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ABSTRACT
A formally exact Bethe-Salpeter-like equation for the linear-response function is introduced with a kernel which depends only
on the one frequency of the applied field. This is in contrast with the standard Bethe-Salpeter equation (BSE) which involves
multiple-frequency integrals over the kernel and response functions. From the one-frequency kernel, known approximations are
straightforwardly recovered. However, the present formalism lends itself to more powerful approximations. This is demonstrated
with the exact analytical solution of the Hubbard molecule. Similarities and differences of the GW + BSE approach with the
self-consistent random-phase approximation are also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080330

I. INTRODUCTION

The development of efficient many-body approaches is
an active research field in quantum chemistry and various
branches of physics, such as condensed-matter, cold-atom,
atomic, molecular, and nuclear physics. Originally devel-
oped in the framework of subnuclear and nuclear physics to
describe bound states of systems of two interacting parti-
cles like the deuteron, the Bethe-Salpeter equation (BSE)1 has
become an approach commonly used also in solid-state and
condensed-matter physics,2–10 atomic physics,11 and quan-
tum chemistry.12–14

The fact that the standard BSE can be demonstrated15
to be equivalent to the Ward identities and the Hedin inte-
gral equation for the vertex16 enables a natural transfer of
approximations, i.e., the Hedin GW approximation16 on the
self-energy toward the BSE kernel. The idea behind the GW
approach to tackle correlations simply by the introduction
of only screening, i.e., the simple replacement of the bare
two-body interaction v by a screened interaction W, can be
directly transferred to an approximation to the irreducible
BSE kernel, which is hence written as W instead of the time-
dependent Hartree-Fock (TDHF) exchange kernel. In contrast
with the TDHF exchange kernel, which for electronic systems
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is the opposite of the static Coulomb interaction v(r, r′) = 1/|r
− r′|, a BSE kernel at the same level of the GW approxima-
tion should in principle be frequency dependent since it relies
on the dynamically screened Coulomb interaction W(r, r′, ω).
This frequency dependence, which can be worked out, though
with some difficulties, when calculating the GW self-energy,
and which is an important ingredient to have quasiparticle
energies more in agreement with the experiment, implies
multiple-frequency integrals in the BSE and represented so far
an insurmountable obstacle to the resolution of the full BSE.
For this reason, almost all BSE calculations were obliged to
neglect the dynamical dependence of the BSE kernel and solve
a static BSE. This approach often called GW + BSE17 which
uses a dynamical W(r, r′, ω) in the self-energy and a static
W(r, r′, ω = 0) in the BSE kernel has nevertheless provided
good results in agreement with the experiment and exact
solutions.6–11

It is difficult to estimate how important can be dynamical
effects beyond the static BSE. Nevertheless, it is often con-
jectured that deviations of the static BSE solution from the
experiment can be solely due to dynamical BSE effects. A ten-
tative list might include effects associated with double exci-
tations in quantum chemistry18 or to electron-hole screened
interaction in metals.19 Efforts to study dynamical BSE effects
and introduce a real frequency dependence into the BSE have
recently been attempted.20–23 The standard BSE is an equa-
tion over two-body Green/correlation functions (kernel and
response functions), i.e., functions of four space-time points.
In systems with time-translation invariance, there is one-
time degree-of-freedom less, which means always functions
of three time differences, or their three Fourier transformed
frequencies. The full dynamical BSE involves a so far numer-
ically intractable integration over frequencies in the kernel
and in the response function. Recent efforts20,21 have tried
to redefine a kernel which incorporates frequency integra-
tion, to finally arrive at a more easily solvable one-frequency
equation. Another approach22,23 has considered the coupling
of the linear-response function to uncorrelated two-particle-
two-hole (2p-2h) states. The coupling of the linear-response
function to collective states plus free particle-hole (p-h) states
to account for double excitations has been discussed in
Ref. 20.

All previous studies followed the route which starts from
the multi-frequency standard BSE and tries to reduce the
number of involved frequencies, so as to end up with an equa-
tion with just only the one frequency of the external field.
The purpose of this work is to follow a different route: we
introduce from the beginning a formally exact one-frequency
BSE-like equation, i.e., depending only on the frequency of
the external field, for a linear-response function. In particu-
lar, this means that also the integral kernel K depends only on
the one frequency of the external field. Explicit expressions for
K will be elaborated in terms of well defined correlation func-
tions and higher Green functions. For readers interested right
away to see the final result, they may refer to Eqs. (19), (32),
(33), (34), and (37). Starting from these expressions, we then
rederive the approximate expressions given in the literature
mentioned above. However, since our expressions are more

general, they lend themselves to more far-reaching approxi-
mations without losing the advantage of a one-frequency only
approach. This is demonstrated with the exact solution of the
Hubbard molecule. But we will also point out that the response
function calculated in this way keeps all desirable qualities
of the standard random-phase approximation (RPA), such as
fulfillment of sum rules and conservation laws. Our deriva-
tion is based on the equation-of-motion (EOM) technique
applied to an appropriately defined four-point one-frequency
linear-response function.

This paper is organized as follows: We will use the exam-
ple of the EOM technique for establishing the Dyson equation
for the one-body Green function presented in Sec. II to intro-
duce the key points of the derivation of the one-frequency-
only BSE-like equation which will then be presented in Sec. III.
In Sec. IV, we will establish the connection of the present for-
malism to the previous approaches of Refs. 20, 21, and 23 and
with the standard GW + BSE approximation, making paral-
lels also with the self-consistent random-phase approxima-
tion (SCRPA).24–27 We will present in Sec. V a short application
of our formalism to the Hubbard molecule which in this way
can be solved exactly. Finally, Sec. VI contains our conclusions
and outlook.

Atomic units are used throughout this work.

II. REDERIVATION OF THE ONE-BODY DYSON
EQUATION

To set the stage, we first present a short derivation of
the Dyson equation for the standard one-body Green func-
tion by the EOM technique, highlighting the points over which
we will base the derivation of the one-frequency-only BSE-like
equation in Sec. III.

We consider the most generic Hamiltonian, H = H0 + V,
composed of the non-interacting (kinetic plus external poten-
tial) Hamiltonian H0 and the two-body interaction operator V,
which we write in terms of creation/annihilation operators c†k
and ck on an arbitrary orthonormal basis set of orbitals {φk(r)}
as

H =
∑
k1k2

εk1k2
c†k1

ck2
+

1
4

∑
k1k2k3k4

v̄k1k2k3k4
c†k1

c†k2
ck4

ck3
, (1)

where εk1k2
are the matrix elements of the non-interacting

Hamiltonian H0 over the orthonormal basis set, and

v̄k1k2k3k4
= 〈k1k2 |v |k3k4〉 − 〈k1k2 |v |k4k3〉, (2)

are the antisymmetrized matrix elements of the Coulomb
interaction v(r, r′) = 1/|r − r′|, or more precisely, detailing the
notation

〈k1k2 |v |k3k4〉 =

∫
drdr′ φ∗k1

(r)φ∗k2
(r′)v(r, r′)φk3

(r)φk4
(r′). (3)

We work in a three-dimensional space and r and k are meant
as 3D vectors, but we can generalize to 1D and 2D; the spin
degree of freedom σ is always implied and can be included for
spin-polarized cases in k and in r and summed over whenever
r is integrated out.
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We remind the definition of the one-body Green function

Gkk′ (t − t′) = −i〈0 |T{ck(t)c†k′ (t
′)} |0〉, (4)

where T{o(t)o′(t′)} = θ(t − t′)o(t)o′(t′) −θ(t′ − t)o′(t′)o(t) is the
time-ordering product between fermion operators o, ck(t)
= eiHtcke−iHt is the time-dependent annihilation operator in the
Heisenberg formalism (and similarly for the time-dependent
creation operator c†k′ (t

′)), and |0〉 is the ground state. We
can then introduce the non-interacting Green function G0,
associated with the non-interacting Hamiltonian H0, and its
inverse

G0−1

kk′ (t − t
′) = δ(t − t′)(δkk′ i∂t − εkk′ ), (5)

by which we can write out a first EOM for G∑
k1

∫
dt1G0−1

kk1
(t − t1)Gk1k′ (t1 − t

′)

= δkk′δ(t − t′) − i〈0 |T{jk(t)c†k′ (t
′)} |0〉, (6)

where we have introduced the operator

jk = [ck,V] =
1
2

∑
k2k3k4

v̄kk2k3k4
c†k2

ck4
ck3

. (7)

The term containing jk is a two-body Green function with a
particular time ordering.

For simplicity and without loss of generality, we will
henceforth write the equations for the case of homogeneous
systems, where k stands for momentum (and spin) and εk is the
kinetic energy. This is very similar to work in the natural spin-
orbital basis, also sometimes called canonical basis, obtained
from the diagonalization of the one-body density matrix in the
case of inhomogeneous or finite systems. Let us now write the
well-known Dyson equation28

(i∂t − εk)Gk(t − t′) = δ(t − t′) +
∫

dt1Σk(t − t1)Gk(t1 − t′). (8)

Using Eq. (6), the self-energy is then formally given by

Σk(t − t′) = −i
∫

dt1〈0 |T{jk(t)c†k(t1)} |0〉G−1
k (t1 − t′), (9)

where we introduced the inverse of the Green function
defined by G−1G = 1 in short-hand notation. From the Dyson
equation (8), this inverse can be expressed as

G−1
k (t − t′) = G0−1

k (t − t′) − Σk(t − t′). (10)

The self-energy can therefore be written as

Σk(t − t′) = −i
∫

dt1〈0 |T{jk(t)c†k(t1)} |0〉
[
G0−1

k (t1 − t′) − Σk(t1 − t′)
]
.

(11)

In this equation, G0−1

k (t1 − t′) can be applied on the left using a

second EOM (we should realize that ∂t1 contained in G0−1

k (t1−t′)
normally acts to the right and, thus, one has to perform an
integration par parts over t1 to make it act to the left, which
changes i∂t1 into −i∂t1 ), we then arrive at

Σk(t − t′) = Tk(t − t′) − Cred
k (t − t′), (12)

where

Tk(t − t′) = VMF
k δ(t − t′) − i〈0 |T{jk(t)j†k(t′)} |0〉, (13)

which is a kind of one-body T-matrix, and

Cred
k (t − t′) = (−i)2

∫
dt1dt′1 〈0 |T{jk(t)c†k(t1)} |0〉

× G−1
k (t1 − t′1)〈0 |T{ck(t′1)j

†

k(t′)} |0〉. (14)

The usual mean-field potential is given by

VMF
k = 〈0 | {[ck,V], c†k} |0〉 =

∑
k′

v̄kk′kk′nk′ , (15)

where {. . .} stands for the anticommutator and

nk = 〈0 |c
†

kck |0〉 (16)

are the occupation numbers. We should mention that the
mean-field potential in Eq. (15) is only diagonal in a homoge-
neous system. In a finite system, this is not necessarily the case
despite that in the natural spin-orbital (canonical) basis, the
density matrix is diagonal. However, to avoid heavy formulas,
we will always from now on assume that the mean-field is also
diagonal. It is easily recognized that the second term of the
expression for the above one-body T-matrix is expressed as a
three-body propagator of the two-particle-one-hole (2p-1h)
plus two-hole-one-particle (2h-1p) type. This 3-body Green
function contains the so-called one-line reducible Feynman
graphs, which is easily verified by perturbation theory. By
definition, a self-energy should not contain such contribu-
tions which can be “cut” into two pieces by cutting a sin-
gle fermion line at a given time. It is again easily verified by
perturbation theory that the second term on the right-hand
side in Eq. (12) just does nothing else than taking out of the
T-matrix all reducible terms. Therefore, in short, we can write
the self-energy as

Σk(t − t′) = VMF
k δ(t − t′) − i〈0 |T{jk(t)j†k(t′)} |0〉irr, (17)

where the index “irr” indicates that the corresponding cor-
relation function should be one-line irreducible. Expression
(17) is therefore a formally exact and compact expression for
the self-energy. Please also note that the expression is very
symmetric, which is well suited for introducing approximate
forms of the self-energy. For completeness, let us also write an
expression for the one-body Green function in the following
way (with G0−1

G0 = 1):

Gk = G0
k + G0

kTkG
0
k with Tk = Σk + ΣkG0

kTk. (18)

Notice that in Eq. (17) we have an index “irr” so that the sin-
gle particle T-matrix of Eq. (18) is different from Σ. Here, we
did not write out the time dependencies and integrals. In fre-
quency space, there are no integrations and it becomes an
algebraic equation as, by the way, the Dyson equation itself.
Please note that Eq. (18) has the usual form connecting a
Green function to the scattering T-matrix. However, here the
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T-matrix is defined for a many-body system. Taking out of
T, the one-line reducible contributions change TG0 into ΣG,
that is, we also have the relation T = Σ + ΣG0T as indicated in
Eq. (18).

After this hopefully pedagogic and relatively elaborate
presentation of well-known many-body relations on the one-
body Green function, let us now turn to the two-body case and
response function.

III. RESPONSE FUNCTION AND BETHE-SALPETER-LIKE
EQUATION
A. Derivation of the one-frequency
Bethe-Salpeter-like equation

We will derive for the two-time response function defined
by, with k1 , k2 and k′1 , k′2,

Rk1k2k′1k
′
2
(t − t′) = −i〈0 |T{c†k2

(t)ck1
(t)c†k′1

(t′)ck′2 (t′)} |0〉 (19)

an exact equation which has the same structure as the Dyson
equation for the one-body Green function derived above.
The inequalities k1 , k2 and k′1 , k′2 are not independent
of the one-body basis: for homogeneous matter, the indices
stand for momenta and spin and then the inequalities con-
cern the momenta. For finite systems the indices corre-
spond to the canonical basis. With this definition, we have
〈0 |c†k2

ck1
|0〉 = 0 and 〈0 |c†k′1

ck′2 |0〉 = 0 so that the quantity R

is the same as the linear-response function often denoted
by χ in condensed-matter physics or quantum chemistry.18
Let us further note that in Eq. (19) we have chosen a defi-
nite ordering of the fermion operators. This stems from the
fact that we are considering a one-body-density-matrix/one-
body-density-matrix correlation function. Notably there will
appear an integral kernel which also depends on only one
time difference or on one frequency. For people used to
multi-time Green functions, this may seem surprising. How-
ever, this is known in the literature.29 There also exists,
e.g., the Mori-Zwanzig formalism for correlation functions
of statistical physics.30,31 Furthermore, in nuclear physics,
the EOM formalism developed by Rowe,32 and further devel-
oped in Refs. 24–27 and 29 (with more references therein), is
closely related to what we will present here. However, these
facts seem to be very little known in the condensed-matter
and chemical physics communities where one often strug-
gles to get rid of eventually superfluous frequency depen-
dencies of the integral kernel of the response function which
are inherent to the so-called Hedin equations.16 Introduc-
ing a single frequency integral kernel from the start and
not a posteriori will turn out to have several advantages.
For example, though we will recover, e.g., certain aspects of
the W kernel of the BSE as used in the GW approach, we
will also see more clearly what kind of approximations are
involved with the use of static and dynamic forms of W in
the BSE and how eventually to go beyond in a systematic
way.

So, let us start as before by writing down the first EOM
for the response function

∫
dt1 R̃0−1

k1k2
(t − t1)Rk1k2k′1k

′
2
(t1 − t′) = Nk1k2k′1k

′
2
δ(t − t′)

−i〈0 |T{Jk1k2
(t)c†k′1

(t′)ck′2 (t′)} |0〉,

(20)

where

R̃0−1

k1k2
(t − t′) = δ(t − t′)(i∂t − εk1

+ εk2
), (21)

which is a straightforward extension of the one-body case. We
have also introduced

Jk1k2
= [c†k2

ck1
,V]

=
1
2

∑
k′2k

′
3k
′
4

v̄k1k′2k
′
3k
′
4
c†k2

c†k′2
ck′4ck′3 +

1
2

∑
k′1k
′
2k
′
3

v̄k′1k′2k′3k2
c†k′1

c†k′2
ck′3ck1

,

(22)

and the so-called norm kernel

Nk1k2k′1k
′
2
= 〈0 |[c†k2

ck1
, c†k′1

ck′2 ] |0〉

= δk1k′1
δk2k′2

Nk1k2
, (23)

with

Nk1k2
= nk2

− nk1
= |nk2

− nk1
|N0

k1k2
, (24)

where the sign factor N0 is given by

N0
k1k2
= 1 for k1 > k2 and − 1 for k1 < k2, (25)

and therefore N0
k1k2

N0
k1k2
= 1. Note that the one-body density

matrix 〈0 |c†k2
ck1
|0〉 is diagonal for our assumed homogeneous

system (or in the canonical basis) and we suppose that it is also
diagonal in spin. One recognizes in Eqs. (23)–(24) the phase-
space factors from the standard RPA when the occupation
numbers nk are replaced by their step function form, n0

k , when
using the Hartree-Fock (HF) ground state. In general, how-
ever, the occupation numbers are the correlated ones, differ-
ent from zero and one. It is remarked that this norm factor is a
different feature with respect to the one-body Green-function
case. Note also that, contrary to the one-body case, the quan-
tity R̃0−1

introduced in Eq. (21) is not exactly the inverse of
the non-interacting response function R0, but instead we have
in short-hand notation R̃0−1

R0 = N where N is the norm
matrix.

We now proceed exactly in analogy to the one-body case.
Because of the presence of the norm matrix N in Eq. (20), we
first have to divide it out by multiplying Eq. (20) by the inverse
of N. Writing Eq. (20) schematically as

R̃0−1
R = N + F, (26)

we obtain by division with N

R̃0−1
R̃ = 1 + F̃ = 1 + F̃R̃−1R̃ ≡ 1 + KR̃, (27)

with R̃ = RN−1 and F̃ = FN−1. So we arrive at a BSE-like equation
of the form

R̃−1 = R̃0−1
− K, (28)
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with the kernel K given by

K = F̃R̃−1 = F̃[R̃0−1
− K]. (29)

With explicit notations, the BSE-like equation with a one-
frequency kernel can thus be written as∫
dt1R̃0−1

k1k2
(t − t1)R̃k1k2k′1k

′
2
(t1 − t′)

= δk1k′1
δk2k′2

δ(t − t′) +
∫

dt1
∑
k3k4

Kk1k2k3k4
(t − t1)R̃k3k4k′1k

′
2
(t1 − t′),

(30)

with

Kk1k2k′1k
′
2
(t − t′) = −i

∫
dt1

∑
k′3k

′
4

〈0 |T{Jk1k2
(t)c†k′3

(t1)ck′4 (t1)} |0〉N−1
k′3k

′
4

×

[
R̃0−1

k′3k
′
4
(t1 − t′)δk′3k′1δk′4k′2 − Kk′3k

′
4k
′
1k
′
2
(t1 − t′)

]
.

(31)

We apply then the EOM a second time as in the one-body case
and obtain the final expression of the kernel

Kk1k2k′1k
′
2
(t − t′) = K0

k1k2k′1k
′
2
δ(t − t′) + Kdyn

k1k2k′1k
′
2
(t − t′), (32)

with a purely static contribution

K0
k1k2k′1k

′
2
= 〈0 |[[c†k2

ck1
,V], c†k′1

ck′2 ] |0〉N−1
k′1k
′
2

(33)

and a dynamic contribution

Kdyn
k1k2k′1k

′
2
(t − t′) = −i〈0 |T{Jk1k2

(t)J†k′1k′2
(t′)} |0〉irrN−1

k′1k
′
2
. (34)

Note the complete analogy of this expression with Eq. (17).
At this point, some discussion is in order: we realize that the
right-hand side of Eq. (34) corresponds to a four-body Green
function of the 2p-2h and 2h-2p type. It contains therefore
double p-h excitations. The index “irr” may seem less evident
than in the one-body case. One may, however, verify again by
perturbation theory that everything works exactly as in the
one-body case and that the subtraction of the matrix K in
R̃0−1
−K exactly eliminates all p-h reducible contributions of the

2p-2h/2h-2p Green function. The p-h (two-line) irreducibility
is just the analog of the one-line irreducibility in the one-body
case. Up to some technical details to be discussed below, we
thus have derived, as announced, a BSE-like equation with a
one-frequency kernel obtained by Fourier transforming into
frequency space the time dependence of the kernel in Eq. (34),
which at equilibrium depends only on the time difference t − t′.
The frequency-space BSE-like equation that we have obtained
is thus

(ω − ε̃k1
+ ε̃k2

)R̃k1k2k′1k
′
2
(ω) = δk1k′1

δk2k′2
+

∑
k3k4

[K0
k1k2k3k4

+ Kdyn
k1k2k3k4

(ω)]

× R̃k3k4k′1k
′
2
(ω), (35)

where
ε̃k = εk + VMF

k (36)

are the one-body energies with mean-field shifts included.
Notice that in Eq. (35), the kernel K0 is now without the mean-
field contribution, i.e., in Eq. (33), V has been replaced by V
− VMF, where VMF is the mean-field potential operator. Not
to introduce new symbols, from now on, K should always be
understood in this way.

This needs, however, further elaboration and discussions.
Actually, the existence of the kernel K hinges entirely on the
existence of the inverse of the one-frequency response func-
tion R̃, via K = R̃0−1

− R̃−1. Again, this is in complete analogy
to the case of the Dyson equation: Σ = G0−1

− G−1. For read-
ers who may doubt about the existence of R̃−1, we announce
that below we will find approximate expressions for K which
reproduce known expressions from the literature which have
been derived from the Hedin equations. We note that, as
this was the case with the one-body self-energy, also here
the single-frequency kernel in Eq. (32) splits into a purely
static (instantaneous) and a dynamic (time-dependent) part.
It is quite suggestive to interpret the purely static term K0

as some kind of higher mean field. Below, we will give an
explicit expression for it and will see that it contains static
p-h correlation functions. Viewing the ground state as con-
taining a gas of p-h quantum fluctuations, one can then inter-
pret the purely static term as the (frequency-independent)
mean field of those fluctuations. We will refer to K0 as a
“particle-hole mean field” and further we show below in which
way it is related to a specific form of W in the GW + BSE
approach.

However, before that, let us transform the BSE-like equa-
tion by returning from R̃ to the original linear-response func-
tion R. It is straightforward to show that the latter then obeys
the following equation:

(ω − ε̃k1
+ ε̃k2

)Rk1k2k′1k
′
2
(ω) = Nk1k2k′1k

′
2

+
∑
k3k4

[K0
k1k2k3k4

+ Kdyn
k1k2k3k4

(ω)]

×Rk3k4k′1k
′
2
(ω). (37)

The reader may be worried that we did not get rid of
the possibly troublesome norm factor Nk1k2

= nk2
− nk1

in the
denominator of Eqs. (33) and (34) implying that there may be
numerical troubles for situations where nk1

' nk2
. Actually,

there are good reasons for this division. It is analogous to, e.g.,
what happens with the generator coordinate method (GCM)
where also the norm kernel has to be diagonalized and config-
urations corresponding to zero eigenvalues be eliminated.33
This always happens when expanding the quantity of inter-
est into a non-orthogonal basis set (here the products c†k2

ck1
),

a feature which is also underpinning our approach. Actually,
the present approach is practically equivalent to the EOM
of Rowe32 (see also Ref. 27), where one expands an excited
state into a series of components where higher and higher
many-body operators act on the formally exact ground state.
Exactly the same type of norm factors N as here appears on
the right-hand-side of an eigenvalue problem as in Eq. (38).
We will not further discuss this very general case here as we
will henceforth work in the p-h/h-p subspace (for definition,
see below), where this problem does not appear, and replace
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the norm kernel in the denominator by its HF expression. Tak-
ing higher-order corrections of the norm in the denominator
into account has probably little influence on the accuracy of
the results as suggested by some explicit examples.26

Before going on, let us transform our BSE-like equation
into an eigenvalue problem. As just mentioned, this will be
done in the p-h/h-p subspace

∑
p′h′

*
,

A B

−B∗ −A∗
+
-php′h′

*.
,

Xνp′h′

Yνp′h′
+/
-
= Ων

*.
,

Xνph
Yνph

+/
-
, (38)

with h, h′ referring to hole states (h, h′ ≤ kF, where kF is
the Fermi momentum) and p, p′ referring to particle states
(p, p′ > kF). This equation is of the typical RPA form as
described, e.g., in Ref. 33. The present generic equation is,
however, potentially much more general because in principle
the A and B matrices depend on the eigenvalues Ων and on the
amplitudes (Xν , Yν ), the latter being related to the ground state
|0〉 and excited state |ν〉 by Xνph = 〈0 |c

†

hcp |ν〉 and Yνph = 〈0 |c
†
pch |ν〉.

The A and B matrices are related to the one-frequency kernel
K in Eq. (32) by

Aphp′h′ = (ε̃p − ε̃h)δpp′δhh′ + Kphp′h′ ,

Bphp′h′ = Kphh′p′ .
(39)

For example, to first order in the interaction, this gives

Kphp′h′ → v̄ph′hp′ and Kphh′p′ → v̄pp′hh′ , (40)

where the occupation factors ni have been replaced by their
uncorrelated form n0

i , and Eq. (38) reduces to the standard
RPA equation (with exchange) or TDHF. We will not further
elaborate on the eigenvalue form of our approach and rather
continue investigating the one-frequency kernel K.

B. The purely static part of the kernel K
Let us now discuss the K0 term of the kernel and see how

far it is related to the static W kernel of the GW approach.
To establish an explicit form for K0, we have to evaluate the
double commutator contained in the particle-hole mean-field
part of Eq. (33). One finds

K0
k1k2k3k4

= Nk1k2
v̄k1k4k2k3

[
−

1
2

∑
ll′l′′

(
δk2k4

v̄k1ll′l′′Cl′l′′k3l

+ δk1k3
v̄ll′k2l′′Ck4l′′ll′

)
+
∑
ll′

(v̄k1lk3l′Ck4l′k2l + v̄k4lk2l′Ck1l′k3l)

−
1
2

∑
ll′

(v̄k1k4ll′Cll′k2k3
+ v̄ll′k2k3

Ck1k4ll′ )
]
N−1

k3k4
, (41)

where

Ck1k2k3k4
= 〈0 |c†k3

c†k4
ck2

ck1
|0〉 − nk1

nk2

(
δk1k3

δk2k4
− (k3 ↔ k4)

)
(42)

is the fully correlated part (i.e., the cumulant) of the two-body
density matrix. We see that K0 is divided into four parts: the
first term on the right-hand side is the usual RPA antisym-
metrized interaction term. We should realize that in this first
term the norm factor on the right of the interaction has been

divided out [see Eq. (33)] and that, contrary to standard RPA,
the occupation factors are in principle not the HF ones but
the correlated ones. Neglecting all the terms involving C in
Eq. (41) but keeping correlations in the occupancies lead to
the so-called renormalized RPA (r-RPA) briefly explained fur-
ther in the Appendix. The next two terms are the one-body
self-energy contributions (either the hole or the particle is
not connected to the interaction). The remaining two-body
correlation terms connect particles and holes. They can be
qualified as screening terms and we want to investigate them
further. The screening terms can be divided into two groups:
the first two terms correspond to an exchange of p-h fluc-
tuations between the particle and hole and are, therefore,
responsible for the screening of the long-range part of the
interaction. This can be seen from the ordering of the indices
k1 and k3 in the matrix element of the interaction. Clearly,
a creator and a destructor are correlated. The second two
terms correspond to an exchange of p-p/h-h fluctuations,
that is, they sum p-p/h-h ladder diagrams. They take care of
the short-range correlations. Let us mention that neglecting
the dynamic kernel, a self-consistent scheme for the two-
body correlation function can be established, since it is given
by integrating R(ω) over the frequency in the upper/lower
half complex plane. This self-consistent scheme is referred
to as SCRPA. It has a good quality that all desirable prop-
erties of standard RPA such as the fulfillment of the sum
rule and conservation laws are maintained. This is explicitly
shown in Ref. 41. In the past, it has produced encouraging
results for several non-trivial model cases.24–27 Let us mention
that Eq. (41) has been given earlier29 and that it has recently
also been derived by Chatterjee and Pernal34 for applica-
tions in chemical physics including, however, also diagonal
configurations.

In order to establish a connection with the static screened
interaction W of the GW + BSE approach, we consider in more
detail the p-h fluctuation terms. As an example, let us consider
the fourth term on the right-hand side of Eq. (41) and evaluate
it first to second order in the interaction. Since C is at least of
first order, we will elaborate this and get the corresponding K0

to second order. First, let us give the relation between C and
the linear-response function R

Ck4l′k2l = 〈0 |c
†

l cl′c
†

k2
ck4
|0〉 − n̄k2

nk4
δl′k2

δlk4
− nlnk2

δk2k4
δll′ , (43)

where n̄k = 1 − nk and

〈0 |c†l cl′c
†

k2
ck4
|0〉 = i lim

t−t′→0+
Rl′lk2k4

(t − t′) + nlnk2
δk2k4

δll′ . (44)

The reader may wonder why there is the last term on the
right-hand side of Eq. (44). The point is that since R is the
solution of the BSE-like equation, it does not contain such dis-
connected terms where the time t does not communicate with
time t′ [see the definition of R in Eq. (19)]. This is also easily
seen in solving, e.g., Eq. (37) to lowest order, that is, without
the kernel K and using the HF form of norm N, which leads
to Eq. (46). However, on the left-hand side, in the expectation
value of the two-body-density-matrix operators, such terms
are contained and, therefore, we have to add them on the
right-hand side. A good way to see this is to evaluate Eq. (43)
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in the HF approximation where C = 0 by definition. Then the
right-hand side must also be zero which is only the case if the
extra term is added. Let us now expand the response function
in Eq. (44) up to first order

Rl′lk2k4
(t − t′) = R0

k2k4
(t − t′)δl′k2

δlk4

+
∫

dt1R0
l′l(t − t1)v̄l′k4lk2

R0
k2k4

(t1 − t′), (45)

where R0 is the non-interacting HF linear-response function

R0
k2k4

(t − t′) = −i[θ(t − t′)n̄0
k2
n0
k4

+ θ(t′ − t)n0
k2
n̄0
k4

]

× e−i(ẽk2
−ẽk4

)(t−t′). (46)

Inserting Eq. (45) into Eq. (44) and then Eq. (44) into Eq. (43),
and using N0

k1k2
= N0−1

k1k2
, one obtains for the fourth term in the

K0 kernel

K0,4
p1h2h3p4

=
∑
ll′

v̄p1lh3l′Cp4l′h2lN
0
h3p4

'
∑
ll′

v̄p1lh3l′
n̄0
p4
n̄0
l′n

0
h2
n0
l

ε̃p4 + ε̃l′ − ε̃h2
− ε̃l

v̄l′p4lh2
. (47)

Note that the lowest-order term in Eq. (45) is cancelled by the
second term on the right-hand side of Eq. (44). The expres-
sions (47) and (48) (see below for the latter) are the only ones
which contribute to K0 at second order with a p-h bubble
exchange. We see this from the fact that the index k2 in Eq. (47)
is a hole, then k1 must be a particle, and, since k4 is a particle,
k3 must be a hole because our convention is that the index
couple k1k2 or k3k4 can only be p-h or h-p. As noted, the term
in Eq. (47) contributes to the B matrix in Eq. (39). In analogy,
we obtain for the fifth term in Eq. (41)

K0,5
p1h2h3p4

=
∑
ll′

v̄p4lh2l′Cp1l′h3lN
0
h3p4

'
∑
ll′

v̄p4lh2l′
n̄0
p1
n̄0
l′n

0
h3
n0
l

ε̃p1 + ε̃l′ − ε̃h3
− ε̃l

v̄l′p1lh3
. (48)

Again this term only contributes to the B matrix of Eq. (39).
Both terms correspond to the first two terms in Eq. (34) of Ref.
23. If we treat the last two (p-p/h-h) terms of our Eq. (41) in
the same way as the p-h terms, we also reproduce the other
two terms in Eq. (34) of Ref. 23

(K0,6 + K0,7)p1h2h3p4
=

1
2

∑
ll′

[
v̄p1p4ll′

n0
h3
n0
h2
n̄0
l n̄

0
l′

ε̃h3
+ ε̃h2

− ε̃l − ε̃l′
v̄ll′h2h3

− v̄ll′h2h3

n0
l n

0
l′ n̄

0
p1
n̄0
p4

ε̃p1 + ε̃p4 − ε̃l − ε̃l′
v̄p1p4ll′

]
. (49)

As before, these terms only contribute to the B matrix of
Eq. (39).

From Eq. (41), it is clear that in Eq. (45) we can replace
R0
ll′δll1δl′l3 by the full linear-response function Rll′l1l3 what leads

to a better approximation where the exchange p-h bubble ll′

is replaced, e.g., by the RPA or even higher approximations. In
general, we have for R in frequency space

Rk1k2k′1k
′
2
(ω) ≡ R>k1k2k′1k

′
2
(ω) − R<k1k2k′1k

′
2
(ω)

=
∑
ν

〈0 |c†k2
ck1
|ν〉〈ν |c†k′1

ck′2 |0〉

ω −Ων + iη

−

〈0 |c†k′1
ck′2 |ν〉〈ν |c

†

k2
ck1
|0〉

ω +Ων − iη
, (50)

where η → 0+. Actually, this can be done also in Eq. (49) where
one can resume the pp ladders taking care of the short-range
correlations. We will not further dwell on those extensions of
our formalism for the moment.

Let us now consider the self-energy corrections in
Eq. (41). For instance, let us extract a further interaction. For
example, we obtain (indicating the time variables as subscripts
for compactness)

Ck4l′′ll′ ' −i lim
t′−t→0+

∫
dt1 θ(t1 − t)n0

k4

× e−iε̃k4
(t−t1)〈0 |T{jk4

(t1)(c
†

l c
†

l′cl′′ )t′ } |0〉 (51)

and an analogous expression for the renormalization of the
particle line. Evaluating, as before, C to first order, one obtains
for the second and third term

K0,2+3
p1h2p3h4

=
1
2

∑
ll′l′′

[
δh2h4

v̄p1ll′l′′
n0
l′n

0
l′′ n̄

0
l n̄

0
p3

ε̃p3 + ε̃l − ε̃l′ − ε̃l′′
v̄l′′l′lp3

− δp1p3 v̄h2l′′l′l

n̄0
l n̄

0
l′n

0
l′′n

0
h4

ε̃h4
+ ε̃l′′ − ε̃l′ − ε̃l

v̄ll′l′′h4

]
. (52)

We realize that this expression contributes only to the A
matrix and that the second-order contribution to K0 is now
complete.

Of course, as in the case of the screening terms, we also
can sum the p-h bubbles to a full linear-response function.
For this, we should factorize the three-body propagator in
Eq. (51) into a product of a response function and a one-body
propagator

〈0 |T{(c†a2
ca4ca3 )t1 (c

†

l c
†

l′cl′′ )t′} |0〉

'

[
〈0 |T{(c†a2

ca4 )t1 (c
†

l′cl′′ )t′} |0〉〈0 |T{ca3 (t1)c
†

l (t′)} |0〉

− (a3 ↔ a4)
]
− [l↔ l′]. (53)

As indicated, there are four different ways to do this factoriza-
tion, and thus, we multiply the final expression with this factor
to obtain

−
1
2

∑
ll′l′′

δk1k3
v̄ll′k2l′′Ck4l′′ll′ ' −δk1k3

n0
k4

∑
a2a3a4

∑
ll′l′′

v̄k4a2a3a4

×R<a2a4l′′l′
(ω = ε̃k4

− ε̃a3 )v̄ll′k2l′′ . (54)

Proceeding with the second self-energy correction in the
same way, one obtains an analogous expression.

We will discuss the relation with the static form of W in
Sec. IV. The well-known problem coming from the approxi-
mation of Eq. (53) is that if the response function is replaced
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by its uncorrelated p-h response in Eq. (54), one does not
recover the correct second-order expression of the kernel.35
The result is by a factor of two too large, and therefore, one
usually subtracts the second-order contribution in order to
obtain the correct lowest-order contribution of Σ to the kernel
and also of the ensuing RPA correlation energy.35 In principle,
this subtraction procedure is not completely correct since the
corresponding imaginary part of the self-energy has no def-
inite sign. How this can be fixed is explained in Refs. 35 and
36. We will not dwell on this here and ignore this subtlety in
the remainder of the paper, supposing that the uncorrelated
terms are small, and we will concentrate on the comparison
with approximations given in the literature20,21,23 where this
problem is also not addressed.

In our approach, the one-body self-energy corrections
appear directly in the purely static part of the integral ker-
nel. So the self-energy corrections are treated consistently
with the screening terms. This may be important because it is
known that often there are significant cancellations between
both contributions. Since screening and self-energy correc-
tions in the purely static part K0 of the kernel involve again
the response function R, as explained above, a self-consistent
cycle can be established.

C. The dynamic part of the one-frequency kernel K
Let us now discuss the time-dependent (dynamic) part

Kdyn of the interaction kernel in Eq. (34) which is a p-h irre-
ducible four-body propagator of the 2p-2h type. It is straight-
forward to evaluate it to lowest order. Since the dynamic ker-
nel is already explicitly of second order in the interaction, it
is sufficient to evaluate the 2p-2h propagator to lowest (HF)
order. Using Jk1k2

= c†k2
jk1
− j†k2

ck1
and dropping for now, for

simplicity, the factor N0−1

k′1k
′
2

which just gives a minus sign for

the contribution to the B matrix, the full expression of the
second-order dynamic kernel is then

Kdyn,(2)
k1k2k′1k

′
2
(t − t′) = −i〈0 |T{(c†k2

jk1
)t(j†k′1

ck′2 )t′} |0〉0

− i〈0 |T{(j†k2
ck1

)t(c†k′1
jk′2 )t′} |0〉0

+ i〈0 |T{(c†k2
jk1

)t(c†k′1
jk′2 )t′} |0〉0

+ i〈0 |T{(j†k2
ck1

)t(j†k′1
ck′2 )t′} |0〉0, (55)

where the subscript “0” indicates that this term is evalu-
ated to lowest order. The first two terms are self-energy

corrections recognizable by the index pair k1, k′1 or k2, k′2,
whereas the other two terms have “mixed” indices. These
expressions describe the decay of a p-h mode into uncorre-
lated (incoherent) 2p-2h states. The four terms have different
meanings. The two terms with either jj† or j†j describe, as just
mentioned, dynamic self-energy corrections to the particle
and the hole states, respectively. The other two terms with
jj or j†j† describe a p-h exchange between the particle and the
hole. Such incoherent processes have already been considered
a long time ago by Landau37 in his study of the damping of
zero sound in a Fermi liquid. A detailed study of this is given in
Ref. 36.

To obtain the spectral representation of Kdyn,(2), we just
need to consider the generic propagator

− i〈0 |T{(c†k4
c†k3

ck1
ck2

)t(c†k′2
c†k′1

ck′3ck′4 )t′} |0〉0, (56)

calculate its Fourier transform
[ n0

k4
n0
k3
n̄0
k1
n̄0
k2

ω − ε̃k1
− ε̃k2

+ ε̃k4
+ ε̃k3

+ iη

−
n̄0
k4
n̄0
k3
n0
k1
n0
k2

ω − ε̃k1
− ε̃k2

+ ε̃k4
+ ε̃k3

− iη

]
δk1k2k′1k

′
2
δk3k4k′3k

′
4
, (57)

with δk1k2k′1k
′
2
= δk1k′1

δk2k′2
−δk1k′2

δk2k′1
, and use this in Eq. (55). The

obtained expression is well known in the nuclear physics lit-
erature.38 More recently, such expressions have been derived
by Rebolini and Toulouse,23 but starting from the Hedin equa-
tions and without including the self-energy corrections.

Instead of approximating the 2p-2h propagator by its
uncorrelated expression, we can include higher-order effects.
For example, one can factorize it into a product of a response
function and an uncorrelated p-h propagator. Or, one can fac-
torize it into a product of two linear-response functions. The
choice will depend on the physical situation. Such approxima-
tions have been considered in Ref. 39. As in the case of the
self-energy of the one-body Dyson equation, those factoriza-
tions do not give, however, the correct lowest-order limit of
the kernel. If important, one has to correct for it. How this
can be done consistently is explained, as already mentioned,
in Refs. 35 and 36. Let us give explicit expressions for the
spectral representation of Kdyn for the case where we approxi-
mate the 2p-2h propagator into a product of a linear-response
function times an uncorrelated p-h propagator. Typically, one
will evaluate the response function with the RPA method. It is
then easy to get the spectral form of Kdyn (skipping now the
p-p/h-h contributions)

Kdyn
k1k2k′1k

′
2
(ω) =

∑
ν

{ ∑
l2l3l4l′2l

′
3l
′
4

(
δk2 ,k′2

v̄k1l2l3l4

〈0 |c†l2cl4 |ν〉〈ν |c
†

l′4
cl′2 |0〉

ω − (ε̃l3 − ε̃k2
+Ων ) + iη

v̄l′4l′3l3l′2k′1 + δk1 ,k′1
v̄k2l2l3l4

〈0 |c†l4cl2 |ν〉〈ν |c
†

l′2
cl′4 |0〉

ω − (ε̃k1
− ε̃l3 +Ων ) + iη

v̄l′4l′3l3l′2k′2

)

+
∑

l2l4l′2l
′
4

(
v̄k1l2k′1l4

〈0 |c†l2cl4 |ν〉〈ν |c
†

l′2
cl′4 |0〉

ω − (ε̃k′1 − ε̃k2
+Ων ) + iη

v̄k′2l′2k2l′4
+ v̄k2l2k′2l4

〈0 |c†l4cl2 |ν〉〈ν |c
†

l′4
cl′2 |0〉

ω − (ε̃k1
− ε̃k′2

+Ων ) + iη
v̄l′4k1l′2k

′
1

)}
. (58)
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We note that the first two terms on the right-hand side of
the above equation correspond again to self-energy correc-
tions, whereas the last two terms are contributions where
p-h modes are exchanged between the particle and the hole.
We also realize that these exchange contributions correspond
to Eq. (31) of Ref. 20. The “backward going” terms do not
contribute as easily realized. If we consider the static limit
(ω = 0), they should be considered together with Eqs. (47) and
(48). This shall be discussed in more detail in Sec. IV.

Before doing so, it may be worth showing how to include
further p-h correlations in summing up the free p-h propaga-
tors, contained in Eq. (58), to extra RPA modes. This is most
easily done by factorizing the 2p-2h propagator into a fully
antisymmetrized product of two p-h response functions

−i〈0 |T{(c†k4
c†k3

ck1
ck2

)t(c†k′2
c†k′1

ck′3ck′4 )t′} |0〉

' i
[{

[Rk2k4k′2k
′
4
(t − t′)Rk1k3k′1k

′
3
(t − t′) − (k′3 ↔ k′4)]

−[k′1 ↔ k′2]
}
− {k1 ↔ k2}

]
−

[
k3 ↔ k4

]
, (59)

where

Rk2k4k′2k
′
4
(t − t′) =

∑
ν

[
〈0 |c†k4

ck2
|ν〉〈ν |c†k′2

ck′4 |0〉e
−iΩν (t−t′)

+ 〈0 |c†k′2
ck′4 |ν〉〈ν |c

†

k4
ck2
|0〉eiΩν (t−t′)

]
(60)

is the Fourier transform into time space of Eq. (50). The
Fourier transform of Eq. (59) into frequency space is then
easily performed with Eq. (60)

∑
νν′

[ 〈0 |c†k4
ck2
|ν〉〈ν |c†k′2

ck′4 |0〉〈0 |c
†

k3
ck1
|ν′〉〈ν′ |c†k′1

ck′3 |0〉

ω −Ων −Ων′ + iη

−

〈0 |c†k′2
ck′4 |ν〉〈ν |c

†

k4
ck2
|0〉〈0 |c†k′1

ck′3 |ν
′〉〈ν′ |c†k3

ck1
|0〉

ω +Ων +Ων′ − iη

]

+ exchange terms, (61)

where “exchange terms” means that all exchange terms
present in Eq. (59) should be included also here. Inserting
Eq. (61) into Eq. (34) yields an expression equivalent to Eq. (23)
of Ref. 21 (see also Ref. 39). Notably only the first term with +iη
will survive, that is, it enters only the A matrix, as also pointed
out in Ref. 21. Since it is fully antisymmetric between the two-
particle states and two-hole states in entrance and exit chan-
nels, the approximation gives a conserving approximation for
the response function.40,41

IV. COMPARISON WITH GW + BSE
Let us now consider similarities and differences of the

present approach to the response function and the GW + BSE
scheme as commonly used in condensed-matter and chemical
physics.

A first point consists in the fact that in the present formal-
ism, all Coulomb matrix elements are antisymmetrized [see
Eq. (2)], whereas in the GW + BSE scheme, all exchange matrix

elements are usually absent besides the one contained in the
first order of the screening term. This also concerns the W
used within the RPA in condensed-matter physics: only the
bubble diagrams are resummed, as it was done in the origi-
nal work of Bohm and Pines.42 Including then the static limit
of Kdyn (i.e., at ω = 0) in Eq. (58) to K0 of Eq. (41) yields an
expression very similar to the “excitonic” Hamiltonian H2p ,exc

in Eqs. (16) and (21) of Ref. 20. However, there are also substan-
tial differences and, for a detailed comparison, let us give our
full static expression here (summing the p-h bubble exchange
to a full response function and skipping the self-energy and
p-p/h-h contributions for an easier comparison)

Kstat
k1k2k′1k

′
2
= vk1k2k′1k

′
2
− vk1k2k′2k

′
1
−

∑
l1l′1

∑
l2l′2

(
n̄0
k1
n0
k′1
v̄k1l1k′1l

′
1

×
∑
ν

〈0 |c†l′1
cl1 |ν〉〈ν |c

†

l2
cl′2 |0〉

ε̃k2
− ε̃k′2

+Ων − iη
v̄l′2k2l2k′2

n̄0
k′2
n0
k2

+ n̄0
k2
n0
k′2
v̄k2l1k′2l

′
1

∑
ν

〈0 |c†l′1
cl1 |ν〉〈ν |c

†

l2
cl′2 |0〉

ε̃k2
− ε̃k′2

+Ων − iη
v̄l′2k1l2k′1

n̄0
k′1
n0
k1

)

−
∑

l2l4l′2l
′
4

(
n̄0
k1
n̄0
k′1
v̄k1l2k′1l4

〈0 |c†l2cl4 |ν〉〈ν |c
†

l′2
cl′4 |0〉

ε̃k′1
− ε̃k2

+Ων + iη
v̄k′2l′2k2l′4

n0
k2
n0
k′2

+n0
k2
n0
k′2
v̄k2l2k′2l4

〈0 |c†l4cl2 |ν〉〈ν |c
†

l′4
cl′2 |0〉

ε̃k1
− ε̃k′2

+Ων + iη
v̄l′4k1l′2k

′
1
n̄0
k1
n̄0
k′1

)
.

(62)

We see that the first two terms belong to the B matrix and
the last two terms to the A matrix of Eq. (39). In the GW
+ BSE scheme, all antisymmetrized matrix elements v̄k1k2k3k4

in
Eq. (62) are replaced by only the direct term vk1k2k3k4

. In addi-
tion, in the denominators, the differences of orbital energies
are absent so that only the RPA roots Ων remain, which cor-
responds to the static W(0) of the GW + BSE kernel (see, e.g.,
Ref. 20). It is difficult to judge the combined effect of the two
differences of GW + BSE with respect to the above expression
in Eq. (62). The extra orbital energies in the denominators in
our expressions have, however, certainly a reduction effect. A
detailed numerical evaluation is out of the scope of the present
work but shall eventually be presented in the future. It seems
to us that the appearance of the orbital energies in the denom-
inators has its justification. In the work of Romaniello et al.,20

they also appear as an extra static contribution from their W̃
expression in Eq. (27) in Ref. 20 in putting therein ωλ = 0. It
is clear that, although the terms in Eq. (62) are instantaneous,
there can never be an exact equal time process when an RPA
mode crosses between the particle and the hole lines. There is
always an infinitesimal time difference allowing for the orbital
energies to appear in the denominators of Eq. (62).

A further difference of our EOM approach is that the self-
energy contributions appear directly in the kernel. It is pos-
sible to resum them separately, which would lead to dressed
quasi-particles (and quasi-holes), quite similarly to the GW
+ BSE scheme. In this respect, we do not see any significant
difference between the two approaches.
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In our scheme, we obtain the same (approximate)
dynamic contributions to the kernel as obtained by Sangalli
et al.21 [see their Eqs. (22) and (23)]. They also contain the
self-energy contributions. It is also clear that those dynamic
contributions only renormalize the A matrix and give no con-
tribution to the B matrix. On the other hand, in Ref. 21, the
B matrix is not renormalized, not containing the additional
correlations which are summed up in Eq. (41). In Ref. 23,
the renormalization of the B matrix is given only to lowest
order. Let us also point out that the so-called time-blocking
approximation (TBA)43 invented recently in nuclear physics
to derive a kernel depending only on one frequency certainly
has a very close relation with the procedures employed in
Refs. 23, 20, and 21. It may be relevant to realize that the
first two terms in Eq. (62) which derive from Eq. (41) and
renormalize the B matrix are an approximation to Eq. (41)
(see the Appendix). As shown in Sec. V, in some two-body
problems, it may be important to keep the full expression
of Eq. (41).

V. ILLUSTRATION ON THE HUBBARD MOLECULE
The Hubbard model describes electrons on a lattice with

the Coulomb interaction replaced by an on-site constant U.
The well-known Hamiltonian is given by

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

n̂i↑n̂i↓, (63)

where c†iσ and ciσ are the electron creation and destruc-
tion operators at site i with spin projection σ and the
n̂iσ = c†iσciσ are the number operators for electrons at site
i with spin projection σ. As usual, t is the nearest-neighbor
hopping integral. For demonstration purposes, in this work,
we will limit ourselves to the simplest non-trivial case which
is the one of two sites (Ns = 2) with two electrons, the so-called
Hubbard molecule. As the problem has already been solved
exactly with the SCRPA method25 derived from Rowe’s32 EOM,
we only will outline the basic principle here using, however,
the present approach. It is advantageous to write the Hamil-
tonian in momentum space (we consider periodic boundary
conditions)

H =
∑
k,σ

(εk − µ)n̂k,σ +
U

2Ns

∑
k,p,q,σ

c†k,σck+q,σc
†
p,−σcp−q,−σ , (64)

where n̂k,σ = c†k,σck,σ is the occupation number operator
of the momentum-spin mode (k, σ) and εk = −2t cos(k) are
the one-body energies with the lattice spacing set to unity.
Because of having only two electrons and the periodic bound-
ary conditions, the only allowed momenta are k1 = 0 and k2
= −π. Accordingly, we only have two types of p-h operators:
Jσ = c†k1 ,σ

ck2 ,σ with σ = ±1/2. Let us introduce the “charge”
and “spin” operators

J(±) = J↑ ± J↓ (65)

and consider the charge and spin linear-response functions

R(±)(t − t′) = −i〈0 |T *.
,

J(±)(t)J(±)† (t′) J(±)(t)J(±)(t′)

J(±)† (t)J(±)† (t′) J(±)† (t)J(±)(t′)

+/
-
|0〉. (66)

We therefore have to consider two 2 × 2 matrix response func-
tions. For this very simple example, it so happens that the
dynamic part Kdyn of the one-frequency kernel decouples from
the purely static part K0, and only K0 contributes in the p-h/h-
p space. As seen from Eq. (41), the purely static kernel K0 only
contains static two-body correlation functions. They can be
calculated from integrating R(±)(ω) over the frequency in the
upper/lower half complex plane. Since additionally the occu-
pation numbers can also be expressed via the static two-body
correlation functions as (see Ref. 25)

np,σ =
∑
h

〈0 |J†ph,σ Jph,σ |0〉, nh,σ =
∑
p
〈0 |J†ph,σ Jph,σ |0〉, (67)

we have a closed system of equations which can be solved. It
turns out that the exact solution is obtained. This is explained
in detail in Ref. 25 starting, however, with the equivalent EOM
for RPA operators and not with the Green functions and we
will not repeat the whole procedure here.

The fact that the two-body problem is solved exactly by
the SCRPA in the Hubbard model is also found in several other
models, like the Lipkin model27 and the pairing model.27,44
However, it is not a general feature of SCRPA that it solves any
two-body problem exactly. Generally, there exist specific 2p-
2h configurations which have to be taken into account when
solving a two-body problem. It should also be pointed out that
the two-body correlation functions in Eq. (41) cannot be fur-
ther approximated if the exact solution for, e.g., the Hubbard
molecule shall be obtained. Already the forms in Eqs. (47) and
(48) are approximations to Eq. (41) even if the exchange bubble
is resummed to a full linear-response function and it is likely
that they will not maintain the exact solution. It is thus seen
from this example that the present approach leads in a sys-
tematic way to manageable expressions which, if necessary,
sum higher correlations than is the case with the GW + BSE
approach.

Finally, a reduced version of SCRPA called r-RPA is pre-
sented in the Appendix. This approximation has been applied
to the case of a real system: the helium atom (see Ref. 45).
In Ref. 45, both the r-RPA and the GW + BSE solutions are
compared to the exact Hylleraas solution evidencing their
respective performances, similarities, and differences, on a
real system.

VI. CONCLUSIONS
The objective of this work was three-fold. First, we

derived a formally exact one-frequency-only BSE-like equa-
tion for the linear-response function whose integral kernel
only depends on the single frequency of the applied field.
Explicit expressions of this kernel in terms of higher Green
functions are presented. They lend themselves very naturally
to physically motivated approximations. Second, in this way,
known approximations of a single frequency kernel derived
from Hedin’s equations are straightforwardly recovered. It is
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shown that with our approach not only the second-order
expressions for the static (B matrix) and dynamic BSE kernel
given in Ref. 23 can be recovered but that these second-order
terms can naturally be resummed to full linear-response func-
tions. This has also been shown in Refs. 20 and 21 for the
dynamic part, but the renormalization of the static part (B
matrix), which is of the same order as the dynamic one, is
missing there. Taking the static limit (ω = 0) of the dynamic
part, we obtain a complete expression for the static limit of
our kernel. Third, this then allows us to make a detailed com-
parison with the static limit of the kernel of the well known
GW + BSE approach. Between both static approaches, there
exist, besides quite some similarities, substantial differences
which may be interesting to study further in future work with
numerical examples. At the end of the paper, we also show
that for the so-called Hubbard molecule the exact solution can
be recovered from our approach. This is only possible with
a consistent and fully resummed static kernel as presented
here. Let us finally mention that the present formalism is very
much related to the EOM introduced by Rowe and further
elaborated in Ref. 27.
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APPENDIX: THE RENORMALIZED RPA
A very much simplified version of SCRPA consists in

neglecting in K0 all the C correlation function terms. Then, one
obtains for the one-frequency BSE-like equation

Rk1k2 ,k′1k
′
2
(ω) = R̃0

k1k2
(ω)δk1k′1

δk2k′2
+

∑
k3k4

R̃0
k1k2

(ω)v̄k1k4k2k3
Rk3k4k′1k

′
2
(ω),

(A1)

with

R̃0
k1k2

(ω) =
(1 − nk1

)nk2

ω − (ε̃k1
− ε̃k2

) + iη
−

nk1
(1 − nk2

)
ω − (ε̃k1

− ε̃k2
) − iη

. (A2)

We see that this renormalized RPA (r-RPA) equation is like the
standard RPA besides the fact that the occupation numbers
are the correlated ones and not the HF ones. We thus have
to give an expression for the nk ’s which couple back to the
RPA. Such an approximation for the occupation numbers nk
has, e.g., been derived by Catara et al.46 The expressions are
given by

nh = 1 − 〈0 |c†hch |0〉 =
1
2

∑
p
〈0 |c†pchc

†

hcp |0〉, (A3)

and

np = 〈0 |c†pcp |0〉 =
1
2

∑
h

〈0 |c†pchc
†

hcp |0〉, (A4)

where the two-body density matrix can directly be obtained
from the linear-response function. We, therefore, have estab-
lished a minimal self-consistent system of equations where
the occupation numbers are calculated from the response
function.
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