.20 &4.18\\ -216 & &$^3A_1(\pi,\pis)$ &V &98.3 &4.51 &N &4.22 &4.57 &4.25 &4.51 &4.44\\ -217 & &$^3A_2(n,\pis)$ &V &96.5 &4.66 &Y &5.20 &4.63 &4.16 &4.81 &4.78\\ -218 & &$^3B_2(\pi,\pis)$ &V &97.4 &4.96 &Y &5.10 &5.01 &4.60 &5.03 &4.97\\ -219 &Pyrrole &$^1A_2(\pi,3s)$ &R &92.9 &5.24 &Y &4.49 &5.44 &5.23 &5.28 &5.23\\ -220 & &$^1B_1(\pi,3p)$ &R &92.4 &6.00 &Y &5.22 &6.26 &6.07 &6.08 &6.02\\ -221 & &$^1A_2(\pi,3p)$ &R &93.0 &6.00 &Y &4.89 &6.16 &6.02 &6.01 &5.97\\ -222 & &$^1B_2(\pi,\pis)$ &V &92.5 &6.26 &Y &7.73 &6.62 &6.36 &6.45 &6.38\\ -223 & &$^1A_1(\pi,\pis)$ &V &86.3 &6.30 &Y &6.47 &6.41 &5.84 &6.43 &6.34\\ -224 & &$^1B_2(\pi,3p)$ &R &92.6 &6.83 &Y &5.82 &6.75 &6.11 &6.92 &6.82\\ -225 & &$^3B_2(\pi,\pis)$ &V &98.3 &4.51 &Y &4.24 &4.57 &4.30 &4.49 &4.44\\ -226 & &$^3A_2(\pi,3s)$ &R &97.6 &5.21 &Y &4.47 &5.41 &5.21 &5.26 &5.20\\ -227 & &$^3A_1(\pi,\pis)$ &V &97.8 &5.45 &Y &5.52 &5.50 &5.04 &5.49 &5.40\\ -228 & &$^3B_1(\pi,3p)$ &R &97.4 &5.91 &Y &5.18 &6.22 &6.03 &6.04 &5.98\\ -229 &Streptocyanine-1 &$^1B_2(\pi,\pis)$ &V &88.7 &7.13 &Y &7.82 &7.17 &6.76 &7.28 &7.21\\ -230 &                   &$^3B_2(\pi,\pis)$ &V &98.3 &5.52 &Y &5.86 &5.49 &5.22 &5.54 &5.49\\ -231 &Tetrazine &$^1B_{3u}(n,\pis)$ &V &89.8 &2.47 &Y &2.99 &2.31 &1.91 &2.54 &2.53\\ -232 & &$^1A_u(n,\pis)$ &V &87.9 &3.69 &Y &4.37 &3.49 &3.00 &3.77 &3.78\\ -233 & &$^1A_g(\text{double})$ &V &0.7 &4.61 &N &5.42 &4.69 &4.48 &4.85 &4.87\\ -234 & &$^1B_{1g}(n,\pis)$ &V &83.1 &4.93 &Y &5.41 &4.83 &4.33 &5.02 &5.00\\ -235 & &$^1B_{2u}(\pi,\pis)$ &V &85.4 &5.21 &Y &5.04 &5.31 &4.84 &5.26 &5.23\\ -236 & &$^1B_{2g}(n,\pis)$ &V &81.7 &5.45 &Y &5.43 &5.38 &4.90 &5.42 &5.38\\ -237 & &$^1A_u(n,\pis)$ &V &87.7 &5.53 &Y &6.37 &5.51 &4.92 &5.80 &5.80\\ -238 & &$^1B_{3g}(\text{double})$ &V &0.7 &6.15 &N &6.59 &5.85 &5.22 &6.20 &6.22\\ -239 & &$^1B_{2g}(n,\pis)$ &V &80.2 &6.12 &Y &6.79 &5.96 &5.18 &6.27 &6.28\\ -240 & &$^1B_{1g}(n,\pis)$ &V &85.1 &6.91 &Y &7.18 &6.59 &5.89 &6.79 &6.72\\ -241 & &$^3B_{3u}(n,\pis)$ &V &97.1 &1.85 &Y &2.38 &1.70 &1.31 &1.94 &1.93\\ -242 & &$^3A_u(n,\pis)$ &V &96.3 &3.45 &Y &4.06 &3.26 &2.78 &3.52 &3.52\\ -243 & &$^3B_{1g}(n,\pis)$ &V &97.0 &4.20 &Y &4.66 &4.10 &3.62 &4.32 &4.30\\ -244 & &$^1B_{1u}(\pi,\pis)$ &V &98.5 &4.49 &N &3.90 &4.55 &4.29 &4.39 &4.34\\ -245 & &$^3B_{2u}(\pi,\pis)$ &V &97.5 &4.52 &Y &4.68 &4.55 &4.20 &4.60 &4.55\\ -246 & &$^3B_{2g}(n,\pis)$ &V &96.4 &5.04 &Y &5.17 &5.02 &4.53 &5.10 &5.07\\ -247 & &$^3A_u(n,\pis)$ &V &96.6 &5.11 &Y &6.12 &5.07 &4.44 &5.41 &5.41\\ -248 & &$^3B_{3g}(\text{double})$ &V &5.7 &5.51 &N &6.56 &5.39 &4.86 &5.83 &5.85\\ -249 & &$^3B_{1u}(\pi,\pis)$ &V &96.6 &5.42 &Y &5.32 &5.46 &5.08 &5.44 &5.39\\ -250 &Thioacetone &$^1A_2(n,\pis)$ &V &88.9 &2.53 &Y &2.72 &2.58 &2.33 &2.60 &2.53\\ -251 & &$^1B_2(n,3s)$ &R &91.3 &5.56 &Y &4.80 &5.60 &5.48 &5.64 &5.61\\ -252 & &$^1A_1(\pi,\pis)$ &V &90.6 &5.88 &Y &6.94 &6.42 &5.98 &6.40 &6.26\\ -253 & &$^1B_2(n,3p)$ &R &92.4 &6.51 &Y &5.57 &6.51 &6.40 &6.53 &6.49\\ -254 & &$^1A_1(n,3p)$ &R &91.6 &6.61 &Y &6.24 &6.66 &6.41 &6.59 &6.50\\ -255 & &$^3A_2(n,\pis)$ &V &97.4 &2.33 &Y &2.52 &2.34 &2.09 &2.38 &2.31\\ -256 & &$^3A_1(\pi,\pis)$ &V &98.7 &3.45 &Y &3.52 &3.48 &3.29 &3.48 &3.43\\ -257 &Thiophene &$^1A_1(\pi,\pis)$ &V &87.6 &5.64 &Y &6.11 &5.84 &5.21 &5.89 &5.79\\ -258 & &$^1B_2(\pi,\pis)$ &V &91.5 &5.98 &Y &6.94 &6.35 &5.89 &6.44 &6.35\\ -259 & &$^1A_2(\pi,3s)$ &R &92.6 &6.14 &Y &5.70 &6.28 &6.07 &6.16 &6.10\\ -260 & &$^1B_1(\pi,3p)$ &R &90.1 &6.14 &Y &6.02 &6.21 &5.90 &6.16 &6.10\\ -261 & &$^1A_2(\pi,3p)$ &R &91.8 &6.21 &Y &6.05 &6.32 &5.98 &6.28 &6.21\\ -262 & &$^1B_1(\pi,3s)$ &R &92.8 &6.49 &Y &5.78 &6.57 &6.28 &6.51 &6.44\\ -263 & &$^1B_2(\pi,3p)$ &R &92.4 &7.29 &Y &6.80 &7.29 &7.03 &7.20 &7.13\\ -264 & &$^1A_1(\pi,\pis)$ &V &86.5 &7.31 &N &8.29 &7.62 &6.85 &7.71 &7.56\\ -265 & &$^3B_2(\pi,\pis)$ &V &98.2 &3.92 &Y &3.68 &3.98 &3.71 &3.90 &3.84\\ -266 & &$^3A_1(\pi,\pis)$ &V &97.7 &4.76 &Y &4.97 &4.85 &4.39 &4.87 &4.79\\ -267 & &$^3B_1(\pi,3p)$ &R &96.6 &5.93 &Y &5.86 &5.97 &5.64 &5.94 &5.88\\ -268 & &$^3A_2(\pi,3s)$ &R &97.5 &6.08 &Y &5.65 &6.22 &6.01 &6.11 &6.04\\ -269 &Thiopropynal &$^1A''(n,\pis)$ &V &87.5 &2.03 &Y &2.06 &2.05 &1.84 &2.05 &2.00\\ -270 & &$^3A''(n,\pis)$ &V &97.2 &1.80 &Y &1.85 &1.81 &1.60 &1.84 &1.79\\ -271 &Triazine &$^1A_1''(n,\pis)$ &V &88.3 &4.72 &Y &5.88 &4.62 &3.90 &5.00 &4.99\\ -272 & &$^1A_2''(n,\pis)$ &V &88.3 &4.75 &Y &5.14 &4.77 &4.39 &4.90 &4.87\\ -273 & &$^1E''(n,\pis)$ &V &88.3 &4.78 &Y &5.51 &4.76 &4.14 &5.01 &4.98\\ -274 & &$^1A_2'(\pi,\pis)$ &V &85.7 &5.75 &Y &5.55 &5.76 &5.32 &5.75 &5.72\\ -275 & &$^1A_1'(\pi,\pis)$ &V &90.4 &7.24 &Y &8.20 &7.43 &6.89 &7.50 &7.41\\ -276 & &$^1E'(n,3s)$ &R &90.9 &7.32 &Y &7.40 &7.48 &7.15 &7.53 &7.49\\ -277 & &$^1E''(n,\pis)$ &V &82.6 &7.78 &Y &8.26 &7.75 &7.04 &7.92 &7.90\\ -278 & &$^1E'(\pi,\pis)$ &V &90.0 &7.94 &Y &10.03 &8.65 &7.70 &8.63 &8.72\\ -279 & &$^3A_2''(n,\pis)$ &V &96.7 &4.33 &Y &4.74 &4.37 &3.99 &4.51 &4.49\\ -280 & &$^3E''(n,\pis)$ &V &96.6 &4.51 &Y &5.14 &4.47 &3.88 &4.71 &4.68\\ -281 & &$^3A_1''(n,\pis)$ &V &96.2 &4.73 &Y &5.88 &4.70 &3.94 &5.06 &5.04\\ -282 & &$^3A_1'(\pi,\pis)$ &V &98.2 &4.85 &Y &4.46 &4.88 &4.55 &4.81 &4.75\\ -283 & &$^3E'(\pi,\pis)$ &V &96.9 &5.59 &Y &5.57 &5.62 &5.20 &5.62 &5.57\\ -284 & &$^3A_2'(\pi,\pis)$ &V &97.6 &6.62 &Y &7.70 &6.62 &6.12 &6.76 &6.68\\ +1 &Acetaldehyde &$^1A''(n,\pis)$ &V &91.3 &4.31 &\Y &4.62 &4.35 &4.13 &4.44 &4.41\\ +2 & &$^3A''(n,\pis)$ &V &97.9 &3.97 &\Y &4.28 &3.94 &3.71 &4.06 &4.03\\ +3 &Acetone &$^1A_2(n,\pis)$ &V &91.1 &4.47 &\Y &4.77 &4.44 &4.19 &4.57 &4.55\\ +4 & &$^1B_2(n,3s)$ &R &90.5 &6.46 &\Y &5.50 &6.46 &6.35 &6.64 &6.67\\ +5 & &$^1A_2(n,3p)$ &R &90.9 &7.47 &\Y &7.46 &7.80 &7.55 &7.76 &7.68\\ +6 & &$^1A_1(n,3p)$ &R &90.6 &7.51 &\Y &7.03 &7.67 &7.46 &7.76 &7.75\\ +7 & &$^1B_2(n,3p)$ &R &91.2 &7.62 &\Y &6.44 &7.56 &7.47 &7.73 &7.76\\ +8 & &$^3A_2(n,\pis)$ &V &97.8 &4.13 &\Y &4.47 &4.13 &3.89 &4.27 &4.24\\ +9 & &$^3A_1(\pi,\pis)$ &V &98.7 &6.25 &\Y &6.22 &6.24 &6.07 &6.26 &6.22\\ +10 &Acrolein &$^1A''(n,\pis)$ &V &87.6 &3.78 &\Y &3.48 &3.58 &3.46 &3.66 &3.66\\ +11 & &$^1A'(\pi,\pis)$ &V &91.2 &6.69 &\Y &8.84 &6.93 &6.28 &7.18 &7.05\\ +12 & &$^1A''(n,\pis)$ &V &79.4 &6.72 &\N &6.76 &6.79 &6.34 &6.88 &6.80\\ +13 & &$^1A'(n,3s)$ &R &89.4 &7.08 &\Y &7.20 &7.21 &6.98 &7.20 &7.16\\ +14 & &$^1A'(\pi,\pis)$ &V &75.0 &7.87 &\Y &7.01 &8.10 &7.75 &8.02 &7.95\\ +15 & &$^3A''(n,\pis)$ &V &97.0 &3.51 &\Y &3.25 &3.28 &3.15 &3.39 &3.40\\ +16 & &$^3A'(\pi,\pis)$ &V &98.6 &3.94 &\Y &3.89 &4.01 &3.78 &3.96 &3.91\\ +17 & &$^3A'(\pi,\pis)$ &V &98.4 &6.18 &\Y &5.89 &6.20 &5.93 &6.10 &6.02\\ +18 & &$^3A''(n,\pis)$ &V &92.7 &6.54 &\N &6.67 &6.65 &6.21 &6.74 &6.66\\ +19 &Benzene &$^1B_{2u}(\pi,\pis)$ &V &86.3 &5.06 &\Y &4.98 &5.14 &4.66 &5.09 &5.01\\ +20 & &$^1B_{1u}(\pi,\pis)$ &V &92.9 &6.45 &\Y &7.27 &6.65 &6.23 &6.67 &6.58\\ +21 & &$^1E_{1g}(\pi,3s)$ &R &92.8 &6.52 &\Y &5.90 &6.70 &6.57 &6.56 &6.51\\ +22 & &$^1A_{2u}(\pi,3p)$ &R &93.4 &7.08 &\Y &6.14 &7.21 &7.07 &7.07 &7.02\\ +23 & &$^1E_{2u}(\pi,3p)$ &R &92.8 &7.15 &\Y &6.21 &7.26 &7.12 &7.13 &7.08\\ +24 & &$^1E_{2g}(\pi,\pis)$ &V &73.0 &8.28 &\Y &8.10 &8.31 &7.82 &8.26 &8.16\\ +25 & &$^1A_{1g}(\text{double})$ &V &n.d. &10.55 &\N &11.44 &10.24 &9.33 & &\\ +26 & &$^3B_{1u}(\pi,\pis)$ &V &98.6 &4.16 &\Y &3.85 &4.22 &3.92 &4.14 &4.08\\ +27 & &$^3E_{1u}(\pi,\pis)$ &V &97.1 &4.85 &\Y &4.85 &4.89 &4.51 &4.87 &4.80\\ +28 & &$^3B_{2u}(\pi,\pis)$ &V &98.1 &5.81 &\Y &6.75 &5.85 &5.40 &5.90 &5.81\\ +29 &Butadiene &$^1B_u(\pi,\pis)$ &V &93.3 &6.22 &\Y &6.65 &6.76 &6.52 &6.72 &6.65\\ +30 & &$^1B_g(\pi,3s)$ &R &94.1 &6.33 &\Y &5.94 &6.49 &6.32 &6.43 &6.38\\ +31 & &$^1A_g(\pi,\pis)$ &V &75.1 &6.50 &\Y &6.99 &6.74 &6.30 &6.73 &6.66\\ +32 & &$^1A_u(\pi,3p)$ &R &94.1 &6.64 &\Y &5.95 &6.74 &6.64 &6.70 &6.67\\ +33 & &$^1A_u(\pi,3p)$ &R &94.1 &6.80 &\Y &6.12 &6.95 &6.84 &6.90 &6.86\\ +34 & &$^1B_u(\pi,3p)$ &R &93.8 &7.68 &\Y &7.93 &7.60 &7.30 &7.62 &7.54\\ +35 & &$^3B_u(\pi,\pis)$ &V &98.4 &3.36 &\Y &3.55 &3.40 &3.19 &3.40 &3.35\\ +36 & &$^3A_g(\pi,\pis)$ &V &98.7 &5.20 &\Y &5.52 &5.32 &4.93 &5.29 &5.19\\ +37 & &$^3B_g(\pi,3s)$ &R &97.9 &6.29 &\Y &5.89 &6.44 &6.27 &6.38 &6.33\\ +38 &Carbon Trimer &$^1\Delta_g(\text{double})$&R &1.0 &5.22 &\Y &4.98 &5.08 &4.85 &5.20 &5.19\\ +39 & &$^1\Sigma^+_g(\text{double})$&R&1.0 &5.91 &\Y &5.84 &5.82 &5.58 &5.92 &5.89\\ +40 &Cyanoacetylene &$^1\Sigma^-(\pi,\pis)$ &V &94.3 &5.80 &\Y &6.54 &5.85 &5.47 &5.89 &5.81\\ +41 & &$^1\Delta(\pi,\pis)$ &V &94.0 &6.07 &\Y &6.80 &6.13 &5.78 &6.17 &6.09\\ +42 & &$^3\Sigma^+(\pi,\pis)$ &V &98.5 &4.44 &\Y &4.86 &4.45 &4.04 &4.52 &4.45\\ +43 & &$^3\Delta(\pi,\pis)$ &V &98.2 &5.21 &\Y &5.64 &5.21 &4.86 &5.26 &5.19\\ +44 & &$^1A''[F](\pi,\pis)$ &V &93.6 &3.54 &\Y &4.30 &3.67 &3.47 &3.64 &3.58\\ +45 &Cyanoformaldehyde &$^1A''(n,\pis)$ &V &89.8 &3.81 &\Y &4.02 &3.98 &3.67 &3.94 &3.89\\ +46 & &$^1A''(\pi,\pis)$ &V &91.9 &6.46 &\Y &7.61 &6.79 &6.43 &6.77 &6.67\\ +47 & &$^3A''(n,\pis)$ &V &97.6 &3.44 &\Y &3.52 &3.46 &3.25 &3.51 &3.50\\ +48 & &$^3A'(\pi,\pis)$ &V &98.4 &5.01 &\Y &4.98 &5.25 &5.03 &5.16 &5.12\\ +49 &Cyanogen &$^1\Sigma_u^-(\pi,\pis)$ &V &94.1 &6.39 &\Y &7.14 &6.40 &6.03 &6.46 &6.39\\ +50 & &$^1\Delta_u(\pi,\pis)$ &V &93.4 &6.66 &\Y &7.46 &6.70 &6.35 &6.75 &6.68\\ +51 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.91 &\Y &5.28 &4.85 &4.46 &4.95 &4.89\\ +52 & &$^1\Sigma_u^-[F](\pi,\pis)$&V &93.4 &5.05 &\Y &5.68 &5.07 &4.75 &5.11 &5.04\\ +53 &Cyclopentadiene &$^1B_2(\pi,\pis)$ &V &93.8 &5.56 &\Y &6.71 &5.96 &5.62 &6.06 &5.99\\ +54 & &$^1A_2(\pi,3s)$ &R &94.0 &5.78 &\Y &5.21 &5.88 &5.78 &5.81 &5.77\\ +55 & &$^1B_1(\pi,3p)$ &R &94.2 &6.41 &\Y &6.08 &6.59 &6.44 &6.47 &6.41\\ +56 & &$^1A_2(\pi,3p)$ &R &93.8 &6.46 &\Y &5.78 &6.55 &6.46 &6.45 &6.41\\ +57 & &$^1B_2(\pi,3p)$ &R &94.2 &6.56 &\Y &6.16 &6.72 &6.56 &6.61 &6.54\\ +58 & &$^1A_1(\pi,\pis)$ &V &78.9 &6.52 &\N &6.49 &6.63 &6.13 &6.59 &6.50\\ +59 & &$^3B_2(\pi,\pis)$ &V &98.4 &3.31 &\Y &3.26 &3.34 &3.09 &3.31 &3.26\\ +60 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.11 &\Y &4.92 &5.14 &4.78 &5.10 &5.03\\ +61 & &$^3A_2(\pi,3s)$ &R &97.9 &5.73 &\Y &5.53 &5.91 &5.74 &5.81 &5.75\\ +62 & &$^3B_1(\pi,3p)$ &R &97.9 &6.36 &\Y &6.05 &6.56 &6.40 &6.43 &6.37\\ +63 &Cyclopropene &$^1B_1(\sig,\pis)$ &V &92.8 &6.68 &\Y &7.48 &6.86 &6.58 &6.85 &6.77\\ +64 & &$^1B_2(\pi,\pis)$ &V &95.1 &6.79 &\Y &7.47 &6.89 &6.47 &6.96 &6.87\\ +65 & &$^3B_2(\pi,\pis)$ &V &98.0 &4.38 &\Y &4.60 &4.47 &4.27 &4.46 &4.40\\ +66 & &$^3B_1(\sig,\pis)$ &V &98.9 &6.45 &\Y &7.08 &6.56 &6.32 &6.55 &6.47\\ +67 &Cyclopropenone &$^1B_1(n,\pis)$ &V &87.7 &4.26 &\Y &4.92 &4.12 &3.75 &4.40 &4.38\\ +68 & &$^1A_2(n,\pis)$ &V &91.0 &5.55 &\Y &5.64 &5.62 &5.31 &5.67 &5.64\\ +69 & &$^1B_2(n,3s)$ &R &90.8 &6.34 &\Y &5.68 &6.28 &6.21 &6.41 &6.44\\ +70 & &$^1B_2(\pi,\pis)$ &V &86.5 &6.54 &\Y &6.40 &6.54 &6.20 &6.63 &6.62\\ +71 & &$^1B_2(n,3p)$ &R &91.1 &6.98 &\Y &6.35 &6.84 &6.70 &6.99 &7.01\\ +72 & &$^1A_1(n,3p)$ &R &91.2 &7.02 &\Y &6.84 &7.27 &7.03 &7.26 &7.24\\ +73 & &$^1A_1(\pi,\pis)$ &V &90.8 &8.28 &\Y &10.42 &8.96 &8.11 &9.21 &9.07\\ +74 & &$^3B_1(n,\pis)$ &V &96.0 &3.93 &\Y &4.72 &3.65 &3.28 &4.00 &3.98\\ +75 & &$^3B_2(\pi,\pis)$ &V &97.9 &4.88 &\Y &4.39 &4.76 &4.60 &4.76 &4.74\\ +76 & &$^3A_2(n,\pis)$ &V &97.5 &5.35 &\Y &5.40 &5.36 &5.06 &5.44 &5.42\\ +77 & &$^3A_1(\pi,\pis)$ &V &98.1 &6.79 &\Y &6.59 &6.93 &6.61 &6.86 &6.82\\ +78 &Cyclopropenethione &$^1A_2(n,\pis)$ &V &89.6 &3.41 &\Y &3.44 &3.43 &3.14 &3.46 &3.40\\ +79 & &$^1B_1(n,\pis)$ &V &84.8 &3.45 &\Y &3.57 &3.45 &3.17 &3.52 &3.46\\ +80 & &$^1B_2(\pi,\pis)$ &V &83.0 &4.60 &\Y &4.51 &4.64 &4.35 &4.66 &4.61\\ +81 & &$^1B_2(n,3s)$ &R &91.8 &5.34 &\Y &4.59 &5.25 &5.15 &5.25 &5.22\\ +82 & &$^1A_1(\pi,\pis)$ &V &89.0 &5.46 &\Y &6.46 &5.84 &5.32 &5.88 &5.75\\ +83 & &$^1B_2(n,3p)$ &R &91.3 &5.92 &\Y &5.27 &5.93 &5.86 &5.92 &5.90\\ +84 & &$^3A_2(n,\pis)$ &V &97.2 &3.28 &\Y &3.26 &3.28 &3.00 &3.33 &3.28\\ +85 & &$^3B_1(n,\pis)$ &V &94.5 &3.32 &\Y &3.51 &3.35 &3.07 &3.42 &3.36\\ +86 & &$^3B_2(\pi,\pis)$ &V &96.5 &4.01 &\Y &3.80 &3.97 &3.75 &3.99 &3.95\\ +87 & &$^3A_1(\pi,\pis)$ &V &98.2 &4.01 &\Y &3.83 &4.01 &3.77 &4.00 &3.95\\ +88 &Diacetylene &$^1\Sigma_u^-(\pi,\pis)$ &V &94.4 &5.33 &\Y &6.13 &5.42 &5.01 &5.45 &5.36\\ +89 & &$^1\Delta_u(\pi,\pis)$ &V &94.1 &5.61 &\Y &6.39 &5.68 &5.30 &5.72 &5.63\\ +90 & &$^3\Sigma_u^+(\pi,\pis)$ &V &98.5 &4.10 &\Y &4.54 &4.11 &3.67 &4.17 &4.09\\ +91 & &$^3\Delta_u(\pi,\pis)$ &V &98.2 &4.78 &\Y &5.28 &4.82 &4.45 &4.86 &4.78\\ +92 &Diazomethane &$^1A_2(\pi,\pis)$ &V &90.1 &3.14 &\Y &3.27 &3.13 &2.92 &3.09 &3.04\\ +93 & &$^1B_1(\pi,3s)$ &R &93.8 &5.54 &\Y &4.59 &5.50 &5.30 &5.48 &5.45\\ +94 & &$^1A_1(\pi,\pis)$ &V &91.4 &5.90 &\Y &5.65 &6.21 &5.92 &6.18 &6.13\\ +95 & &$^3A_2(\pi,\pis)$ &V &97.7 &2.79 &\Y &3.02 &2.87 &2.67 &2.84 &2.79\\ +96 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.05 &\Y &4.27 &4.10 &3.88 &4.06 &4.01\\ +97 & &$^3B_1(\pi,3s )$ &R &98.0 &5.35 &\Y &4.45 &5.34 &5.15 &5.33 &5.30\\ +98 & &$^3A_1(\pi,3p)$ &R &98.5 &6.82 &\Y &6.34 &7.00 &6.76 &6.96 &6.91\\ +99 & &$^1A''[F](\pi,\pis)$ &V &87.4 &0.71 &\Y &0.72 &0.69 &0.52 &0.66 &0.62\\ +100 &Formamide &$^1A''(n,\pis)$ &V &90.8 &5.65 &\Y &5.95 &5.66 &5.45 &5.71 &5.67\\ +101 & &$^1A'(n,3s)$ &R &88.6 &6.77 &\Y &6.17 &6.80 &6.64 &6.82 &6.81\\ +102 & &$^1A'(n,3p)$ &R &89.6 &7.38 &\N &6.74 &7.45 &7.32 &7.46 &7.46\\ +103 & &$^1A'(\pi,\pis)$ &V &89.3 &7.63 &\N &8.80 &7.88 &7.13 &7.95 &7.78\\ +104 & &$^3A''(n,\pis)$ &V &97.7 &5.38 &\Y &5.89 &5.36 &5.16 &5.41 &5.37\\ +105 & &$^3A'(\pi,\pis)$ &V &98.2 &5.81 &\Y &6.10 &5.88 &5.62 &5.91 &5.87\\ +106 &Furan &$^1A_2(\pi,3s)$ &R &93.8 &6.09 &\Y &5.26 &6.16 &6.04 &6.06 &6.02\\ +107 & &$^1B_2(\pi,\pis)$ &V &93.0 &6.37 &\Y &7.78 &6.59 &6.02 &6.80 &6.71\\ +108 & &$^1A_1(\pi,\pis)$ &V &92.4 &6.56 &\Y &6.73 &6.66 &6.10 &6.69 &6.62\\ +109 & &$^1B_1(\pi,3p)$ &R &93.9 &6.64 &\Y &6.07 &6.79 &6.63 &6.65 &6.60\\ +110 & &$^1A_2(\pi,3p)$ &R &93.6 &6.81 &\Y &5.87 &6.87 &6.77 &6.76 &6.72\\ +111 & &$^1B_2(\pi,3p)$ &R &93.5 &7.24 &\Y &6.54 &7.11 &6.84 &6.96 &6.88\\ +112 & &$^3B_2(\pi,\pis)$ &V &98.4 &4.20 &\Y &3.94 &4.26 &4.01 &4.17 &4.12\\ +113 & &$^3A_1(\pi,\pis)$ &V &98.1 &5.46 &\Y &5.41 &5.50 &5.09 &5.47 &5.40\\ +114 & &$^3A_2(\pi,3s)$ &R &97.9 &6.02 &\Y &5.57 &6.16 &5.99 &6.05 &5.99\\ +115 & &$^3B_1(\pi,3p)$ &R &97.9 &6.59 &\Y &6.04 &6.76 &6.60 &6.62 &6.56\\ +116 &Glyoxal &$^1A_u(n,\pis)$ &V &91.0 &2.88 &\Y &3.42 &2.82 &2.51 &2.97 &2.94\\ +117 & &$^1B_g(n,\pis)$ &V &88.3 &4.24 &\Y &4.68 &4.21 &3.89 &4.36 &4.31\\ +118 & &$^1A_g(\text{double})$ &V &0.5 &5.61 &\Y &5.92 &5.37 &5.21 &5.53 &5.55\\ +119 & &$^1B_g(n,\pis)$ &V &83.9 &6.57 &\Y &7.35 &6.52 &5.98 &6.76 &6.72\\ +120 & &$^1B_u(n,3p)$ &R &91.7 &7.71 &\Y &7.04 &7.61 &7.34 &7.78 &7.81\\ +121 & &$^3A_u(n,\pis)$ &V &97.6 &2.49 &\Y &3.06 &2.41 &2.12 &2.57 &2.55\\ +122 & &$^3B_g(n,\pis)$ &V &97.4 &3.89 &\Y &4.61 &3.90 &3.53 &4.04 &4.01\\ +123 & &$^3B_u(\pi,\pis)$ &V &98.5 &5.15 &\Y &5.46 &5.14 &4.91 &5.17 &5.14\\ +124 & &$^3A_g(\pi,\pis)$ &V &98.8 &6.30 &\Y &6.69 &6.32 &6.02 &6.33 &6.27\\ +125 &Imidazole &$^1A''(\pi,3s)$ &R &93.0 &5.70 &\Y &5.04 &5.88 &5.66 &5.74 &5.68\\ +126 & &$^1A'(\pi,3p)$ &R &90.0 &6.41 &\Y &6.18 &6.69 &6.45 &6.61 &6.56\\ +127 & &$^1A''(\pi,3p)$ &R &93.6 &6.50 &\Y &5.43 &6.57 &6.47 &6.47 &6.44\\ +128 & &$^1A''(n,\pis)$ &V &89.0 &6.71 &\Y &7.13 &6.94 &6.57 &6.92 &6.85\\ +129 & &$^1A'(\pi,\pis)$ &V &88.9 &6.86 &\Y &6.73 &6.88 &6.46 &6.89 &6.83\\ +130 & &$^1A'(n,3s)$ &R &89.0 &7.00 &\Y &6.36 &7.10 &6.91 &7.09 &7.07\\ +131 & &$^3A'(\pi,\pis)$ &V &98.3 &4.74 &\Y &4.55 &4.78 &4.52 &4.73 &4.68\\ +132 & &$^3A''(\pi,3s)$ &R &97.6 &5.66 &\Y &5.03 &5.86 &5.63 &5.72 &5.66\\ +133 & &$^3A'(\pi,\pis)$ &V &97.9 &5.74 &\Y &5.69 &5.85 &5.48 &5.80 &5.72\\ +134 & &$^3A''(n,\pis)$ &V &97.3 &6.31 &\Y &6.58 &6.44 &6.10 &6.43 &6.37\\ +135 &Isobutene &$^1B_1(\pi,3s)$ &R &94.1 &6.46 &\Y &6.21 &6.74 &6.59 &6.64 &6.57\\ +136 & &$^1A_1(\pi,3p)$ &R &94.2 &7.01 &\Y &6.90 &7.32 &7.14 &7.24 &7.18\\ +137 & &$^3A_1(\pi,\pis)$ &V &98.9 &4.53 &\Y &4.66 &4.59 &4.41 &4.58 &4.53\\ +138 &Ketene &$^1A_2(\pi,\pis)$ &V &91.0 &3.86 &\Y &3.98 &3.92 &3.70 &3.90 &3.85\\ +139 & &$^1B_1(\pi,3s)$ &R &93.9 &6.01 &\Y &5.22 &5.99 &5.79 &6.00 &5.97\\ +140 & &$^1A_1(\pi,\pis)$ &V &92.4 &7.25 &\Y & & &&&\\ +141 & &$^1A_2(\pi,3p)$ &R &94.4 &7.18 &\Y &6.38 &7.25 &7.05 &7.19 &7.15\\ +142 & &$^3A_2(\pi,\pis)$ &V &91.0 &3.77 &\Y &3.92 &3.81 &3.59 &3.79 &3.74\\ +143 & &$^3A_1(\pi,\pis)$ &V &98.6 &5.61 &\Y &5.79 &5.65 &5.43 &5.63 &5.59\\ +144 & &$^3B_1(\pi,3s)$ &R &98.1 &5.79 &\Y &5.05 &5.79 &5.60 &5.80 &5.77\\ +145 & &$^3A_2(\pi,3p)$ &R &94.4 &7.12 &\Y &6.35 &7.22 &7.01 &7.15 &7.11\\ +146 & &$^1A''[F](\pi,\pis)$ &V &87.9 &1.00 &\Y &0.95 &1.05 &0.88 &1.00 &0.95\\ +147 &Methylenecycloprope&ne$^1B_2(\pi,\pis)$ &V &85.4 &4.28 &\Y &4.47 &4.40 &4.12 &4.39 &4.33\\ +148 & &$^1B_1(\pi,3s)$ &R &93.6 &5.44 &\Y &4.92 &5.57 &5.44 &5.46 &5.41\\ +149 & &$^1A_2(\pi,3p)$ &R &93.3 &5.96 &\Y &5.37 &6.09 &5.97 &5.97 &5.92\\ +150 & &$^1A_1(\pi,\pis)$ &V &92.8 &6.12 &\N &5.37 &6.26 &6.16 &6.17 &6.13\\ +151 & &$^3B_2(\pi,\pis)$ &V &97.2 &3.49 &\Y &3.44 &3.57 &3.34 &3.55 &3.49\\ +152 & &$^3A_1(\pi,\pis)$ &V &98.6 &4.74 &\Y &4.60 &4.82 &4.58 &4.77 &4.72\\ +153 &Nitrosomethane &$^1A''(n,\pis)$ &V &93.0 &1.96 &\Y &2.12 &1.84 &1.60 &1.94 &1.91\\ +154 & &$^1A'(\text{double})$ &V &2.5 &4.76 &\Y &4.74 &4.69 &4.67 &4.71 &4.71\\ +155 & &$^1A'(\text{n.d.})$ &R &90.8 &6.29 &\Y &5.87 &6.32 &6.07 &6.34 &6.31\\ +156 & &$^3A''(n,\pis)$ &V &98.4 &1.16 &\Y &1.31 &1.00 &0.75 &1.12 &1.09\\ +157 & &$^3A'(\pi,\pis)$ &V &98.9 &5.60 &\Y &5.52 &5.52 &5.37 &5.54 &5.50\\ +158 & &$^1A''[F](n,\pis)$ &V &92.7 &1.67 &\Y &1.83 &1.55 &1.32 &1.66 &1.62\\ +159 &Propynal &$^1A''(n,\pis)$ &V &89.0 &3.80 &\Y &4.00 &3.92 &3.64 &3.90 &3.86\\ +160 & &$^1A''(\pi,\pis)$ &V &92.9 &5.54 &\Y &6.62 &5.82 &5.49 &5.81 &5.72\\ +161 & &$^3A''(n,\pis)$ &V &97.4 &3.47 &\Y &3.52 &3.48 &3.26 &3.52 &3.50\\ +162 & &$^3A'(\pi,\pis)$ &V &98.3 &4.47 &\Y &4.69 &4.59 &4.30 &4.54 &4.54\\ +163 &Pyrazine &$^1B_{3u}(n,\pis)$ &V &90.1 &4.15 &\Y &4.76 &4.09 &3.66 &4.31 &4.30\\ +164 & &$^1A_u(n,\pis)$ &V &88.6 &4.98 &\Y &5.90 &4.76 &4.26 &5.10 &5.10\\ +165 & &$^1B_{2u}(\pi,\pis)$ &V &86.9 &5.02 &\Y &4.97 &5.13 &4.65 &5.09 &5.03\\ +166 & &$^1B_{2g}(n,\pis)$ &V &85.6 &5.71 &\Y &5.80 &5.68 &5.27 &5.73 &5.70\\ +167 & &$^1A_g(n,3s)$ &R &91.1 &6.65 &\Y &6.69 &6.66 &6.27 &6.81 &6.80\\ +168 & &$^1B_{1g}(n,\pis)$ &V &84.2 &6.74 &\Y &7.16 &6.61 &6.07 &6.78 &6.76\\ +169 & &$^1B_{1u}(\pi,\pis)$ &V &92.8 &6.88 &\Y &8.04 &7.14 &6.72 &7.20 &7.12\\ +170 & &$^1B_{1g}(\pi,3s)$ &R &93.8 &7.21 &\Y &6.73 &7.41 &7.27 &7.24 &7.18\\ +171 & &$^1B_{2u}(n,3p)$ &R &90.8 &7.24 &\Y &7.49 &7.34 &6.93 &7.43 &7.40\\ +172 & &$^1B_{1u}(n,3p)$ &R &91.4 &7.44 &\Y &7.83 &7.55 &7.08 &7.64 &7.59\\ +173 & &$^1B_{1u}(\pi,\pis)$ &V &90.5 &7.98 &\N &9.65 &8.59 &7.96 &8.68 &8.57\\ +174 & &$^1A_g(\text{double})$ &V &12.0 &8.04 &\N & & &&&\\ +175 & &$^1A_g(\pi,\pis)$ &V &71.0 &8.69 &\N & & &&&\\ +176 & &$^3B_{3u}(n,\pis)$ &V &97.3 &3.59 &\Y &4.16 &3.49 &3.08 &3.72 &3.71\\ +177 & &$^3B_{1u}(\pi,\pis)$ &V &98.5 &4.35 &\Y &3.98 &4.44 &4.15 &4.34 &4.28\\ +178 & &$^3B_{2u}(\pi,\pis)$ &V &97.6 &4.39 &\Y &4.62 &4.44 &4.09 &4.47 &4.41\\ +179 & &$^3A_u(n,\pis)$ &V &96.1 &4.93 &\Y &5.85 &4.73 &4.21 &5.07 &5.07\\ +180 & &$^3B_{2g}(n,\pis)$ &V &97.0 &5.08 &\Y &5.25 &5.04 &4.66 &5.14 &5.11\\ +181 & &$^3B_{1u}(\pi,\pis)$ &V &97.0 &5.28 &\Y &5.15 &5.29 &4.92 &5.25 &5.19\\ +182 &Pyridazine &$^1B_1(n,\pis)$ &V &89.0 &3.83 &\Y &4.29 &3.74 &3.36 &3.94 &3.92\\ +183 & &$^1A_2(n,\pis)$ &V &86.9 &4.37 &\Y &4.83 &4.29 &3.87 &4.49 &4.48\\ +184 & &$^1A_1(\pi,\pis)$ &V &85.8 &5.26 &\Y &5.12 &5.34 &4.87 &5.30 &5.25\\ +185 & &$^1A_2(n,\pis)$ &V &86.2 &5.72 &\Y &6.26 &5.73 &5.19 &5.93 &5.89\\ +186 & &$^1B_2(n,3s)$ &R &88.5 &6.17 &\Y &5.99 &6.18 &5.90 &6.28 &6.27\\ +187 & &$^1B_1(n,\pis)$ &V &87.0 &6.37 &\Y &7.16 &6.50 &5.94 &6.72 &6.67\\ +188 & &$^1B_2(\pi,\pis)$ &V &90.6 &6.75 &\Y &7.54 &7.26 &6.82 &7.25 &7.17\\ +189 & &$^3B_1(n,\pis)$ &V &97.1 &3.19 &\Y &3.60 &3.08 &2.72 &3.29 &3.28\\ +190 & &$^3A_2(n,\pis)$ &V &96.1 &4.11 &\Y &4.49 &4.01 &3.59 &4.20 &4.18\\ +191 & &$^3B_2(\pi,\pis)$ &V &98.5 &4.34 &\N &3.92 &4.44 &4.13 &4.30 &4.24\\ +192 & &$^3A_1(\pi,\pis)$ &V &97.3 &4.82 &\Y &4.93 &4.87 &4.48 &4.89 &4.83\\ +193 &Pyridine &$^1B_1(n,\pis)$ &V &88.4 &4.95 &\Y &5.43 &5.15 &4.81 &5.18 &5.13\\ +194 & &$^1B_2(\pi,\pis)$ &V &86.5 &5.14 &\Y &5.03 &5.18 &4.76 &5.15 &5.09\\ +195 & &$^1A_2(n,\pis)$ &V &87.9 &5.40 &\Y &6.30 &5.46 &5.03 &5.63 &5.59\\ +196 & &$^1A_1(\pi,\pis)$ &V &92.1 &6.62 &\Y &7.90 &6.92 &6.27 &7.04 &6.93\\ +197 & &$^1A_1(n,3s)$ &R &89.7 &6.76 &\Y &6.40 &6.90 &6.67 &6.97 &6.96\\ +198 & &$^1A_2(\pi,3s)$ &R &93.2 &6.82 &\Y &6.60 &7.08 &6.87 &6.88 &6.80\\ +199 & &$^1B_1(\pi,3p)$ &R &93.6 &7.38 &\Y &7.12 &7.70 &7.51 &7.48 &7.40\\ +200 & &$^1A_1(\pi,\pis)$ &V &90.5 &7.39 &\Y &9.49 &7.66 &6.63 &7.87 &7.70\\ +201 & &$^1B_2(\pi,\pis)$ &V &90.0 &7.40 &\N &7.45 &7.92 &7.67 &7.80 &7.73\\ +202 & &$^3A_1(\pi,\pis)$ &V &98.5 &4.30 &\Y &3.98 &4.40 &4.06 &4.29 &4.22\\ +203 & &$^3B_1(n,\pis)$ &V &97.0 &4.46 &\Y &4.65 &4.48 &4.21 &4.57 &4.55\\ +204 & &$^3B_2(\pi,\pis)$ &V &97.3 &4.79 &\Y &4.83 &4.86 &4.53 &4.81 &4.74\\ +205 & &$^3A_1(\pi,\pis)$ &V &97.1 &5.04 &\Y &5.11 &5.09 &4.63 &5.09 &5.02\\ +206 & &$^3A_2(n,\pis)$ &V &95.8 &5.36 &\Y &5.94 &5.33 &4.96 &5.53 &5.51\\ +207 & &$^3B_2(\pi,\pis)$ &V &97.7 &6.24 &\Y &6.93 &6.40 &5.99 &6.43 &6.35\\ +208 &Pyrimidine &$^1B_1(n,\pis)$ &V &88.6 &4.44 &\Y &4.85 &4.44 &4.07 &4.58 &4.55\\ +209 & &$^1A_2(n,\pis)$ &V &88.5 &4.85 &\Y &5.52 &4.80 &4.36 &5.02 &5.00\\ +210 & &$^1B_2(\pi,\pis)$ &V &86.3 &5.38 &\Y &5.28 &5.42 &4.98 &5.41 &5.36\\ +211 & &$^1A_2(n,\pis)$ &V &86.7 &5.92 &\Y &6.70 &5.92 &5.32 &6.16 &6.10\\ +212 & &$^1B_1(n,\pis)$ &V &86.7 &6.26 &\Y &7.20 &6.31 &5.65 &6.58 &6.53\\ +213 & &$^1B_2(n,3s)$ &R &90.3 &6.70 &\Y &6.86 &6.85 &6.50 &6.89 &6.86\\ +214 & &$^1A_1(\pi,\pis)$ &V &91.5 &6.88 &\Y &7.69 &7.31 &6.94 &7.29 &7.22\\ +215 & &$^3B_1(n,\pis)$ &V &96.8 &4.09 &\Y &4.45 &4.05 &3.67 &4.20 &4.18\\ +216 & &$^3A_1(\pi,\pis)$ &V &98.3 &4.51 &\N &4.22 &4.57 &4.25 &4.51 &4.44\\ +217 & &$^3A_2(n,\pis)$ &V &96.5 &4.66 &\Y &5.20 &4.63 &4.16 &4.81 &4.78\\ +218 & &$^3B_2(\pi,\pis)$ &V &97.4 &4.96 &\Y &5.10 &5.01 &4.60 &5.03 &4.97\\ +219 &Pyrrole &$^1A_2(\pi,3s)$ &R &92.9 &5.24 &\Y &4.49 &5.44 &5.23 &5.28 &5.23\\ +220 & &$^1B_1(\pi,3p)$ &R &92.4 &6.00 &\Y &5.22 &6.26 &6.07 &6.08 &6.02\\ +221 & &$^1A_2(\pi,3p)$ &R &93.0 &6.00 &\Y &4.89 &6.16 &6.02 &6.01 &5.97\\ +222 & &$^1B_2(\pi,\pis)$ &V &92.5 &6.26 &\Y &7.73 &6.62 &6.36 &6.45 &6.38\\ +223 & &$^1A_1(\pi,\pis)$ &V &86.3 &6.30 &\Y &6.47 &6.41 &5.84 &6.43 &6.34\\ +224 & &$^1B_2(\pi,3p)$ &R &92.6 &6.83 &\Y &5.82 &6.75 &6.11 &6.92 &6.82\\ +225 & &$^3B_2(\pi,\pis)$ &V &98.3 &4.51 &\Y &4.24 &4.57 &4.30 &4.49 &4.44\\ +226 & &$^3A_2(\pi,3s)$ &R &97.6 &5.21 &\Y &4.47 &5.41 &5.21 &5.26 &5.20\\ +227 & &$^3A_1(\pi,\pis)$ &V &97.8 &5.45 &\Y &5.52 &5.50 &5.04 &5.49 &5.40\\ +228 & &$^3B_1(\pi,3p)$ &R &97.4 &5.91 &\Y &5.18 &6.22 &6.03 &6.04 &5.98\\ +229 &Streptocyanine-1 &$^1B_2(\pi,\pis)$ &V &88.7 &7.13 &\Y &7.82 &7.17 &6.76 &7.28 &7.21\\ +230 & &$^3B_2(\pi,\pis)$ &V &98.3 &5.52 &\Y &5.86 &5.49 &5.22 &5.54 &5.49\\ +231 &Tetrazine &$^1B_{3u}(n,\pis)$ &V &89.8 &2.47 &\Y &2.99 &2.31 &1.91 &2.54 &2.53\\ +232 & &$^1A_u(n,\pis)$ &V &87.9 &3.69 &\Y &4.37 &3.49 &3.00 &3.77 &3.78\\ +233 & &$^1A_g(\text{double})$ &V &0.7 &4.61 &\N &5.42 &4.69 &4.48 &4.85 &4.87\\ +234 & &$^1B_{1g}(n,\pis)$ &V &83.1 &4.93 &\Y &5.41 &4.83 &4.33 &5.02 &5.00\\ +235 & &$^1B_{2u}(\pi,\pis)$ &V &85.4 &5.21 &\Y &5.04 &5.31 &4.84 &5.26 &5.23\\ +236 & &$^1B_{2g}(n,\pis)$ &V &81.7 &5.45 &\Y &5.43 &5.38 &4.90 &5.42 &5.38\\ +237 & &$^1A_u(n,\pis)$ &V &87.7 &5.53 &\Y &6.37 &5.51 &4.92 &5.80 &5.80\\ +238 & &$^1B_{3g}(\text{double})$ &V &0.7 &6.15 &\N &6.59 &5.85 &5.22 &6.20 &6.22\\ +239 & &$^1B_{2g}(n,\pis)$ &V &80.2 &6.12 &\Y &6.79 &5.96 &5.18 &6.27 &6.28\\ +240 & &$^1B_{1g}(n,\pis)$ &V &85.1 &6.91 &\Y &7.18 &6.59 &5.89 &6.79 &6.72\\ +241 & &$^3B_{3u}(n,\pis)$ &V &97.1 &1.85 &\Y &2.38 &1.70 &1.31 &1.94 &1.93\\ +242 & &$^3A_u(n,\pis)$ &V &96.3 &3.45 &\Y &4.06 &3.26 &2.78 &3.52 &3.52\\ +243 & &$^3B_{1g}(n,\pis)$ &V &97.0 &4.20 &\Y &4.66 &4.10 &3.62 &4.32 &4.30\\ +244 & &$^1B_{1u}(\pi,\pis)$ &V &98.5 &4.49 &\N &3.90 &4.55 &4.29 &4.39 &4.34\\ +245 & &$^3B_{2u}(\pi,\pis)$ &V &97.5 &4.52 &\Y &4.68 &4.55 &4.20 &4.60 &4.55\\ +246 & &$^3B_{2g}(n,\pis)$ &V &96.4 &5.04 &\Y &5.17 &5.02 &4.53 &5.10 &5.07\\ +247 & &$^3A_u(n,\pis)$ &V &96.6 &5.11 &\Y &6.12 &5.07 &4.44 &5.41 &5.41\\ +248 & &$^3B_{3g}(\text{double})$ &V &5.7 &5.51 &\N &6.56 &5.39 &4.86 &5.83 &5.85\\ +249 & &$^3B_{1u}(\pi,\pis)$ &V &96.6 &5.42 &\Y &5.32 &5.46 &5.08 &5.44 &5.39\\ +250 &Thioacetone &$^1A_2(n,\pis)$ &V &88.9 &2.53 &\Y &2.72 &2.58 &2.33 &2.60 &2.53\\ +251 & &$^1B_2(n,3s)$ &R &91.3 &5.56 &\Y &4.80 &5.60 &5.48 &5.64 &5.61\\ +252 & &$^1A_1(\pi,\pis)$ &V &90.6 &5.88 &\Y &6.94 &6.42 &5.98 &6.40 &6.26\\ +253 & &$^1B_2(n,3p)$ &R &92.4 &6.51 &\Y &5.57 &6.51 &6.40 &6.53 &6.49\\ +254 & &$^1A_1(n,3p)$ &R &91.6 &6.61 &\Y &6.24 &6.66 &6.41 &6.59 &6.50\\ +255 & &$^3A_2(n,\pis)$ &V &97.4 &2.33 &\Y &2.52 &2.34 &2.09 &2.38 &2.31\\ +256 & &$^3A_1(\pi,\pis)$ &V &98.7 &3.45 &\Y &3.52 &3.48 &3.29 &3.48 &3.43\\ +257 &Thiophene &$^1A_1(\pi,\pis)$ &V &87.6 &5.64 &\Y &6.11 &5.84 &5.21 &5.89 &5.79\\ +258 & &$^1B_2(\pi,\pis)$ &V &91.5 &5.98 &\Y &6.94 &6.35 &5.89 &6.44 &6.35\\ +259 & &$^1A_2(\pi,3s)$ &R &92.6 &6.14 &\Y &5.70 &6.28 &6.07 &6.16 &6.10\\ +260 & &$^1B_1(\pi,3p)$ &R &90.1 &6.14 &\Y &6.02 &6.21 &5.90 &6.16 &6.10\\ +261 & &$^1A_2(\pi,3p)$ &R &91.8 &6.21 &\Y &6.05 &6.32 &5.98 &6.28 &6.21\\ +262 & &$^1B_1(\pi,3s)$ &R &92.8 &6.49 &\Y &5.78 &6.57 &6.28 &6.51 &6.44\\ +263 & &$^1B_2(\pi,3p)$ &R &92.4 &7.29 &\Y &6.80 &7.29 &7.03 &7.20 &7.13\\ +264 & &$^1A_1(\pi,\pis)$ &V &86.5 &7.31 &\N &8.29 &7.62 &6.85 &7.71 &7.56\\ +265 & &$^3B_2(\pi,\pis)$ &V &98.2 &3.92 &\Y &3.68 &3.98 &3.71 &3.90 &3.84\\ +266 & &$^3A_1(\pi,\pis)$ &V &97.7 &4.76 &\Y &4.97 &4.85 &4.39 &4.87 &4.79\\ +267 & &$^3B_1(\pi,3p)$ &R &96.6 &5.93 &\Y &5.86 &5.97 &5.64 &5.94 &5.88\\ +268 & &$^3A_2(\pi,3s)$ &R &97.5 &6.08 &\Y &5.65 &6.22 &6.01 &6.11 &6.04\\ +269 &Thiopropynal &$^1A''(n,\pis)$ &V &87.5 &2.03 &\Y &2.06 &2.05 &1.84 &2.05 &2.00\\ +270 & &$^3A''(n,\pis)$ &V &97.2 &1.80 &\Y &1.85 &1.81 &1.60 &1.84 &1.79\\ +271 &Triazine &$^1A_1''(n,\pis)$ &V &88.3 &4.72 &\Y &5.88 &4.62 &3.90 &5.00 &4.99\\ +272 & &$^1A_2''(n,\pis)$ &V &88.3 &4.75 &\Y &5.14 &4.77 &4.39 &4.90 &4.87\\ +273 & &$^1E''(n,\pis)$ &V &88.3 &4.78 &\Y &5.51 &4.76 &4.14 &5.01 &4.98\\ +274 & &$^1A_2'(\pi,\pis)$ &V &85.7 &5.75 &\Y &5.55 &5.76 &5.32 &5.75 &5.72\\ +275 & &$^1A_1'(\pi,\pis)$ &V &90.4 &7.24 &\Y &8.20 &7.43 &6.89 &7.50 &7.41\\ +276 & &$^1E'(n,3s)$ &R &90.9 &7.32 &\Y &7.40 &7.48 &7.15 &7.53 &7.49\\ +277 & &$^1E''(n,\pis)$ &V &82.6 &7.78 &\Y &8.26 &7.75 &7.04 &7.92 &7.90\\ +278 & &$^1E'(\pi,\pis)$ &V &90.0 &7.94 &\Y &10.03 &8.65 &7.70 &8.63 &8.72\\ +279 & &$^3A_2''(n,\pis)$ &V &96.7 &4.33 &\Y &4.74 &4.37 &3.99 &4.51 &4.49\\ +280 & &$^3E''(n,\pis)$ &V &96.6 &4.51 &\Y &5.14 &4.47 &3.88 &4.71 &4.68\\ +281 & &$^3A_1''(n,\pis)$ &V &96.2 &4.73 &\Y &5.88 &4.70 &3.94 &5.06 &5.04\\ +282 & &$^3A_1'(\pi,\pis)$ &V &98.2 &4.85 &\Y &4.46 &4.88 &4.55 &4.81 &4.75\\ +283 & &$^3E'(\pi,\pis)$ &V &96.9 &5.59 &\Y &5.57 &5.62 &5.20 &5.62 &5.57\\ +284 & &$^3A_2'(\pi,\pis)$ &V &97.6 &6.62 &\Y &7.70 &6.62 &6.12 &6.76 &6.68\\ \end{longtable*} +%%% %%% %%% %%% +%%% FIGURE 2 %%% +\begin{figure} + \includegraphics[width=\linewidth]{PT2_vs_PT3.pdf} + \caption{Histograms of the errors (in \si{\eV}) obtained for CASPT2 and CASPT3 with and without IPEA shift. + \label{fig:PT2_vs_PT3}} +\end{figure} +%%% %%% %%% %%% + +%%% TABLE II %%% \begin{table*} - \caption{Statistical quantities (in eV), considering the 265 ``safe'' TBEs (out of 284) as reference, for various multi-reference methods. - All {error} values are in eV.} + \caption{Statistical quantities (in eV), considering the 265 ``safe'' TBEs (out of 284) as reference, for various multi-reference methods.} \label{tab:stat} \begin{ruledtabular} - \begin{tabular}{lccccccc} + \begin{tabular}{lrrrrrrr} &CASSCF\fnm[1] &CASPT2\fnm[1] &CASPT2\fnm[1] &CASPT3\fnm[1] &CASPT3\fnm[1] &SC-NEVPT2\fnm[2] &PC-NEVPT2\fnm[2]\\ & &(IPEA) &(NOIPEA) &(IPEA) &(NOIPEA)\\ \hline - MSE &$0.11$ &$0.06$ &$-0.26$ &$0,10$ &$0,05$ &$0,13$ &$0,09$\\ + MSE &$0.11$ &$0.06$ &$-0.26$ &$0.10$ &$0.05$ &$0.13$ &$0.09$\\ SDE &$0.58$ &$0.14$ &$0.21$ &$0.13$ &$0.13$ &$0.14$ &$0.14$\\ RMSE &$0.61$ &$0.16$ &$0.33$ &$0.17$ &$0.14$ &$0.19$ &$0.17$\\ MAE &$0.48$ &$0.11$ &$0.27$ &$0.11$ &$0.09$ &$0.15$ &$0.13$\\ @@ -526,13 +529,15 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err \fnt[1]{Values from the present study.} \fnt[2]{Values taken from Ref.~\onlinecite{Sarka_2022}.} \end{table*} +%%% %%% %%% %%% +%%% TABLE II %%% \begin{table*} - \caption{MAEs determined for several subsets of transitions computed with various multi-reference methods. + \caption{MAEs determined for several subsets of transitions and system sizes computed with various multi-reference methods. Count is the number of excited states considered in each subset.} - \label{tab:stat_class} + \label{tab:stat_subset} \begin{ruledtabular} - \begin{tabular}{lcccccccc} + \begin{tabular}{lrrrrrrrr} Transitions & Count &CASSCF\fnm[1] &CASPT2\fnm[1] &CASPT2\fnm[1] &CASPT3\fnm[1] &CASPT3\fnm[1] &SC-NEVPT2\fnm[2] &PC-NEVPT2\fnm[2]\\ & & &(IPEA) &(NOIPEA) &(IPEA) &(NOIPEA)\\ \hline @@ -543,7 +548,7 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err $n \to \pis$ &78 &0.44 &0.08 &0.44 &0.13 &0.10 &0.12 &0.10\\ $\pi \to \pis$ &119 &0.46 &0.12 &0.27 &0.13 &0.10 &0.18 &0.14\\ Double &9 &0.46 &0.11 &0.22 &0.12 &0.09 &0.14 &0.13\\ - 1-3 non-H atoms &39 &0.38 &0.07 &0.21 &0.06 &0.05 &0.10 &0.08\\ + 3 non-H atoms &39 &0.38 &0.07 &0.21 &0.06 &0.05 &0.10 &0.08\\ 4 non-H atoms &94 &0.46 &0.11 &0.22 &0.12 &0.09 &0.14 &0.13\\ 5-6 non-H atoms &151 &0.51 &0.12 &0.33 &0.12 &0.11 &0.17 &0.15\\ \end{tabular} @@ -551,12 +556,32 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err \fnt[1]{Values from the present study.} \fnt[2]{Values taken from Ref.~\onlinecite{Sarka_2022}.} \end{table*} +%%% %%% %%% %%% +A detailed discussion of each individual molecule can be found in Ref.~\onlinecite{Sarka_2022} where we also report relevant values from the literature. +Here, we focus on global trends. +The exhaustive list of CASPT2 and CASPT3 transitions can be found in Table \ref{tab:BigTab} and the distribution of the errors are represented in Fig.~\ref{fig:PT2_vs_PT3}. +Various statistical indictors are given in Table \ref{tab:stat} while MAEs determined for several subsets of transitions (singlet, triplet, valence, Rydberg, $n\to\pis$, $\pi\to\pis$, and double excitations) and system sizes (3 non-H atoms, 4 non-H atoms, and 5-6 non-H atoms) are reported in Table \ref{tab:stat_subset}. + +From the different statistical quantities reported in Table \ref{tab:stat}, one can highlight the two following observations. +First, as previously reported, \cite{Werner_1996,Grabarek_2016} CASPT3 vertical excitation energies are much less sensitive to the IPEA shift, which drastically alter the accuracy of CASPT2. +For example, the MAEs of CASPT3(IPEA) and CASPT3(NOIPEA) are amazingly close (\SI{0.11}{} and \SI{0.09}{\eV}), while the MAEs of CASPT2(IPEA) and CASPT2(NOIPEA) are drastically different (\SI{0.27}{} and \SI{0.11}{\eV}). +Importantly, CASPT3 seems to perform slightly better without IPEA shift, which is a great outcome. +Second, CASPT3 (with or without IPEA) has a similar accuracy as CASPT2(IPEA). +All these observations stand for each subset of excitations and irrespectively of the system size (see Table \ref{tab:stat_subset}). + +Interestingly, CASPT3(NOIPEA) yields MAEs for each subset that is almost systematically below \SI{0.1}{\eV}, except for the singlet subsets which is polluted by some states showing larger deviations at the CASPT2 and CASPT3 levels. +\titou{Here, discuss difficult case where we have a large (positive) error in CASPT2 and CASPT3. +This is due to the relative small size of the active space and, more precisely, to the lack of direct $\sig$-$\pi$ coupling in the active space which are known to be important in such ionic states. \cite{Garniron_2018} +These errors could be alleviated by using a RAS space.} + +%%% TABLE III %%% \begin{table*} - \caption{CASPT2 and CASPT3 timings (in seconds) for a selection of systems and states.} + \caption{CASPT2 and CASPT3 timings (in seconds) for a selection of systems and transitions.} + \label{tab:timings} \begin{ruledtabular} \begin{tabular}{llcccccccc} - System & State &Active &\# electrons &\# basis &\# CAS &\# contracted &\# uncontracted &CPU &CPU\\ + System & Transition &Active &\# electrons &\# basis &\# CAS &\# contracted &\# uncontracted &CPU &CPU\\ & &Space & &functions &det. &config. &config. &CASPT2 &CASPT3 \\ \hline Acetone &$^1A_2(n,\pis)$ &(6e,6o) &32 &322 &104 &$3.86 \times 10^6$ &$1.49 \times 10^8$ &12.50 &33.25\\ @@ -566,11 +591,20 @@ TBEs listed as ``safe'' are assumed to be chemically accurate (\ie, absolute err \end{tabular} \end{ruledtabular} \end{table*} +%%% %%% %%% %%% + +\titou{Table \ref{tab:timings} reports the evolution of the CPU timings for CASPT2 and CASPT3 as a function of the size of the active space. +It is particularly instructive to study the increase in CPU times as the number of external configuration grows.} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} \label{sec:ccl} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +In the present study, we have benchmarked, using 284 highly-accurate electronic transitions extracted from the QUEST database, \cite{Veril_2021} the third-order multi-reference perturbation theory method, CASPT3, by computing vertical excitation energies with and without IPEA shift. +The two take-home messages are that: +i) CASPT3 transition energies are almost independent of the IPEA shift; +ii) CASPT2(IPEA) and CASPT3 have very similar accuracy. +The global trends are also true for specific sets of excitations and various system size. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{acknowledgements} diff --git a/Manuscript/sup_CASPT3.tex b/Manuscript/sup_CASPT3.tex index 587ae7b..d5df9e4 100644 --- a/Manuscript/sup_CASPT3.tex +++ b/Manuscript/sup_CASPT3.tex @@ -1,5 +1,5 @@ -\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress,onecolumn]{revtex4-1} -\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,wrapfig,txfonts,siunitx} +\documentclass[aip,jcp,reprint,noshowkeys,onecolumn]{revtex4-1} +\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,txfonts,siunitx,float} \usepackage[version=4]{mhchem} %\usepackage{natbib} %\bibliographystyle{achemso} @@ -101,8 +101,12 @@ The state-averaging procedure used is also described in terms of number of state Note that, for all calculations, the ground state is systematically included in the state averaging procedure even if it does not belong to the same irreducible representation. The cartesian coordinates have been extracted from the QUEST database \cite{Veril_2021} and can be downloaded at \url{https://lcpq.github.io/QUESTDB_website}. +\\ -\begin{table*} +%------------------------------ +\section{Acetaldehyde} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of acetaldehyde.} \label{tab:acetaldehyde} \begin{ruledtabular} @@ -116,10 +120,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \end{ruledtabular} \flushleft $^a$Reference (6e,5o) active space including valence $\nO$, $\piCO$, $\sigCO$, $\pisCO$ and $\sigsCO$ orbitals. -\end{table*} +\end{table} - -\begin{table*} +%------------------------------ +\section{Acetone} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of acetone.} \label{tab:acetone} \begin{ruledtabular} @@ -142,9 +148,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^c$Using reference (6e,6o) active space including valence $\pi$, $\nO$, $\sigCO$, $\sigsCO$ and $3p_y$ orbitals. $^d$Using reference (6e,5o) active space including valence $\pi$, $\nO$, $\sigCO$ and $\sigsCO$ orbitals. $^e$Using reference (4e,4o) active space including valence $\pi$, $\sigCO$, $\sigsCO$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Acrolein} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of acrolein.} \label{tab:acrolein} \begin{ruledtabular} @@ -170,9 +179,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^d$Using reference (6e,6o) active space including valence $\pi$, $\nO$ and $3s$ orbitals. $^e$Substantial Rydberg and doubly-excited character. $^f$Substantial doubly-excited character. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Benzene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of benzene.} \label{tab:benzene} \begin{ruledtabular} @@ -197,9 +209,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^c$Using reference (6e,7o) active space including valence $\pi$ and $3s$ orbitals. $^d$Using reference (6e,8o) active space including valence $\pi$, $3p_x$ and $3p_y$ orbitals. $^e$Level shift set to \SI{0.4}{\hartree}. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Butadiene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of butadiene.} \label{tab:butadiene} \begin{ruledtabular} @@ -224,9 +239,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^c$Using reference (10e,10o) active space including valence $\pi$, $\sigCC$ and $\sigsCC$ orbitals. $^d$Level shift set to \SI{0.4}{\hartree}. $^e$Using reference (10e,12o) active space including valence $\pi$, $\sigCC$, $\sigsCC$, $3p_x$ and $3p_y$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Carbon trimer} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of carbon trimer.} \label{tab:carbon_trimer} \begin{ruledtabular} @@ -242,9 +260,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^a$All calculations using a full valence (12e,12o) active space. $^b$Level shift set to \SI{0.4}{\hartree}. $^c$Level shift set to \SI{0.5}{\hartree}. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyanoacetylene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyanoacetylene.$^a$} \label{tab:cyanoacetylene} \begin{ruledtabular} @@ -261,9 +282,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \end{ruledtabular} \flushleft $^a$All calculations using a full valence $\pi$ active space of (8e,8o). -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyanoformaldehyde} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyanoformaldehyde.} \label{tab:cyanoformaldehyde} \begin{ruledtabular} @@ -280,10 +304,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \flushleft $^a$Using reference (8e,7o) active space including valence $\pi$ and $\nO$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. -\end{table*} +\end{table} - -\begin{table*} +%------------------------------ +\section{Cyanogen} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyanogen.$^a$} \label{tab:cyanogen} \begin{ruledtabular} @@ -299,9 +325,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \end{ruledtabular} \flushleft $^a$All calculations using a full valence $\pi$ active space of (8e,8o). -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyclopentadiene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyclopentadiene.} \label{tab:cyclopentadiene} \begin{ruledtabular} @@ -328,9 +357,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^d$Using reference (4e,4o) active space including valence $\pi$ orbitals. $^e$Strong double-excitation character. $^f$Using reference (4e,5o) active space including valence $\pi$ and $3s$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyclopropene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyclopropene.} \label{tab:cyclopropene} \begin{ruledtabular} @@ -346,9 +378,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \end{ruledtabular} \flushleft $^a$Reference (8e,8o) active space including valence $\piCC$, $\sigCC$ and $\pisCC$, $\sigsCC$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyclopropenethione} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyclopropenethione.} \label{tab:cyclopropenethione} \begin{ruledtabular} @@ -372,9 +407,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ $^a$Using reference (6e,5o) active space including valence $\pi$ and $\nS$. $^b$Using reference (6e,7o) active space including valence $\pi$, $\nS$, $3s$ and $3p_z$. $^c$Using reference (4e,4o) active space including valence $\pi$. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Cyclopropenone} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of cyclopropenone.} \label{tab:cyclopropenone} \begin{ruledtabular} @@ -398,9 +436,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \flushleft $^a$Using reference (6e,7o) active space including valence $\pi$, $\nO$, $3s$ and $3p_z$. $^b$Using reference (6e,7o) active space including valence $\pi$, $\nO$, $3p_x$ and $3p_y$. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Diacetylene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of diacetylene.$^a$} \label{tab:diacetylene} \begin{ruledtabular} @@ -416,9 +457,12 @@ $^3A''(n,\pis)$ &(3,2) &(1,1) &4.28$^a$ &3.94$^a$ &3.71$^a$ &4.06$^a$ &4.03$^a$ \end{ruledtabular} \flushleft $^a$All calculations using a full valence $\pi$ active space of (8e,8o). -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Diazomethane} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of diazomethane.} \label{tab:diazomethane} \begin{ruledtabular} @@ -440,9 +484,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.72$^a$ &0.69$^a$ &0. $^a$Reference (10e,9o) active space including valence $\pi$, $\sigCN$, $\sigNN$ and $\sigsCN$, $\sigsNN$ orbitals. $^b$Reference (10e,10o) active space including valence $\pi$, $\sigCN$, $\sigNN$ and $\sigsCN$, $\sigsNN$, Rydberg $3s$ orbitals. $^c$Reference (10e,10o) active space including valence $\pi$, $\sigCN$, $\sigNN$ and $\sigsCN$, $\sigsNN$, Rydberg $3p$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Formamide} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of formamide.} \label{tab:formamide} \begin{ruledtabular} @@ -462,9 +509,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.72$^a$ &0.69$^a$ &0. $^a$Reference (10e,8o) active space including valence $\pi$, $\nO$, $\sigCN$, $\sigCO$ and $\sigsCN$, $\sigsCO$ orbitals. $^b$Reference (10e,10o) active space including valence $\pi$, $\nO$, $\sigCN$, $\sigCO$ and $\sigsCN$, $\sigsCO$, Rydberg $3s$ and $3p$ orbitals. $^c$Reference (8e,7o) active space including valence $\pi$, $\sigCN$, $\sigCO$ and $\sigsCN$, $\sigsCO$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Furan} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of furan.} \label{tab:furan} \begin{ruledtabular} @@ -491,9 +541,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.72$^a$ &0.69$^a$ &0. $^d$Strong double-excitation character. $^e$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. $^f$Using reference (6e,6o) active space including valence $\pi$ and $3s$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Imidazole} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of imidazole.} \label{tab:imidazole} \begin{ruledtabular} @@ -519,9 +572,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.72$^a$ &0.69$^a$ &0. $^a$Using reference (8e,7o) active space including valence $\pi$, $\nN$ and $3s$ orbitals. $^b$Using reference (6e,9o) active space including valence $\pi$ and four $3p_z$ orbitals. $^c$Using reference (8e,10o) active space including valence $\pi$, $\nN$, $3s$ and three $3p$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Isobutene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of isobutene.} \label{tab:isobutene} \begin{ruledtabular} @@ -538,9 +594,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.72$^a$ &0.69$^a$ &0. $^a$Using reference (4e,5o) active space including valence $\pi$, $\sigCC$, $\sigsCC$ and $3s$ orbitals. $^b$Using reference (4e,5o) active space including valence $\pi$, $\sigCC$, $\sigsCC$ and $3p_x$ orbitals. $^c$Using reference (4e,4o) active space including valence $\pi$, $\sigCC$ and $\sigsCC$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Ketene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of ketene.} \label{tab:ketene} \begin{ruledtabular} @@ -562,9 +621,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.95$^a$ &1.05$^a$ &0. $^a$Reference (10e,9o) active space including valence $\pi$, $\sigCC$, $\sigCO$ and $\sigsCC$, $\sigsCO$ orbitals. $^b$Reference (10e,10o) active space including valence $\pi$, $\sigCC$, $\sigCO$ and $\sigsCC$, $\sigsCO$, Rydberg $3s$ orbitals. $^c$Reference (10e,10o) active space including valence $\pi$, $\sigCC$, $\sigCO$ and $\sigsCC$, $\sigsCO$, Rydberg $3p$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Methylenecyclopropene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of methylenecyclopropene.} \label{tab:methylenecyclopropene} \begin{ruledtabular} @@ -586,9 +648,12 @@ $^1A''[F](\pi,\pis)$ &($a'$:6,$a''$:3) &($A'$:1,$A''$:1) &0.95$^a$ &1.05$^a$ &0. $^c$Using reference (4e,5o) active space including valence $\pi$ and $3p_y$. $^d$Using reference (4e,7o) active space including valence $\pi$, two $3p_x$ and one $3d_{xz}$. $^e$Using reference (4e,6o) active space including valence $\pi$, one $3p_x$ and one $3d_{xz}$. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Nitrosomethane} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of nitrosomethane.} \label{tab:nitrosomethane} \begin{ruledtabular} @@ -608,9 +673,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^a$Reference (8e,6o) active space including valence $\nO$, $\nN$, $\piNO$, $\sigNO$ and $\sigsNO$, $\pisNO$ orbitals. $^b$Reference (8e,7o) active space including valence $\nO$, $\nN$, $\piNO$, $\sigNO$ and $\sigsNO$, $\pisNO$, Rydberg 3s orbitals. $^c$Reference (4e,4o) active space including valence $\piNO$, $\sigNO$ and $\sigsNO$, $\pisNO$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Propynal} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of propynal.} \label{tab:propynal} \begin{ruledtabular} @@ -627,9 +695,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ \flushleft $^a$Using reference (8e,7o) active space including valence $\pi$ and $\nO$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Pyrazine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of pyrazine.} \label{tab:pyrazine} \begin{ruledtabular} @@ -664,9 +735,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^e$Using reference (6e,7o) active space including valence $\pi$ and $3s$ orbitals. $^f$Using reference (10e,9o) active space including valence $\pi$, $\nN$ and $3p_y$ orbitals. $^g$Using reference (10e,9o) active space including valence $\pi$, $\nN$ and $3p_z$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Pyridazine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of pyridazine.} \label{tab:pyridazine} \begin{ruledtabular} @@ -692,9 +766,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $\nN$ and $3s$ orbitals. $^d$Using reference (6e,9o) active space including valence $\pi$, $\nN$ and three $3p_x$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Pyridine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of pyridine.} \label{tab:pyridine} \begin{ruledtabular} @@ -725,9 +802,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^c$Using reference (8e,8o) active space including valence $\pi$, $\nN$ and $3s$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^e$Using reference (8e,7o) active space including valence $\pi$ and $\nN$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Pyrimidine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of pyrimidine.} \label{tab:pyrimidine} \begin{ruledtabular} @@ -753,9 +833,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^b$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $\nN$ and $3s$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Pyrrole} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of pyrrole.} \label{tab:pyrrole} \begin{ruledtabular} @@ -781,9 +864,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^c$Using reference (6e,7o) active space including valence $\pi$, $3s$ and $3p_z$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. $^e$Using reference (6e,5o) active space including valence $\pi$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Streptocyanine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of streptocyanine.} \label{tab:streptocyanine} \begin{ruledtabular} @@ -797,9 +883,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ \end{ruledtabular} \flushleft $^a$Reference (8e,7o) active space including valence $\pi$, two $\sigCN$ and two $\sigsCN$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Tetrazine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of tetrazine.} \label{tab:tetrazine} \begin{ruledtabular} @@ -833,9 +922,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Level shift set to \SI{0.4}{\hartree}. $^d$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Thioacetone} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of thioacetone.} \label{tab:thioacetone} \begin{ruledtabular} @@ -857,9 +949,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^b$Using reference (6e,7o) active space including valence $\pi$, $\nO$, $\sigCO$, $\sigsCO$, $3s$ and $3p_z$ orbitals. $^c$Using reference (4e,4o) active space including valence $\pi$, $\sigCO$ and $\sigsCO$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$, $\nO$, $\sigCO$, $\sigsCO$ and $3p_y$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Thiophene} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of thiophene.} \label{tab:thiophene} \begin{ruledtabular} @@ -888,9 +983,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^d$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. $^e$Using reference (6e,7o) active space including valence $\pi$, $3s$ and $3p_y$ orbitals. $^f$Strong double-excitation character. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Thiopropynal} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of thiopropynal.} \label{tab:thiopropynal} \begin{ruledtabular} @@ -904,9 +1002,12 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ \end{ruledtabular} \flushleft $^a$Using reference (8e,7o) active space including valence $\pi$ and $\nO$ orbitals. -\end{table*} +\end{table} -\begin{table*} +%------------------------------ +\section{Triazine} +%------------------------------ +\begin{table}[H] \caption{Vertical transition energies (eV) of triazine.} \label{tab:triazine} \begin{ruledtabular} @@ -934,7 +1035,7 @@ $^1A''[F](n,\pis)$ &(4,2) &(1,1) &1.83$^a$ &1.55$^a$ &1.32$^a$ &1.66$^a$ &1.62$^ $^a$Using reference (12e,9o) active space including valence $\pi$ and $\nN$ orbitals. $^b$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. $^c$Using reference (12e,10o) active space including valence $\pi$, $\nN$ and $3s$ orbitals. -\end{table*} +\end{table} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliography{CASPT3}