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Excitonic and Quasiparticle Gaps in Si Nanocrystals
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We present calculations of the one- and two-particle excitations in silicon nanocrystals. The one-
particle properties are handled in the GW approximation, and the excitonic gap is obtained from the
Bethe-Salpeter equation. We develop a tight binding version of these methods to treat clusters up to
275 atoms. The self-energy and Coulomb corrections almost exactly cancel each other for crystallites
with radius larger than 0.6 nm. The result of this cancellation is that one-particle calculations give quite
accurate values for the excitonic gap of crystallites in the most studied range of sizes.

PACS numbers: 71.24.+q
One of the most challenging problems concerning semi-
conductor nanocrystals remains the accurate prediction of
their excitonic energy gap. For silicon, a number of calcu-
lations of the independent particle gap ´0

g have been per-
formed based either on empirical techniques (tight binding
[1] or pseudopotentials [2]) or on the ab initio local density
approximation (LDA) [3]. In the latter case, as LDA under-
estimates the bulk band gap, the results are usually shifted
by the bulk correction. Interestingly, these corrected LDA
band gaps are in quite good agreement with the best tight
binding or pseudopotential results [3,4]. The second step
has usually been to subtract from this value the screened
direct electron-hole attraction. However the whole proce-
dure is not clearly justified and conflicting points of view
[5–7] have been expressed concerning its validity. The
aim of this Letter is thus to clarify this problem. For this
we express the excitonic gap ´exc

g as the difference between
the quasiparticle gap ´

qp
g (the difference between the sepa-

rate electron and hole quasiparticle energies) and Ecoul, the
attractive interaction between these two quasiparticles.

´exc
g � ´qp

g 2 Ecoul � ´0
g 1 dS 2 Ecoul , (1)

where ´
qp
g is written as the sum of the independent par-

ticle value ´0
g and a self-energy correction dS. The main

result of the present work is that there is strong cancellation
between the two large quantities dS 2 dSb (where dSb

is the bulk value) and Ecoul, such that ´exc
g � ´0

g 1 dSb.
This justifies why the above-mentioned single particle cal-
culations should yield accurate results. We also show that
dS and Ecoul are dominated to a large extent by classical
electrostatic contributions.

To perform these calculations, we proceed in two steps:
(i) We calculate the separate electron and hole quasipar-
ticle energies via the GW method [8], and (ii) we determine
the attractive Coulomb interaction between these quasipar-
ticles by resolution of the Bethe-Salpeter equation. Simi-
lar work has already been achieved with success from an
ab initio point of view for bulk semiconductors [9], Na4
clusters [10], and small silicon clusters saturated by hy-
drogen atoms (up to Si14H20) [11]. However the compu-
tation is very time consuming and cannot be extended to
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nanocrystals. This is why we have chosen here a tight bind-
ing formulation which allows one to treat easily nanocrys-
tals with a diameter up to 2.2 nm and will help to clarify
the situation concerning the gap.

We first determine the self-energy correction dS to the
gap using the GW approximation [8] of the self-energy
operator S which works well for bulk semiconductors [12].
S is given by [13]

S�r, r0, v� � 2
X
k

ck�r�c�
k �r0�

3

∑
nkW�r, r0, ´k 2 v�

1
1
p

Z ImW�r, r0, v0�
v 2 ´k 2 v0 1 id

dv0

∏
,

(2)

where the ck are the eigenstates of the one-particle
equations of energy ´k . W�r, r0, v� is the dynami-
cally screened electron-electron interaction, equal toR

´21�r, r00, v�V �r00, r0, v� dr00, where V is the bare
Coulomb interaction, and ´21 is the inverse frequency
dependent dielectric function. We have shown recently
that tight binding is an efficient way to calculate ´21 even
for large silicon crystallites [14], and we apply it here
to simplify the GW calculation. The eigenstates ck are
defined in an atomic basis composed of one s and three
p orbitals for each silicon atom. Because of the neglect
of terms involving overlaps of different atomic orbitals,
the main advantage of the tight binding method is that all
the functions and operators (e.g., ´21, V ) are defined by
matrices at discrete values of r �r0� corresponding to the
atomic positions Ri , the size of the matrices being equal
to the number of atoms in the system. The matrix of W
is equal to the product of the matrices of ´21 and V . ´

itself is equal to I 2 VP, where P is the polarizability
matrix [14]. S is thus also defined by a matrix which can
be calculated from Eq. (2).

The previous discussion shows that tight binding al-
lows us to get information on the self-energy operator S.
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However what we really want is, starting from a given in-
dependent particle Hamiltonian h, to get the correspond-
ing self-energy correction dS. Calling nxc the exchange-
correlation part of h, dS can be expressed to first order in
perturbation as [15]

dS � �ccjS�´c� 2 nxcjcc� 2 �cnjS�´n� 2 nxcjcn� ,

(3)

where cc, cn are the eigenstates of energy ´c, ´n corre-
sponding, respectively, to the lowest unoccupied and high-
est occupied orbitals of the cluster (LUMO and HOMO).
Our main problem here is then to calculate nxc. The most
natural method is to start from the tight binding Hamilto-
nian h � hTB. The corresponding nxc � �nxc�TB is sim-
ply transferred without change from the bulk to the cluster
case. It thus represents the best approximation to Sb , the
bulk self-energy. We thus get the simple recipe that dS

can be obtained by replacing �nxc�TB by Sb�´cb� in the
first term of Eq. (3) and by Sb�´nb� in the last one, where
´cb and ´nb are the bulk values. The corresponding re-
sults are given in Fig. 1 as a function of the cluster radius
R � 3a3N�32p , where a is the bulk lattice constant, and
N is the number of silicon atoms.

For obvious reasons one might also want to get dS start-
ing from ab initio LDA calculations, i.e., using in (3) S de-
duced from tight binding with the corresponding �nxc�LDA.
In this case it is more difficult to determine S 2 �nxc�LDA
since a central difficulty in tight binding comes from the
use of a minimal basis set, so that the completeness rela-
tion

P
k ck�r�c�

k �r0� � d�r 2 r0� is not verified. The con-
sequence is that the short range part of S (when r ! r0)
is not correctly described [15], and it is precisely this part
which is well approximated by �nxc�LDA [16]. We have

FIG. 1. Variation versus size of the self-energy correction
�dS 2 dSb� in Si nanocrystals (�: full tight binding; 3:
first LDA method; �: second LDA method). Continuous line:
classical electrostatic energy [Spol, Eq. (4)] for the separate
addition of an electron and a hole in a nanocrystal.
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thus calculated S 2 �nxc�LDA by two distinct methods:
(1) Following the arguments of Ref. [16] we consider that
the short range part of S corresponds to �nxc�LDA so that
the matrix S 2 �nxc�LDA is simply equal to S in which
the diagonal terms are removed; (2) following Ref. [15]
we replace �nxc�LDA by the self-energy operator Sh of the
homogeneous electron gas with the same electron density.
The matrix elements of Sh are also calculated in tight bind-
ing. The homogeneous gas is described using a simple
Thomas-Fermi model, where the matrix P of the polariz-
ability which defines ´ is diagonal. Each diagonal term of
P is equal to N�´F�, the density of states per atomic vol-
ume at the Fermi level of the free electron gas (we use for
the atomic volume of silicon the bulk silicon value and for
hydrogen a spherical volume of radius 1 Å).

We use the tight binding parametrization of Ref. [17]
which includes interactions up to third-nearest neighbors
and three center terms. For bulk silicon, this allows one to
get a quite good band structure over a large energy range
and a correct dielectric function (e.g., static dielectric con-
stant � 11.05). For hydrogen atoms, we include only near-
est neighbors Si-H interactions and we fit the tight binding
parameters on the LDA electronic structure of SiH4. One
then calculates dS. The frequency dependence of ´ is
completely evaluated and there is no free parameter in the
calculation. The self-energy corrections to LDA calculated
for bulk Si �dSb� are, respectively, 0.41 eV and 0.75 eV
with the first and second methods, to compare with an av-
erage difference of �0.65 eV between experimental and
LDA gaps [12] (the full tight binding one is zero by con-
struction). In Fig. 1 we plot dS 2 dSb calculated for
nanocrystals containing up to 275 Si atoms. In spite of
their differences, the three approaches give very similar
results, especially for R . 0.6 nm. For smaller clusters,
the results become more scattered, in particular, those ob-
tained with the second method to calculate S 2 �nxc�LDA
tend to differ slightly from the others. We attribute this
to the increasing importance of the hydrogen terminations,
where our approximations are less justified.

We now show that the main contribution to dS 2 dSb

is actually a classical electrostatic effect [18]: When one
puts an extra electron (or hole) at site r into a nanocrystal,
the electronic relaxation (screening) induces charges at the
surface and the extra particle interacts with this self-image
charge distribution leading to a self-polarization energy
Epol�r� as discussed in Ref. [18]. We can then average this
quantity over the cluster with a statistical weight jc�r�j2,
where c is the particle wave function. The total result
Spol is obtained in this way for the separate addition of
one electron plus a hole into the cluster. An excellent
approximation is obtained by using an effective mass wave
function c�r� ~ sin�kr��r which leads to [18]

Spol �
µ
1 2

1
´�R�

∂
e2

R
1 0.94

e2

´�R�R

µ
´�R� 2 1
´�R� 1 1

∂
,

(4)
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where ´�R� is an effective dielectric constant defined for
each crystallite which depends on its radius R, because
the polarizability decreases when the band gap opens
[18]. We see in Fig. 1 that dS 2 dSb is well given
by Spol. Recently, Ögüt et al. [5] have proposed to
calculate the self-energy directly from LDA ��dS�LDA �
�´qp

g �LDA 2 �´0
g�LDA	 using �´qp

g �LDA � E�n 1 1� 1

E�n 2 1� 2 2E�n�, where E�n� is the LDA total energy
of the n-electron neutral cluster. As already shown in
Ref. [7], the values of �dS�LDA calculated in Ref. [5]
are equal to Spol within 0.1 eV, i.e., LDA contains the
self-polarization term but is unable to produce the nxc
discontinuity across the gap for the bulk [6]. We conclude
that ´

qp
g � �´qp

g �LDA 1 dSb holds in a large range of
cluster sizes.
We now calculate the excitonic gap ´exc
g by solving the

Bethe-Salpeter equation for the two-particle Green’s func-
tions [19–21]. We follow the same procedure as Ref. [11],
writing the triplet excitons:

�´qp
n 2 ´qp

m �Amn 1
X
m0n0

Kd
mn,m0n0�V�Am0n � VAmn , (5)

where Amn is the coefficient of the expansion of
the total wave function in a Slater determinantal ba-
sis corresponding to the single particle excitation of
an electron in state cn (energy ´

qp
n ) and a hole in

state cm (energy ´
qp
m ). ´

qp
n and ´

qp
m are known from

the GW calculations, while Kd is the effective direct
electron-hole interaction matrix which can be expressed as
Kd
mn,m0n0�V� �

Z
dr dr 0c�

n�r�cn0�r�c�
m�r 0�cm0�r 0�

i
2p

Z
dv e2ivtW�r , r 0, v�

3 ��V 1 v 2 ´
qp
n0 1 ´qp

m 1 i01�21 1 �V 1 v 2 ´qp
n 1 ´

qp
m0 1 i01�21	 . (6)
As for GW we calculate these matrix elements in a tight
binding framework. For the frequency dependence of (6)
we make use of a single plasmon pole approximation to-
gether with a first order expansion of the correction with
respect to the static approximation, in a way similar to [11].
We then diagonalize the matrix equation (5), increasing the
number of electron-hole states till convergence is reached
(this usually requires �10 electron and hole states). The
lowest eigenvalue obtained in this way thus corresponds
to the triplet exciton gap ´exc

g . The corresponding results
are given in Fig. 2. However, for reasons which will be-
come clear later, we have preferred to plot Ecoul versus
size, taken from (1) as the difference ´

qp
g 2 ´exc

g . We also
compare the computed Ecoul with the result of the classical
electrostatic argument of [18], where the effective interac-
tion for the electron and hole at distance re-h is the sum of
two terms: a direct screened interaction e2�´�R�re-h plus
the interaction of one particle with the polarization charge
induced by the other [18]. Taking the average of this with
respect to the electron and hole distribution in the effective
mass approximation gives �0.79�´�R� 1 1	 �e2�R� which
we plot in Fig. 2. The values for Ecoul are well approxi-
mated by the classical law, even if this latter tends to be too
large for a small cluster, where the influence of the bound-
ary conditions becomes important (the effective mass ap-
proximation as used underestimates the radius R of the
crystallite resulting in an overestimation of Ecoul).

We also plot in Fig. 2 the difference �dS 2 dSb� 2

Ecoul for our two extreme values of dS 2 dSb, and we
compare with the same quantity obtained from the full
ab initio GW calculation [11] for SiH4, Si5H12, Si10H16,
and Si14H20. Our values fall in the same range as the
ab initio values, especially those arising from the second
LDA model. A striking feature displayed by Fig. 2 is that
the quantities Ecoul and dS 2 dSb, while being pretty
large, compensate each other to a large degree and, for
clusters with R . 0.6 nm, the two quantities are practi-
cally identical so that their contributions to the excitonic
gap cancel each other. From Eq. (1) one thus gets

´exc
g � ´0

g 1 dSb . (7)

This means that ´exc
g is directly given by the single par-

ticle gap �´0
g�TB in full tight binding (where dSb � 0) and

�´0
g�LDA 1 0.65 eV in local density calculations. This re-

sult not only justifies the use of single particle calculations
to get the excitonic gap but also explains the agreement

FIG. 2. Exciton Coulomb energy �Ecoul� versus size in Si
nanocrystals (✛ : full GW 1 Bethe-Salpeter calculation; contin-
uous line: classical electrostatics calculation with effective mass
wave functions). Difference between the self-energy correction
dS 2 dSb and Ecoul (�: present calculations, full tight
binding; �: present calculations, second LDA approximation;
3: ab initio results of Ref. [11]).
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between empirical and LDA results once these are shifted
by the bulk correction 0.65 eV [3]. Of course, the cancel-
lation is not strictly exact but for R . 0.6 nm it is verified
to better than 0.2 eV in Fig. 2. One can also notice that
Eq. (7) is likely to hold true to some extent for other semi-
conductor crystallites. We have checked that this is indeed
the case for Ge and even for C for which, at R � 0.8 nm
the deviation from prefect cancellation is 0.8 eV still small
compared to the gap value (�12 eV in this case).

An important point to consider is the accuracy of our
tight binding predictions. We believe that the most impor-
tant source of errors is the short range contribution in the
GW part. In this regard one measure of the uncertainty in
our calculations is the dispersion of our results for dS 2

dSb between the three approximations used to include this
short range term. The corresponding error is 60.2 eV at
R � 0.6 nm but decreases very rapidly with size to be-
come practically negligible at R � 0.8 nm. Another in-
teresting point is illustrated in Fig. 2 which shows that
our results with the Thomas-Fermi approximation (second
LDA model) agree well with the ab initio calculations for
small crystallites. As they also provide a fairly accurate
bulk value dSb � 0.75 eV this certainly means that they
must remain practically exact over the whole range of sizes,
strengthening the conclusion concerning the cancellation
between dS 2 dSb and Ecoul. Finally we also obtain the
same cancellation effect using another inferior tight bind-
ing parametrization of bulk silicon [22] or even when using
other boundary conditions with no hydrogen terminations,
the sp3 dangling bonds at the surfaces being simply re-
moved from the tight binding basis.

In conclusion we have calculated the excitonic gap of
silicon crystallites from the most accurate methods avail-
able (GW 1 Bethe-Salpeter equation). We have used a
tight binding formulation which allows one to handle large
clusters (with radius up to 1.1 nm). Our central result is
that for crystallites with radius larger than 0.6 nm there is
cancellation between the change in self-energy correction
with respect to the bulk and the Coulomb term. This means
that the lowest excitonic energy is correctly predicted by
simple one-particle theories like LDA with the bulk cor-
rection for the gap or the best semiempirical tight binding
or pseudopotential calculations.

The Institut d’Electronique et de Microélectronique du
Nord is UMR 8520 of CNRS.
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