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Laplace transform techniques in M(I)lIer-Plesset perturbation theory 
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We discuss how the computational obstacles related to energy denominators in various 
schemes for electron-correlation calculations can be circumvented by a Laplace transform 
technique. The method is applicable to a wide variety of electronic structure calculations. We 
discuss in detail an algorithm for the contribution of triple excitations in fourth-order Mq,ller­
Plesset perturbation theory, which grows only with the sixth power of the siz~ of the system, as 
compared to conventional N7 algorithms. Special consideration is given to efficient schemes 
for numerical quadrature of the integrals occurring in the Laplace transformations. 

I. INTRODUCTION 

Recent development of direct methods for electronic 
structure calculations 1-4 has allowed the application of rig­
orous ab initio theory to molecules of a size which was un­
thinkable only few years ago. Self-consistent field (SCF) 
calculations are now possible on systems with nearly 2000 
basis functions5

•
6 and, even at the correlated level, very large 

basis sets are routinely being used.7,s However, these corre­
lated methods generally show a steep power-law dependence 
on the size of the system or, more precisely, on the dimen­
sionality ofthe occupied and virtual spaces used in the corre­
lation treatment. In a previous paper9 we have used a La­
place transform to eliminate the energy denominators in 
perturbation theory, lifting the constraint of canonical orbi­
tals. In a spin-orbital formalism, the second-order correc­
tion to the electronic energy can be written as 

(la) 

(lc) 

where 

1 
e(2) (t) = - - L (a(t)b(t) lIi(t)j(t»2 

4 ijab 
(2) 

and 

(3a) 

.) Present address: Institut fUr PhysikaIische Chemie (Theoret. Chemie). 
Universitat Karlsruhe (TH), Kaiserstr. 12.7500 Karlsruhe 1. Germany. 

(3b) 

As usual, the indices i,j,k, ... denote occupied orbitals, 
a,b,c, ... denote virtuals, and the double-bar bracket (pqllrs) 
is a shorthand notation for the combination of integrals, 

(pqllrs) = (pqlrs) - (pqlsr) = (prlqs) - (pslqr). (4) 

At the expense of evaluating the integral (1 c), which can be 
accomplished by any conventional numerical quadrature 
scheme, the energy denominators are eliminated and, hence, 
the requirement of canonical orbitals is lifted. The function 
e(2) (t) is quite well behaved and monotonically decreasing, 
and this integration is not a major computational obstacle. 

In this work we show that, with a suitable choice of 
quadrature points (see below) fewer than 10 points are re­
quired for 6-7 digits of accuracy, which is usually sufficient 
to obtain correlation energies within a micro-hartree. Espe­
cially with localized orbitals in extended systems, the price 
paid for the repeated evaluation of e(2) (t) at different values 
of t is more than offset by the much smaller effective orbital 
spaces needed in a localized scheme.lO,ll The exponential 
factors in Eq. (3) will effectively eliminate all but the highest 
occupied and lowest virtual orbitals for large values of t. 
Accordingly, the quadrature points corresponding to large t 
values will be relatively inexpensive with a reasonable 
screening to eliminate numerically insignificant contribu­
tions. It is also worth noting that the contributions for differ­
ent quadrature points can be evaluated in parallel, and the 
scheme is therefore well suited for many modern, high-per­
formance computer architectures. 

In this work we demonstrate that a similar technique 
can be used to effectively decouple the nested summations in 
higher-order perturbation theory, allowing for independent 
partial summations and a lower overall power dependence 
on the basis set size. We illustrate the technique with an 
application to the contributions from triple excitations in 
fourth-order Mq,ller-Plesset perturbation theory. 
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490 M. Haser and J. AlmltH: M¢lIer-Plesset perturbation theory 

II. PERTURBATION THEORY 

In fourth-order M0ller-Plesset perturbation theory, the most time-consuming contributions to the total energy are of the 
form, 

E(4) = '" '" '" (\{I"IVI\{Iv)(\{IvlVl\{IT)(\{ITIVI\{Iu)(\{IulVl\{I,,) (5) 
" ~ ~ ~ (E~O) _E~O»(E~O) _E~O»(E~O) _E~O» 

\{I v and \{I u are doubly excited with respect to the reference state \{I", whereas \{I T can be singly, doubly, triply, or quadruply ex­
cited. In M011er-Plesset perturbation theory, the sums over k-tuply excited states are replaced by 2k-fold summations over 
orbitals, and the energy differences in the denominators are expressed as orbital energy differences. For the most general 
contributions, expressions involving up to 2M orbitals occur in Mth order ofM0ller-Plesset (MP) perturbation theory. 

To illustrate the Laplace integration technique, we consider one typical expression for the MP4 triples contribution to the 
MP4 energy of the form 12-14 

6.E (4) (1) = L (ijllab ) (ak lied) (eb Ilek ) (ed ljij) 
ijkabcde (Ea +Eb -E; -E)(Eb +Ec +Ed -E; -Ej -Ek)(Ed +Ee -E; -Ej ) 

(6) 

Introducing the usual notation 

Cij!1 = (ijllab> (7) 
(Ea +Eb -E; -Ej ) 

along with a Laplace transform for the remaining denomina­
torin (6), we obtain 

1"0 ijk~de C ij!1 (ak lied> (eb Ilek > 

XC (l) - t[(Ed- E,-<) + (Eb+Ec-Eo)]dt 
'Jde e . (8) 

By introducing the auxiliary matrices 

and 

(9) 

Yde•ab (t) = L (ak lied) (eb Ilek)e - (EbHc- EO)', (10) 
kc 

the expression for the energy contribution under considera­
tion takes the form 

aE(4)(1) = 1"" Tr{X(t)Y(t)}dt. (11 ) 

The evaluation of the trace is a N 4 procedure (actually N! 
where N v is the number of virtual orbitals). The number of 
elements to be evaluated in each of the matrices X and Y is 
also of the order N!. Since each of the matrix elements ofY 
require NoNv operations, a straightforward implementation 
amounts to of the order NoN~ steps. Other contributions to 
the MP4( 1) energy can be evaluated in a similar fashion. 

A similar analysis can be applied to all terms occuring in 
the perturbation expansion. In particular, those contribu­
tions in fourth-order perturbation theory which would re­
quire a n 7 procedure with a conventional summation can all 
be written in the form 

rO"" Jo ••• ? ... C~~** (**11**) (**II**)C ~1~** e- ,aEdt, 

(12) 

where an asterisk (*) denotes an unspecified (i.e., occupied 

or virtual) molecular orbital index. When the exponential is 
factored and incorporated into the first-order coefficients 
and/or the integrals, the time-critical part of the calculation 
reduces to a straight summation of four four-index quanti­
ties. As each index occurs twice, it can be seen from simple 
topological considerations that there must always be two 
four-index objects having at least two indices in common. 
These can now be contracted using a procedure no more 
expensive than N 6

, which would therefore be the rate-deter­
mining step of the summation. The entire summation can 
therefore be carried out at the N 6 level with a storage re­
quirement no worse than N 4

• For large systems this would 
compare favorably to the usual N6N! dependence of con­
ventional schemes, if the numerical quadrature of Eq. (11) 
can be carried out efficiently. That problem will be ad­
dressed in Sec. III. 

It also deserves to be mentioned in this context, that the 
aforementioned technique applies equally well to higher or­
ders ofM0ller-Plesset perturbation theory. The usual, high 
power dependence of conventional schemes on the number 
of orbitals stems at least partly from the occurrence of nonse­
parable factors in the energy denominators. Generally, up to 
M-tuply excited states (M even) occur in expressions for the 
correlation energy inMth and (M + 1 )thorderofperturba­
tion theory; the nonseparable factors in the denominators 
may therefore contain up to 2M different orbitals indices, 
and the computational requirement for M th order perturba­
tion theory will typically grow by at least 1 order for every 
order of perturbation theory. Relations exist 12 which reduce 
this power dependence in special cases (e.g., quadruple exci­
tations in MP4 which can be accounted for at an expense no 
worse than N 6

), but no such techniques are known for the 
general case. With the Laplace transform, the offending fac­
tors in the denominators can always be transferred into mul­
tiple quadrature schemes. In higher orders, there will be 
cases which require combination of four-index quantities 
with only one index in common, and the N 6 dependence 
discussed above for MP4 can no longer be achieved. In these 
cases, the computational requirements will instead grow as 
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N 8m M
- 3 for M = 5, 6, and 7, where m is the number of 

quadrature points required for the Laplace integration and 
M is the order of perturbation theory. 

III. THE NUMERICAL QUADRATURE 

A successful utilization of the Laplace transform in 
quantum-chemical calculations hinges on an efficient and 
generally applicable scheme for evaluating the Laplace inte­
gral numerically. In this section we devise such a scheme, 
and demonstrate its performance for the special but impor­
tant case of MP2 calculations. 

The basic idea of all Laplace MPn schemes is to replace 
undesirable denominators (sums and differences of orbital 
energies) by their Laplace transforms which allow a factori­
zation of terms. If Xq is such a denominator, e.g., in MP2 
Xq = Eo + Eb - E; - Ej , where q serves as a collective index 
for (a,b,i,j) , we would thus replace 

~:::::: ('" dte- V , (13) 
Xq Jo 

which holds for all Xq > O. To carry out the Laplace integra­
tion numerically amounts to replacing the integral in Eq. 
( 13) by a finite sum, 

1 ~ - x.t" -= L wa e . 
Xq a= I 

(14) 

This formula may also be interpreted as an approximation of 
the function l/x by a superposition of exponential functions 
exp( - xta ) with weights (fit coefficients) Wa' The aim is to 
determine the weights Wa and the exponential factors ta 

which reproduce lIx most accurately for all occurring val­
uesxq • 

We have chosen to accomplish this task by a least-
squares approximation, 

I/q (~- i Wa e - V ,,)2 = min!, 
q Xq a = I 

(15) 

where (in MP2) q runs over all molecular orbital (MO) 
index quadruples (a,b,i,j). In this formula we have intro­
duced (positive) weights/q for the least-squares procedure. 
For an MP2 scheme the best weights would obviously be 
/q = (ab 11fi)2. It is one of the many virtues of the Laplace 
MPn technique; however, it is possible to avoid two-electron 
MO integrals altogether, by a "direct" construction of the 
two-electron density in other (non orthogonal) basis sets. It 
is therefore advantageous to avoid two-electron MO inte­
grals also in the least-squares approximation which must 
precede the actual calculation of the correlation energy. 
There are many possibilities to obtain upper bounds for ex­
pressions like (ab 11fi)2.IS-J8 It turns out, however, that the 
least-squares approximation is not overly sensitive to 
changes in the weights/q: Setting/q = 1 for all q = (a,b,i,j) 
already yields an approximation useful in actual Laplace 
MP2 calculations. 

An apparent disadvantage of the least-squares condi­
tion, Eq. (15), is that it involves a summation over q (orbital 
quadruples in MP2). This shortcoming can be addressed by 
replacing the explicit summation over index quadruples q by 

an integral over the interval [min (Xq ), max (Xq )] with a 
weight function/(x) >0 which simply counts the number of 
Xq in the vicinity of x. Equation (15) then reads as 

l x
max 

( I r )2 dx/(x) -- I wae- XI
" =min!. 

Amin X a=l 

(16) 

In our implementation of the least-squares procedure, the x 
integration is carried out with a midpoint formula applied to 
about 1200 subintervals ranging in length from 0.004 at 
x = 0.75 to 1.8 at x = 360 (a logarithmic grid was used). 
The evaluation of/ex) can be accomplished by an N 2 proce­
dure. 

The integrals occurring in Eq. (16) can be obtained ana­
lytically [yielding terms containing the exponential integral 
function E J (z) ] if/(x) is set to unity over the entire interval. 
This constitutes the simplest solution to the approximation 
problem. 

Regardless as to how/ex) is chosen, it is always possible 
to calculate the least-squares integral, Eq. (16), and various 
derivatives ofit with respect to the parameters Wa and ta at a 
comparatively small cost. The weights Wa , in particular, can 
be obtained for any choice of the exponential factors ta by 
solving the system of linear equations 

Bw=a, 

where 

i
Xmax 

B - d fir ) - x(ta + tp) 
a{3 - X ,x e , 

Xmin 

(17) 

(18) 

(19) 

and B is a symmetric and positive definite matrix. Differenti­
ation ofEq. (16) with respect to ta yields an independent set 
of similar equations. 

Unfortunately, however, the condition number ofB and 
of related matrices grows exponentially as the number 7 of 
exponentials increases and, for 7>5, round-off errors can 
impede an accurate solution of the nonlinear equations for 
the exponential factors ta' 

To find the optimal exponential factors ta , we have used 
the numerically very robust Simplex algorithm, applied di­
rectly to the least-squares condition Eq. (16) with the 
weights Wa determined from Eq. (17). In all examples stud­
ied so far, the optimum weights Wa and exponential factors 
ta are found to be positive. We have applied the technique to 
the evaluation of the MP2 energy integral, Eq. (Ic), accord­
ing to 

E (r) _ I ~ "( b II' . )2 
MP2 - - - L L aa a lala , 

4 a = J ij.ob 

where 

lia ) = 1/1; (fa) = w1j81/1; (O)/€, + €F)t,,12, 

laa) = 1/10 Cta ) = wlj81/10 (O)e(EF- Eo) 1,,12, 

(20) 

(21a) 

(2Ib) 

E; and Eo are the orbital energies of the MOs i and a, respec­
tively, and EF is any value chosen to lie in the 
HOMO-LUMO interval. The introduction of CF is merely a 
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TABLE I. Exponential coefficients fa and weights Wa (second set of numbers in each group) for the least-squares approximation of l/x by a varying number 
(r) of exponentials exp( - Xfa ) for a calculation of the all-valence MP2 energy ofC, H.CIP. 

a= 2 3 4 5 6 7 8 

r 
0.2543066 
0.744 377 8 

2 0.1057374 0.8263985 
0.2998529 1.3750404 

3 0.0664618 0.4380785 1.610 192 5 
0.179391 9 0.632960 2 1.9996848 

4 0.013 5967 0.1646374 0.6569702 2.035781 5 
0.052717 1 0.275764 7 0.7858024 2.2786679 

5 0.0064785 0.0669154 0.3089156 0.9478808 2.5786393 
0.0177806 0.1278500 0.3878375 0.9741098 2.6125732 

6 0.0060050 0.0553016 0.2346500 0.6587781 1.576060 6 3.6502575 
0.016442 I 0.0995694 0.2759458 0.6106806 1.3178664 3.185700 8 

7 0.0035243 0.025 1939 0.1193583 0.3653936 0.8850526 1.945461 7 4.240 1468 
0.0095904 0.0437062 0.1566528 0.3542937 0.7264528 1.492 883 6 3.4634348 

8 0.0034250 0.0238627 0.1023430 0.2947359 0.6736046 1.382 183 7 2.713 349 7 5.4051090 
0.0093035 0.0390022 0.1267465 0.2692945 0.511 299 3 0.9512673 1.816383 5 3.9522146 

matter of numerical convenience, and guarantees that the 
exponentials have a negative argument. 

As an illustrative medium-sized test molecule, we have 
chosen p-chloro-phospha-benzene Cs H4 CIP which has C2U 

symmetry. The Laplace MP2 calculations were performed 
with a (8s4pld;4s1p; l1s6pld; l1s6pld)/ 
[4s2pld;2s1p;5s4pld;5s4pld] basis set 19 with the core orbi­
tals frozen. The molecular geometry was obtained from a 
geometry optimization at the SCF level of theory with the 
same basis set. The SCF energy is - 991.8027 81 a.u. The 
second-order correlation energy (as evaluated by conven­
tional methods) is - 0.9112 94 a.u. The eigenvalues of the 
highest and lowest occupied valence orbitals are - 0.3238 
and - 1.1938 a.u., respectively; the eigenvalue of the lowest 
virtual orbital is + .0626 a.u. There are two very high lying 
virtual orbitals at + 135.25 and + 177.40 a.u.; their elimi­
nation reduces the (conventional) MP2 energy by 7 micro­
hartree to - 0.911287. 

Table I shows the exponential coefficients ta and 
weights Wa as calculated from Eq. (15) for up to eight expo­
nential functions exp( - xta ) approximating l/x in the in­
terval (Xmin,Xmax) = (0.77,358.1), with the weight function 
I(x) counting the number of orbital energy differences 
Xq = Ea + Eb - Ei - Ej in the vicinity of x. 

Table II gives the corresponding Laplace MP2 energies 
E l,;~2 as obtained with r exponentials approximating l/x. 
The relative error is compared to two simple precomputed 
error estimates L 1 and L 2, defined as 

L 1 =JI(X) I~- i wae-xt"ldxJI(X) dx 
x a=! X 

(22) 

and 

(J 1

1 T 12 )1/2 
L 2 = I(x) ~ - a~1 wae-

xt
" dx 

(23) 

Table II shows that micro-hartree accuracy can be obtained 
with eight terms in the expansion of l/x. Both error esti­
mates L 1 and L 2 appear to provide a reliable estimate of the 
actual relative error. 

If the two highest virtual orbitals are frozen, the interval 
(Xmin,Xmax) shrinks to (0.77,27.4), and the exponential ap­
proximation of l/x should become simpler in terms of the 
number of exponentials needed. This is demonstrated in Ta­
ble III where the results of the Laplace MP2 calculation for 
this system are shown. For a given requirement of accuracy, 
one exponential term less is needed, compared to when the 
two highest virtual orbitals were included. 

All of these results were obtained with the least-squares 

TABLE II. All-valence Laplace MP2 energies E 1..I~2 of C, H4 CIP accord­
ing to Eq. ( 19), relative errors, and error estimates L 1 and L 2. Exponential 
coefficients fa and weights Wa as given in Table I. The correct MP2 energy is 
-0.911 294. 

T E(T) 
MP2 ReI. error LI L2 

I - 0.871901 4.3E-2 9.9E-2 1.4E-I 
2 - 0.905 636 6.2E-3 1.5E-2 2.IE-2 
3 - 0.909 917 1.5E-3 2.9E-3 6.4E-3 
4 - 0.910740 6.4E-4 9.3E-4 1.5E-3 
5 - 0.911 080 2.3E-4 2.8E-4 4.2E-4 
6 - 0.911254 4.4E-5 4.5E-5 8.8E-5 
7 -0.911282 I.3E-5 1.5E-5 2.3E-5 
8 - 0.911293 1.5E-6 2.7E-6 5.5E-6 
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TABLE III. All-valence Laplace MP2 energies E :';~2 ofC, H4 CIP with the 
two highest virtual orbitals frozen, relative errors, and the error estimates 
L 1 and L 2. The correct MP2 energy is - 0.911287. 

T E<T) 
MP2 ReI. error Ll L2 

1 - 0.871809 4.3E-2 9.8E-2 1.3E-l 
2 - 0.905 634 6.2E-3 1.4E-2 2.0E-2 
3 - 0.909 923 1.5E-3 1.9E-3 3.0E-3 
4 - 0.911 044 2.7E-4 3.2E-4 4.8E-4 
5 - 0.911241 5.0E-5 4.7E-5 7.2E-5 
6 - 0.911282 5.5E-6 7.0E-6 1.1E-5 
7 - 0.911286 0.7E-6 1.0E-6 1.5E-6 

weight function lex) derived from the distribution of the 
MP2 energy denominators x q • We also studied the simpler 
weight function/(x) = 1 for all XE(Xmin,Xmax)' Results for 
the all-valence Laplace MP2 calculation on Cs H4 CIP and 
this weight function are given in Table IV (no frozen virtual 
orbitals). At first glance the relative errors appear to be very 
similar to those in Table II, but closer inspection reveals 
three important differences. (1) The Laplace MP2 energies 
oscillate around the "exact" MP2 energy. (2) The absolute 
values of the errors fluctuate, and are up to 3 times larger 
than the relative errors in Table II. (3) L 1 and L 2 now over­
estimate the actual relative errors significantly. 

All three observations are consistent with the notion 
that errors derived from the least-squares approximation of 
lIx with a constant weight function/(x) = 1 behave pre­
dominantly as statistical errors, whereas a systematic error 
dominates when/ex) is derived from the distribution of or­
bital energy differences x q • The systematic underestimation 
of MP2 energies in Table II may be traced to the neglect of 
the MO integral size distribution over x. The largest MO 
integrals usually occur for smaller values of x q , where the 
approximating function 

is smaller than lIx according to their limiting behavior as 
x .... O. Accordingly, the contributions ofthe highest occupied 

and lowest unoccupied molecular orbitals will be systemati­
cally underestimated. This will not happen to the same de­
gree if the constant least-squares weight function/(x) = 1 is 
used, since it gives a relatively larger weight to the tails of the 
spectrum. 

We conclude that the approximation ofMP2 orbital en­
ergy denominators by a sum of exponentials, Eq. (15), can 
be achieved with micro-hartree accuracy using only about 
eight terms. Further improvement seems possible if an em­
pirically established integral size distribution is incorporated 
into the least-squares weight function/(x). Note that it suf­
fices to establish the size distribution of two-index two-elec­
tron integrals like (ialia) over Ea - E;, since it can be shown 
that 

(ab IW}2 + (ab Ilii}2.;;3( (aalii) (bb Iii) 

+ (aal ii) (bb Iii». (24) 

With regard to the approximation of the six-orbital energy 
denominators in the MP4( n expression we note that a 
smaller relative accuracy is sufficient for micro-hartree ac­
curacy, since the absolute magnitude of the MP4 triples con­
tribution amounts to only a few percent of the total correla­
tion energy. 14 

IV. SUMMARY 

We have shown that the discrete Laplace method is a 
feasible technique to eliminate energy denominators in per­
turbation calculations of electron correlation. While several 
methods involving Laplace transforms are well known in 
diagrammatic perturbation theory (see, e.g., Refs. 20 and 
21), the technique to reduce the computational cost of high­
order perturbation theory by a factorization of denomina­
tors appears to be new. Several computational simplifica­
tions are possible once the explicit denominators are 
disposed of. It was previously shown that the modified MP2 
energy expression is invariant to orbital rotations, and a lo­
calization of orbitals is therefore possible.9 That scheme pro­
vides an interesting alternative to other local correlation 
methods, 10.1 1 and allows the direct construction of an MP2 
two-particle density in a nonorthogonal basis set without 
prior calculation of two-electron MO integrals. Further-

TABLE IV. All-valence Laplace MP2 energies E :';~2 ofC, H. CIP with least-squares weight functionj(x) set 
to I in (xmm ,xmu ) = (0.77,358.1). The error estimates L l' and L 2' were obtained with the weight function 
fix) = 1, whereas L I and L 2 pertain to a weight function derived from the density distribution of 
x. = E. + lOb - E, - EJ' The correct MP2 energy is - 0.911294. 

T E'T) 
MP2 ReI. error LI' L2' LI L2 

1 - 0.857659 5.9E-2 2.1E-1 2.7E-1 2.9E-1 3.3E-1 
2 - 0.895468 1.7E-2 5.9E-2 6.8E-2 4.9E-2 5.6E-2 
3 - 0.914435 - 3.4E-3 1.9E-2 2.1E-2 1.6E-2 1.8E-2 
4 - 0.911625 - 3.6E-4 6.3E-3 7.1E-3 5.6E-3 6.2E-3 
5 - 0.911208 9.4E-5 1.9E-3 2.2E-3 1.6E-3 1.9E-3 
6 - 0.911270 2.6E-5 5.6E-4 6.4E-4 5.1E-4 5.7E-4 
7 - 0.911294 < 1.0E-6 1.6E-4 1.9E-4 1.5E-4 I.7E-4 
8 - 0.911298 - 4.4E-6 4.7E-5 5.4E-5 4.4E-5 4.9E-5 
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more, removing the denominators, as well as lifting the con­
straints of canonical orbitals, is an advantage for the con­
struction of derivatives of the energy with respect to various 
perturbations. In higher-order perturbation theories, the 
elimination (full or in part) of denominators leads to a re­
duced N dependence. Indeed, it is possible to apply the La­
place technique to obtain new expressions for the inverse of 
definite operators of the form (A - B) - 1 which occur in 
infinite order perturbation theory.22 To carry out these cal­
culations in a computationally efficient way, we have de­
vised a numerical quadrature scheme requiring fewer than 
ten terms to obtain micro-hartree accuracy. 
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