1166 lines
51 KiB
Plaintext
1166 lines
51 KiB
Plaintext
|
||
|
||
************************************************************************
|
||
*************** Dalton - An Electronic Structure Program ***************
|
||
************************************************************************
|
||
|
||
This is output from DALTON release Dalton2017.alpha (2017)
|
||
( Web site: http://daltonprogram.org )
|
||
|
||
----------------------------------------------------------------------------
|
||
|
||
NOTE:
|
||
|
||
Dalton is an experimental code for the evaluation of molecular
|
||
properties using (MC)SCF, DFT, CI, and CC wave functions.
|
||
The authors accept no responsibility for the performance of
|
||
the code or for the correctness of the results.
|
||
|
||
The code (in whole or part) is provided under a licence and
|
||
is not to be reproduced for further distribution without
|
||
the written permission of the authors or their representatives.
|
||
|
||
See the home page "http://daltonprogram.org" for further information.
|
||
|
||
If results obtained with this code are published,
|
||
the appropriate citations would be both of:
|
||
|
||
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
|
||
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
|
||
P. Dahle, E. K. Dalskov, U. Ekstroem,
|
||
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
|
||
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
|
||
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
|
||
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
|
||
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
|
||
P. Joergensen, J. Kauczor, S. Kirpekar,
|
||
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
|
||
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
|
||
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
|
||
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
|
||
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
|
||
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
|
||
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
|
||
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
|
||
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
|
||
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
|
||
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
|
||
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
|
||
and H. Agren,
|
||
"The Dalton quantum chemistry program system",
|
||
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
|
||
|
||
and
|
||
|
||
Dalton, a Molecular Electronic Structure Program,
|
||
Release Dalton2017.alpha (2017), see http://daltonprogram.org
|
||
----------------------------------------------------------------------------
|
||
|
||
Authors in alphabetical order (major contribution(s) in parenthesis):
|
||
|
||
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
|
||
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
|
||
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
|
||
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
|
||
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
|
||
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
|
||
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
|
||
Ove Christiansen, Aarhus University, Denmark (CC module)
|
||
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
|
||
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
|
||
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
|
||
Paal Dahle, University of Oslo, Norway (Parallelization)
|
||
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
|
||
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
|
||
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
|
||
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
|
||
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
|
||
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
|
||
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
|
||
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
|
||
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
|
||
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
|
||
Kasper Hald, Aarhus University, Denmark (CC module)
|
||
Asger Halkier, Aarhus University, Denmark (CC module)
|
||
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
|
||
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
|
||
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
|
||
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
|
||
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
|
||
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
|
||
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
|
||
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
|
||
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
|
||
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
|
||
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
|
||
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
|
||
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
|
||
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
|
||
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
|
||
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
|
||
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
|
||
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
|
||
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
|
||
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
|
||
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
||
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
|
||
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
|
||
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
|
||
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
|
||
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
|
||
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
|
||
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
|
||
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
|
||
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Anders Osted, Copenhagen University, Denmark (QM/MM)
|
||
Martin J. Packer, University of Sheffield, UK (SOPPA)
|
||
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
|
||
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
||
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
|
||
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
|
||
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
|
||
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
|
||
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
|
||
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
|
||
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
|
||
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
|
||
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
|
||
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
|
||
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
|
||
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
|
||
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
|
||
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
|
||
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
|
||
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
|
||
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
|
||
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
|
||
David P. Tew, University of Bristol, England (CCSD(R12))
|
||
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
|
||
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
|
||
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
|
||
--------------------------------------------------------------------------------
|
||
|
||
Date and time (Linux) : Wed Oct 9 15:27:17 2019
|
||
Host name : nazare063.cluster
|
||
|
||
* Work memory size : 6400000000 = 47.684 gigabytes.
|
||
|
||
* Directories for basis set searches:
|
||
1) /home/CEISAM/jacquemin-d/TITOU/CO/TZ-FC
|
||
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
|
||
|
||
|
||
Compilation information
|
||
-----------------------
|
||
|
||
Who compiled | blondel-a
|
||
Host | jaws.cluster
|
||
System | Linux-3.10.0-862.9.1.el7.x86_64
|
||
CMake generator | Unix Makefiles
|
||
Processor | x86_64
|
||
64-bit integers | ON
|
||
MPI | OFF
|
||
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/ifort
|
||
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
|
||
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/icc
|
||
C compiler version | icc (ICC) 18.0.3 20180410
|
||
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/icpc
|
||
C++ compiler version | icpc (ICC) 18.0.3 20180410
|
||
Static linking | ON
|
||
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
|
||
Git branch | master
|
||
Configuration time | 2018-07-26 15:11:23.544354
|
||
|
||
|
||
Content of the .dal input file
|
||
----------------------------------
|
||
|
||
**DALTON INPUT
|
||
.RUN WAVE FUNCTIONS
|
||
**INTEGRALS
|
||
.DIPLEN
|
||
.DEROVL
|
||
.DERHAM
|
||
**WAVE FUNCTIONS
|
||
.CC
|
||
*CC INP
|
||
.CC2
|
||
.CCSD
|
||
.CC3
|
||
.FREEZE
|
||
2 0
|
||
*CCEXCI
|
||
.NCCEXCI
|
||
3 3 3 3
|
||
3 3 3 3
|
||
**END OF DALTON INPUT
|
||
|
||
|
||
Content of the .mol file
|
||
----------------------------
|
||
|
||
BASIS
|
||
cc-pVTZ
|
||
CO/Scan
|
||
Dalton Run w/o symmetry
|
||
AtomTypes=2 Charge=0 Cartesian
|
||
Charge=6.0 Atoms=1
|
||
C 0.0000000 0.0000000000 0.000
|
||
Charge=8.0 Atoms=1
|
||
O 0.00000000 0.0000000000 3.400
|
||
|
||
|
||
*******************************************************************
|
||
*********** Output from DALTON general input processing ***********
|
||
*******************************************************************
|
||
|
||
--------------------------------------------------------------------------------
|
||
Overall default print level: 0
|
||
Print level for DALTON.STAT: 1
|
||
|
||
HERMIT 1- and 2-electron integral sections will be executed
|
||
"Old" integral transformation used (limited to max 255 basis functions)
|
||
Wave function sections will be executed (SIRIUS module)
|
||
--------------------------------------------------------------------------------
|
||
|
||
|
||
****************************************************************************
|
||
*************** Output of molecule and basis set information ***************
|
||
****************************************************************************
|
||
|
||
|
||
The two title cards from your ".mol" input:
|
||
------------------------------------------------------------------------
|
||
1: CO/Scan
|
||
2: Dalton Run w/o symmetry
|
||
------------------------------------------------------------------------
|
||
|
||
Atomic type no. 1
|
||
--------------------
|
||
Nuclear charge: 6.00000
|
||
Number of symmetry independent centers: 1
|
||
Number of basis sets to read; 2
|
||
Basis set file used for this atomic type with Z = 6 :
|
||
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
|
||
|
||
Atomic type no. 2
|
||
--------------------
|
||
Nuclear charge: 8.00000
|
||
Number of symmetry independent centers: 1
|
||
Number of basis sets to read; 2
|
||
Basis set file used for this atomic type with Z = 8 :
|
||
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ"
|
||
|
||
|
||
SYMADD: Requested addition of symmetry
|
||
--------------------------------------
|
||
|
||
Symmetry test threshold: 5.00E-06
|
||
|
||
@ The molecule is centered at center of mass and rotated
|
||
@ so principal axes of inertia are along coordinate axes.
|
||
|
||
Symmetry class found: C(oo,v)
|
||
|
||
Symmetry Independent Centres
|
||
----------------------------
|
||
8 : 0.00000000 0.00000000 1.45740753 Isotope 1
|
||
6 : 0.00000000 0.00000000 -1.94259247 Isotope 1
|
||
|
||
The following elements were found: X Y
|
||
|
||
|
||
SYMGRP: Point group information
|
||
-------------------------------
|
||
|
||
@ Full point group is: C(oo,v)
|
||
@ Represented as: C2v
|
||
|
||
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
|
||
|
||
* The point group was generated by:
|
||
|
||
Reflection in the yz-plane
|
||
Reflection in the xz-plane
|
||
|
||
* Group multiplication table
|
||
|
||
| E C2z Oxz Oyz
|
||
-----+--------------------
|
||
E | E C2z Oxz Oyz
|
||
C2z | C2z E Oyz Oxz
|
||
Oxz | Oxz Oyz E C2z
|
||
Oyz | Oyz Oxz C2z E
|
||
|
||
* Character table
|
||
|
||
| E C2z Oxz Oyz
|
||
-----+--------------------
|
||
A1 | 1 1 1 1
|
||
B1 | 1 -1 1 -1
|
||
B2 | 1 -1 -1 1
|
||
A2 | 1 1 -1 -1
|
||
|
||
* Direct product table
|
||
|
||
| A1 B1 B2 A2
|
||
-----+--------------------
|
||
A1 | A1 B1 B2 A2
|
||
B1 | B1 A1 A2 B2
|
||
B2 | B2 A2 A1 B1
|
||
A2 | A2 B2 B1 A1
|
||
|
||
|
||
Isotopic Masses
|
||
---------------
|
||
|
||
C 12.000000
|
||
O 15.994915
|
||
|
||
Total mass: 27.994915 amu
|
||
Natural abundance: 98.663 %
|
||
|
||
Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000
|
||
|
||
|
||
Atoms and basis sets
|
||
--------------------
|
||
|
||
Number of atom types : 2
|
||
Total number of atoms: 2
|
||
|
||
Basis set used is "cc-pVTZ" from the basis set library.
|
||
|
||
label atoms charge prim cont basis
|
||
----------------------------------------------------------------------
|
||
C 1 6.0000 47 35 [10s5p2d1f|4s3p2d1f]
|
||
O 1 8.0000 47 35 [10s5p2d1f|4s3p2d1f]
|
||
----------------------------------------------------------------------
|
||
total: 2 14.0000 94 70
|
||
----------------------------------------------------------------------
|
||
Cartesian basis used.
|
||
(Note that d, f, ... atomic GTOs are not all normalized.)
|
||
|
||
Threshold for neglecting AO integrals: 1.00D-12
|
||
|
||
|
||
Cartesian Coordinates (a.u.)
|
||
----------------------------
|
||
|
||
Total number of coordinates: 6
|
||
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9425924672
|
||
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.4574075328
|
||
|
||
|
||
Symmetry Coordinates
|
||
--------------------
|
||
|
||
Number of coordinates in each symmetry: 2 2 2 0
|
||
|
||
Symmetry A1 ( 1)
|
||
|
||
1 C z 3
|
||
2 O z 6
|
||
|
||
Symmetry B1 ( 2)
|
||
|
||
3 C x 1
|
||
4 O x 4
|
||
|
||
Symmetry B2 ( 3)
|
||
|
||
5 C y 2
|
||
6 O y 5
|
||
|
||
|
||
Interatomic separations (in Angstrom):
|
||
--------------------------------------
|
||
|
||
C O
|
||
------ ------
|
||
C : 0.000000
|
||
O : 1.799203 0.000000
|
||
|
||
|
||
Max interatomic separation is 1.7992 Angstrom ( 3.4000 Bohr)
|
||
between atoms 2 and 1, "O " and "C ".
|
||
|
||
Min YX interatomic separation is 1.7992 Angstrom ( 3.4000 Bohr)
|
||
|
||
|
||
Bond distances (Angstrom):
|
||
--------------------------
|
||
|
||
atom 1 atom 2 distance
|
||
------ ------ --------
|
||
|
||
|
||
|
||
|
||
Principal moments of inertia (u*A**2) and principal axes
|
||
--------------------------------------------------------
|
||
|
||
IA 0.000000 0.000000 0.000000 1.000000
|
||
IB 22.194437 0.000000 1.000000 0.000000
|
||
IC 22.194437 1.000000 0.000000 0.000000
|
||
|
||
|
||
Rotational constants
|
||
--------------------
|
||
|
||
@ The molecule is linear.
|
||
|
||
B = 22770.53 MHz ( 0.759543 cm-1)
|
||
|
||
|
||
@ Nuclear repulsion energy : 14.117647058824 Hartree
|
||
|
||
|
||
Symmetry Orbitals
|
||
-----------------
|
||
|
||
Number of orbitals in each symmetry: 32 16 16 6
|
||
|
||
|
||
Symmetry A1 ( 1)
|
||
|
||
1 C s 1
|
||
2 C s 2
|
||
3 C s 3
|
||
4 C s 4
|
||
5 C pz 7
|
||
6 C pz 10
|
||
7 C pz 13
|
||
8 C dxx 14
|
||
9 C dyy 17
|
||
10 C dzz 19
|
||
11 C dxx 20
|
||
12 C dyy 23
|
||
13 C dzz 25
|
||
14 C fxxz 28
|
||
15 C fyyz 33
|
||
16 C fzzz 35
|
||
17 O s 36
|
||
18 O s 37
|
||
19 O s 38
|
||
20 O s 39
|
||
21 O pz 42
|
||
22 O pz 45
|
||
23 O pz 48
|
||
24 O dxx 49
|
||
25 O dyy 52
|
||
26 O dzz 54
|
||
27 O dxx 55
|
||
28 O dyy 58
|
||
29 O dzz 60
|
||
30 O fxxz 63
|
||
31 O fyyz 68
|
||
32 O fzzz 70
|
||
|
||
|
||
Symmetry B1 ( 2)
|
||
|
||
33 C px 5
|
||
34 C px 8
|
||
35 C px 11
|
||
36 C dxz 16
|
||
37 C dxz 22
|
||
38 C fxxx 26
|
||
39 C fxyy 29
|
||
40 C fxzz 31
|
||
41 O px 40
|
||
42 O px 43
|
||
43 O px 46
|
||
44 O dxz 51
|
||
45 O dxz 57
|
||
46 O fxxx 61
|
||
47 O fxyy 64
|
||
48 O fxzz 66
|
||
|
||
|
||
Symmetry B2 ( 3)
|
||
|
||
49 C py 6
|
||
50 C py 9
|
||
51 C py 12
|
||
52 C dyz 18
|
||
53 C dyz 24
|
||
54 C fxxy 27
|
||
55 C fyyy 32
|
||
56 C fyzz 34
|
||
57 O py 41
|
||
58 O py 44
|
||
59 O py 47
|
||
60 O dyz 53
|
||
61 O dyz 59
|
||
62 O fxxy 62
|
||
63 O fyyy 67
|
||
64 O fyzz 69
|
||
|
||
|
||
Symmetry A2 ( 4)
|
||
|
||
65 C dxy 15
|
||
66 C dxy 21
|
||
67 C fxyz 30
|
||
68 O dxy 50
|
||
69 O dxy 56
|
||
70 O fxyz 65
|
||
|
||
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
|
||
|
||
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
|
||
|
||
|
||
.---------------------------------------.
|
||
| Starting in Integral Section (HERMIT) |
|
||
`---------------------------------------'
|
||
|
||
|
||
|
||
***************************************************************************************
|
||
****************** Output from **INTEGRALS input processing (HERMIT) ******************
|
||
***************************************************************************************
|
||
|
||
|
||
|
||
*************************************************************************
|
||
****************** Output from HERMIT input processing ******************
|
||
*************************************************************************
|
||
|
||
|
||
Default print level: 1
|
||
|
||
* Nuclear model: Point charge
|
||
|
||
Calculation of one- and two-electron Hamiltonian integrals.
|
||
|
||
The following one-electron property integrals are calculated as requested:
|
||
- overlap integrals
|
||
- dipole length integrals
|
||
- Geometrical derivatives of overlap integrals
|
||
- Geometrical derivatives of one-electron Hamiltonian integrals
|
||
|
||
Center of mass (bohr): 0.000000000000 0.000000000000 0.000000000000
|
||
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
|
||
Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000
|
||
Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000
|
||
|
||
|
||
************************************************************************
|
||
************************** Output from HERINT **************************
|
||
************************************************************************
|
||
|
||
|
||
|
||
Nuclear contribution to dipole moments
|
||
--------------------------------------
|
||
|
||
au Debye C m (/(10**-30)
|
||
|
||
z 0.00370546 0.00941834 0.03141619
|
||
|
||
|
||
|
||
Threshold for neglecting two-electron integrals: 1.00D-12
|
||
HERMIT - Number of two-electron integrals written: 757487 ( 24.5% )
|
||
HERMIT - Megabytes written: 8.677
|
||
|
||
Time used in TWOINT is 0.63 seconds
|
||
Total CPU time used in HERMIT: 0.67 seconds
|
||
Total wall time used in HERMIT: 0.17 seconds
|
||
|
||
|
||
.----------------------------------.
|
||
| End of Integral Section (HERMIT) |
|
||
`----------------------------------'
|
||
|
||
|
||
|
||
.--------------------------------------------.
|
||
| Starting in Wave Function Section (SIRIUS) |
|
||
`--------------------------------------------'
|
||
|
||
NCCEXCI for singlet: 3 3 3 3
|
||
NCCEXCI for triplet: 3 3 3 3
|
||
|
||
*** Output from Huckel module :
|
||
|
||
Using EWMO model: T
|
||
Using EHT model: F
|
||
Number of Huckel orbitals each symmetry: 6 2 2 0
|
||
|
||
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
|
||
which normally is better than Extended Huckel Theory.
|
||
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 1
|
||
-20.681356 -11.338967 -1.339136 -0.796680 -0.545386
|
||
-0.303374
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 2
|
||
-0.638440 -0.384660
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 3
|
||
-0.638440 -0.384660
|
||
|
||
**********************************************************************
|
||
*SIRIUS* a direct, restricted step, second order MCSCF program *
|
||
**********************************************************************
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 15:27:17 2019
|
||
Host name : nazare063.cluster
|
||
|
||
Title lines from ".mol" input file:
|
||
CO/Scan
|
||
Dalton Run w/o symmetry
|
||
|
||
Print level on unit LUPRI = 2 is 0
|
||
Print level on unit LUW4 = 2 is 5
|
||
|
||
@ (Integral direct) CC calculation.
|
||
|
||
@ This is a combination run starting with
|
||
@ a restricted, closed shell Hartree-Fock calculation
|
||
|
||
|
||
Initial molecular orbitals are obtained according to
|
||
".MOSTART EWMO " input option
|
||
|
||
Wave function specification
|
||
============================
|
||
|
||
For the specification of the Coupled Cluster: see later.
|
||
|
||
@ Wave function type --- CC ---
|
||
@ Number of closed shell electrons 14
|
||
@ Number of electrons in active shells 0
|
||
@ Total charge of the molecule 0
|
||
|
||
@ Spin multiplicity and 2 M_S 1 0
|
||
@ Total number of symmetries 4 (point group: C2v)
|
||
@ Reference state symmetry 1 (irrep name : A1 )
|
||
|
||
Orbital specifications
|
||
======================
|
||
@ Abelian symmetry species All | 1 2 3 4
|
||
@ | A1 B1 B2 A2
|
||
--- | --- --- --- ---
|
||
@ Total number of orbitals 70 | 32 16 16 6
|
||
@ Number of basis functions 70 | 32 16 16 6
|
||
|
||
** Automatic occupation of RHF orbitals **
|
||
|
||
-- Initial occupation of symmetries is determined from extended Huckel guess.
|
||
-- Initial occupation of symmetries is :
|
||
@ Occupied SCF orbitals 7 | 5 1 1 0
|
||
|
||
Maximum number of Fock iterations 0
|
||
Maximum number of DIIS iterations 60
|
||
Maximum number of QC-SCF iterations 60
|
||
Threshold for SCF convergence 1.00D-06
|
||
|
||
|
||
Changes of defaults for CC:
|
||
---------------------------
|
||
|
||
|
||
-Iterative triple excitations included
|
||
|
||
-Implicit frozen core calculation
|
||
-Excitation energies calculated
|
||
|
||
|
||
|
||
***********************************************
|
||
***** DIIS acceleration of SCF iterations *****
|
||
***********************************************
|
||
|
||
C1-DIIS algorithm; max error vectors = 8
|
||
|
||
Automatic occupation of symmetries with 14 electrons.
|
||
|
||
Iter Total energy Error norm Delta(E) SCF occupation
|
||
-----------------------------------------------------------------------------
|
||
|
||
Calculating AOSUPINT
|
||
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
|
||
Threshold for discarding integrals : 1.00D-12 )
|
||
CPU time used in FORMSUP is 0.22 seconds
|
||
WALL time used in FORMSUP is 0.04 seconds
|
||
@ 1 -112.073358204 2.41D+00 -1.12D+02 5 1 1 0
|
||
Virial theorem: -V/T = 1.988899
|
||
@ MULPOP C 1.19; O -1.19;
|
||
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
||
-----------------------------------------------------------------------------
|
||
@ 2 -111.507886469 4.20D+00 5.65D-01 5 1 1 0
|
||
Virial theorem: -V/T = 2.026401
|
||
@ MULPOP C -1.07; O 1.07;
|
||
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
||
-----------------------------------------------------------------------------
|
||
@ 3 -112.350780954 9.33D-01 -8.43D-01 5 1 1 0
|
||
Virial theorem: -V/T = 2.015307
|
||
@ MULPOP C 0.05; O -0.05;
|
||
3 Level shift: doubly occupied orbital energies shifted by -5.00D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 4 -112.405053108 1.10D-01 -5.43D-02 5 1 1 0
|
||
Virial theorem: -V/T = 2.008733
|
||
@ MULPOP C 0.41; O -0.41;
|
||
4 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 5 -112.409770651 1.13D-01 -4.72D-03 5 1 1 0
|
||
|
||
Info: SCF gradient has been lower than now,
|
||
therefore 1 old iterations are removed from DIIS.
|
||
Virial theorem: -V/T = 2.008263
|
||
@ MULPOP C 0.45; O -0.45;
|
||
5 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 6 -112.413035577 9.29D-02 -3.26D-03 5 1 1 0
|
||
Virial theorem: -V/T = 2.008238
|
||
@ MULPOP C 0.45; O -0.45;
|
||
6 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 7 -112.422519351 7.38D-02 -9.48D-03 5 1 1 0
|
||
Virial theorem: -V/T = 2.007072
|
||
@ MULPOP C 0.39; O -0.39;
|
||
7 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 8 -112.422404426 4.23D-02 1.15D-04 5 1 1 0
|
||
|
||
!!! Info: DIIS restarted because it was stalled ...
|
||
- energy changed by 1.149E-04
|
||
- gradient changed by -3.150E-02
|
||
- or strange C vector coeff. for current index (= 7) :
|
||
-0.002272 0.005335 -0.021387 0.089745 -0.397307 0.272261 1.053624
|
||
|
||
! Backstep to previous Fock matrix because energy increased.
|
||
Virial theorem: -V/T = 2.007071
|
||
@ MULPOP C 0.39; O -0.39;
|
||
8 Level shift: doubly occupied orbital energies shifted by -1.36D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 9 -112.422425553 1.00D-01 -2.11D-05 5 1 1 0
|
||
Virial theorem: -V/T = 2.006046
|
||
@ MULPOP C 0.45; O -0.45;
|
||
9 Level shift: doubly occupied orbital energies shifted by -1.36D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 10 -112.422962937 1.15D-02 -5.37D-04 5 1 1 0
|
||
Virial theorem: -V/T = 2.006847
|
||
@ MULPOP C 0.42; O -0.42;
|
||
-----------------------------------------------------------------------------
|
||
@ 11 -112.422993807 7.13D-03 -3.09D-05 5 1 1 0
|
||
Virial theorem: -V/T = 2.006784
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 12 -112.423020712 4.23D-03 -2.69D-05 5 1 1 0
|
||
Virial theorem: -V/T = 2.006718
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 13 -112.423034821 1.72D-03 -1.41D-05 5 1 1 0
|
||
Virial theorem: -V/T = 2.006658
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 14 -112.423036821 1.81D-04 -2.00D-06 5 1 1 0
|
||
Virial theorem: -V/T = 2.006636
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 15 -112.423036834 1.73D-05 -1.36D-08 5 1 1 0
|
||
Virial theorem: -V/T = 2.006635
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 16 -112.423036835 2.77D-06 -5.83D-11 5 1 1 0
|
||
Virial theorem: -V/T = 2.006635
|
||
@ MULPOP C 0.41; O -0.41;
|
||
-----------------------------------------------------------------------------
|
||
@ 17 -112.423036835 4.41D-07 -7.67D-13 5 1 1 0
|
||
|
||
@ *** DIIS converged in 17 iterations !
|
||
@ Converged SCF energy, gradient: -112.423036834543 4.41D-07
|
||
- total time used in SIRFCK : 0.00 seconds
|
||
|
||
|
||
*** SCF orbital energy analysis ***
|
||
|
||
Only the 20 lowest virtual orbital energies printed in each symmetry.
|
||
|
||
Number of electrons : 14
|
||
Orbital occupations : 5 1 1 0
|
||
|
||
Sym Hartree-Fock orbital energies
|
||
|
||
1 A1 -20.61444141 -11.52705835 -1.21475600 -0.80997840 -0.47700203
|
||
0.14424914 0.26609088 0.39418334 0.69235649 0.79077873
|
||
0.98083619 1.14118298 1.25003564 1.78302263 1.84493351
|
||
2.47276302 2.67474703 2.87801235 3.02862888 3.14180395
|
||
3.45233965 3.93824619 4.68759061 5.49272880 5.60029112
|
||
|
||
2 B1 -0.47242685 -0.02030390 0.40635216 0.77068980 0.90992159
|
||
1.73744941 1.96184153 2.83588832 2.98022402 3.29825418
|
||
3.46237527 3.78233171 5.61681807 5.69914792 6.91012336
|
||
7.19828506
|
||
|
||
3 B2 -0.47242685 -0.02030390 0.40635216 0.77068980 0.90992159
|
||
1.73744941 1.96184153 2.83588832 2.98022402 3.29825418
|
||
3.46237527 3.78233171 5.61681807 5.69914792 6.91012336
|
||
7.19828506
|
||
|
||
4 A2 0.79077873 1.78302263 2.87801235 3.14180395 5.60029112
|
||
6.74500653
|
||
|
||
E(LUMO) : -0.02030390 au (symmetry 3)
|
||
- E(HOMO) : -0.47242685 au (symmetry 3)
|
||
------------------------------------------
|
||
gap : 0.45212295 au
|
||
|
||
--- Writing SIRIFC interface file
|
||
|
||
CPU and wall time for SCF : 0.459 0.102
|
||
|
||
|
||
.-----------------------------------.
|
||
| --- Final results from SIRIUS --- |
|
||
`-----------------------------------'
|
||
|
||
|
||
@ Spin multiplicity: 1
|
||
@ Spatial symmetry: 1 ( irrep A1 in C2v )
|
||
@ Total charge of molecule: 0
|
||
|
||
@ Final HF energy: -112.423036834543
|
||
@ Nuclear repulsion: 14.117647058824
|
||
@ Electronic energy: -126.540683893367
|
||
|
||
@ Final gradient norm: 0.000000441473
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 15:27:17 2019
|
||
Host name : nazare063.cluster
|
||
|
||
|
||
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
|
||
|
||
File label for MO orbitals: 9Oct19 FOCKDIIS
|
||
|
||
(Only coefficients > 0.0100 are printed.)
|
||
|
||
Molecular orbitals for symmetry species 1 (A1 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6 7
|
||
1 C :s 0.0002 0.9973 -0.0014 -0.0015 0.0001 -0.0026 -0.0113
|
||
2 C :s 0.0008 -0.0124 0.2080 -0.9936 -0.1266 0.3294 -0.3964
|
||
3 C :s -0.0003 0.0034 -0.0027 -0.0290 0.0029 0.0910 -0.8968
|
||
4 C :s 0.0007 -0.0006 -0.0271 0.1302 -0.0885 -0.0392 4.2141
|
||
5 C :pz -0.0002 0.0044 0.1111 0.0712 0.7844 0.6341 0.1935
|
||
6 C :pz 0.0006 -0.0039 -0.0088 -0.0136 0.0120 -0.1405 0.2207
|
||
7 C :pz 0.0006 -0.0014 -0.0194 0.0056 -0.0537 0.5404 -0.0628
|
||
8 C :dxx -0.0001 0.0009 -0.0020 -0.0025 -0.0023 0.0173 -0.1067
|
||
9 C :dyy -0.0001 0.0009 -0.0020 -0.0025 -0.0023 0.0173 -0.1067
|
||
10 C :dzz -0.0001 0.0012 0.0038 -0.0043 0.0078 -0.0023 -0.1056
|
||
11 C :dxx -0.0002 0.0019 -0.0049 -0.0094 0.0029 0.0656 -0.6703
|
||
12 C :dyy -0.0002 0.0019 -0.0049 -0.0094 0.0029 0.0656 -0.6703
|
||
13 C :dzz 0.0001 0.0018 0.0067 -0.0159 0.0254 0.0563 -0.7024
|
||
14 C :fxxz -0.0001 0.0001 -0.0002 0.0013 -0.0002 0.0126 -0.0124
|
||
15 C :fyyz -0.0001 0.0001 -0.0002 0.0013 -0.0002 0.0126 -0.0124
|
||
16 C :fzzz -0.0000 0.0000 0.0020 -0.0005 -0.0004 0.0084 -0.0168
|
||
17 O :s 0.9958 -0.0001 -0.0078 0.0009 -0.0044 0.0144 0.0102
|
||
18 O :s -0.0157 -0.0002 0.9137 0.2727 -0.1795 -0.1615 -0.0815
|
||
19 O :s 0.0052 -0.0001 0.0030 0.0009 0.0109 0.0265 0.0088
|
||
20 O :s -0.0004 0.0010 0.0068 0.0439 -0.1327 -0.5462 -0.3842
|
||
21 O :pz -0.0028 0.0003 -0.0151 0.1770 -0.5040 0.7251 0.1134
|
||
22 O :pz 0.0016 -0.0012 -0.0158 0.0026 0.0016 -0.1335 -0.1356
|
||
23 O :pz 0.0013 -0.0005 0.0001 -0.0080 -0.0226 0.4293 0.1643
|
||
27 O :dxx 0.0025 -0.0002 -0.0004 0.0005 0.0064 0.0287 0.0116
|
||
28 O :dyy 0.0025 -0.0002 -0.0004 0.0005 0.0064 0.0287 0.0116
|
||
29 O :dzz 0.0022 0.0003 0.0027 -0.0076 0.0222 0.0222 0.0214
|
||
32 O :fzzz 0.0000 0.0001 0.0005 0.0006 -0.0019 0.0109 0.0090
|
||
|
||
Orbital 8 9 10 11 12 13 14
|
||
1 C :s 0.0656 0.0386 0.0000 -0.1425 0.2727 0.5685 -0.0000
|
||
2 C :s 0.3458 0.1526 0.0000 -0.7002 1.5500 2.9065 -0.0000
|
||
3 C :s 0.1980 0.1162 -0.0000 0.1899 -0.9757 -0.9581 0.0000
|
||
4 C :s -1.6025 -0.6448 -0.0000 1.1365 3.6615 0.5966 -0.0000
|
||
5 C :pz 0.3260 -0.1343 0.0000 -0.2859 0.2018 -0.7392 -0.0000
|
||
6 C :pz 1.2162 0.4236 -0.0000 0.9929 -0.1944 0.9958 0.0000
|
||
7 C :pz -1.9569 -0.2192 -0.0000 0.8730 1.3791 -0.6594 -0.0000
|
||
8 C :dxx 0.0134 0.0110 0.0138 0.0309 -0.1234 -0.1349 -0.0132
|
||
9 C :dyy 0.0134 0.0110 -0.0138 0.0309 -0.1234 -0.1349 0.0132
|
||
10 C :dzz 0.0336 -0.0002 -0.0000 0.0380 -0.1279 -0.1327 0.0000
|
||
11 C :dxx 0.1877 0.0024 -0.5048 0.2028 -1.1607 -0.6647 -0.0527
|
||
12 C :dyy 0.1877 0.0024 0.5048 0.2028 -1.1607 -0.6647 0.0527
|
||
13 C :dzz 0.0698 0.3401 -0.0000 0.2020 -0.1484 -1.3903 -0.0000
|
||
14 C :fxxz -0.0734 -0.0322 -0.0010 -0.0690 0.0168 -0.0784 0.0411
|
||
15 C :fyyz -0.0734 -0.0322 0.0010 -0.0690 0.0168 -0.0784 -0.0411
|
||
16 C :fzzz -0.0859 -0.0173 0.0000 -0.0412 0.0206 -0.0706 0.0000
|
||
17 O :s -0.0446 0.0436 -0.0000 0.0963 0.1213 -0.0508 -0.0000
|
||
18 O :s -0.0924 -0.1978 -0.0000 0.5742 0.5336 -0.1165 -0.0000
|
||
19 O :s -0.0899 -0.6020 -0.0000 0.6605 0.5495 -0.1782 -0.0000
|
||
20 O :s 1.4310 2.5110 0.0000 -4.1908 -4.3628 1.7959 0.0000
|
||
21 O :pz 0.2199 -0.1841 -0.0000 -0.1211 0.1461 -0.1648 -0.0000
|
||
22 O :pz 0.1297 -0.7166 0.0000 -1.3121 -0.1309 -0.3863 -0.0000
|
||
23 O :pz -0.4947 0.9203 -0.0000 2.0623 1.0679 -0.4594 -0.0000
|
||
24 O :dxx -0.0039 -0.0684 0.0006 0.0525 0.0385 -0.0074 -0.0081
|
||
25 O :dyy -0.0039 -0.0684 -0.0006 0.0525 0.0385 -0.0074 0.0081
|
||
26 O :dzz -0.0072 -0.0582 0.0000 0.0653 0.0541 -0.0252 -0.0000
|
||
27 O :dxx -0.1014 -0.4297 -0.0249 0.5151 0.4363 -0.1586 0.5005
|
||
28 O :dyy -0.1014 -0.4297 0.0249 0.5151 0.4363 -0.1586 -0.5005
|
||
29 O :dzz -0.0506 -0.4742 -0.0000 0.5462 0.4677 -0.1188 -0.0000
|
||
30 O :fxxz -0.0055 0.0483 0.0016 0.0842 0.0018 0.0322 -0.0028
|
||
31 O :fyyz -0.0055 0.0483 -0.0016 0.0842 0.0018 0.0322 0.0028
|
||
32 O :fzzz -0.0069 0.0512 -0.0000 0.0856 0.0051 0.0238 0.0000
|
||
|
||
Orbital 15
|
||
2 C :s -0.1559
|
||
4 C :s -0.3045
|
||
5 C :pz -3.5764
|
||
6 C :pz 4.9576
|
||
7 C :pz 0.3502
|
||
8 C :dxx -0.0240
|
||
9 C :dyy -0.0240
|
||
10 C :dzz 0.0579
|
||
11 C :dxx 0.0878
|
||
12 C :dyy 0.0878
|
||
13 C :dzz -0.0269
|
||
14 C :fxxz -0.3003
|
||
15 C :fyyz -0.3003
|
||
16 C :fzzz -0.3395
|
||
17 O :s -0.1387
|
||
18 O :s -0.6878
|
||
19 O :s 0.0167
|
||
20 O :s 0.8986
|
||
21 O :pz 0.2422
|
||
22 O :pz 0.0398
|
||
23 O :pz -0.3068
|
||
24 O :dxx 0.0133
|
||
25 O :dyy 0.0133
|
||
26 O :dzz 0.0118
|
||
27 O :dxx -0.1463
|
||
28 O :dyy -0.1463
|
||
29 O :dzz 0.2975
|
||
|
||
Molecular orbitals for symmetry species 2 (B1 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6 7
|
||
1 C :px -0.2139 -0.8508 0.2572 -0.0432 0.1080 3.9033 2.4388
|
||
2 C :px 0.0116 0.1218 1.6299 0.0998 0.0137 -5.8995 -3.7609
|
||
3 C :px -0.0284 -0.2588 -1.4800 0.1896 -0.4152 -0.3436 -0.4053
|
||
4 C :dxz -0.0054 0.0004 0.0021 0.0019 0.0149 0.0044 -0.0081
|
||
5 C :dxz -0.0312 0.0140 0.0375 -0.5053 -0.9130 0.2417 -0.3486
|
||
6 C :fxxx -0.0005 -0.0106 -0.1088 -0.0116 0.0038 0.4167 0.2197
|
||
7 C :fxyy -0.0005 -0.0106 -0.1088 -0.0116 0.0038 0.4167 0.2197
|
||
8 C :fxzz -0.0049 -0.0059 -0.1111 0.0006 -0.0066 0.3535 0.3924
|
||
9 O :px -0.9020 0.3407 0.0591 0.2881 -0.0112 0.1844 -0.0662
|
||
10 O :px 0.0335 -0.0544 0.0001 1.1496 -0.9705 -0.1016 -0.0039
|
||
11 O :px -0.0643 0.0962 0.1068 -1.1020 1.1556 -0.2789 0.2014
|
||
13 O :dxz 0.0147 0.0073 -0.0196 0.0214 0.1053 0.4610 -0.8688
|
||
14 O :fxxx -0.0018 0.0040 -0.0004 -0.0826 0.0669 0.0109 -0.0012
|
||
15 O :fxyy -0.0018 0.0040 -0.0004 -0.0826 0.0669 0.0109 -0.0012
|
||
16 O :fxzz -0.0053 0.0038 -0.0002 -0.0801 0.0668 0.0083 0.0018
|
||
|
||
Orbital 8 9 10 11
|
||
1 C :px 0.0000 -0.1074 -0.0142 0.1130
|
||
2 C :px -0.0000 0.1410 -0.0863 0.8165
|
||
3 C :px 0.0000 0.1294 0.1849 -0.0265
|
||
4 C :dxz 0.0000 0.4984 -1.0921 0.0759
|
||
5 C :dxz -0.0000 -0.1190 0.7533 -0.0735
|
||
6 C :fxxx 0.2041 -0.1354 -0.0462 -0.0955
|
||
7 C :fxyy -0.6124 -0.1354 -0.0462 -0.0955
|
||
8 C :fxzz 0.0000 0.5074 0.2558 -0.4045
|
||
9 O :px -0.0000 -1.2332 -0.8573 -3.6869
|
||
10 O :px 0.0000 2.0445 1.3788 5.8967
|
||
11 O :px -0.0000 -0.0042 -0.2032 0.3637
|
||
12 O :dxz -0.0000 0.0273 0.0159 -0.0073
|
||
13 O :dxz 0.0000 0.3343 0.3015 -0.1018
|
||
14 O :fxxx 0.0009 -0.1638 -0.0994 -0.4074
|
||
15 O :fxyy -0.0026 -0.1638 -0.0994 -0.4074
|
||
16 O :fxzz 0.0000 -0.1004 -0.0692 -0.4455
|
||
|
||
Molecular orbitals for symmetry species 3 (B2 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6 7
|
||
1 C :py -0.2139 -0.8508 0.2572 -0.0432 0.1080 3.9033 2.4388
|
||
2 C :py 0.0116 0.1218 1.6299 0.0998 0.0137 -5.8995 -3.7609
|
||
3 C :py -0.0284 -0.2588 -1.4800 0.1896 -0.4152 -0.3436 -0.4053
|
||
4 C :dyz -0.0054 0.0004 0.0021 0.0019 0.0149 0.0044 -0.0081
|
||
5 C :dyz -0.0312 0.0140 0.0375 -0.5053 -0.9130 0.2417 -0.3486
|
||
6 C :fxxy -0.0005 -0.0106 -0.1088 -0.0116 0.0038 0.4167 0.2197
|
||
7 C :fyyy -0.0005 -0.0106 -0.1088 -0.0116 0.0038 0.4167 0.2197
|
||
8 C :fyzz -0.0049 -0.0059 -0.1111 0.0006 -0.0066 0.3535 0.3924
|
||
9 O :py -0.9020 0.3407 0.0591 0.2881 -0.0112 0.1844 -0.0662
|
||
10 O :py 0.0335 -0.0544 0.0001 1.1496 -0.9705 -0.1016 -0.0039
|
||
11 O :py -0.0643 0.0962 0.1068 -1.1020 1.1556 -0.2789 0.2014
|
||
13 O :dyz 0.0147 0.0073 -0.0196 0.0214 0.1053 0.4610 -0.8688
|
||
14 O :fxxy -0.0018 0.0040 -0.0004 -0.0826 0.0669 0.0109 -0.0012
|
||
15 O :fyyy -0.0018 0.0040 -0.0004 -0.0826 0.0669 0.0109 -0.0012
|
||
16 O :fyzz -0.0053 0.0038 -0.0002 -0.0801 0.0668 0.0083 0.0018
|
||
|
||
Orbital 8 9 10 11
|
||
1 C :py 0.0000 -0.1074 -0.0142 0.1130
|
||
2 C :py -0.0000 0.1410 -0.0863 0.8165
|
||
3 C :py 0.0000 0.1294 0.1849 -0.0265
|
||
4 C :dyz -0.0000 0.4984 -1.0921 0.0759
|
||
5 C :dyz 0.0000 -0.1190 0.7533 -0.0735
|
||
6 C :fxxy -0.6124 -0.1354 -0.0462 -0.0955
|
||
7 C :fyyy 0.2041 -0.1354 -0.0462 -0.0955
|
||
8 C :fyzz 0.0000 0.5074 0.2558 -0.4045
|
||
9 O :py -0.0000 -1.2332 -0.8573 -3.6869
|
||
10 O :py 0.0000 2.0445 1.3788 5.8967
|
||
11 O :py -0.0000 -0.0042 -0.2032 0.3637
|
||
12 O :dyz 0.0000 0.0273 0.0159 -0.0073
|
||
13 O :dyz -0.0000 0.3343 0.3015 -0.1018
|
||
14 O :fxxy -0.0026 -0.1638 -0.0994 -0.4074
|
||
15 O :fyyy 0.0009 -0.1638 -0.0994 -0.4074
|
||
16 O :fyzz 0.0000 -0.1004 -0.0692 -0.4455
|
||
|
||
Molecular orbitals for symmetry species 4 (A2 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6
|
||
1 C :dxy -0.0275 -0.0264 0.0633 1.1786 -0.0313 0.0233
|
||
2 C :dxy 1.0096 -0.1055 -0.0230 -0.6083 0.0486 -0.0434
|
||
3 C :fxyz 0.0019 0.0823 0.9945 -0.0516 0.0612 -0.0382
|
||
4 O :dxy -0.0011 -0.0162 -0.0130 0.0065 -0.0239 -1.1644
|
||
5 O :dxy 0.0499 1.0009 -0.1207 0.0611 0.0088 0.5875
|
||
6 O :fxyz -0.0033 -0.0056 -0.0337 0.0130 1.0000 -0.0218
|
||
|
||
Total CPU time used in SIRIUS : 0.51 seconds
|
||
Total wall time used in SIRIUS : 0.11 seconds
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 15:27:17 2019
|
||
Host name : nazare063.cluster
|
||
|
||
NOTE: 1 informational messages have been issued.
|
||
Check output, result, and error files for "INFO".
|
||
|
||
|
||
.---------------------------------------.
|
||
| End of Wave Function Section (SIRIUS) |
|
||
`---------------------------------------'
|
||
|
||
|
||
|
||
.------------------------------------------.
|
||
| Starting in Coupled Cluster Section (CC) |
|
||
`------------------------------------------'
|
||
|
||
|
||
|
||
*******************************************************************************
|
||
*******************************************************************************
|
||
* *
|
||
* *
|
||
* START OF COUPLED CLUSTER CALCULATION *
|
||
* *
|
||
* *
|
||
*******************************************************************************
|
||
*******************************************************************************
|
||
|
||
|
||
I am freezing!
|
||
Freezing HF-orbital 1 of symmetry 1 and with orbital energy -20.6144
|
||
Freezing HF-orbital 2 of symmetry 1 and with orbital energy -11.5271
|
||
In total frozen-core per symmetry-class: 2 0 0 0
|
||
|
||
|
||
|
||
CCR12 ANSATZ = 0
|
||
|
||
CCR12 APPROX = 0
|
||
|
||
|
||
|
||
*******************************************************************
|
||
* *
|
||
*---------- >---------*
|
||
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
|
||
*---------- >---------*
|
||
* *
|
||
*******************************************************************
|
||
|
||
|
||
The Direct Coupled Cluster Energy Program
|
||
-----------------------------------------
|
||
|
||
|
||
Number of t1 amplitudes : 111
|
||
Number of t2 amplitudes : 13554
|
||
Total number of amplitudes in ccsd : 13665
|
||
|
||
Iter. 1: Coupled cluster MP2 energy : -112.8203267220557677
|
||
Iter. 1: Coupled cluster CC2 energy : -112.8177809387226347
|
||
Iter. 2: Coupled cluster CC2 energy : -112.8595408937387248
|
||
Iter. 3: Coupled cluster CC2 energy : -112.8554707182122741
|
||
Iter. 4: Coupled cluster CC2 energy : -112.7288095027992370
|
||
Iter. 5: Coupled cluster CC2 energy : -112.5938654347379497
|
||
Iter. 6: Coupled cluster CC2 energy : -112.4996835672598934
|
||
Iter. 7: Coupled cluster CC2 energy : -112.3899095134049873
|
||
Iter. 8: Coupled cluster CC2 energy : -112.4199820411459854
|
||
Iter. 9: Coupled cluster CC2 energy : -112.4000114137843411
|
||
Iter. 10: Coupled cluster CC2 energy : -112.3431276408516766
|
||
Iter. 11: Coupled cluster CC2 energy : -112.5143676368092827
|
||
Iter. 12: Coupled cluster CC2 energy : -112.5343666151171647
|
||
Iter. 13: Coupled cluster CC2 energy : -112.5842529455370880
|
||
Iter. 14: Coupled cluster CC2 energy : -112.6192882980363095
|
||
Iter. 15: Coupled cluster CC2 energy : -112.6507764522783646
|
||
Iter. 16: Coupled cluster CC2 energy : -112.7332125220507635
|
||
Iter. 17: Coupled cluster CC2 energy : -112.7973161559119148
|
||
Iter. 18: Coupled cluster CC2 energy : -112.7900911234812469
|
||
Iter. 19: Coupled cluster CC2 energy : -112.8254181792560331
|
||
Iter. 20: Coupled cluster CC2 energy : -112.6749678597377908
|
||
Iter. 21: Coupled cluster CC2 energy : -112.5884783796794864
|
||
Iter. 22: Coupled cluster CC2 energy : -112.6358451852341886
|
||
Iter. 23: Coupled cluster CC2 energy : -112.6746611701968135
|
||
Iter. 24: Coupled cluster CC2 energy : -112.5938653693111604
|
||
Iter. 25: Coupled cluster CC2 energy : -112.6579503579640260
|
||
Iter. 26: Coupled cluster CC2 energy : -112.7128650173560942
|
||
Iter. 27: Coupled cluster CC2 energy : -112.6842856315055741
|
||
Iter. 28: Coupled cluster CC2 energy : -112.6809421216963329
|
||
Iter. 29: Coupled cluster CC2 energy : -112.7402815099161870
|
||
Iter. 30: Coupled cluster CC2 energy : -112.6101619761228250
|
||
Iter. 31: Coupled cluster CC2 energy : -112.8700748821470228
|
||
Iter. 32: Coupled cluster CC2 energy : -112.8687006574337204
|
||
Iter. 33: Coupled cluster CC2 energy : -112.9474078273537572
|
||
Iter. 34: Coupled cluster CC2 energy : -112.9068654873541249
|
||
Iter. 35: Coupled cluster CC2 energy : -112.9567403210846948
|
||
Iter. 36: Coupled cluster CC2 energy : -112.9926089407743603
|
||
Iter. 37: Coupled cluster CC2 energy : -113.0399283735314242
|
||
Iter. 38: Coupled cluster CC2 energy : -113.0053589997297507
|
||
Iter. 39: Coupled cluster CC2 energy : -113.0248559653100386
|
||
Iter. 40: Coupled cluster CC2 energy : -113.0267611370191077
|
||
Energy not converged in 40 iterations
|
||
|
||
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
|
||
Date and time (Linux) : Wed Oct 9 15:27:19 2019
|
||
Host name : nazare063.cluster
|
||
|
||
Reason: CC equations not converged.
|
||
|
||
Total CPU time used in DALTON: 19.35 seconds
|
||
Total wall time used in DALTON: 2.17 seconds
|
||
|
||
|
||
QTRACE dump of internal trace stack
|
||
|
||
========================
|
||
level module
|
||
========================
|
||
5 CCSD_ENERGY
|
||
4 CC_DRV
|
||
3 CC
|
||
2 DALTON
|
||
1 DALTON main
|
||
========================
|
||
|