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It is shown how the energy denominators encountered in various schemes for electronic structure calculation can be removed
by a Laplace transform technique. The method is applicable to a wide variety of electronic structure calculations.

Recent development of direct methods for elec-
tronic structure calculations [1-4] has allowed the
application of rigorous ab initio theory to molecules
of a size which was unthinkable only a few years ago.
SCF calculations are now possible on systems with
nearly 2000 basis functions [5,6], and even at the
correlated level, very large basis sets are routinely
being used. [7] The bottleneck in these correlated
calculations is usually the storage and manipulation
of integrals in an MO basis, rather than the CPU
time. Especially in extended systems, the informa-
tion contained in these integrals could be substan-
tially compressed if the orbitals were localized, with
a resulting saving in the storage requirement. Lo-
calization of orbitals may also be advantageous from
other points of view, e.g. for reducing basis set su-
perposition errors [8]. However, many schemes for
electron correlation place restrictions on such orbital
localization, and a deviation from canonical orbitals
often requires the use of iterative schemes [8-10].

We suggest here an elementary but useful treat-
ment based on a Laplace transform, which is appli-
cable to a wide variety of electronic structure cal-
culations whenever energy denominators are
encountered. Second-order perturbation theory may
suffice as one simple illustration of the technique:

In a spin-orbital formalism, the second-order cor-
rection to the electronic energy can be written as

(abl | 5>

2
E¢ )=_% ,
ijab £a+8h =& —Ej

(1)

where (ab| |y =ab|ij} —{ab|ji}, and
. 1
Cabliy= [ a2 = Dw(2) an dx
1

(spin integration) . (2)

As usual, 4, J, ... in (1) denote occupied MOs, and 4,
b, ... the virtuals. By introducing a Laplace transform
for the denominator in (1),

(eater—g—g)~"
= jexp[—(ea+£h—e,-—8j)t] de, (3)
0

one obtains

ijab

E®=_! J‘dz Y (ab|lij)?
0

X exp[ — (e, te,—&—¢)t] . (4)

The -dependence of the integrand can now be trans-
ferred to the orbitals,

wA1)=v,(0) exp(3&1)

for the occupied orbitals (and zero for virtuals),
(5a)

Ya(1) =9, (0) exp(—1é.0)

for the virtuals (zero for occupied) , (5b)
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after which the correlation energy takes the form

EO) - jem(r)dz, (6)
0

where

e =-14 Z{<a(1)b(Z)|1i(t)j(t)>2. (7)
ij.ab

The significance of the above lies in the fact that a
canonical representation is no longer required when
the sum over pairs in (7) is carried out. Due 1o the
generalized definition of the orbitals, the summa-
tions need not be restricted to any particular sub-
spaces. This leaves some additional flexibility in de-
fining different types of orbital rotations for
computational convenience. One may, for instance,
define rotations of the orbital spaces by means of
various unitary matrices,

Nbas

V= Z & Uy, (8a)

Nbas

o= Z w, Uy, (3b)
7

where the matrices U for the transformations of the

indices are unitary. This trivially leads to

eP=—3 ¥ Y (ab||Ij>Ijllaby Uy Uy,

ab I

=-1 ¥ (abl1l)?, (9)

and similarly for transformation of the other indices.
There exist several important classes of unitary ro-
tations of the orbital space for which (7) is invar-
iant. These include separate orbital rotations applied
to the four indices i;/;a; b, different rotations for dif-
ferent ¢ values, etc. Note that the set of w(¢) are not
normalized; therefore, even a “unitary” (Noce X Noce)
rotation in the occupied space leaves the ¢ non-or-
thogonal. However, U does not need to have an oc-
cupied-virtual blocked structure. Any unitary U
would suffice, which opens the possibility for using
non-orthogonal orbitals within the current scheme.

Schemes employing localized or non-orthogonal
orbitals can, therefore, readily be implemented. This
1s especially attractive in very large systems where
one cannot store even the transformed integrals
{ij||ab) in a canonical basis. Localization signifi-
cantly increases the sparsity of the transformed in-
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tegrals, thereby reducing the storage requirement.
Non-orthogonality i1s important in this context in or-
der to remove the localization tails.

The integral in (6) must be evaluated numeri-
cally. This is not a major obstacle, however, since
e (1) is a quite well-behaved, monotonically de-
creasing function. With logarithmically spaced
quadrature points, no more than 10-15 points are
required to obtain accuracy at the micro-hartree level.
Especially with localized orbitals in extended sys-
tems, the price paid for the repeated evaluation of
e (1) at different values of ¢ is often more than off-
set by the much smaller “effective” orbital spaces
needed in a localized picture.

To summarize, it is shown how the energy denom-
inators in perturbation theory, which preclude lo-
calization and other types of orbital rotations, can be
replaced by a numerical integration over an auxiliary
variable. The rotations made possible by such a tech-
nique are not restricted to simple unitary rotations
within the occupied orbital space. Second-order per-
turbation theory is chosen as a simple example to il-
lustrate the technique. The approach is quite gen-
eral, however, and can be applied to higher orders of
perturbation theory as well as 1o other types of cor-
relation treatment where energy denominators occur.
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