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A software update solving the Bethe2Salpeter equation (BSE)

is reported for the ESCF module of the TURBOMOLE program

for the theoretical description of electronically excited states

of atoms and molecules. A resolution-of-the-identity (RI)

approximation is used for all two-electron electron-repulsion

integrals that are required for solving the equation. Symmetry

is utilized for the point group D2h and its subgroups, and the

BSE approach can be applied in either a spin-restricted or a

spin-unrestricted Kohn2Sham formalism. Triplet as well as

singlet excited states of closed-shell atoms and molecules can

be treated in the spin-restricted formalism. As a side product,

the present software update also allows for the application of

the RI approximation to the Hartree2Fock exchange contribu-

tion that occurs when a hybrid functional is used in time-

dependent density-functional theory. VC 2016 Wiley Periodicals,

Inc.

DOI: 10.1002/jcc.24688

Introduction

The computation of electronic excitation energies of atoms

and molecules via the Bethe2Salpeter equation (BSE) has

attracted considerable attention in recent years.[1–16] In the

present Software News and Update, we report on the imple-

mentation of the BSE approach in the TURBOMOLE pro-

gram[17] using a resolution-of-the-identity (RI) approximation

for all two-electron electron-repulsion integrals that are

required for solving the BSE.

The BSE approach can be applied to atoms and molecules

for the theoretical description of electronically excited states in

a very similar manner as the time-dependent density-function-

al-theory (TDDFT) approach, which is widely used in quantum

chemistry. Accordingly, we have implemented the BSE

approach in the ESCF module[18] of TURBOMOLE, which is the

part of the program that is used for TDDFT calculations.

BSE calculations require quasiparticle energies on input.

These quasiparticle energies can for example be obtained

from GW calculations, which have recently been implemented

(also in the ESCF module) in TURBOMOLE by Kaplan, van Set-

ten, and coworkers.[19–22]

Technically speaking, BSE calculations are very similar to

TDDFT calculations, and because in the software update we

apply the RI approximation not only to the Coulomb terms (as

has been done since many years) but also to the exchange

terms, the new computer code not only enables efficient BSE

calculations but also speeds up ordinary TDDFT calculations

with hybrid functionals (and thus with Hartree2Fock-exchange

contributions) significantly.

In the present article, we present the equations that have

been implemented, some details on the algorithm, and a few

numerical results. To ensure reproducibility, we report 32 sin-

glet excitation energies for the molecules propenal, 1-

phenylpyrrole, and 4-(dimethylamino)benzonitrile. To assess

the performance of the BSE approach, we have computed 100

singlet excitation energies of 28 small organic molecules. Final-

ly, CPU timings are reported for a set of five molecules ranging

in size from benzene to pentacene.

Methods

Formalism

In the Bethe2Salpeter approach, just as in TDDFT, the follow-

ing eigenvalue equation is solved,[23]
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The electronically excited states are counted with the index n

while xn is the corresponding excitation energy. We use a

spin-orbital formalism with spin orbitals up and corresponding

energies Ep. Usually, the spin orbitals up are obtained from a

Kohn2Sham computation while the energies Ep are quasi-

particle energies obtained from a many-body GW computa-

tion. In the following, the subscripts i; j; k; . . . refer to occu-

pied spin orbitals, the subscripts a; b; c; . . . to virtual spin

orbitals, and the subscripts p; q; r; . . . to the full set of spin

orbitals.

The matrices A and B are defined as

Aia;jb5DEia;jb1via;jb2Wij;ab (2)

Bia;jb5via;bj2Wib;aj (3)

with
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DEia;jb5 Ea2Eið Þdijdab (4)

Wpq;rs5
X

tu

�21
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pq;tu
vtu;rs (5)

epq;rs5dprdqs2vpq;rs v0 x50ð Þ½ �rs;rs (6)

where dtu is the Kronecker delta. The elements of the diagonal

matrix v0 x50ð Þ are nonzero only for occupied2virtual pairs kc

and virtual2occupied pairs ck,

v0 x50ð Þ½ �kc;kc5 Ek2Ecð Þ21 (7)

v0 x50ð Þ½ �ck;ck5 Ek2Ecð Þ21 (8)

The four-center two-electron integrals are given in Mulliken

notation as

vpq;rs5 qpjrsð Þ5
ð ð

u�q 1ð Þup 1ð Þ 1

r12
u�r 2ð Þus 2ð Þds1ds2 (9)

Note that in the above formulation we have closely followed

the notation used in section III. A of Ref. [23]. We refer to the

work of Rebolini et al. for further details.[23]

RI approximation

In our implementation, the two-electron integrals of the Cou-

lomb interaction vpq;rs and the static screened interaction

Wpq;rs are computed in the RI approximation,

vpq;rs �
X

P

Rqp;PRP;rs (10)

Wpq;rs �
X
~P ~Q

~Rqp;~P �
21

� �
~P ~Q
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The intermediate quantities RP;rs and ~R ~P ;rs are given by
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X

Q

v21
2
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PQ
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vPQ5 PjQð Þ (13)
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(14)

v~P ~Q 5 ~Pj ~Q
� �

(15)

while the matrix elements of � are computed from the

expression

�~P ~Q 5d~P ~Q 2v~P ~Q (16)

v~P ~Q 52R
X

kc

~R ~P;kc Ek2Ecð Þ21 ~Rkc; ~Q (17)

In the above equations, two distinct auxiliary basis sets uPf g
and u~P

� �
are used, but in actual computations, these basis

sets can of course be chosen to be equal. The auxiliary basis

sets are real.

In Mulliken notation, the three- and two-center two-electron

integrals are given as

Qjrsð Þ5
ð ð

uQ 1ð Þ 1

r12
u�r 2ð Þus 2ð Þds1ds2 (18)

PjQð Þ5
ð ð

uP 1ð Þ 1

r12
uQ 2ð Þds1ds2 (19)

Implementation

Auxiliary basis sets

As already shown in the previous subsection, our implementa-

tion in the TURBOMOLE program[17] relies on the RI approxi-

mation, which makes the code very efficient. For the Coulomb

interaction vpq;rs, the RI approximation is invoked by introduc-

ing the (optional) keyword $rij and providing an auxiliary basis

set (“jbas,” uPf g). For the static screened interaction Wpq;rs; the

RI approximation is invoked by introducing the (mandatory)

keyword $rik and providing an auxiliary basis set (“cbas,”

u~P

� �
). Two different auxiliary basis sets (“jbas” and “cbas”) can

be used for the two interactions, but we recommend to use

only the “cbas” auxiliary basis set u~P

� �
as one single set for

all RI approximations. (To do this, however, the user must edit

the file that contains the auxiliary basis sets and make sure

that the “jbas” and “cbas” sets are identical; of course, also the

“jbas” auxiliary basis sets can be used for all RI approximations

by manipulating the auxiliary-basis-set input file accordingly.)

With respect to this point, we note that the “cbas” auxiliary

basis sets have been optimized for approximating integrals of

the type aijbjð Þ, which are the integrals that occur in the

matrices A and B.

In our TURBOMOLE implementation, the Coulomb interac-

tion vpq;rs can be computed either with or without auxiliary

basis set, whereas the static screened interaction Wpq;rs can

only be computed using the RI approximation.

Static screened interaction

We define a Coulomb matrix v with matrix elements

vpq;rs5 qpjrsð Þ. Then, in terms of the matrix R with elements

RP;rs, we can write the RI approximation in matrix form as

v � R>R (20)

Analogously, for the screened exchange interaction, the RI

approximation takes the form

Table 1. Cartesian coordinates (in Å) of propenal.

Atom x y z

C 20.152147 20.739760 0.000000

O 21.211340 21.314465 0.000000

H 0.804971 21.304092 0.000000

C 0.000000 0.719700 0.000000

C 1.209076 1.272423 0.000000

H 20.911266 1.307850 0.000000

H 1.354992 2.345216 0.000000

H 2.100449 0.652565 0.000000
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Here, we have introduced �R5��~R and ��5�21. In our implemen-

tation, the latter can be computed either by means of a Cho-

lesky decomposition of � (this technique is set as default) or

by means of the iterative procedure

�� i11ð Þ511v�� ið Þ (22)

with �� 0ð Þ51:

Subspace iterations

The TDDFT and BSE are usually solved for a limited number of

low eigenvalues by means of a subspace method that avoids

the explicit construction of the matrices A and B. In this meth-

od, the products of these matrices with a trial vector Z are

computed. For the screened exchange contributions of the

BSE approach, the corresponding matrix2vector products

have been implemented as follows:

rA
ia Zð Þ52

X
jb

Wij;abZjb 5 2
X

~Qj

�Rji; ~Q

X
b

~R ~Q;abZjb

 !
(23)

rB
ia Zð Þ52

X
jb

Wib;ajZjb 5 2
X

~Qj

�R ~Q;aj

X
b

~Rbi; ~Q Zjb

 !
(24)

Results

Test cases

In this subsection, we report excitation energies for the mole-

cules propenal (also known as acrolein), 1-phenylpyrrole, and

4-(dimethyl-amino)benzonitrile (DMABN), computed with the

TURBOMOLE program using the BSE approach, the PBE0 func-

tional,[24] and the 6-311G* basis set.[25] The purpose of report-

ing these energies is to present energies of a few simple test

cases that can easily be reproduced by other computer imple-

mentations of the BSE approach. The molecular geometries

were kept fixed. The geometry of propenal is given in Table 1

while the geometries of 1-phenylpyrrole and DMABN were tak-

en from Ref. [26].

The computation with TURBOMOLE was performed using

the “universal” Coulomb-fitting auxiliary basis sets for H, C, N,

and O from Ref. [27]. These auxiliary basis sets were used for

all RI approximations (Coloumb and static screened exchange).

The quasiparticle energies required for the BSE computation

were generated by shifting all PBE0/6-311G* virtual orbital

energy levels by 5.4904 eV in the case of propenal, by 3.8811

eV in the case of 1-phenylpyrrole, and by 3.5956 eV in the

case of DMABN to higher values (these shifts were obtained

from GW calculations with the FIESTA program[28–30]). Tables

2–4 show the computed BSE excitation energies.

All energies presented in Tables 2–4 agree with the corre-

sponding energies computed with the FIESTA program[28–30]

(with the same orbital basis and auxiliary basis sets) to within

a median absolute deviation of 0.1 meV. The root-mean-

square deviation amounts to 0.3 meV. The energies are plot-

ted in Figure 1.

Peach et al.[26] report a reference value of 4.56 eV for the

2 1A0 charge-transfer state of DMABN. Our BSE value of 4.81

eV is 0.25 eV larger but in rather good agreement with

Peach’s CAM-B3LYP value of 4.91 eV. Figure 2 displays the

transition density of this charge-transfer excitation. Its

Table 2. BSE excitation energies (in eV) of propenal.

A0 A00

7.054 3.763

9.230 7.560

9.592 8.142

9.720 8.388

Table 3. BSE excitation energies (in eV) of 1-phenylpyrrole.

A1 A2 B1 B2

5.316 7.153 7.357 5.055

6.071 7.840 7.717 5.343

6.435 7.927 7.820 6.552

6.995 8.051 8.054 7.070

The values printed in bold type refer to the two charge-transfer excita-

tions studied in Ref. [26].

Table 4. BSE excitation energies (in eV) of DMABN.

A0 A00

4.813 4.559

6.191 5.483

6.507 5.904

6.637 5.959

The value printed in bold type refers to the charge-transfer excitation

studied in Ref. [26].

Figure 1. The excitation energies (in eV) displayed in Tables 2–4, which

were computed with the TURBOMOLE program, are plotted against the

corresponding excitation energies computed with the FIESTA program.
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charge-transfer diagnostic[26] K amounts to 0.75, which in

the present work is computed from the spatial overlap of

the dominating particle/hole pair of (real) natural transition

orbitals (NTOs),

K5

ð ���/NTO
hole rð Þ/NTO

particle rð Þ
���dr (25)

For the 2 1B2 and 3 1A1 charge-transfer excitations of 1-

phenylpyrrole, Peach et al.[26] report reference values of 5.47

and 5.94 eV. Our BSE values of 5.34 and 6.07 eV agree well

with these reference values, indicating that the BSE approach

is able to describe charge-transfer excitations. In Figure 3, we

plot the dominating particle/hole pairs of NTOs of the two

states. The corresponding charge-transfer diagnostics amount

to K 5 0.62 (2 1B2) and K 5 0.20 (3 1A1). The charge-

transfer character of the 3 1A1 state is particularly pronounced.

In the course of this excitation, charge is transferred from the

pyrrole ring, where the hole NTO resides, to the phenyl ring,

where the particle NTO resides (cf., Fig. 3).

CPU timings

For the molecules benzene (1), naphthalene (2), anthracene (3),

tetracene (4), and pentacene (5), Table 5 shows CPU timings for

the calculation of 40 excited singlet states in the def2-TZVP

basis.[31] TURBOMOLE’s grid 4 was used and the convergence

threshold was set to rpaconv 5 6. Five excited states were com-

puted in each of the eight irreducible representations (irreps) of

the D2h point group. The def2-TZVP “cbas” auxiliary basis,[32]

which has been optimized for RI-MP2* calculations in the def2-

TZVP orbital basis, was used for all RI approximations. Timings

for the BSE computations are compared with those for solving

the TDDFT equations using the functionals PBE[33] and PBE0.[24]

The BSE calculations used quasiparticle energies obtained from

an xa-G0W0 calculation[34] with a 5 0.703 and 0.622 for the PBE

and PBE0 functionals, respectively.

Table 5 shows that the timings for the BSE calculations as

well as for the TDDFT calculations with the PBE0 hybrid func-

tional are of the same order of magnitude as for the TDDFT

calculations with the generalized gradient approximation

(GGA) functional PBE. Only for the largest of the five systems,

pentacene, the BSE calculations were 4–5 times more time

consuming than the GGA-TDDFT calculation in the RI

approximation.

It is worth noting that without invoking any RI approxima-

tions, the TDDFT calculation on pentacene with the PBE0

hybrid functional took 9 h and 39 min. The computing time

was somewhat reduced by applying the RI approximation to

the Coulomb interaction (7 h and 33 min), but only after

applying the RI approximation also to the Hartree2Fock

exchange part of the hybrid functional, the computation time

was reduced to as short as 1 h and 40 min (cf., Table 5).

Hence, computing the (static screened) exchange contribution

in the RI approximation speeded up the calculation by about

a factor of five.

Performance

Similarly to what was done in Ref. [4], we have computed sin-

glet excitation energies using the BSE approach for the test

set of Ref. [35]. This test set comprises 28 small organic mole-

cules with theoretical best estimates (TBE) for 104 singlet exci-

tation energies. We have disregarded the 1 1B3g state of s-

tetrazine as well as the 2 1Ag states of butadiene, hexatriene,

and octatetraene, which are states of “doubly-excited charac-

ter.” Thus, 100 excitation energies of the test set were ana-

lyzed by comparing the computed energies with the TBE-2

values of Ref. [35]. The geometries were taken from Ref. [36].

These were kept fixed.

We have not only applied the BSE and TDDFT approaches

(using the PBE0 functional) but also the CC2[37] approach as

implemented in the RICC2 module[38] of the TURBOMOLE pro-

gram.[17] These CC2 calculations were carried out in the same

def2-TZVP basis (and auxiliary basis) as used in the BSE calcu-

lations, but in contrast to the BSE calculations, the 1s core

orbitals of C, N, and O were kept frozen in the CC2 calcula-

tions (frozen-core approximation).

The quasiparticle energies for the BSE approach were either

obtained from xa-G0W0 or from G0W0 calculations and we refer

to the corresponding results as xa-G0W0-BSE and G0W0-BSE in

the following. In the G0W0 calculations, we restricted the pre-

factor Zp in eq. (4) of Ref. 34 to values between 0 and 1. We

applied the PBE0 functional for the xa-G0W0-BSE, G0W0-BSE,

and TDDFT calculations. The parameter a 5 0.651 was deter-

mined by minimizing the root-mean-square deviation from the

Figure 2. Transition density of the excitation at 4.813 eV of DMABN. Green

corresponds to a gain of electron density while orange corresponds to a

loss of electron density (iso-value: 0.005 a23
0 ). [Color figure can be viewed

at wileyonlinelibrary.com]

Table 5. CPU timings (in minutes:seconds) for the computation of 40 sin-

glet excitation energies (5 in each irrep of D2h) of benzene (1), naphtha-

lene (2), anthracene (3), tetracene (4), and pentacene (5), measured in

the def2-TZVP basis on a single Intel
VR

Xeon
VR

X5650 (12M Cache,

2.66 GHz) processor.

PBE/DFT PBE/BSE PBE0/DFT PBE0/BSE

1 1:54 (7) 1:30 (10) 3:22 (8) 1:34 (10)

2 5:21 (8) 6:27 (13) 11:04 (9) 6:22 (13)

3 10:09 (8) 19:34 (13) 25:35 (9) 20:07 (13)

4 15:31 (8) 42:11 (12) 58:35 (11) 45:38 (13)

5 20:54 (9) 86:14 (13) 100:07 (9) 92:50 (13)

The number of iterations is given in parentheses.

*Method based on second-order Møller2Plesset perturbation theory,

implemented using a resolution-of-the-identity approximation.
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reference values. Note that in the xa-G0W0 approach, only

exchange contributions are computed. In this approach,[34] the

quasiparticle energy Ep is obtained by adding the difference

between the exchange self-energy RX and the exchange

potential VX (scaled by an empirically optimized parameter a)

to the Kohn2Sham orbital energy EKS
p ,

Ep5EKS
p 1ahupjRX2VXjupi (26)

The TDDFT and CC2 excitation energies are plotted against the

TBE-2 values in Figure 4 while the xa-G0W0-BSE and G0W0-BSE

energies are plotted in Figure 5. Table 6 shows the statistical

analysis of the deviations of the computed excitation energies

from the TBE-2 values.

Figures 4 and 5 as well as the statistical analysis presented

in Table 6 show clearly that the performance of the BSE

approach is not as good as the performance of the TDDFT and

CC2 methods. In agreement with the study reported in Ref.

[4], we find that the G0W0-BSE excitation energies are too

small on average. The xa-G0W0-BSE energies are more evenly

distributed about the TBE-2 reference values, but the spread

of the distribution is larger than for the TDDFT and CC2

results. Anyway, the results presented here are only prelimi-

nary and a more thorough performance assessment of the BSE

approach would be desirable. Such an assessment would for

example address a large variety of functionals, basis sets, and

GW methods. It may also be worthwhile to investigate which

set of Kohn2Sham orbital energy levels should be corrected

Figure 4. TDDFT (red circles, computed at the PBE0/def2-TZVP level) and

CC2/def2-TZVP (blue stars) excitation energies plotted against the theoreti-

cal best estimates (TBE-2 values) of Ref. [36]. [Color figure can be viewed

at wileyonlinelibrary.com]

Figure 5. Computed xa-G0W0-BSE (red circles) and G0W0-BSE (blue stars)

excitation energies plotted against the theoretical best estimates (TBE-2

values) of Ref. [36]. Computed at the PBE0/def2-TZVP level. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 3. Dominating particle/hole pairs of NTOs of the excitations at 5.343 eV (left pair) and 6.071 eV (right pair) of 1-phenylpyrrole (iso-value: 0.05 a23
0 ).

[Color figure can be viewed at wileyonlinelibrary.com]
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or shifted when generating the quasiparticle energies for the

BSE calculation. Furthermore, the BSE approach may outper-

form the TDDFT approach for states with multiple-excitation or

charge-transfer character, as for example occurring in

transition-metal complexes. It remains to be seen whether the

BSE approach could be a useful tool for the study of coopera-

tive effects in electronic spectra of oligonuclear transition-

metal complexes.[39]

Conclusions

The BSE approach has been implemented in the TURBOMOLE

program. The implementation is efficient due to the applica-

tion of RI approximations to all two-electron electron-repulsion

integrals (Coulomb and exchange). As a side product, the

implementation also allows for the application of the RI

approximation to the Hartree2Fock exchange contribution in

standard TDDFT calculations.

Only preliminary results are presented in the present article

and a more thorough assessment of the BSE approach, in par-

ticular with respect to applications to transition-metal com-

pounds, would be desirable.
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Table 6. Statistical analysis in terms of mean deviation (DEV), mean abso-

lute deviation (ABS), maximum absolute deviation (MAX), root-mean-

square deviation (RMS), and median absolute deviation (MAD).

xa-G0W0-BSE G0W0-BSE TDDFT CC2

DEV 20.04 20.50 20.06 0.13

ABS 0.50 0.61 0.22 0.16

MAX 1.37 1.94 0.71 0.73

RMS 0.59 0.67 0.28 0.21

MAD 0.23 0.15 0.10 0.06

All values in eV.
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