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We present an analytic proof demonstrating the equivalence between the random phase
approximation !RPA" to the ground state correlation energy and a ring-diagram simplification of the
coupled cluster doubles !CCD" equations. In the CCD framework, the RPA equations can be solved
in O!N4" computational effort, where N is proportional to the number of basis functions. © 2008
American Institute of Physics. #DOI: 10.1063/1.3043729$

There has recently been a revival of interest in the ran-
dom phase approximation !RPA" in the quantum chemistry
community. The RPA is popular for calculations of excitation
energies both in finite systems1,2 and in solids,3,4 and is re-
lated to time-dependent density functional theory !DFT".5–7

As a technique for describing electronic correlations, RPA
has significant advantages, particularly for those interested in
DFT. It describes dispersion and van der Waals interactions
correctly,8,9 and is exact for long-range correlations.10 Left-
right static correlations seem to be properly described by
RPA,11 and RPA fixes the pathologies of nonlocal Hartree–
Fock-type exchange in metallic systems. Readers interested
in details about RPA for ground state correlation can refer to
the recent paper by Furche12 where he discussed an interest-
ing simplification to reduce the computational cost of RPA
correlation and provided ample background information
about RPA. Note that his work focuses on direct RPA, in
which the exchange terms are neglected; as discussed later in
this communication, this is the form of RPA most useful in
the context of DFT.

In his 1977 coupled cluster !CC" paper on the correlation
energy of the uniform electron gas, Freeman13 reported nu-
merical results obtained by limiting coupled cluster doubles
!CCD" to ring diagrams that agreed with RPA to the accuracy
of the calculation. Very recently, Kresse and Grüneis14 repro-
duced this evidence and found numerical proof of the
equivalence between these two approaches. Here, we offer
an analytic proof that these two problems yield identical cor-
relation energies. To the best of our knowledge, no such
formal proof has been given before.

As a method for calculating electronic excitation spectra,
RPA requires the solution of

% A B
− B − A

&%X
Y
& = %X

Y
&! . !1"

The matrices A, B, X, and Y are all ov!ov, where o and v
are, respectively, the number of occupied and unoccupied
spin-orbitals. The eigenvalue problem above can be com-

pleted by noting that if ! Xi

Yi
" is an eigenvector with eigenvalue

"i, then ! Yi

Xi
" is also an eigenvector, with eigenvalue −"i. In

the !real" canonical spin-orbital basis we use throughout this
letter, we have

Aia,jb = !#a − #i"$ij$ab + 'ib((aj) , !2a"

Bia,jb = 'ij((ab) . !2b"

Here, #p is a diagonal element of the Fock operator. Indices i,
j, k, and l indicate occupied spin-orbitals, while a, b, c, and
d indicate unoccupied spin-orbitals. For arbitrary spin-
orbitals p, q, r, and s, the two-electron integral 'pq((rs) is
defined by

'pq((rs) = 'pq(rs) − 'pq(sr) , !3a"

'pq(rs) =* * dx1dx2%p!x1"%q!x2"
1

r12
%r!x1"%s!x2" ,

!3b"

where x is a combined space and spin electron coordinate.
The RPA correlation energy can be obtained by consid-

ering two harmonic excitation energy problems:12,15 RPA and
the Tamm–Dancoff approximation !TDA" thereto, which sets
B=0 and thus solves

AZ = Z& . !4"

In the quantum chemistry community, TDA is also known as
configuration interaction singles. While TDA includes only
excitation operators, RPA also includes de-excitation opera-
tors, which can be thought of as correlating the ground state.
The ground state correlation energy in RPA is given by the
difference between the zero point energies of these two har-
monic oscillator excitation problems with correlated !RPA"
and uncorrelated !TDA" ground states. We thus have

Ec
RPA = 1

2+
i

!!"i − &i" = 1
2Tr!! − A" . !5"

The prime on the summation means that we include only the
positive excitation energies in defining !.a"Electronic mail: guscus@rice.edu.
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A different approach to calculating the correlation en-
ergy is CC theory. The simplest CC method includes only
double excitations from the ground state, and is termed CCD.
The CCD correlation energy is

Ec
CCD = 1

4 + 'ij((ab)tij
ab = 1

2 + 'ij(ab)tij
ab, !6"

where in the last equation we have used antisymmetry of tij
ab

under interchange of i with j or a with b. To determine the
tij
ab, we solve the CCD equations in the spin-orbital basis

!see, for example, Ref. 16",

0 = 'ij((ab) + !#a + #b − #i − # j"tij
ab + 1

2 tkl
ab'ij((kl)

+ 1
2 tij

cd'ab((cd) + 1
4 tkl

ab'kl((cd)tij
cd − 1

2 Pabtij
cb'kl((cd)tkl

ad

− 1
2 Pijtkj

ab'kl((cd)til
cd + PijPabtjk

bc!'ic((ak)

+ 1
2 'kl((cd)til

ad" , !7"

where internal indices !k, l, c, and d" are to be summed, and
Pij and Pab are permutation operators: !Pabgac=gac−gbc,
etc.". Keeping only particle-hole ring contractions leads to
what we shall here term “ring-CCD” !rCCD",

0 = 'ij((ab) + tik
ac!#c − #k"$bc$ jk + !#c − #k"$ac$iktkj

cb

+ 'ic((ak)tkj
cb + tik

ac'jc((bk) + tik
ac'kl((cd)tlj

db. !8"

Defining tij
ab=Tia,jb, and using Eq. !2", we obtain

B + AT + TA + TBT = 0 . !9"

Removing the exchange integrals !i.e., setting 'pq((rs)
→ 'pq (rs)" in Eq. !8" gives us what we will call direct ring-
CCD !drCCD", and in Eq. !2" gives us direct RPA. Thus, Eq.
!9" holds both for rCCD and for drCCD with the A and B
matrices defined as in RPA or direct RPA, respectively. In
terms of B and T, the rCCD correlation energy is

Ec
rCCD = 1

4Tr!BT" , !10"

while the drCCD correlation energy picks up an extra factor
of 2 due to the different definition of B, as follows:

Ec
drCCD = 1

2Tr!BT" . !11"

We prove here that Eq. !9" can be obtained from the RPA
equations, and that with T thereby defined, the drCCD cor-
relation energy of Eq. !11" is equal to the direct RPA corre-
lation energy of Eq. !5".

We begin with the RPA equations, Eq. !1". Multiplying
on the right by X−1, we have !for direct RPA, in which B is
positive definite, X−1 exists, as proven in the Appendix; we
must assume its existence for full RPA"

% A B
− B − A

&%1

T
& = %1

T
&R , !12"

where we have defined

T = YX−1, !13a"

R = X!X−1. !13b"

As seen below, T=YX−1 corresponds to the solution of Eq.
!9". Multiplying on the left by !T −1" yields

!T − 1 "% A B
− B − A

&%1

T
& = !T − 1 "%1

T
&R . !14"

Carrying out the matrix multiplications, we see that this is
just Eq. !9". From Eq. !12", we have

A + BT = R , !15"

whence

Tr!BT" = Tr!R − A" = Tr!! − A" . !16"

The drCCD correlation energy is thus equal to the direct
RPA correlation energy. The extra factor of 1/2 in the rCCD
correlation energy on the right-hand side of Eq. !10" makes
the correlation energy exact to lead order, and it has been
argued that it should therefore be included in defining the full
RPA correlation energy. See Ref. 1 and references therein for
discussion of this point.

In the Appendix, we present a proof showing that rCCD
!Eq. !9"" implies the eigenvalue problem of Eq. !1". The
form of the rCCD wavefunction implied by our proof is a
regular CCD expression but with the double excitation op-
erator T limited to ring contractions and numerical coeffi-
cients given by Eq. !13a". Other mathematical details rel-
evant to our results !existence of X−1, symmetry,17 and
negative definiteness of T" are also discussed in the Appen-
dix.

Direct RPA is commonly used in condensed matter phys-
ics, where the exchange terms are usually removed from the
two-particle Hamiltonian !and treated as vertex corrections",
and where typically semilocal DFT orbitals and orbital ener-
gies !i.e., those coming from the local density approximation
or a generalized gradient approximation" are used. The
exchange-correlation energy in such a scheme is given by

Exc = Ẽx
HF + Ec

dRPA, !17"

where Ẽx
HF is the Hartree–Fock-type exchange energy with

the semilocal orbitals and where “dRPA” indicates direct
RPA. The pros and cons of keeping or neglecting vertex
corrections in RPA correlation have been discussed in the
literature.6

Given that both 'ib (aj) and −tij
ab are positive definite for

dRPA !the latter is proven in the Appendix", we can use
Cholesky decomposition to write

'ib(aj) = 'ij(ab) = uia
A ujb

A , !18a"

− tij
ab = 'ia

A ' jb
A , !18b"

where A is to be summed. This leads to the drCCD equation
!Eq. !8" with no exchange integrals" becoming

tij
ab =

1

(#ij
ab !uia

A ujb
A − uia

A ukc
A 'kc

B ' jb
B − 'ia

A 'kc
A ukc

B ujb
B

+ 'ia
A 'kc

A ukc
B uld

B 'ld
C' jb

C " !19"

with

(#ij
ab = #i + # j − #a − #b. !20"

Defining
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MAB = 'kc
A ukc

B , !21a"

NAB = ukc
A 'kc

B , !21b"

the construction of which scale as O!ovc2" where
c=dim,A-, leads to

tij
ab =

1

(#ij
ab !uia

A ujb
A − uia

A NAB' jb
B − 'ia

A MAB' jb
B

+ 'ia
A MABNBC' jb

C " , !22"

which can be solved by fixed point iteration with DIIS !Di-
rect Inversion of Iterative Subspaces, Ref. 18" in O!ovc2"
operations. Analytic energy gradients can also be carried out
using the standard CC approach.19

In the current framework, the cost of RPA is not much
greater than that of MP2. The atomic orbital !AO" to molecu-
lar orbital integral transformation needed to build 'ib (aj)
scales as O!N5" for N AOs, and the Cholesky decomposition
for dense 'ib (aj) and tij

ab will scale worse than O!N4". How-
ever, transforming back into the AO basis !as in our AO-CC
based formalism20" will yield algorithms that scale near-
linearly for sparse enough matrices.21

The connection between the symplectic eigenvalue prob-
lem !Eq. !1"" and its associated Riccati equation !Eq. !9"" is
textbook material in optimal control theory !see, for ex-
ample, Ref. 22". Sanderson23 seems to have been the first to
document this connection in the context of RPA; however, he
neither mentioned CC theory nor the agreement of correla-
tion energies between RPA and rCCD. His assumption about
commuting boson excitation operators leads to a RPA ground
state representation that is correct only for two-electron
systems.24 The size consistency of RPA was established on
similar grounds.25

In summary, we have offered an analytic proof that the
excitation amplitudes of an approximate CCD model are re-
lated to the eigenvectors of the RPA model by T=YX−1, and
that the ground state correlation energies of these two models
are identical. This connection also lets us establish an O!N4"
algorithm for the RPA correlation energy in a CC framework;
thanks to the mathematical properties of the solution
!T)0".

This work was supported by the National Science Foun-
dation !CHE-0807194 and CCF-0634902" and the Welch
Foundation !C-0036". We thank Filipp Furche for providing
benchmark numerical results of direct RPA correlation ener-
gies, and Georg Kresse for recently reviving our interest in
this problem.

APPENDIX A: MATHEMATICAL DETAILS

We here prove several statements about the solution of
Eq. !9".

1. Symmetry of YTX

We begin by showing that XTY=YTX. Start with the
RPA equation, Eq. !1", and multiply on the left by
!YT −XT" to get

YTAX + XTAY + YTBY + XTBX = !YTX − XTY"! .

!A1"

Since the left-hand side is symmetric, we have

!YTX − XTY"! = !!XTY − YTX" . !A2"

Defining S=YTX−XTY, we thus have

S! + !S = 0. !A3"

In indicial form, this is

Sij!"i + " j" = 0. !A4"

Since we have taken "i positive, we must have S=0, and
hence XTY=YTX. Note that this result is given in Ref. 17.

2. Existence of X−1

For positive definite B, the existence of X−1 can be
proven. In direct RPA, B is always positive definite, but this
is not necessarily true in full RPA.

Suppose that Xz=0 for some vector z#0. Multiplying
both sides of the RPA equations by z would then give us

BYz = X!z , !A5a"

− AYz = Y!z . !A5b"

Since YTX=XTY, we would have

zTYTBYz = zTYTX!z = zTXTY!z = 0. !A6"

Since B is positive definite, this implies that Yz=0. But this
would mean that ! X

Y
"z=0, contradicting the assumption that

! X
Y

" is of full rank made in writing the eigenvalue problem.

3. Symmetry of T

Since X is nonsingular, and YTX=XTY, we have

!XT"−1!YTX − XTY"X−1 = 0 . !A7"

Expanding the foregoing shows that

TT − T = 0 , !A8"

as also shown in Ref. 17.

4. Negative definiteness of T

Since T is real and symmetric, we can diagonalize it
with a unitary transformation U: TU=U". Multiplying the
drCCD equation on the left by a particular eigenvector Uk

†

and on the right by Uk, we get

Uk
†BUk!1 + *k

2" + 2Uk
†AUk*k = 0. !A9"

When B and A are positive definite, as they are for direct
RPA, we see that we must have *k)0 for all k, and T is
therefore negative definite.

5. An alternative proof

In Eqs. !12", !13a", !13b", and !14"–!16", we have shown
the equivalence of the RPA eigenvalue problem !Eq. !1"" and
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the rCCD equation !Eq. !9"" assuming the existence of X−1.
Here, we give an alternative way of showing the equiva-
lence.

Let us suppose we have solved the rCCD equation. We
can use Schur decomposition to write

A + BT = x#x†, !A10"

where # is upper triangular and x is unitary. Defining
y=Tx, we thus have

Ax + By = x# . !A11"

The rCCD equation implies that

B + AT = − T!A + BT" = − Tx#x† = − y#x†, !A12"

whence

− Bx − Ay = y# . !A13"

Combining Eqs. !A11" and !A13", we have

% A B
− B − A

&%x
y
& = %x

y
&# . !A14"

From the foregoing, we see that the diagonal elements of #
hold eigenvalues of the RPA matrix, and thus Tr!BT"
=Tr!!−A", as desired.

Note that under the additional condition that # is diag-
onalizable !#P=P!", we have

% A B
− B − A

&%xP
yP

& = %xP
yP

&! . !A15"
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