1005 lines
43 KiB
Plaintext
1005 lines
43 KiB
Plaintext
|
||
|
||
************************************************************************
|
||
*************** Dalton - An Electronic Structure Program ***************
|
||
************************************************************************
|
||
|
||
This is output from DALTON release Dalton2017.alpha (2017)
|
||
( Web site: http://daltonprogram.org )
|
||
|
||
----------------------------------------------------------------------------
|
||
|
||
NOTE:
|
||
|
||
Dalton is an experimental code for the evaluation of molecular
|
||
properties using (MC)SCF, DFT, CI, and CC wave functions.
|
||
The authors accept no responsibility for the performance of
|
||
the code or for the correctness of the results.
|
||
|
||
The code (in whole or part) is provided under a licence and
|
||
is not to be reproduced for further distribution without
|
||
the written permission of the authors or their representatives.
|
||
|
||
See the home page "http://daltonprogram.org" for further information.
|
||
|
||
If results obtained with this code are published,
|
||
the appropriate citations would be both of:
|
||
|
||
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
|
||
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
|
||
P. Dahle, E. K. Dalskov, U. Ekstroem,
|
||
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
|
||
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
|
||
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
|
||
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
|
||
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
|
||
P. Joergensen, J. Kauczor, S. Kirpekar,
|
||
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
|
||
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
|
||
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
|
||
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
|
||
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
|
||
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
|
||
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
|
||
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
|
||
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
|
||
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
|
||
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
|
||
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
|
||
and H. Agren,
|
||
"The Dalton quantum chemistry program system",
|
||
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
|
||
|
||
and
|
||
|
||
Dalton, a Molecular Electronic Structure Program,
|
||
Release Dalton2017.alpha (2017), see http://daltonprogram.org
|
||
----------------------------------------------------------------------------
|
||
|
||
Authors in alphabetical order (major contribution(s) in parenthesis):
|
||
|
||
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
|
||
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
|
||
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
|
||
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
|
||
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
|
||
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
|
||
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
|
||
Ove Christiansen, Aarhus University, Denmark (CC module)
|
||
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
|
||
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
|
||
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
|
||
Paal Dahle, University of Oslo, Norway (Parallelization)
|
||
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
|
||
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
|
||
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
|
||
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
|
||
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
|
||
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
|
||
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
|
||
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
|
||
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
|
||
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
|
||
Kasper Hald, Aarhus University, Denmark (CC module)
|
||
Asger Halkier, Aarhus University, Denmark (CC module)
|
||
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
|
||
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
|
||
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
|
||
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
|
||
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
|
||
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
|
||
Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA)
|
||
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
|
||
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
|
||
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
|
||
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
|
||
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
|
||
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
|
||
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
|
||
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
|
||
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
|
||
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
|
||
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
|
||
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
|
||
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
|
||
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
||
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
|
||
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
|
||
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
|
||
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
|
||
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
|
||
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
|
||
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
|
||
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
|
||
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
|
||
Anders Osted, Copenhagen University, Denmark (QM/MM)
|
||
Martin J. Packer, University of Sheffield, UK (SOPPA)
|
||
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
|
||
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
|
||
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
|
||
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
|
||
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
|
||
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
|
||
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
|
||
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
|
||
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
|
||
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
|
||
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
|
||
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
|
||
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
|
||
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
|
||
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
|
||
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
|
||
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
|
||
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
|
||
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
|
||
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
|
||
David P. Tew, University of Bristol, England (CCSD(R12))
|
||
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
|
||
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
|
||
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
|
||
--------------------------------------------------------------------------------
|
||
|
||
Date and time (Linux) : Wed Oct 9 14:38:55 2019
|
||
Host name : nazare079.cluster
|
||
|
||
* Work memory size : 6400000000 = 47.684 gigabytes.
|
||
|
||
* Directories for basis set searches:
|
||
1) /home/CEISAM/jacquemin-d/TITOU/CO/DZ
|
||
2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis
|
||
|
||
|
||
Compilation information
|
||
-----------------------
|
||
|
||
Who compiled | blondel-a
|
||
Host | jaws.cluster
|
||
System | Linux-3.10.0-862.9.1.el7.x86_64
|
||
CMake generator | Unix Makefiles
|
||
Processor | x86_64
|
||
64-bit integers | ON
|
||
MPI | OFF
|
||
Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/ifort
|
||
Fortran compiler version | ifort (IFORT) 18.0.3 20180410
|
||
C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/icc
|
||
C compiler version | icc (ICC) 18.0.3 20180410
|
||
C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi
|
||
| ne-dependant/soft/intel/2018.3.022/compilers_and_l
|
||
| ibraries_2018.3.222/linux/bin/intel64/icpc
|
||
C++ compiler version | icpc (ICC) 18.0.3 20180410
|
||
Static linking | ON
|
||
Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083
|
||
Git branch | master
|
||
Configuration time | 2018-07-26 15:11:23.544354
|
||
|
||
|
||
Content of the .dal input file
|
||
----------------------------------
|
||
|
||
**DALTON INPUT
|
||
.RUN WAVE FUNCTIONS
|
||
**INTEGRALS
|
||
.DIPLEN
|
||
.DEROVL
|
||
.DERHAM
|
||
**WAVE FUNCTIONS
|
||
.CC
|
||
*CC INP
|
||
.CC2
|
||
.CCSD
|
||
.CC3
|
||
*CCEXCI
|
||
.NCCEXCI
|
||
3 3 3 3
|
||
3 3 3 3
|
||
**END OF DALTON INPUT
|
||
|
||
|
||
Content of the .mol file
|
||
----------------------------
|
||
|
||
BASIS
|
||
cc-pVDZ
|
||
CO/Scan
|
||
Dalton Run w/o symmetry
|
||
AtomTypes=2 Charge=0 Cartesian
|
||
Charge=6.0 Atoms=1
|
||
C 0.0000000 0.0000000000 0.000
|
||
Charge=8.0 Atoms=1
|
||
O 0.00000000 0.0000000000 3.500
|
||
|
||
|
||
*******************************************************************
|
||
*********** Output from DALTON general input processing ***********
|
||
*******************************************************************
|
||
|
||
--------------------------------------------------------------------------------
|
||
Overall default print level: 0
|
||
Print level for DALTON.STAT: 1
|
||
|
||
HERMIT 1- and 2-electron integral sections will be executed
|
||
"Old" integral transformation used (limited to max 255 basis functions)
|
||
Wave function sections will be executed (SIRIUS module)
|
||
--------------------------------------------------------------------------------
|
||
|
||
|
||
****************************************************************************
|
||
*************** Output of molecule and basis set information ***************
|
||
****************************************************************************
|
||
|
||
|
||
The two title cards from your ".mol" input:
|
||
------------------------------------------------------------------------
|
||
1: CO/Scan
|
||
2: Dalton Run w/o symmetry
|
||
------------------------------------------------------------------------
|
||
|
||
Atomic type no. 1
|
||
--------------------
|
||
Nuclear charge: 6.00000
|
||
Number of symmetry independent centers: 1
|
||
Number of basis sets to read; 2
|
||
Basis set file used for this atomic type with Z = 6 :
|
||
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
|
||
|
||
Atomic type no. 2
|
||
--------------------
|
||
Nuclear charge: 8.00000
|
||
Number of symmetry independent centers: 1
|
||
Number of basis sets to read; 2
|
||
Basis set file used for this atomic type with Z = 8 :
|
||
"/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVDZ"
|
||
|
||
|
||
SYMADD: Requested addition of symmetry
|
||
--------------------------------------
|
||
|
||
Symmetry test threshold: 5.00E-06
|
||
|
||
@ The molecule is centered at center of mass and rotated
|
||
@ so principal axes of inertia are along coordinate axes.
|
||
|
||
Symmetry class found: C(oo,v)
|
||
|
||
Symmetry Independent Centres
|
||
----------------------------
|
||
8 : 0.00000000 0.00000000 1.50027246 Isotope 1
|
||
6 : 0.00000000 0.00000000 -1.99972754 Isotope 1
|
||
|
||
The following elements were found: X Y
|
||
|
||
|
||
SYMGRP: Point group information
|
||
-------------------------------
|
||
|
||
@ Full point group is: C(oo,v)
|
||
@ Represented as: C2v
|
||
|
||
@ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2
|
||
|
||
* The point group was generated by:
|
||
|
||
Reflection in the yz-plane
|
||
Reflection in the xz-plane
|
||
|
||
* Group multiplication table
|
||
|
||
| E C2z Oxz Oyz
|
||
-----+--------------------
|
||
E | E C2z Oxz Oyz
|
||
C2z | C2z E Oyz Oxz
|
||
Oxz | Oxz Oyz E C2z
|
||
Oyz | Oyz Oxz C2z E
|
||
|
||
* Character table
|
||
|
||
| E C2z Oxz Oyz
|
||
-----+--------------------
|
||
A1 | 1 1 1 1
|
||
B1 | 1 -1 1 -1
|
||
B2 | 1 -1 -1 1
|
||
A2 | 1 1 -1 -1
|
||
|
||
* Direct product table
|
||
|
||
| A1 B1 B2 A2
|
||
-----+--------------------
|
||
A1 | A1 B1 B2 A2
|
||
B1 | B1 A1 A2 B2
|
||
B2 | B2 A2 A1 B1
|
||
A2 | A2 B2 B1 A1
|
||
|
||
|
||
Isotopic Masses
|
||
---------------
|
||
|
||
C 12.000000
|
||
O 15.994915
|
||
|
||
Total mass: 27.994915 amu
|
||
Natural abundance: 98.663 %
|
||
|
||
Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000
|
||
|
||
|
||
Atoms and basis sets
|
||
--------------------
|
||
|
||
Number of atom types : 2
|
||
Total number of atoms: 2
|
||
|
||
Basis set used is "cc-pVDZ" from the basis set library.
|
||
|
||
label atoms charge prim cont basis
|
||
----------------------------------------------------------------------
|
||
C 1 6.0000 27 15 [9s4p1d|3s2p1d]
|
||
O 1 8.0000 27 15 [9s4p1d|3s2p1d]
|
||
----------------------------------------------------------------------
|
||
total: 2 14.0000 54 30
|
||
----------------------------------------------------------------------
|
||
Cartesian basis used.
|
||
(Note that d, f, ... atomic GTOs are not all normalized.)
|
||
|
||
Threshold for neglecting AO integrals: 1.00D-12
|
||
|
||
|
||
Cartesian Coordinates (a.u.)
|
||
----------------------------
|
||
|
||
Total number of coordinates: 6
|
||
C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9997275398
|
||
O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.5002724602
|
||
|
||
|
||
Symmetry Coordinates
|
||
--------------------
|
||
|
||
Number of coordinates in each symmetry: 2 2 2 0
|
||
|
||
Symmetry A1 ( 1)
|
||
|
||
1 C z 3
|
||
2 O z 6
|
||
|
||
Symmetry B1 ( 2)
|
||
|
||
3 C x 1
|
||
4 O x 4
|
||
|
||
Symmetry B2 ( 3)
|
||
|
||
5 C y 2
|
||
6 O y 5
|
||
|
||
|
||
Interatomic separations (in Angstrom):
|
||
--------------------------------------
|
||
|
||
C O
|
||
------ ------
|
||
C : 0.000000
|
||
O : 1.852120 0.000000
|
||
|
||
|
||
Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
|
||
between atoms 2 and 1, "O " and "C ".
|
||
|
||
Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr)
|
||
|
||
|
||
Bond distances (Angstrom):
|
||
--------------------------
|
||
|
||
atom 1 atom 2 distance
|
||
------ ------ --------
|
||
|
||
|
||
|
||
|
||
Principal moments of inertia (u*A**2) and principal axes
|
||
--------------------------------------------------------
|
||
|
||
IA 0.000000 0.000000 0.000000 1.000000
|
||
IB 23.519191 0.000000 1.000000 0.000000
|
||
IC 23.519191 1.000000 0.000000 0.000000
|
||
|
||
|
||
Rotational constants
|
||
--------------------
|
||
|
||
@ The molecule is linear.
|
||
|
||
B = 21487.94 MHz ( 0.716761 cm-1)
|
||
|
||
|
||
@ Nuclear repulsion energy : 13.714285714286 Hartree
|
||
|
||
|
||
Symmetry Orbitals
|
||
-----------------
|
||
|
||
Number of orbitals in each symmetry: 16 6 6 2
|
||
|
||
|
||
Symmetry A1 ( 1)
|
||
|
||
1 C s 1
|
||
2 C s 2
|
||
3 C s 3
|
||
4 C pz 6
|
||
5 C pz 9
|
||
6 C dxx 10
|
||
7 C dyy 13
|
||
8 C dzz 15
|
||
9 O s 16
|
||
10 O s 17
|
||
11 O s 18
|
||
12 O pz 21
|
||
13 O pz 24
|
||
14 O dxx 25
|
||
15 O dyy 28
|
||
16 O dzz 30
|
||
|
||
|
||
Symmetry B1 ( 2)
|
||
|
||
17 C px 4
|
||
18 C px 7
|
||
19 C dxz 12
|
||
20 O px 19
|
||
21 O px 22
|
||
22 O dxz 27
|
||
|
||
|
||
Symmetry B2 ( 3)
|
||
|
||
23 C py 5
|
||
24 C py 8
|
||
25 C dyz 14
|
||
26 O py 20
|
||
27 O py 23
|
||
28 O dyz 29
|
||
|
||
|
||
Symmetry A2 ( 4)
|
||
|
||
29 C dxy 11
|
||
30 O dxy 26
|
||
|
||
Symmetries of electric field: B1 (2) B2 (3) A1 (1)
|
||
|
||
Symmetries of magnetic field: B2 (3) B1 (2) A2 (4)
|
||
|
||
|
||
.---------------------------------------.
|
||
| Starting in Integral Section (HERMIT) |
|
||
`---------------------------------------'
|
||
|
||
|
||
|
||
***************************************************************************************
|
||
****************** Output from **INTEGRALS input processing (HERMIT) ******************
|
||
***************************************************************************************
|
||
|
||
|
||
|
||
*************************************************************************
|
||
****************** Output from HERMIT input processing ******************
|
||
*************************************************************************
|
||
|
||
|
||
Default print level: 1
|
||
|
||
* Nuclear model: Point charge
|
||
|
||
Calculation of one- and two-electron Hamiltonian integrals.
|
||
|
||
The following one-electron property integrals are calculated as requested:
|
||
- overlap integrals
|
||
- dipole length integrals
|
||
- Geometrical derivatives of overlap integrals
|
||
- Geometrical derivatives of one-electron Hamiltonian integrals
|
||
|
||
Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
||
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
|
||
Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
||
Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000000000
|
||
|
||
|
||
************************************************************************
|
||
************************** Output from HERINT **************************
|
||
************************************************************************
|
||
|
||
|
||
|
||
Nuclear contribution to dipole moments
|
||
--------------------------------------
|
||
|
||
au Debye C m (/(10**-30)
|
||
|
||
z 0.00381444 0.00969535 0.03234019
|
||
|
||
|
||
|
||
Threshold for neglecting two-electron integrals: 1.00D-12
|
||
HERMIT - Number of two-electron integrals written: 28697 ( 26.5% )
|
||
HERMIT - Megabytes written: 0.330
|
||
|
||
Total CPU time used in HERMIT: 0.09 seconds
|
||
Total wall time used in HERMIT: 0.04 seconds
|
||
|
||
|
||
.----------------------------------.
|
||
| End of Integral Section (HERMIT) |
|
||
`----------------------------------'
|
||
|
||
|
||
|
||
.--------------------------------------------.
|
||
| Starting in Wave Function Section (SIRIUS) |
|
||
`--------------------------------------------'
|
||
|
||
NCCEXCI for singlet: 3 3 3 3
|
||
NCCEXCI for triplet: 3 3 3 3
|
||
|
||
*** Output from Huckel module :
|
||
|
||
Using EWMO model: T
|
||
Using EHT model: F
|
||
Number of Huckel orbitals each symmetry: 6 2 2 0
|
||
|
||
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
|
||
which normally is better than Extended Huckel Theory.
|
||
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 1
|
||
-20.681282 -11.338857 -1.328178 -0.793745 -0.550570
|
||
-0.312269
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 2
|
||
-0.635675 -0.387425
|
||
|
||
Huckel EWMO eigenvalues for symmetry : 3
|
||
-0.635675 -0.387425
|
||
|
||
**********************************************************************
|
||
*SIRIUS* a direct, restricted step, second order MCSCF program *
|
||
**********************************************************************
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 14:38:55 2019
|
||
Host name : nazare079.cluster
|
||
|
||
Title lines from ".mol" input file:
|
||
CO/Scan
|
||
Dalton Run w/o symmetry
|
||
|
||
Print level on unit LUPRI = 2 is 0
|
||
Print level on unit LUW4 = 2 is 5
|
||
|
||
@ (Integral direct) CC calculation.
|
||
|
||
@ This is a combination run starting with
|
||
@ a restricted, closed shell Hartree-Fock calculation
|
||
|
||
|
||
Initial molecular orbitals are obtained according to
|
||
".MOSTART EWMO " input option
|
||
|
||
Wave function specification
|
||
============================
|
||
|
||
For the specification of the Coupled Cluster: see later.
|
||
|
||
@ Wave function type --- CC ---
|
||
@ Number of closed shell electrons 14
|
||
@ Number of electrons in active shells 0
|
||
@ Total charge of the molecule 0
|
||
|
||
@ Spin multiplicity and 2 M_S 1 0
|
||
@ Total number of symmetries 4 (point group: C2v)
|
||
@ Reference state symmetry 1 (irrep name : A1 )
|
||
|
||
Orbital specifications
|
||
======================
|
||
@ Abelian symmetry species All | 1 2 3 4
|
||
@ | A1 B1 B2 A2
|
||
--- | --- --- --- ---
|
||
@ Total number of orbitals 30 | 16 6 6 2
|
||
@ Number of basis functions 30 | 16 6 6 2
|
||
|
||
** Automatic occupation of RHF orbitals **
|
||
|
||
-- Initial occupation of symmetries is determined from extended Huckel guess.
|
||
-- Initial occupation of symmetries is :
|
||
@ Occupied SCF orbitals 7 | 5 1 1 0
|
||
|
||
Maximum number of Fock iterations 0
|
||
Maximum number of DIIS iterations 60
|
||
Maximum number of QC-SCF iterations 60
|
||
Threshold for SCF convergence 1.00D-06
|
||
|
||
|
||
Changes of defaults for CC:
|
||
---------------------------
|
||
|
||
|
||
-Iterative triple excitations included
|
||
-Excitation energies calculated
|
||
|
||
|
||
|
||
***********************************************
|
||
***** DIIS acceleration of SCF iterations *****
|
||
***********************************************
|
||
|
||
C1-DIIS algorithm; max error vectors = 8
|
||
|
||
Automatic occupation of symmetries with 14 electrons.
|
||
|
||
Iter Total energy Error norm Delta(E) SCF occupation
|
||
-----------------------------------------------------------------------------
|
||
|
||
Calculating AOSUPINT
|
||
(Precalculated AO two-electron integrals are transformed to P-supermatrix elements.
|
||
Threshold for discarding integrals : 1.00D-12 )
|
||
@ 1 -112.002486274 2.28D+00 -1.12D+02 5 1 1 0
|
||
Virial theorem: -V/T = 1.989482
|
||
@ MULPOP C 1.19; O -1.19;
|
||
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
||
-----------------------------------------------------------------------------
|
||
@ 2 -111.073329465 4.90D+00 9.29D-01 5 1 1 0
|
||
Virial theorem: -V/T = 2.024138
|
||
@ MULPOP C -1.42; O 1.42;
|
||
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
|
||
-----------------------------------------------------------------------------
|
||
@ 3 -112.216440946 1.49D+00 -1.14D+00 5 1 1 0
|
||
Virial theorem: -V/T = 2.018161
|
||
@ MULPOP C -0.18; O 0.18;
|
||
3 Level shift: doubly occupied orbital energies shifted by -1.00D-01
|
||
-----------------------------------------------------------------------------
|
||
@ 4 -112.339216693 3.11D-01 -1.23D-01 5 1 1 0
|
||
Virial theorem: -V/T = 2.011117
|
||
@ MULPOP C 0.29; O -0.29;
|
||
4 Level shift: doubly occupied orbital energies shifted by -2.50D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 5 -112.352134109 1.35D-01 -1.29D-02 5 1 1 0
|
||
Virial theorem: -V/T = 2.008807
|
||
@ MULPOP C 0.46; O -0.46;
|
||
5 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 6 -112.353812087 1.38D-01 -1.68D-03 5 1 1 0
|
||
|
||
Info: SCF gradient has been lower than now,
|
||
therefore 1 old iterations are removed from DIIS.
|
||
Virial theorem: -V/T = 2.008691
|
||
@ MULPOP C 0.47; O -0.47;
|
||
6 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 7 -112.355364389 1.30D-01 -1.55D-03 5 1 1 0
|
||
Virial theorem: -V/T = 2.008691
|
||
@ MULPOP C 0.46; O -0.46;
|
||
7 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 8 -112.370390305 1.72D-01 -1.50D-02 5 1 1 0
|
||
|
||
Info: SCF gradient has been lower than now,
|
||
therefore 2 old iterations are removed from DIIS.
|
||
Virial theorem: -V/T = 2.005718
|
||
@ MULPOP C 0.31; O -0.31;
|
||
8 Level shift: doubly occupied orbital energies shifted by -1.25D-02
|
||
-----------------------------------------------------------------------------
|
||
@ 9 -112.371064760 8.42D-02 -6.74D-04 5 1 1 0
|
||
Virial theorem: -V/T = 2.007404
|
||
@ MULPOP C 0.44; O -0.44;
|
||
-----------------------------------------------------------------------------
|
||
@ 10 -112.373691688 3.73D-02 -2.63D-03 5 1 1 0
|
||
Virial theorem: -V/T = 2.006229
|
||
@ MULPOP C 0.38; O -0.38;
|
||
-----------------------------------------------------------------------------
|
||
@ 11 -112.373870679 7.62D-03 -1.79D-04 5 1 1 0
|
||
Virial theorem: -V/T = 2.006389
|
||
@ MULPOP C 0.40; O -0.40;
|
||
-----------------------------------------------------------------------------
|
||
@ 12 -112.373880409 4.45D-04 -9.73D-06 5 1 1 0
|
||
Virial theorem: -V/T = 2.006351
|
||
@ MULPOP C 0.39; O -0.39;
|
||
-----------------------------------------------------------------------------
|
||
@ 13 -112.373880440 3.39D-04 -3.10D-08 5 1 1 0
|
||
Virial theorem: -V/T = 2.006356
|
||
@ MULPOP C 0.39; O -0.39;
|
||
-----------------------------------------------------------------------------
|
||
@ 14 -112.373880457 1.09D-04 -1.71D-08 5 1 1 0
|
||
Virial theorem: -V/T = 2.006354
|
||
@ MULPOP C 0.39; O -0.39;
|
||
-----------------------------------------------------------------------------
|
||
@ 15 -112.373880459 2.37D-05 -2.57D-09 5 1 1 0
|
||
Virial theorem: -V/T = 2.006355
|
||
@ MULPOP C 0.39; O -0.39;
|
||
-----------------------------------------------------------------------------
|
||
@ 16 -112.373880459 1.21D-06 -9.74D-11 5 1 1 0
|
||
Virial theorem: -V/T = 2.006354
|
||
@ MULPOP C 0.39; O -0.39;
|
||
-----------------------------------------------------------------------------
|
||
@ 17 -112.373880459 2.51D-07 -3.69D-13 5 1 1 0
|
||
|
||
@ *** DIIS converged in 17 iterations !
|
||
@ Converged SCF energy, gradient: -112.373880459356 2.51D-07
|
||
- total time used in SIRFCK : 0.00 seconds
|
||
|
||
|
||
*** SCF orbital energy analysis ***
|
||
|
||
Only the 20 lowest virtual orbital energies printed in each symmetry.
|
||
|
||
Number of electrons : 14
|
||
Orbital occupations : 5 1 1 0
|
||
|
||
Sym Hartree-Fock orbital energies
|
||
|
||
1 A1 -20.60798087 -11.51557585 -1.19998557 -0.80277072 -0.45806513
|
||
0.15315405 0.58310027 0.64988908 1.25949674 1.30725419
|
||
1.44779131 1.88302002 2.44688940 2.99419320 3.31009555
|
||
5.78759481
|
||
|
||
2 B1 -0.46471725 -0.01269720 0.64830073 1.17538992 1.43171131
|
||
3.02270962
|
||
|
||
3 B2 -0.46471725 -0.01269720 0.64830073 1.17538992 1.43171131
|
||
3.02270962
|
||
|
||
4 A2 1.30725419 2.99419320
|
||
|
||
E(LUMO) : -0.01269720 au (symmetry 3)
|
||
- E(HOMO) : -0.45806513 au (symmetry 1)
|
||
------------------------------------------
|
||
gap : 0.44536793 au
|
||
|
||
--- Writing SIRIFC interface file
|
||
|
||
CPU and wall time for SCF : 0.046 0.012
|
||
|
||
|
||
.-----------------------------------.
|
||
| --- Final results from SIRIUS --- |
|
||
`-----------------------------------'
|
||
|
||
|
||
@ Spin multiplicity: 1
|
||
@ Spatial symmetry: 1 ( irrep A1 in C2v )
|
||
@ Total charge of molecule: 0
|
||
|
||
@ Final HF energy: -112.373880459356
|
||
@ Nuclear repulsion: 13.714285714286
|
||
@ Electronic energy: -126.088166173641
|
||
|
||
@ Final gradient norm: 0.000000251180
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 14:38:55 2019
|
||
Host name : nazare079.cluster
|
||
|
||
|
||
INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs
|
||
|
||
File label for MO orbitals: 9Oct19 FOCKDIIS
|
||
|
||
(Only coefficients > 0.0100 are printed.)
|
||
|
||
Molecular orbitals for symmetry species 1 (A1 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6 7
|
||
1 C :s -0.0001 0.9998 -0.0004 -0.0234 -0.0008 0.0196 -0.4609
|
||
2 C :s -0.0003 -0.0001 0.1903 -1.0676 -0.1078 0.3707 -1.9825
|
||
3 C :s 0.0009 0.0024 -0.0301 0.1311 -0.0495 0.0429 2.6603
|
||
4 C :pz 0.0002 0.0012 0.1010 0.0493 0.8308 0.5946 0.9477
|
||
5 C :pz 0.0005 -0.0010 -0.0194 0.0089 -0.0475 0.2524 -1.1448
|
||
6 C :dxx -0.0001 -0.0010 -0.0029 -0.0001 -0.0017 0.0141 -0.1314
|
||
7 C :dyy -0.0001 -0.0010 -0.0029 -0.0001 -0.0017 0.0141 -0.1314
|
||
8 C :dzz 0.0001 -0.0004 0.0075 -0.0072 0.0219 -0.0199 -0.1482
|
||
9 O :s 1.0003 -0.0000 -0.0048 0.0029 -0.0010 0.0096 -0.0278
|
||
10 O :s 0.0020 0.0001 0.9357 0.2622 -0.1790 -0.1557 -0.1241
|
||
11 O :s -0.0004 0.0002 0.0117 0.0296 -0.0928 -0.2273 0.2147
|
||
12 O :pz -0.0012 -0.0003 -0.0192 0.1526 -0.4545 0.7276 0.1239
|
||
13 O :pz 0.0014 0.0001 -0.0050 -0.0004 -0.0277 0.2931 -0.0730
|
||
14 O :dxx -0.0005 0.0000 -0.0025 0.0010 -0.0010 0.0033 -0.0103
|
||
15 O :dyy -0.0005 0.0000 -0.0025 0.0010 -0.0010 0.0033 -0.0103
|
||
16 O :dzz -0.0009 -0.0000 -0.0002 -0.0073 0.0142 0.0060 -0.0090
|
||
|
||
Orbital 8 9 10 11 12 13 14
|
||
1 C :s -0.4510 0.0385 0.0000 0.0574 -0.2647 0.1481 -0.0000
|
||
2 C :s -1.8331 0.1648 0.0000 0.2592 -1.0823 2.4567 -0.0000
|
||
3 C :s 2.7207 -0.1112 -0.0000 -0.2060 1.7120 0.4206 0.0000
|
||
4 C :pz -1.0539 0.1506 0.0000 0.3685 0.0156 -0.0028 -0.0000
|
||
5 C :pz 1.7040 -0.0917 -0.0000 -0.2710 0.9285 0.2485 0.0000
|
||
6 C :dxx -0.0990 -0.1117 -0.4999 0.2173 -0.1838 -0.8016 0.0112
|
||
7 C :dyy -0.0990 -0.1117 0.4999 0.2173 -0.1838 -0.8016 -0.0112
|
||
8 C :dzz -0.1614 0.2597 0.0000 -0.3440 0.4806 -0.6295 -0.0000
|
||
9 O :s 0.0182 -0.3375 -0.0000 0.1325 0.5772 0.1252 -0.0000
|
||
10 O :s -0.1123 -1.5314 -0.0000 0.6584 2.2238 0.5465 -0.0000
|
||
11 O :s -0.5573 1.9091 0.0000 -0.6864 -3.6471 -0.8635 0.0000
|
||
12 O :pz -0.1665 -0.8914 0.0000 -1.0619 -0.5034 -0.1081 -0.0000
|
||
13 O :pz 0.5158 1.1938 -0.0000 1.1018 1.3532 0.2436 0.0000
|
||
14 O :dxx 0.0151 -0.1015 -0.0073 0.0327 0.0717 0.0548 -0.5000
|
||
15 O :dyy 0.0151 -0.1015 0.0073 0.0327 0.0717 0.0548 0.5000
|
||
16 O :dzz -0.0232 -0.0631 -0.0000 0.0090 0.2691 -0.0963 0.0000
|
||
|
||
Orbital 15
|
||
1 C :s 0.1348
|
||
2 C :s 0.9560
|
||
3 C :s -0.5405
|
||
4 C :pz -0.1552
|
||
5 C :pz -0.2888
|
||
6 C :dxx -0.0867
|
||
7 C :dyy -0.0867
|
||
8 C :dzz -0.4582
|
||
9 O :s -0.1969
|
||
10 O :s -0.7904
|
||
11 O :s 1.1664
|
||
12 O :pz 0.1876
|
||
13 O :pz -0.5840
|
||
14 O :dxx -0.2907
|
||
15 O :dyy -0.2907
|
||
16 O :dzz 0.5624
|
||
|
||
Molecular orbitals for symmetry species 2 (B1 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6
|
||
1 C :px -0.1759 -0.7975 -1.5669 0.0517 0.1020 -0.0318
|
||
2 C :px -0.0422 -0.2228 1.7729 -0.1886 -0.2474 0.1055
|
||
3 C :dxz -0.0233 0.0061 -0.0220 0.5480 -0.8431 0.1577
|
||
4 O :px -0.9008 0.2854 -0.1049 -1.1317 -0.8277 0.0581
|
||
5 O :px -0.0585 0.0605 -0.0309 1.3130 1.1593 -0.0987
|
||
6 O :dxz 0.0102 0.0061 -0.0006 -0.0312 0.0838 1.0000
|
||
|
||
Molecular orbitals for symmetry species 3 (B2 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2 3 4 5 6
|
||
1 C :py -0.1759 -0.7975 -1.5669 0.0517 0.1020 -0.0318
|
||
2 C :py -0.0422 -0.2228 1.7729 -0.1886 -0.2474 0.1055
|
||
3 C :dyz -0.0233 0.0061 -0.0220 0.5480 -0.8431 0.1577
|
||
4 O :py -0.9008 0.2854 -0.1049 -1.1317 -0.8277 0.0581
|
||
5 O :py -0.0585 0.0605 -0.0309 1.3130 1.1593 -0.0987
|
||
6 O :dyz 0.0102 0.0061 -0.0006 -0.0312 0.0838 1.0000
|
||
|
||
Molecular orbitals for symmetry species 4 (A2 )
|
||
------------------------------------------------
|
||
|
||
Orbital 1 2
|
||
1 C :dxy -0.9998 -0.0225
|
||
2 O :dxy -0.0147 0.9999
|
||
|
||
Total CPU time used in SIRIUS : 0.07 seconds
|
||
Total wall time used in SIRIUS : 0.02 seconds
|
||
|
||
|
||
Date and time (Linux) : Wed Oct 9 14:38:55 2019
|
||
Host name : nazare079.cluster
|
||
|
||
NOTE: 1 informational messages have been issued.
|
||
Check output, result, and error files for "INFO".
|
||
|
||
|
||
.---------------------------------------.
|
||
| End of Wave Function Section (SIRIUS) |
|
||
`---------------------------------------'
|
||
|
||
|
||
|
||
.------------------------------------------.
|
||
| Starting in Coupled Cluster Section (CC) |
|
||
`------------------------------------------'
|
||
|
||
|
||
|
||
*******************************************************************************
|
||
*******************************************************************************
|
||
* *
|
||
* *
|
||
* START OF COUPLED CLUSTER CALCULATION *
|
||
* *
|
||
* *
|
||
*******************************************************************************
|
||
*******************************************************************************
|
||
|
||
|
||
|
||
CCR12 ANSATZ = 0
|
||
|
||
CCR12 APPROX = 0
|
||
|
||
|
||
|
||
*******************************************************************
|
||
* *
|
||
*---------- >---------*
|
||
*---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------*
|
||
*---------- >---------*
|
||
* *
|
||
*******************************************************************
|
||
|
||
|
||
The Direct Coupled Cluster Energy Program
|
||
-----------------------------------------
|
||
|
||
|
||
Number of t1 amplitudes : 65
|
||
Number of t2 amplitudes : 3837
|
||
Total number of amplitudes in ccsd : 3902
|
||
|
||
Iter. 1: Coupled cluster MP2 energy : -112.6840492572348751
|
||
Iter. 1: Coupled cluster CC2 energy : -112.6833962510423959
|
||
Iter. 2: Coupled cluster CC2 energy : -112.7217694709863736
|
||
Iter. 3: Coupled cluster CC2 energy : -112.6754534745725920
|
||
Iter. 4: Coupled cluster CC2 energy : -112.4611431698371007
|
||
Iter. 5: Coupled cluster CC2 energy : -112.4472621160605854
|
||
Iter. 6: Coupled cluster CC2 energy : -112.5654187562708870
|
||
Iter. 7: Coupled cluster CC2 energy : -112.5480409316628965
|
||
Iter. 8: Coupled cluster CC2 energy : -112.5580879449908736
|
||
Iter. 9: Coupled cluster CC2 energy : -112.6106982571349988
|
||
Iter. 10: Coupled cluster CC2 energy : -112.6074584736876432
|
||
Iter. 11: Coupled cluster CC2 energy : -112.6270077157785892
|
||
Iter. 12: Coupled cluster CC2 energy : -112.5762821714372137
|
||
Iter. 13: Coupled cluster CC2 energy : -112.5580693291460221
|
||
Iter. 14: Coupled cluster CC2 energy : -112.7879152070894264
|
||
Iter. 15: Coupled cluster CC2 energy : -112.6788099973119017
|
||
Iter. 16: Coupled cluster CC2 energy : -112.5868796265392859
|
||
Iter. 17: Coupled cluster CC2 energy : -112.6160211385503942
|
||
Iter. 18: Coupled cluster CC2 energy : -112.6204696639222362
|
||
Iter. 19: Coupled cluster CC2 energy : -112.6438838843651382
|
||
Iter. 20: Coupled cluster CC2 energy : -112.4864634797841205
|
||
Iter. 21: Coupled cluster CC2 energy : -112.5169579717290702
|
||
Iter. 22: Coupled cluster CC2 energy : -112.5935745507292296
|
||
Iter. 23: Coupled cluster CC2 energy : -112.6000611099453153
|
||
Iter. 24: Coupled cluster CC2 energy : -112.5647814001519862
|
||
Iter. 25: Coupled cluster CC2 energy : -112.6081092733864324
|
||
Iter. 26: Coupled cluster CC2 energy : -112.6080640194780500
|
||
Iter. 27: Coupled cluster CC2 energy : -112.6279866348761374
|
||
Iter. 28: Coupled cluster CC2 energy : -112.5789091038183471
|
||
Iter. 29: Coupled cluster CC2 energy : -112.5243493163489177
|
||
Iter. 30: Coupled cluster CC2 energy : -112.7041582742586598
|
||
Iter. 31: Coupled cluster CC2 energy : -112.6294017551183089
|
||
Iter. 32: Coupled cluster CC2 energy : -112.6335344032816437
|
||
Iter. 33: Coupled cluster CC2 energy : -112.6924557766647297
|
||
Iter. 34: Coupled cluster CC2 energy : -112.6838473360398467
|
||
Iter. 35: Coupled cluster CC2 energy : -112.7238881314872287
|
||
Iter. 36: Coupled cluster CC2 energy : -112.5905786791681464
|
||
Iter. 37: Coupled cluster CC2 energy : -112.5665565497273946
|
||
Iter. 38: Coupled cluster CC2 energy : -112.4467072386480311
|
||
Iter. 39: Coupled cluster CC2 energy : -112.5983410463833678
|
||
Iter. 40: Coupled cluster CC2 energy : -112.6931150726234563
|
||
Energy not converged in 40 iterations
|
||
|
||
--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
|
||
Date and time (Linux) : Wed Oct 9 14:38:55 2019
|
||
Host name : nazare079.cluster
|
||
|
||
Reason: CC equations not converged.
|
||
|
||
Total CPU time used in DALTON: 1.37 seconds
|
||
Total wall time used in DALTON: 0.37 seconds
|
||
|
||
|
||
QTRACE dump of internal trace stack
|
||
|
||
========================
|
||
level module
|
||
========================
|
||
5 CCSD_ENERGY
|
||
4 CC_DRV
|
||
3 CC
|
||
2 DALTON
|
||
1 DALTON main
|
||
========================
|
||
|