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We investigate various approximations to the correlation energy of a H2 molecule in the dissocia-
tion limit, where the ground state is poorly described by a single Slater determinant. The correlation
energies are derived from the density response function and it is shown that response functions de-
rived from Hedin’s equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock
(TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dis-
sociation limit. We also show that the BSE improves the correlation energies obtained within RPA
and TDHF significantly for intermediate binding distances. A Hubbard model for the dimer allows
us to obtain exact analytical results for the various approximations, which is readily compared with
the exact diagonalization of the model. Moreover, the model is shown to reproduce all the quali-
tative results from the ab initio calculations and confirms that BSE greatly improves the RPA and
TDHF results despite the fact that the BSE excitation spectrum breaks down in the dissociation
limit. In contrast, second order screened exchange gives a poor description of the dissociation limit,
which can be attributed to the fact that it cannot be derived from an irreducible response function.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871875]

I. INTRODUCTION

In many-body quantum theory, the presence of two-
particle interactions renders the wavefunctions prohibitively
complicated objects that can only be obtained in simple
models or for systems containing very few particles. The
Coulomb interaction represents a prominent example in elec-
tronic structure problems and a large part of the research in
chemical and solid state physics is devoted to developing and
applying approximate treatments of this interaction. If one
is interested in the energy spectrum of a particular system,
the simplest approach is to diagonalize the non-interacting
Hamiltonian and correct for the Coulomb interactions pertur-
batively. However, the Coulomb interaction is by no means
weak and the convergence of such a perturbative approach is
questionable. In particular, the non-interacting wavefunctions
are Slater determinants composed of single particle orbitals
and if the true many-body wavefunctions are poorly approxi-
mated by such an approximation, one would expect standard
perturbation theory to fail.

Another approach to the problem is to apply a mean-
field approach like Hartree-Fock (HF) or Kohn-Sham Density
Functional Theory (KS-DFT), where the Coulomb interaction
is replaced by an average value, which acts as an external
potential. As a consequence, the many-body wavefunction be-
comes a Slater determinant composed of single-particle or-
bitals that are easily obtained as eigenfunctions of the mean-
field Hamiltonian. Again, one faces the problem that if the
true many-body wavefunction is poorly approximated by a
Slater determinant, the mean field approach is bound to yield
a bad approximation for the wavefunctions. Nevertheless, in

a)Electronic mail: tolsen@fysik.dtu.dk

KS-DFT the mean field Hamiltonian does not have to approx-
imate the interacting system, but it is still possible to calcu-
late the correct ground state energy provided one knows the
exact exchange-correlation functional. However, in practice
the exchange-correlation functional has to be approximated
and will typically perform poorly if the mean field Hamil-
tonian does not describe the same physics as the interacting
Hamiltonian.1

Systems whose ground states are poorly described by a
Slater determinant are referred to as static correlated. The
generic example of static correlation is the hydrogen molecule
in the dissociation limit, which is well described by the
Heitler-London wavefunction2

ψHL(r1, r2) = [
ϕ1

↑(r1)ϕ2
↓(r2) + ϕ2

↑(r1)ϕ1
↓(r2)

−ϕ1
↓(r1)ϕ2

↑(r2) − ϕ2
↓(r1)ϕ1

↑(r2)
]
/2, (1)

where ϕN denotes a 1s orbital of atom N. This state correctly
captures the correlated effect that if one electron is found
on one atom, the other electron will be on the other atom.
In contrast, any mean-field approach will yield the Slater
determinant

ψS(r1, r2) = [σ↑(r1)σ↓(r2) − σ↓(r1)σ↑(r2)]/
√

2, (2)

where σ (r) are bonding σ -orbitals. In this state, the probabil-
ity of finding both electrons on the same atom is always 1/2 in-
dependent of the interatomic distance. HF theory then predicts
a ground state energy in the dissociation limit, which is ∼7 eV
too high, and KS-DFT with standard semi-local functionals
predicts the energy to be ∼2 eV too high.3 The true many-
body wavefunction will resemble (2) at equilibrium binding
distance and approach (1) in the dissociation limit. Which of
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the two wavefunctions provide the better description is deter-
mined by the relative magnitudes of the hybridization inte-
grals and the Coulomb repulsion between two electrons occu-
pying the same spatial orbital. The dissociation limit, where
the wavefunction is described by (1) can be thought of as non-
perturbative, since the Coulomb interaction is much larger
than the hybridization, which gives rise to the delocalized σ -
orbitals. The HF and KS-DFT results are far from the desired
accuracy in such approaches and it has proven a highly non-
trivial task to construct exchange-correlation functionals that
can describe the strong static correlation in this system.

One exception is the Random Phase Approximation
(RPA), which was demonstrated to produce the correct disso-
ciation limit of the N2 molecule by Furche.4 Subsequently, the
RPA has been shown to dissociate several diatomic molecules
(including H2) correctly.5 In these approaches, the calcula-
tions are performed non-self-consistently and the method is
then equivalent to perturbation theory to infinite order using a
subset of terms in the perturbative expansion. At intermediate
distances, however, RPA shows qualitative deviation from the
exact dissociation energy curve. In particular, a spurious max-
imum appears and the RPA energy decays too slowly towards
the dissociation limit, whereas the exact result rises mono-
tonically to the dissociation limit as the distance is increased.
Attempts to improve upon this within time-dependent DFT6–9

(TDDFT) have only resulted in an improvement in the abso-
lute correlation energies, but not eliminated the spurious max-
imum. On the other hand, from a perturbative point of view
it is natural to augment RPA with antisymmetrized terms at
each order in the perturbation expansion, which eliminates
self-interaction terms in RPA. This correction is referred to as
Second Order Screened Exchange (SOSEX)10 and has been
shown to completely deteriorate the good description of static
correlation within RPA.5, 11, 12 Recently, it has been demon-
strated that total energies obtained from the GW approxi-
mation cannot dissociate the hydrogen molecule correctly.13

This is highly surprising, since the perturbative expansions
involved in RPA and GW are topologically identical and illus-
trate the subtle nature of the approximations, which are able
to capture the static correlation correctly.

Even for such a simple system, first principles calcula-
tions can quickly become rather involved. In order to better
understand the physical content of the different approxima-
tions, we will therefore employ a Hubbard Hamiltonian as a
model for a dimer system with on-site Coulomb interactions.
This model was previously applied to analyze the excita-
tion spectrum within RPA, Time-Dependent HF (TDHF), and
TDDFT14 and it was shown that these approximations pro-
vide a poor description of the spectrum in the non-perturbative
limit. The Hubbard dimer has also been applied as a toy model
to examine models for the electronic self-energy beyond the
GW approximation15, 16 and it was shown that the GW ap-
proximation fails to describe the correlated electronic struc-
ture in the non-perturbative limit. The failure of the GW ap-
proximation to describe quasi-particle excitations in general
Hubbard models with large static correlation has also been
demonstrated recently.17 In Ref. 18, the performance of the
Bethe-Salpeter equation (BSE) was investigated for a hydro-
gen molecule and was found to yield unphysical (imaginary)

excitation spectrum in the dissociation limit. Similar prob-
lems have been shown to occur within TDDFT with semilocal
adiabatic exchange-correlation kernels.19

In this paper we perform ab initio calculations of the
molecular dissociation curve using RPA, TDHF, and BSE.
It is shown that BSE performs significantly better than RPA
and TDHF despite the fact that the excitation spectrum breaks
down in the dissociation limit. We analyze the Hubbard
Hamiltonian for a dimer and show how correlation energies
are obtained within the framework of the adiabatic connection
and fluctuation-dissipation theorem (ACFDT) in the model.
We also state the exact eigenstates and ground state energy
for the model. Various approximations to the correlation en-
ergy within the model are then investigated and compared
with ab initio results. We start by calculating the exact re-
sponse function and verify that it yields the correct ground
state energy when the correlation energy is evaluated within
the adiabatic connection fluctuation-dissipation theorem. We
then proceed by examining the RPA, which yields a correct
dissociation in the strict atomic limit and show that the SO-
SEX correction deteriorates this result as expected from first
principles calculations.11 Hedin’s equations are then used to
obtain approximations for the response function beyond RPA
and we calculate correlation energies within the TDHF, BSE,
and TDGW approximations. All these approximations yield
the correct dissociation in the strict atomic limit, but only BSE
and TDGW are able to produce a monotonous dissociation
curve in agreement with the exact results.

The paper is organized as follows. In Sec. II we perform
the first principles calculations of the hydrogen dissociation
curve within RPA, BSE, and TDHF. In Sec. III we introduce
the Hubbard Hamiltonian and state the framework, which is
used to obtain total energies in terms of the response function.
We then proceed to investigate how different approximations
for the response function translate into dissociation curves for
the dimer.

II. DISSOCIATION OF THE HYDROGEN MOLECULE

It is well known that RPA is capable of dissociating cer-
tain diatomic molecules correctly.4, 5 However, at intermedi-
ate distances the dissociation curves usually display a spuri-
ous maximum, which can differ by more than 1.0 eV from
the exact dissociation curve. This has been reported both for
the dissociation of H2

3, 5, 7, 11 as well as the dissociation of
N2.4, 5 Time-dependent density functional theory calculations
with an exact exchange kernel has also been shown to yield
such a maximum, but reproduces the correct result in the strict
atomic limit. In contrast, the HF and SOSEX corrected RPA
calculations overestimate the energy in the dissociation limit
by ∼7 eV and ∼3 eV, respectively.3, 5, 11

In the context of DFT, we can define total energies as
the sum of the exchange energy (non-interacting plus Hartree-
Fock) and a correlation energy, which can be obtained from
the adiabatic connection fluctuation dissipation theorem. The
expression for the correlation energy is

Ec = −1

2

∫ ∞

−∞

dω

2π

∫ 1

0
dλTr[vχλ(ω) − vχ0(ω)], (3)
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where χλ is the interacting response function at coupling
strength λ, which need to be approximated from either
TDDFT8, 9 or many-body perturbation theory. In this work we
will turn to many-body perturbation theory and Hedin’s equa-
tions. In the present section we will just show the results of
the ab initio calculations and in Sec. III we will go through
the theory leading to the different approximations for χ in
more detail.

The most famous approximation for χ is the RPA where
one assumes a non-interacting polarization function. The
theory and implementation has already been discussed in
detail3, 5 and the RPA dissociation curve of H2 is well known.
However, very limited work has been dedicated to going be-
yond RPA in the context of total energies and many-body per-
turbation theory. In contrast, for optical excitations in semi-
conductors, the Bethe-Salpeter equation provides a natural
“beyond RPA” method that incorporated electron-hole inter-
actions. The BSE is implemented in several existing elec-
tronic structure codes, but it is usually applied to analyze the
influence of electron-hole interactions on excited states and
will typically just return the imaginary part of the macro-
scopic dielectric function, which is calculated from the eigen-
values and eigenstates of an excitonic Hamiltonian. It is, how-
ever straightforward to calculate the full response function
from the eigenstates and eigenvalues and the BSE correla-
tion energy can then be obtained by performing a coupling
constant integration. We have implemented such a scheme in
the electronic structure code GPAW,20 which already has a
fully functioning response part that allows one to calculate
excited state properties within the BSE approximation.21, 22

We apply the usual static RPA approximation for W , but not
the Tamm-Dancoff approximation. The full time-ordered re-
sponse function is then constructed in a plane wave basis
as

χλ
GG′(ω) = 1

	BZ

∑
S,S ′

nGSχ
λ
SS ′ (ω)n∗

G′S ′ , (4)

where

χλ
SS ′ (ω) = fS ′

∑
α,α′

Aλ
Sα[Nλ

α,α′ ]−1Aλ∗
S′α′

ω−Eλ
α

(5)

Nλ
α,α′ = ∑

S Aλ∗
SαAλ

Sα′ (6)

and Eλ
α and Aλ

α(S) are eigenvalues and eigenstates of the BSE
Hamiltonian at coupling strength λ. Here, S represents an
electron-hole excitation ψS(rh, r′

e) = ψm(rh)ψn(re), fS = fn
− fm is the “excitation occupation,” and nGS is the plane wave
representation of the pair density ψS(r, r).

For the time-ordered response function, we subtract or
add an infinitesimal imaginary part from the eigenvalues in
Eq. (5) depending on the sign of the real part. From the struc-
ture of the BSE Hamiltonian it is straightforward to see that
if E is an eigenvalue with eigenvector (v1, v2), where v1(v2)
represents electron-hole(hole-electron) transitions, then −E∗

is also an eigenvalue with eigenvector (v∗
2, v∗

1). It then follows
that the response function will decay as ω−2 for ω → ∞. An
explicit expression for the correlation energy (3) can then be
obtained by closing the contour in the lower half plane and

using that the poles of the BSE response function are in the
lower half plane when the real part of the ES is positive. Not-
ing that the non-interacting response function can be written
in the form of Eq. (4) with χSS ′ = fSδSS ′/(ω − ES) we obtain

EBSE
c = −1

2	BZ

∑
G,S,S ′

fS ′nGSn
∗
GS ′vG

×
[
δSS ′θ (ES)−

∫ 1

0
dλ

∑
α,α′

Aλ
Sα

[
Nλ

α,α′
]−1

Aλ∗
Sα′θ

(
ReEλ

α

)]
.

(7)

Note that this expression allows us to calculate RPA and
TDHF correlation energies as well as BSE correlation en-
ergies depending on which kernel is used to set up the
Hamiltonian.

For our ab initio calculations of the hydrogen dissocia-
tion curve we have used plane wave cutoffs of 100 eV and
150 eV and extrapolated the results to infinite cutoff assum-
ing that Ec(Ecut ) ∼ Ec(∞) + AE

−3/2
cut . This is not a very ac-

curate procedure and we cannot claim that our BSE calcu-
lations are completely converged. However, the static corre-
lation associated with molecular dissociation involves rather
large energies and for our purpose, converging the calcula-
tions to within 0.2 eV is sufficient. For large supercells or
large cutoff energies, it becomes a computationally demand-
ing task to set up and diagonalize the BSE Hamiltonian and
with the present implementation, it was not possible to con-
verge the calculations to more than 0.2 eV. In all calculations
we have used non-interacting orbitals and eigenenergies ob-
tained with Local Density Approximation (LDA) and set the
number of states in the initial Kohn-Sham calculation equal to
the number of plane waves defined by the cutoff. The coupling
constant integration was performed using 8 Gauss-Legendre
points. To assert the validity of the implementation and the
convergence parameters, we have compared RPA calculations
using the expression (7) with a standard, well documented
RPA implementation in GPAW.3, 23, 24 This method is based
on a direct solution of the two-point Dyson equation for the
RPA response function and is performed with an analytical
coupling constant integration and numerical frequency inte-
gration along the imaginary axis. It was verified that RPA en-
ergies obtained with the two methods are identical.

The results of the simulations are shown in Fig. 1. The
LDA and HF energy curves overshoot dramatically in the dis-
sociation limit whereas the RPA, TDHF, and BSE curves re-
produce the correct dissociation. In addition, the first prin-
ciples BSE energy curve does not display a spurious maxi-
mum and converges rapidly and monotonically towards the
dissociation limit. To our knowledge, no other approximation
from many-body perturbation theory has been able to repro-
duce this dissociation curve. It has previously been shown that
the excitation energies of H2 can become imaginary in the dis-
sociation limit,18 which seems to indicate that the theoretical
description breaks down. However, the correlation energy is
always real and in the context of total energies, the appear-
ance of complex eigenvalues just means that the associated
state will not contribute to the correlation energy.
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FIG. 1. Dissociation curves of H2 calculated from first principles within var-
ious approximations. The energy curves have been subtraced by the energy
of two isolated H atoms within each of the approximations.

To see this more clearly (and facilitate comparison with
the Hubbard model below), we have obtained the eigenval-
ues of BSE calculations with a single unoccupied band as a
function of interatomic distance. At equilibrium distance (d
= 0.7 Å), the two eigenvalues are real and situated at ±7 eV.
When the distance between the atoms is increased, the eigen-
values approach zero, which is reached at d = 1.0 Å. After this
point the two eigenvalues become a purely imaginary conju-
gated pair and the absolute value increases steadily as the in-
teratomic distance is increased. The integral of the interacting
response function vanishes as soon as the BSE Hamiltonian
acquires imaginary poles. This is shown in Fig. 2 where we
have plotted Eλ = ∫

dωTr[vχλ] for different values of the in-
teratomic distance. At d = 1.0 Å the poles of the interacting
response function becomes imaginary and the frequency in-
tegral vanishes. However, at larger distances, the interacting
response function still contributes to the correlation energy
due to the coupling constant integration. If we compare this

FIG. 2. λ-dependence of the BSE correlation energy at different interatomic
distances (d0 = 0.7 Å). We only consider the interacting part of the correla-
tion energy defined as Eλ = ∫

dωTr[vχλ(ω)]. Eλ vanishes when the poles of
χλ become imaginary.

figure with a corresponding one for RPA calculations,6 we
see that the spurious maximum of RPA can be attributed to
the fact that ERPA

λ vanishes too slowly for large interatomic
distances. Although the kinks in Fig. 2 may look a bit unphys-
ical, they are in fact responsible for the accurate description
of the dissociation in the BSE approximation. We will discuss
correlation energies within the BSE approximation further in
the context of the Hubbard model below.

Before delving into the Hubbard model for a correlated
dimer, we will pause to compare our results to previous calcu-
lations of the hydrogen molecule in the dissociation limit. The
RPA potential energy curve has been reported several times
in the literature3, 5, 6, 11 and the results agree very well with
our simulations. They all reproduce the exact atomic limit
while showing a spurious maximum at intermediate separa-
tions. Our TDHF calculations also agree very well with pre-
vious calculations7 showing a pronounced maximum at in-
termediate distances. Unfortunately, our implementation does
not allow for SOSEX calculations, but we will show below
that the Hubbard model yields qualitative agreement with pre-
vious calculations.5, 11 The BSE excitation spectrum has been
reported in Ref. 18 and the appearance of imaginary poles at
intermediate separation is in good agreement with the present
results, although the BSE calculations in Ref. 18 were per-
formed on top of Hartree-Fock orbitals, whereas the present
results are based on LDA.

We should also mention that the correlation energy can
also be obtained from the interacting Green functions using
the Migdal-Galitski formula. To this end, the GW approx-
imation appears to contain the exact same physics as RPA.
However, subtle differences make the two approaches deviate
and the GW approach does not reproduce the exact atomic
limit correctly.13 Furthermore, going beyond the RPA ap-
proximation the correspondence between the Green function
method and ACFDT is no longer completely clear, since the
self-energy  = GW� contains explicit vertex corrections in
addition to the vertex-corrected response function entering
through W . In fact, it was shown in Ref. 15 that the explicit
vertex corrections are the most crucial in order to obtain ac-
curate excitation spectra.

III. HUBBARD MODEL

To elucidate the physical contents of the dissociation
curves obtained from the various approximations above, we
now turn to the Hubbard model for a dimer. The model will
also allow us to unravel the problems associated with the SO-
SEX correction to RPA and explore the time-dependent GW
approximation, which goes beyond the BSE approximation.
The Hubbard dimer model is defined by the Hamiltonian

H = ε0

∑
σ,i

c
†
iσ ciσ − t

∑
i 
=j

∑
σ

c
†
iσ cjσ

+U

2

∑
i

∑
σσ ′

c
†
iσ c

†
iσ ′ciσ ′ciσ . (8)

The parameter t represents hopping matrix elements between
neighboring sites and U is the Coulomb repulsion between
electrons occupying the same site. Two distinct limits will be
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of interest in the following. First, the perturbative limit where
U � t and U can be treated as a perturbation to the non-
interacting system. Second, the atomic (or non-perturbative)
limit where U � t and the exact eigenstate is ill-described by
the non-interacting Slater determinant (static correlation). In
the present work, we will only focus on a dimer (molecule)
where {i, j} runs over two sites. We can then regard t as a
measure of inverse bond length and the dissociation (atomic)
limit will correspond to t → 0. On the other hand, at typi-
cal equilibrium distances, t is comparable to U and Coulomb
interactions can often be included perturbatively.

In Appendix A we give a brief summary of the exact
eigenstates of the model (8). We also summarize how cor-
relation energies can be derived from the density response
function within the adiabatic-connection and fluctuation-
dissipation theorem. To obtain approximations for the re-
sponse function we write it in terms of the irreducible re-
sponse Pij,σσ ′(ω):

χ (iω) = P (iω) + P (iω)vχ (iω), (9)

where we suppressed spin and site indices. This equation for
χ and P follows from the definitions of these quantities as
the density response to an external potential and the density
response to the total (external plus Hartree) potential. Using
that the Coulomb interaction is independent of spin, it follows
that the spin-summed quantities satisfy

χ̃ (iω) = P̃ (iω) + UP̃ (iω)χ̃(iω), (10)

or

χ̃(iω) = [1 − UP̃ (iω)]−1P̃ (iω). (11)

Various approximations for the irreducible response can be
derived in the context of Hedin’s equation which are summa-
rized in Appendix B.

A. Non-interacting response function

We start by evaluating the non-interacting polarizability
function P0(12) = −iG0(12)G0(12). The Fourier transform is
then given by

P 0
ij,σσ ′(ω) = i

∫
dω′

2π
G0

ij,σσ ′(ω′)G0
ji,σσ ′(ω + ω′). (12)

The non-interacting Green function can be evaluated from its
spectral representation after having diagonalized the N = 1, 3
sectors of the non-interacting Hamiltonian. The result is

G0
ij,σσ ′(ω)= δσσ ′

2

[
(−1)i−j

ω − (ε0 + t)+iη
+ 1

ω − (ε0 − t) − iη

]
,

(13)

from which we obtain the non-interacting polarizability:

P 0
ij,σσ ′(ω)= δσσ ′(−1)i−j

4

[
1

ω − 2t + 2iη
− 1

ω + 2t − 2iη

]
.

(14)

In the following it will often be convenient to work with imag-
inary frequencies and we obtain the polarization function by

analytic continuation:

P 0
ij,σσ ′(iω) = −(−1)i−j δσσ ′

t

ω2 + 4t2
. (15)

B. Exact response function

For later reference it will also be useful to calculate the
exact response function. This is most easily done by express-
ing the density-density correlation function in its spectral rep-
resentation and use the eigenstates Eq. (A2). The result is

χij,σσ ′(iω) = −(−1)i−j

[
U+c
2a2

ω2 + (U + c)2/4

+
(−1)1−δσσ ′ 8t2

a2(c−U )

ω2 + (U − c)2/4

]
, (16)

where a and c were defined in Eq. (A3). The second term
originates from the triplet state |ψ3〉 and does not contribute
to the correlation energy which becomes

Ec = −U

∫ 1

0
dλ

∫ ∞

0

dω

2π

∑
i

[
χ̃λ

ii(iω) − χ̃0
ii(iω)

]
= U

∫ 1

0
dλ

[
2

a2
λ

− 1

2

]
= 2t − c

2
. (17)

This is identical to the result obtained from exact diagonal-
ization (Eqs. (A4) and (A11)) as it should be. Below we will
calculate the interacting response function and correlation en-
ergies within various approximations. Note that the correla-
tion energy always acquires a finite contribution from the
non-interacting response function, which is composed of an
electronic transition between a delocalized doubly occupied
σ -orbital (|ψλ=0

0 〉) and the |ψ4〉 state. In the atomic limit, fi-
nite order perturbation theory can never produce a term that
exactly cancels the U/2 originating from first order perturba-
tion theory.

It is interesting to note that in this framework, the ground
state energy can be decomposed into contributions originat-
ing from transitions to excited many-body eigenstates inte-
grated along the adiabatic connection. The derivation of the
response function (16) shows that only the transition from
|ψλ

0 〉 to |ψ4〉, where both electrons are always located on
the same site, contributes to the ground state energy. In the
atomic limit the electrons are never localized on the same site
in the ground state and the transition can be regarded as a
pure charge transfer excitation. This implies that the transi-
tion matrix elements of the density operator should vanish in
the atomic limit, which can be verified from the numerator of
(16) after having decomposed the expression into two terms
with simple poles. In general, any good approximation of an
interacting response function, should have the property that
the amplitude of the charge transfer excitation vanishes in the
atomic limit. This will show up as a vanishing numerator in
the response function and translate into a correct correlation
energy in the atomic limit. In contrast, the numerator of the
non-interacting response function (14) does not vanish since
the non-interacting ground state always gives a probability of
1/2 for finding both electrons at the same site.
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From the response function, we also calculate the exact
polarizability which becomes

Pij,σσ ′(iω) = − (−1)i−j U+c
2a2

ω2 + (U + c)2/4 − 4U (U + c)/a2

−
(−1)i−j (−1)1−δσσ ′ 8t2

a2(c−U )

ω2 + (U − c)2/4
. (18)

The most important thing to note is the fact that it is non-
diagonal in spin. As we will see later, a rather advanced
approximation (TDGW) is needed in order to introduce non-
vanishing off-diagonal spin elements in the polarization func-
tion. It is also interesting to note that only the singlet pole cor-
responding to a transition to |ψ4〉, becomes renormalized with
respect to the poles of the response function. This is because
the Coulomb interaction is independent of spin and therefore
all terms that have a sign change associated with a spin flip is
eliminated from the Dyson equation (9).

C. RPA

The Random Phase Approximation is obtained by tak-
ing P(12) = −iG0(12)G0(21). Using Eqs. (9) and (15). The
response function is

χRPA
ij,σσ ′(iω) = χ0

ij,σσ ′(iω) + 2Ut2(−1)i−j

(ω2 + 4t2 + 4Ut)(ω2 + 4t2)

= − t(−1)i−j

2

[
(−1)1−δσσ ′

ω2 + 4t2
+ 1

ω2 + 4t2 + 4tU

]
(19)

and the correlation energy becomes

ERPA
c = −U

∫ 1

0
dλ

∫ ∞

0

dω

2π

16λUt2

(ω2 + 4t2 + 4λUt)(ω2 + 4t2)

= −U

2

∫ 1

0
dλ

[
1 − 1√

1 + λU/t

]
= −U

2
− t(1 −

√
1 + U/t). (20)

Note that for small U, the leading term in this expression be-
comes ∼−U2/8t, which is only half the exact second order
contribution Eq. (A9). This is due to the lack of second order
exchange in the RPA approximation. On the other hand, for t
→ 0 the expression nicely cancels the U/2 contribution from
first order perturbation theory and total energy reduces to the
non-interacting one in exact atomization limit.

The RPA response function (19) has a structure very
similar to the exact response function (16). It consists of
two terms representing transitions to |ψ3〉 and |ψ4〉, which
are a triplet and singlet, respectively. The triplet excitation
energy does not become renormalized with respect to the
non-interacting transition energy, but does not contribute to
the correlation energy. The singlet excitation contains all the
correlation energy and its frequency integral vanishes for
t → 0, which ensures the correct dissociation limit. It is in-
structive to represent the RPA response function in terms of
electron-hole transitions. In the atomic limit the eigenstates of
the electron-hole Hamiltonian becomes |eh〉 = (|1〉e ⊗ |2〉h −

|2〉e ⊗ |1〉h)/
√

2, where |i〉 is a single-particle state at site i
(see Appendix C). This indicates that the electronic transition
contributing to the correlation energy becomes a pure charge
transfer excitation in the atomic limit and the interacting re-
sponse function thus vanishes.

Although the RPA can reproduce the exact atomic limit,
the asymptotic behavior is very different from the exact re-
sult. The total RPA ground state energy approaches zero
as ∼ √

Ut , whereas the exact result vanishes much faster
as −4t2/U (see Eq. (A10)). In fact, the exact ground state
energy approaches zero monotonically with decreasing t,
whereas the RPA ground state energy has a maximum at
tM = 4(1 − √

5/6)2U ≈ 0.03U .
The ∼ √

t scaling of the correlation energy in the atomic
limit can already be recognized from the response function
(19). Decomposing the second term into two terms with single
poles, we see that the numerators become proportional to ∼√

t , which indicates that the RPA transition matrix elements
scale as t1/4.

D. SOSEX

The SOSEX correction to RPA is inspired by the expan-
sion of the RPA energy in terms of Feynman diagrams. The
RPA can then be written as an infinite sum of direct ring dia-
grams which can be re-summed to yield a screened direct sec-
ond order term. It is natural to add the associated exchange
terms at each order in the perturbative expansion. In partic-
ular, this will ensure that the correlation energy of a single
electron vanishes. Such a contribution is called second order
screened exchange and the correction to the RPA correlation
energy is

�ESOSEX
c = −U

2

∫ 1

0
dλ

∫
dω

2π
Im

∑
i

P̃
1,λ
ii (ω), (21)

where

P 1
ij,σσ ′(ω) = δσσ ′

∑
kl

∫
dω1dω2

(2π )2
G0

jk(ω1)G0
lj (ω + ω1)

×Wkl(ω1 − ω2)G0
il(ω + ω2)G0

ki(ω2), (22)

and the screened interaction is

Wkl(ω) = Uδij + (−1)i−jU 2t

ω2 − h2
,

(23)

h =
√

4t2 + 4Ut − iη
4t + U√
4t2 + 2Ut

.

Here we have also written G0
ij = G0

ij,↑↑ = G0
ij,↓↓ for short.

For later reference we perform the integrations, which yield
the expression

P 1
ij (iω) = −2Ut2(−1)i−j

(ω2 + 4t2)2
+ U 2t

h(2t + h)

×
[

(−1)i−j

ω2 + 4t2
+ 1

ω2 + (2t + h)2

]
, (24)

where P 1
ij,σσ ′ = P 1

ij δσσ ′ . However, the SOSEX correction to
the correlation energy is obtained much easier by comparing
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with the RPA correlation energy, which can be written

ERPA
c = 2U Im

∑
ikl

∫ 1

0
dλ

∫
dωdω1dω2

(2π )3
G0

ik(ω1)

×G0
ki(ω1 − ω)Wλ

kl(ω)G0
j l(ω2 − ω)G0

lj (ω2).

Here a factor of four originates from the spin summations.
Rewriting the SOSEX correction a bit gives

�ESOSEX
c =−U

2
Im

∑
i

∫ 1

0
dλ

∫
dω

2π
P̃

1,λ
ii (ω)

=−U Im
∑
ikl

∫ 1

0
dλ

∫
dωdω1dω2

(2π )3
G0

ik(ω1)

×G0
li(ω+ω1)Wλ

kl(ω1−ω2)G0
il(ω+ω2)G0

ki(ω2)

= −U Im
∑
ikl

∫ 1

0
dλ

∫
dωdω1dω2

(2π )3
G0

ik(ω1)

×G0
ki(ω1 − ω)Wλ

kl(ω)G0
il(ω2 − ω2)G0

li(ω2),

where the last equality was obtained by the substitutions ω2

→ ω2 − ω, ω → ω + ω2 − ω1, and ω2 → ω2 − ω. Comparing
with the RPA expression then yields

�ESOSEX
c = −ERPA

c

2
. (25)

It is straightforward to verify that this is also obtained by
explicit integration of Eq. (24). The factor of two originates
from the fact that the SOSEX contribution is diagonal in spin
whereas the RPA contribution is independent of spin. The to-
tal correlation energy is then

ERPA+SOSEX
c = ERPA

c /2 (26)

= −U

4
− t

2
(1 −

√
1 + U/t) (27)

= − U 2

16t
+ U 3

32t2
+ . . . , t ≤ U. (28)

The SOSEX corrected correlation energy is exact within sec-
ond order perturbation theory as expected from its construc-
tion. However, the expression does not cancel the first order
contribution of U/2 in the non-perturbative limit and therefore
predicts a wrong dissociation energy of ERPA + SOSEX → 2ε0
+ U/4 for t → 0. This is most likely due to the fact that the
SOSEX corrected correlation energy cannot be written as an
integral over a reducible response function. As will be shown
below, the SOSEX correction corresponds to an irreducible
polarization function and therefore fits oddly into the present
scheme of calculating correlation energies from the adiabatic
connection.

E. 1W correction

Whereas the SOSEX correction seems like a natural ex-
tension of RPA from the point of view of many-body pertur-
bation theory, we will now try to go beyond the RPA starting

from Hedin’s equations (Eqs. (B1)–(B5)). The RPA for the
polarizability can be obtained by taking δ/δG = 0. Instead
we will now take

δ(12)

δG(34)
= iW (12)δ(13)δ(24), (29)

which follows from the RPA self-energy  = G0W 0 if one
neglects that W depends on G0. Iterating � one time then
yields

P 1W (12) = P 0(12) + P 1(12), (30)

where

P 1(12) =
∫

d34G(13)G(41)W (34)G(32)G(24). (31)

We recognize that this is exactly the SOSEX function appear-
ing in Eq. (22), however, since this is now part of an irre-
ducible polarizability, we should evaluate the correlation en-
ergy from the Dyson equation (9) with P = P0 + P1. The
correlation energy then becomes (suppressing integrations)

E1W
c = ERPA+SOSEX

c

+ 2Tr[vP 0vP 1] + 3Tr[vP 0vP 0vP 1] + · · · . (32)

Here the RPA energy is the sum of all terms not containing
P1 and the SOSEX correction is Tr[vP 1]. From this expres-
sion it seems inconsistent not to include all the cross terms
involving both P0 and P1 as well as the SOSEX correction.
Since we have an explicit expression for P1 (24), we can in-
sert this into the Dyson equation (9) and obtain the full corre-
lation energy. However, the resulting expression for the re-
ducible response function is rather complicated so we will
start by calculating the correlation energy resulting from a sin-
gle bare Coulomb interaction (W (ω) = V ) in the polarization.
The spin-summed response with this approximation becomes

χ̃1V
ij (iω) = (−1)i−j P̃ 1V

ii (iω)

1 − 2UP̃ 1V
ii (iω)

(33)

with

P̃ 1V
ii (iω) = − 2t

ω2 + 4t2
− 4Ut2

(ω2 + 4t2)2
. (34)

The trace of the response function evaluated at real frequen-
cies can then be written∑

i

χ̃1V
ii (ω) = − 4t(4t2 + 2tU − ω2)

(ω2 − ω2+)(ω2 − ω2−)
(35)

with

ω2
± = 4t2 + (2 ± 2i)tU. (36)

We see that the response function acquires complex poles
even though the polarization function has real poles. This in-
dicates that the approximation fails dramatically. However,
we may still define the correlation energy in terms of the
imaginary part of the response function even though this has
complex poles corresponding to a non-Hermitian Hamilto-
nian. The physical interpretation of the poles becomes ob-
scure, but the correlation energy is real and well defined. In
this particular case the poles constitute two complex conju-
gate pairs, which renders the response function real and the
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correlation energy defined from the dissipation fluctuation
theorem vanishes. The exact same situation applies if we re-
place the bare interaction with a screened interaction and cal-
culate the response function from P 1W = P 0 + P 1, with P1

given by Eq. (31). One may naively think that a second or-
der expansion (in U) of this correlation energy should repro-
duce the second order RPA+SOSEX energy since only the
RPA+SOSEX energy contributes to a second order expansion
of Eq. (32). However, a finite Taylor expansion of Eq. (33) in
U is not well defined for all frequencies due to the poles in P.
We find it puzzling though that the resummation (33) yields
complex poles at all values of U. This implies that a simple it-
eration of the equation (B5) is not sufficient if we want a good
approximation for P and the situation seems to be similar to
the Dyson equation for χ , where a complete resummation of
the Dyson equation (9) is needed in order to obtain a good
approximation.

F. BSE

Instead of simply including the first order correction in
W when calculating P, it is possible to explicitly calculate the
infinite series of diagrams that generate P when we iterate �

an infinite number of times. In fact, one can show that the
polarization function satisfies the four-point Dyson equation

P (1234)=P 0(1234) +
∫

d5678P (1256)K(5678)P 0(7834),

(37)
where

P (12) = P (1122), K(1234) = −i
δ(12)

δG(34)
. (38)

To proceed we will make a static approximation for K and use
 = G0W . Furthermore, if we neglect the G0-dependence in
W we obtain the Bethe-Salpeter approximation for P where

KBSE(1234) = W (21)δ(13)δ(24)δ(t1 − t2). (39)

The last delta function comes from the static approximation.
It is straightforward to recognize that the BSE polarization is
diagonal in spin. The diagonal spin components can be calcu-

lated directly from Eq. (37) and yield

Pij (iω) = −(−1)i−j t(1 − U 2/h2)

ω2 + ω2
1

, (40)

and from the two-point Dyson equation we can calculate the
BSE response function which becomes

χij,σσ ′(iω) = −t(1 − U 2/h2)(−1)i−j

2

×
[

1

ω2 + ω2
0

+ (−1)1−δσσ ′

ω2 + ω2
1

]
, (41)

where

ω2
0 = 16t4 + 40t3U + 32t2U 2 + 6tU 3 − 3U 4

4(t + U )2
, (42)

ω2
1 = 16t4 + 24t3U − 6tU 3 + U 4

4(t + U )2
. (43)

The poles become purely imaginary in a certain parameter
range close to the non-perturbative limit. In particular, ω0

becomes imaginary for t/U < (
√

2 − 1)/2 and ω1 becomes
imaginary for (

√
2 − 1)/2 < t/U < (

√
5 − 1)/4. It is very

interesting that the poles become imaginary exactly at the de-
generacy point. This indicates that below this point the lowest
singlet and triplet states cross and the response function be-
comes ill-defined since the reference state is no longer the
ground state. However, it should be noted that the poles them-
selves do not enter the expression for the correlation energy.
Rather it is the matrix elements of the density operator cor-
responding to the transition associated with a certain pole. It
is still interesting though, to compare the transition energies
calculated within the different approximations and one would
typically expect that the transition matrix elements are well
approximated if the poles are accurate. We show the singlet
and triplet poles calculated within various approximations in
Fig. 3. These results are in good agreement with ab initio BSE
calculations for the hydrogen molecule.18

Again the triplet excitation does not contribute to the
correlation energy since it is eliminated in the spin sum-
mation. The frequency integral of the response function
(evaluated at real frequencies) becomes real for a purely

FIG. 3. Poles squared of the Hubbard dimer at half filling within different approximation. The bottom figure is a zoom in on the non-perturbative region. The
solid lines are singlet excitations and the dashed lines are excitations to the triplet state. The SOSEX pole is marked as a dashed line since it is not a proper
response function pole. The non-interacting excitation coincides with the RPA triplet excitation. The zero points of the poles are marked with circles and the
negative region between zero points lead to imaginary frequencies.
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FIG. 4. Ground state energy of the Hubbard dimer calculated in different
approximations with ε0 = 0. Only HF and SOSEX do not give the correct
dissociation limit of E = 0, but yields E = U/2 and E = U/4, respectively.
RPA and TDHF yield large spurious maxima and decay very slowly towards
dissociation, whereas BSE and TDGW give a rapid monotonous rise to dis-
sociation in accordance with the exact results.

imaginary pole and does not contribute to the correlation
energy for t/U < λ(

√
2 − 1)/2. The appearance of imagi-

nary poles signals a breakdown of the BSE response func-
tion in the non-perturbative limit. However, from the point of
view of the fluctuation dissipation theorem (A14), the con-
tribution to the correlation energy from the interacting re-
sponse function can be associated with the matrix elements
A = 〈ψ0|ni|ψ4〉. The imaginary poles simple means that ABSE

= 0 for t/U < (
√

2 − 1)/2 ≈ 0.02, whereas the exact con-
dition is A → 0 for t/U → 0. Due to the coupling constant
integration the correlation energy vanishes smoothly and pro-
vides an accurate description of the non-perturbative regime
(see Fig. 4).

G. TDHF

Traditionally, the W function is interpreted as a screened
Coulomb potential. However, in molecular systems the in-
terpretation of W is not so clear and should be regarded
as an auxiliary function, which should be calculated along
with G, P, , and � in order to solve the full many-body
problem. For example, the exact W for a one-electron sys-
tem is W = v + vχ0v,15 which clearly differs from the exact
Coulomb interaction although there is no additional electrons
to mediate the screening. Since the physical interpretation of
W is not completely clear, we may try to simply replace it
by the bare Coulomb interaction V in the expression for .
This leads to the Hartree-Fock self-energy GV and the ker-
nel (39) becomes equal to (four-point) V . The response func-
tion derived from this procedure is then called time-dependent
Hartree-Fock. The polarization function, which is an infinite
series of V -ladder diagrams, can be re-summed to yield

Pij (iω) = −(−1)i−j t

ω2 + 4t2 − 2tU
, (44)

and the response function becomes

χij,σσ ′(iω) = − t(−1)i−j

2

×
[

(−1)1−δσσ ′

ω2 + 4t2 − 2tU
+ 1

ω2 + 4t2 + 2tU

]
.

(45)

Again the structure is very similar to both RPA and BSE. The
expression is in fact very similar to the RPA response func-
tion (19), the only difference being that the square of the two
poles has been shifted by 2Ut. This means that the TDHF ap-
proximation provides a renormalization of both the singlet
and triplet excitations and not just the singlet excitation as
was the case for RPA. Furthermore, the singlet pole is much
closer to the exact value than that of RPA as can be seen from
Fig. 3. In fact, the accuracy of the singlet pole seems to be
better than that of BSE, and never becomes imaginary. On the
other hand, the triplet pole becomes imaginary for t < U/2,
and TDHF provides a worse description for this state than
BSE. The state does, however, not contribute to the correla-
tion energy, which becomes

ET DHF
c = −U

∫ 1

0
dλ

∫ ∞

0

dω

2π

4t

ω2 + 4t2 + 2λUt
− U

2

= −U

2

∫ 1

0
dλ

1√
1 + λU/2t

− U

2

= −U

2
− 2t(1 −

√
1 + U/2t). (46)

Note that a Taylor expansion in U gives the correct second or-
der term E(2)

c = −U 2/16t as it should since TDHF is exact to
second order. This was also the case for the SOSEX corrected
RPA, but in contrast to TDHF that approximation did not re-
produce the correct dissociation limit. However, like RPA the
asymptotic behavior in the non-perturbative limit is incorrect
and the correlation energy goes as ∼√

tU/2. Thus, it vanishes
even slower than RPA and as can be seen from Fig. 4 it also
has a spurious maximum which is situated even higher than in
the case of RPA. This is perhaps surprising since the TDHF
poles are much more accurate than the RPA poles. Appar-
ently, the RPA provides a better approximation for the transi-
tion matrix elements than TDHF although TDHF gives much
more accurate poles.

H. TDGW

The BSE polarization was derived by taking the GW

approximation for the self-energy and approximating its G-
functional derivative by W . However, using a non-interacting
polarization function, W has a rather simple dependence on
G and we may carry out the functional derivative of W . This
gives (integrations suppressed)

δW

δG
= V

δP 0

δG
W + V P 0V

δP 0

δG
W + · · · = W

δP 0

δG
W.

(47)
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The functional derivative of the non-interacting polarization
gives two terms and the final results become

KT DGW (1234) = W (21)δ(13)δ(24)

−iG(12)W (23)G(34)W (41)

−iG(12)W (24)G(43)W (31). (48)

The resulting polarization function is exact within the GW

approximation and is referred to as time-dependent GW

(TDGW). Again we will make a static approximation for the
kernel, in order to solve a single frequency four-point Dyson
equation. An intriguing property of this approximation is that
it does not yield a spin-diagonal polarization function. We
know that the exact polarization is not diagonal in spin, but
neither RPA, P 1W , BSE of TDHF can yield off-diagonal spin
blocks for the polarization. The spin summed response func-
tion is very similar to the BSE case except that the poles are
a bit more complicated. Here we just give the spin summed
response function which is

χ̃ij (iω) = −2t(1 − U 2/h2)(−1)i−j

ω2 + ω2
0

, (49)

where

ω2
0 = [h2 − U 2][4h2t2(h + t)2 + 2h2tU (h + t)2

+2(h + t)2(h2 + 2t2)U 2 − 4h2tU 3]/h4(h + t)2. (50)

Again the pole becomes imaginary when t/U < (
√

2 − 1)/2
and the results of the approximation are very similar to BSE.
In fact, Figs. 3 and 4 indicate that the TDGW results are
slightly worse than the BSE results. This could be related to
the fact that the static approximation in TDGW is somewhat
more drastic than the static approximation in BSE. The BSE
four-point kernel only depends on a single frequency, whereas
the Fourier transform of the TDGW kernel (48) depends on
three independent frequencies, which are all set to zero in the
static approximation.

IV. CONCLUSION

We have performed ab initio calculations of the dissoci-
ation curve of a hydrogen molecule using the RPA and BSE
approximations for the response function. Both approxima-
tion produce the correct dissociation limit, but the BSE re-
sult clearly improves the RPA description at intermediate dis-
tances and provides the qualitative correct monotonous ris-
ing dissociation curve. For the BSE response function, we
see the appearance of complex poles at strong coupling, but
the correlation energy is real and only vanishes exactly in the
strict atomic limit. These calculations are two orders of mag-
nitude more time consuming than RPA calculations and are
most likely involved to be useful for routine ab initio elec-
tronic structure simulations at the moment. Nevertheless, the
steady increase in computer power may render the method
useful in a few years and there is certainly room for opti-
mization of the algorithm used here to obtain the correlation
energies.

To obtain more insight into the physics contained in the
different dissociation curves, we have examined various ap-
proximations to the correlation energy of a Hubbard dimer
within many-body perturbation theory. Comparison with the
ab initio results show that this simple model is able to capture
the qualitative features of a first principles treatment of molec-
ular hydrogen in the dissociation limit. In particular, RPA
provides the correct dissociation limit but displays a spuri-
ous maximum in the dissociation curves, whereas the SOSEX
corrected RPA does not yield the correct dissociation limit.
Whereas the SOSEX energy cannot be expressed in terms of
an irreducible response function the expression itself corre-
sponds to a polarization function resulting from a single itera-
tion of the vertex equation (B5) with the GW self-energy. This
inspired us to define a χ1W obtained by solving the Dyson
equation for χ using the “SOSEX polarization” P 1W . How-
ever, this approach yields a response function with complex
poles in all of parameter space and indicates that a simple it-
erative approach to the vertex equation does not produce good
approximations for the polarization function. Instead, one has
to solve the equation for the � to obtain a fully renormalized
vertex, which in turn produces good approximations for the
polarization. With this method one obtains TDHF, BSE, or
TDGW depending on the approximation used for the func-
tional derivative of the self-energy and these approximations
all yield the correct dissociation limit. In contrast to TDHF,
BSE and TDGW give rise to monotonously increasing disso-
ciation curves in accordance with the exact result. This im-
plies that the screened interaction W is a much better per-
turbative quantity than the bare interaction V . In the case
of metals, this is common knowledge and the physical ori-
gin of the screening is well understood. For molecules, how-
ever, it is less clear why the screened interaction appears and
one should regard it as an auxiliary function which replaces
V in Hedin’s formulation of many-body perturbation theory.
On the other hand, the poles of the singlet terms in the BSE
and TDGW response functions become imaginary in the non-
perturbative limit. Usually, one would regard this as a break-
down of the theory since it indicates that the spectrum is de-
scribed by a non-Hermitian Hamiltonian, which indicates that
time-evolution is not unitary. In the present context of ground
state correlation energies, the response function is just an ob-
ject which allows us to approximate the correlation function
〈0|n̂(r)n̂(r′)|0〉λ, which is real by definition. The appearance
of imaginary poles just implies that this correlation function
vanishes at large coupling strength λ when U is sufficiently
large. However, due to the coupling constant integration, the
correlation energy only vanishes exactly in the strict dissoci-
ation limit.

In the case of the hydrogen molecule, the exact dis-
sociation curve can be obtained with the configuration in-
teraction method26 but for more complicated systems such
an approach becomes impossible. In solid state physics
the Mott insulators27 comprise a good example of systems
where mean-field approaches typically fail due to strong
static correlation. It will be interesting to see if many-
body methods such as those investigated here can provide
an accurate description of ground state properties in these
systems.
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APPENDIX A: HUBBARD MODEL

1. Exact diagonalization

Here we will state the exact eigenvalues and eigenstates
of the Hamiltonian (8). The Fock space is spanned by the
Hilbert spaces corresponding to N = 0, 1, 2, 3, 4 electrons.
We will restrict ourselves to the case of two electrons in the
following. The Hilbert space is then spanned by the six Slater
determinants:

N = 2 : | ↑ ↓〉, | ↓ ↑〉, | ↑ ↑〉, | ↓ ↓〉, | ↑↓ 0〉, |0 ↑↓〉.
(A1)

It is straightforward to diagonalize the Hamiltonian in this ba-
sis and the eigenstates are

|ψ0〉 = 4t

a(c − U )
(| ↑ ↓〉 − | ↓ ↑〉) + 1

a
(| ↑↓ 0〉 + |0 ↑↓〉),

|ψ1〉 = | ↑ ↑〉,
|ψ2〉 = | ↓ ↓〉,

(A2)

|ψ3〉 = 1√
2

(| ↑ ↓〉 + | ↓ ↑〉),

|ψ4〉 = 1√
2

(| ↑↓ 0〉 − |0 ↑↓〉),

|ψ5〉 = 4t

b(c + U )
(| ↑ ↓〉 − | ↓ ↑〉) − 1

b
(| ↑↓ 0〉 + |0 ↑↓〉),

with

a =
√

32t2

(c − U )2
+ 2, b =

√
32t2

(c + U )2
+ 2,

(A3)
c =

√
16t2 + U 2.

When t → 0, we obtain the Heitler-London solution where
the second term of |ψ0〉 vanishes and the two electrons are
never localized at the same site. In the non-interacting limit
where U = 0, all the coefficients in |ψ0〉 become equal and
the state can easily be rewritten as a doubly occupied bonding
σ -orbital, where the two electrons have a probability of 1/2
for being localized on the same atom. In fact, any mean-field
Hamiltonian without two-particle operators will yield such a
ground state and it is a non-trivial task to produce the correct
ground state energy in the dissociation limit using the non-
interacting state as a reference for perturbation theory.

The associated eigenvalues are

E0 = 2ε0 + (U − c)/2, (A4)

E1 = E2 = E3 = 2ε0, (A5)

E4 = 2ε0 + U, (A6)

E5 = 2ε0 + (U + c)/2. (A7)

In the present work we are interested in the ground state en-
ergy, which can be written as

EExact = 2ε0 + U

2
−

√
4t2 + U 2/4 (A8)

= 2ε0 − 2t + U

2
− U 2

16t
+ . . . , U ≤ 4t, (A9)

= 2ε0 − 4t2

U
+ t4

U 3
+ . . . , U ≥ 4t. (A10)

From these expressions it is clear that it will be very challeng-
ing to derive an approximation for the ground state energy,
which works well across coupling regimes. Starting from the
non-interacting system and calculating perturbative correc-
tions in U will systematically generate the perturbation series
Eq. (A9), but it is hard to see how such an approach would
reproduce the atomic limit Eq. (A10). In particular, higher or-
der terms in the perturbation series would have to cancel the
U/2 − 2t terms, which are not present in Eq. (A10).

2. The adiabatic connection

In the present paper, we calculate the ground state energy
of the Hubbard dimer within various approximations. The cal-
culations are based on the non-interacting reference state, but
involve non-perturbative contributions to the energy. We de-
fine the correlation energy as the contribution to the energy
beyond first order perturbation theory:

Ec ≡ EExact − 2ε0 + 2t − U

2
. (A11)

This quantity will be calculated from various approximations
to the density-density response function using the adiabatic
connection and fluctuation-dissipation theorem.

To this end we introduce the λ-dependent Hamiltonian
Hλ by letting U → λU. The ground state of this Hamiltonian
is written |ψ0〉λ and becomes the true interacting ground state
for λ = 1 and the non-interacting ground state for λ = 0. We
then write the correlation energy as

Ec = 〈
ψλ

0

∣∣Hλ
∣∣ψλ

0

〉∣∣
λ=1 − 〈

ψλ
0

∣∣Hλ
∣∣ψλ

0

〉∣∣
λ=0 − 〈

ψλ
0

∣∣V ∣∣ψλ
0

〉∣∣
λ=0

=
∫ 1

0
dλ

d

dλ

〈
ψλ

0

∣∣Hλ
∣∣ψλ

0

〉 − 〈
ψλ=0

0

∣∣V ∣∣ψλ=0
0

〉
(A12)

=
∫ 1

0
dλ

〈
ψλ

0

∣∣V ∣∣ψλ
0

〉 − 〈
ψλ=0

0

∣∣V ∣∣ψλ=0
0

〉
, (A13)

where we applied the Hellmann-Feynman theorem in the last
line. We then use that〈

ψλ
0

∣∣V ∣∣ψλ
0

〉 = U

2

∑
iσσ ′

[〈
ψλ

0

∣∣niσ niσ ′
∣∣ψλ

0

〉 − 〈
ψλ

0

∣∣niσ

∣∣ψλ
0

〉
δσσ ′

]
and〈

ψλ
0

∣∣niσ niσ ′
∣∣ψλ

0

〉 = nλ
iσ nλ

iσ ′ +
∑
n
=0

〈
ψλ

0

∣∣niσ

∣∣ψλ
n

〉〈
ψλ

n

∣∣niσ ′
∣∣ψλ

0

〉
= nλ

iσ nλ
iσ ′ −

∫ ∞

−∞

dω

2π
Imχλ

ii,σσ ′(ω) (A14)
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to get

Ec = −U

2

∫ 1

0
dλ

∫ ∞

−∞

dω

2π

∑
i

Im
[
χ̃λ

ii(ω) − χ̃0
ii(ω)

]
(A15)

= −U

∫ 1

0
dλ

∫ ∞

0

dω

2π

∑
i

[
χ̃λ

ii(iω) − χ̃0
ii(iω)

]
, (A16)

where we defined the spin-summed response function by

χ̃λ
ij (ω) =

∑
σσ ′

χλ
ij,σσ ′(ω). (A17)

Here we used that the density niσ ′ = 〈ψλ
0 |niσ |ψλ

0 〉 = 1
2 is in-

dependent of λ. Note that the adiabatic connection in density
functional theory involves an exchange-correlation potential
defined in such way that the density is independent of λ. In
the present context, it is a convenient property of the model,
which allows us to calculate total energies directly from the
response function. In Eq. (A16) we used that χ ii(ω) = χ ii

(−ω) and the fact that χ is analytic in the upper right quarter
of the complex plane in order to change the integration to the
positive imaginary axis. We note that the retarded and time-
ordered response functions coincide on the positive imaginary
axis and we will not distinguish between these as long as we
consider imaginary frequencies. In the following it will often
be convenient to write the response function in terms of imag-
inary frequencies, since then it is not necessary to keep track
of the positive infinitesimals, which shift the poles away from
the real axis. We can always restore the dependence on real
frequencies by taking ω → −iω and the hopping parameter t
→ t − iη.

APPENDIX B: HEDIN’S EQUATIONS

To obtain an expression for P, we turn to Hedin’s
equations:25

G(12) = G0(12) +
∫

d(34)G0(13)(34)G(42) (B1)

(12) = i

∫
d(34)G(13)�(324)W (41) (B2)

W (12) = v(12) +
∫

d(34)v(13)P (34)W (42) (B3)

P (12) = −i

∫
d(34)G(13)G(41)�(342) (B4)

�(123) = δ(12)δ(13)

+
∫

d(4567)
δ(12)

δG(45)
G(46)G(75)�(673), (B5)

where G0 refers to the Green function associated with the
Hartree Hamiltonian. Since the Hartree potential is just a con-
stant in the model, we will not distinguish between Hartree
and pure non-interacting Green functions in the following.
All quantities here are time-ordered and the numbers de-
note combined space, time and spin indices such that G0(12)

= G0
i1i2,σ1σ2

(t1 − t2). In principle, these equations should be
iterated to self-consistency, however, for most practical appli-
cations some approximation is needed in order to proceed.
For example, the GW approximation for the self-energy is
obtained by neglecting the second term of Eq. (B5), which
leads to (12) = iG(12)W (21). This expression can now be
used together with G0 to obtain a one-shot expression for G
and P (G0W 0), or one can try to iterate the remaining equa-
tions to self-consistency (self-consistent GW ). In the present
work, we will impose a purely perturbative approach and
calculate all quantities from G0. We will therefore not need
Eq. (B1) and we replace G in the remaining four equations by
G0, which is given by

G0(12) = −i
〈
ψλ

0

∣∣T ci1σ1 (t1)c†i2σ2
(t2)

∣∣ψλ
0

〉∣∣
λ=0. (B6)

APPENDIX C: HAMILTONIAN FORMULATION OF THE
FOUR-POINT DYSON EQUATION

In Sec. III, we evaluated the response function in various
approximations by solving the Dyson equation directly. Due
to the simplicity of the results it was straightforward to ex-
tract the poles, which correspond to excitation energies within
a given approximation. An alternative approach is to express
the response function in terms of eigenvalues and eigenstates
of a particle-hole Hamiltonian. This is the approach used for
the ab initio calculations used in Sec. II and has the advan-
tage that it becomes much easier to expand a transition within
a given approximation in terms of non-interacting transitions.
With a static approximation for the four-point kernel (38) we
can obtain the poles and transition matrix elements as eigen-
states and eigenvalues of the Hamiltonian

Hn1n2n3n4 = (εn2 − εn1 )δn1n3δn2n4

+ (fn1 − fn2 )(Un1n2n3n4 − Kn1n2n3n4 ). (C1)

Here, ni labels single-particle spin orbitals with eigenvalue
εn1 and occupation fni

. In the case of TDHF and BSE (but not
in TDGW), the kernel K is diagonal in spin in the sense that
Kσ1σ2σ3σ4 = Kσ1σ2δσ1σ3δσ2σ4 and the poles of the spin-summed
response function can be obtained from the eigenvalues of the
spin-summed Hamiltonian:

Hk1k2k3k4 = (εk2 − εk1 )δk1k3δk2k4

+ (fk1 − fk2 )(Uk1k2k3k4 − Kk1k2k3k4/2). (C2)

Here, ki labels single-particle orbitals with occupation fac-
tors fki

, which may be doubly occupied. In the present case
of a Hubbard dimer ki may be either the bonding σ or-
bital (|1, 0〉 + |0, 1〉)/√2 or the anti-bonding σ ∗ orbital (|1, 0〉
− |0, 1〉)/√2. We then choose the ordered particle-hole basis
{σ⊗σ ∗, σ ∗⊗σ , σ⊗σ , σ ∗⊗σ ∗} and the site basis {11, 12,
21, 22}. The σ⊗σ ∗ and σ ∗⊗σ states can then be written as
(1,−1,1,−1)/2 and (1,1,−1,−1)/2, respectively, with respect
to the site basis.

In general, the Hamiltonian will not be Hermitian, but
can be shown to be pseudo-Hermitian, which implies that
the eigenvalues are either real or come in complex conju-
gated pairs. A pseudo-Hermitian matrix implies the existence
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of an inner product with respect to which the matrix is Her-
mitian and it can be shown that positive definiteness of this
inner product implies a real spectrum of the matrix.28, 29 In
the present case, one can define an inner product as 〈v|u〉H̄
= 〈v|H̄ |u〉, where H̄ is given by30

H̄ =
[

I O

O −I

]
H. (C3)

It is straightforward to show that the Hamiltonians stated be-
low are Hermitian with respect to the H̄ -inner product and
the reality of the spectrum then depends on H̄ being positive
definite.

In the following we briefly state the two-particle Hamil-
tonians corresponding to spin-summed response function. It
will be straightforward to verify that the Hamiltonians de-
rived from RPA and TDHF always have a positive definite
H̄ , whereas BSE and TDGW do not.

1. RPA

In this case the four-point kernel is not present and we
just need the Coulomb interaction in an electron-hole basis.
The four-point kernel is simply Ui1i2i3i4 = Uδi1i2δi1i3δi1i4 and
the Hamiltonian becomes

HRPA =
[

2t + U U

−U −2t − U

]
. (C4)

Here we have neglected the {σ⊗σ , σ ∗⊗σ ∗} sector, since all
matrix elements involving these states vanish. The eigenval-
ues are ERPA

± = ±√
4t2 + 4tU and in the atomic limit the

eigenvectors become

v± ∝
(

±2
√

t/U − 1

1

)
. (C5)

Since the Hamiltonian is not Hermitian its eigenvectors are
not orthogonal and in the atomic limit the two eigenvectors
become parallel. The asymptotic state (1, −1) can be written
as |12〉 − |21〉 in site basis and thus corresponds to a charge
transfer excitation between atoms. The RPA thus correctly re-
produces the vanishing matrix element of the density operator
in the atomic limit.

2. TDHF

In the TDHF approximation the kernel is Ki1i2i3i4

= Uδi1i2δi1i3δi1i4 and the Hamiltonian becomes

HT DHF =
[

2t + U/2 U/2

−U/2 −2t − U/2

]
. (C6)

The results are thus very similar to RPA, the only difference
being that U has been replaced by U/2 in the effective Hamil-
tonian. The eigenvalues are ET DHF

± = ±√
4t2 + 2tU and as

in the case of RPA, the eigenstates correspond to a charge
transfer excitation in the atomic limit and therefore correctly
reproduce the atomic limit.

3. BSE

In the BSE approximation the kernel is given by
(Ki1i2i3i4 = Wi1i2i3i4 )⎡⎢⎢⎣

U − 2U 2t/h2 0 0 0
0 2U 2t/h2 0 0
0 0 2U 2t/h2 0
0 0 0 U − 2U 2t/h2

⎤⎥⎥⎦
(C7)

and the Hamiltonian becomes

HBSE =
[

2t + U/2 U/2 + 2U 2t/h2

−U/2 − 2U 2t/h2 −2t − U/2

]
. (C8)

The eigenvalues are

EBSE
± = ±

√
4t2 + 2tU − 2U 3t/h2 − 4U 4t2/h4, (C9)

which are equivalent to the expression (42). As in the case
of RPA and TDHF the eigenstates are orthogonal in the non-
interacting limit and becomes parallel and equal to (1 −, 1) at
the degeneracy point t/U = (

√
2 − 1)/2. When t/U decreases

beyond this point, the eigenvalues become imaginary and the
eigenvectors are rotated with respect to each other in the com-
plex plane. At the point where t/U = 0 the eigenvectors be-
come

v± = [e±π/6i |σ 〉 ⊗ |σ ∗〉 − e∓π/6i |σ ∗〉 ⊗ |σ 〉)]/
√

2. (C10)

Unlike RPA and TDHF, the eigenstates cannot be written as
a pure charge transfer excitation, when t is decreased beyond
the degeneracy point. However, expressing the eigenstates in
terms of atomic orbitals, the part of the exciton wavefunction,
which does not correspond to a charge transfer excitation, be-
comes purely imaginary and does not contribute to the corre-
lation energy.
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