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In this paper we present the theory and implementation of analytic derivatives of time-dependent
density functional theory �TDDFT� excited states energies, both in vacuo and including solvent
effects by means of the polarizable continuum model. The method is applied to two case studies:
p-nitroaniline and 4-�dimethyl�aminobenzonitrile. For both molecules PCM-TDDFT is shown to
be successful in supporting the analysis of experimental data with useful insights for a better
understanding of photophysical and photochemical pathways in solution.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2173258�
I. INTRODUCTION

The time-dependent formulation of density functional
theory, widely known as TDDFT, is an exact quantum me-
chanical theory in which the time-dependent density is the
fundamental variable and the exchange-correlation �XC� po-
tential describes the many-body interactions.1 For small
changes in the time-dependent XC potential, the linear re-
sponse approach can be applied to solve the TDDFT equa-
tions. In this way it is possible to obtain the relative energies
of the excited states �the excitation energies� as poles of the
frequency dependent ground state linear response function.2

Due to its good accuracy and its reasonable computational
cost, in the last several years, TDDFT has replaced Hartree-
Fock-based single-excitation theories �CIS� as the method of
choice for the calculation of valence excitation energies in
medium to large sized molecules. Indeed, TDDFT provides a
fast and reliable approach to obtain potential energy surfaces
for the excited states as a function of the molecular geometry
by simply adding the ground state DFT energy to the excita-
tion energy of the selected state. In addition, the excited state
first order properties �forces on the nuclei, electric multipole
moments,¼� can be expressed via Helman-Feynman theo-
rem, as the first derivatives �gradients� of the excited state
energy with respect to suitable external perturbations.3 In this
framework the availability of analytical TDDFT gradients
plays a strategic role in reducing the computational effort
required by the exploration of the excited states potential
energy surface �PES�.

Van Caillie and Amos pioneered this field4 formulating
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the theory of analytical geometrical derivatives for TDDFT
using local density approximation �LDA�, gradient corrected
and hybrid functionals. More recently, Furche and Ahlrichs5

have presented the theory, the implementation, and the vali-
dation of several excited state properties obtained from the
TDDFT. Their approach is based on a fully variational for-
mulation for the excited state energy functional which allows
for a very compact derivation of the first order properties,
geometrical derivatives, and electronic density multipolar ex-
pansion. Benchmark results using hybrid functionals showed
that structural properties of excited states are almost as ac-
curate as those of the ground state calculations, at a compa-
rable computational cost, even for fairly large molecules. In
all these examples, however, an important aspect has not
been considered, namely, the inclusion of solvent effects;
until now, in fact, the TDDFT gradients have been limited to
isolated molecules and this despite the fact that a large part
of the experiments probe excited states of molecules in so-
lution. This work presents the theory and the implementation
of the analytical TDDFT gradients for the molecules in so-
lution within the framework of the polarizable continuum
model �PCM�.17,19 There are several versions of PCM, char-
acterized by the particular choice of electrostatic boundary
conditions: Dielectric PCM �DPCM� �Ref. 6� and Integral
equation formalism PCM �IEFPCM� �Ref. 7� involve dielec-
tric boundary conditions, while CPCM �Refs. 8 and 9� from
the conductor-like ones. Among these methods, IEFPCM is
by far the most general since it can model with consistent
accuracy not only isotropic solvents �with both high and low
dielectric constant�, but also anisotropic solvents10 and ionic

11
solutions. Our derivation of the PCM-TDDFT gradient is
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carried out on the same line originally used12 by three of the
present authors for the PCM-CIS gradients, but relies on the
most up-to-date PCM formalism and implementation tech-
nology.

The introduction of a solvent makes the description of
excited states an extremely complex problem; many new as-
pects have, in fact, to be considered in addition to those
already present in the case of isolated systems. Here, in par-
ticular, we deal with two aspects of the study of excited
states in solution, common to all the linear response schemes
such as CIS, time-dependent Hartree-Fock �TDHF�, and TD-
DFT, and regarding the definition of the energies of the ex-
cited states �and thus affecting also their derivatives and
properties�. Note that for our purposes in this paper, we con-
sider CIS as a linear response method, rather than a truncated
CI method, because it can be seen as a simplification of
TDHF �by setting the B matrix to zero, vide infra�.

The first aspect is related to the fact that the electronic
excitation is a process involving not only the solute but the
entire solute-solvent system. As a consequence, the definition
of the excited states of molecular solutes requires also the
characterization of the solvent degrees of freedom. The dif-
ference of the characteristic time scale of the electronic de-
grees of freedom of the solute and the composite degrees of
freedom of the solvent may lead to different excited state
regimes, with two extreme situations �i� the “nonequilibrium
regime” in which the slow degrees of freedom of the solvent
are not equilibrated with the excited state electronic redistri-
bution upon excitation �vertical excitation processes�, and
�ii� the “equilibrium regime” in which the solvent is allowed
to equilibrate �i.e., reorganize� all its degrees of freedom in-
cluding the slow ones. The different regimes may dramati-
cally influence the properties of the solute excited states, and
the analytical derivatives algorithm should allow for the use
of such different solvation regimes.

The second aspect concerns the status of the excitation
energies of a solvated system. In a recent paper,13 we have
shown the intrinsic differences between the linear response
�TDHF, CIS, and TDDFT� and state specific approaches
�complete active space self-consisting field �CASSCF�,
CI,¼� in the computation of excitation energies in the frame-
work of quantum mechanical �QM� continuum solvation
models. The state specific approaches, which are based on
the explicit calculation of the excited state wave function,
described in a more satisfactory way the variation of the
solute-solvent interaction accompanying the change of the
electronic density during an electronic excitation. On the
other hand, the linear response methods introduce only ef-
fects related to the corresponding transition density. How-
ever, the calculations performed on the model chromophores
have also shown that these differences have usually little
effect on the excitation energies computed within the two
different schemes. In addition, this intrinsic limit of linear
response excited states energies with respect to the state spe-
cific methods should have a less relevant effect when the
derivatives of the excited states energies are considered since

cancellation of errors may occur.
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We conclude this short introduction by mentioning, for
the sake of completeness, two other methods using analytical
derivatives for the excited state energy in a time-dependent
formalism and taking into account solvent effects. The first is
the collective electronic oscillator �CEO� method developed
by Mukamel and co-workers14 for the semiempirical
INDO/S Hamiltonian which includes a solvation contribu-
tion in terms of a spherical Onsager continuum model. The
second15 is a Car-Parrinello molecular dynamics �CPMD�
scheme,16 which describes the ab initio molecular dynamics
of an electronically excited system within the TDDFT
random-phase �RP� approximation and includes the solvation
effects in terms of explicit solvent molecules. The CEO
method may be viewed as an approach best suited for appli-
cations to large systems in order to get a qualitative estimate
of the solvent effects, while CPMD represents a possible
strategy towards a more complete description of solvation.

The paper is organized in two main parts, in the first one,
the theory of the TDDFT gradients is presented for both
isolated and solvated systems whereas in the second
part, two studies of excited state geometries and
properties are presented for paranitroaniline �PNA� and
4-�dimethyl�aminobenzonitrile �DMABN� in gas phase and
in cyclohexane and acetonitrile solutions. These two studies
are presented here to show how the theory of TDDFT gradi-
ents for solvated systems can be applied to the analysis of
UV spectra and to understand photophysical and photo-
chemical pathways.

II. THEORY

A. The basic PCM theory

The polarizable continuum model6 �PCM� describes the
solvent as a structureless continuum, characterized by its di-
electric permittivity �, in which a molecular-shaped empty
cavity is dug to host the solute which is fully described by its
QM charge distribution. The dielectric medium is polarized
by the solute charge distribution and acts as the source of a
reaction field which in turn polarizes back the solute.
This mutual effect is evaluated by solving the proper electro-
static problem described by the Poisson and Laplace equa-
tions with the proper boundary conditions at the cavity
surface.17–19

As noted in the Introduction, nowadays, the acronym
PCM indicates a family of methods which can be distin-
guished on the basis of the boundary conditions and the nu-
merical approach used to solve the Poisson-Laplace electro-
static problem. In all formulations of PCM, the polarization
of the medium is represented by the solvent reaction field
expressed in terms of a potential defined through an apparent
charge distribution, �, spread on the cavity surface. The most
general and powerful version of PCM, i.e., IEFPCM, is
based on the use of proper Green functions, defined inside
and outside the cavity, to compute the integral operators de-
fining the apparent charge �. This allows for the application
of the same formalism to a very different media: from stan-
dard isotropic solvents characterized by a scalar permittivity,
to anisotropic dielectrics such as liquid crystals and poly-

mers, to liquid-liquid, liquid-gas, and liquid-solid interfaces.
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Details on the formal derivation of the model as well as the
exact expression of the integral operators defining � can be
found in Ref. 7 and will not be repeated here.

The generalization of this model to include a QM de-
scription of the solute charge calls for the definition of an
effective Hamiltonian, i.e., a Hamiltonian to which the
solute-solvent interactions are added in terms of a solvent
reaction operator

Heff��� = �H0 + VPCM���� = E��� , �1�

where H0 is the Hamiltonian describing the isolated mol-
ecule, and VPCM is the QM analog of the solvent reaction
potential. The treatment of the operator VPCM is delicate, as it
depends on the solute total density �through the apparent
charges� inducing a nonlinear character in the solute
Schrödinger equation. Such an equation can be solved with
all the techniques developed for isolated systems. It is, how-
ever, important to note that now the correct energetic quan-
tity to consider is the free energy functional,

G = E + 1
2 ���VPCM��� . �2�

The G functional has a privileged role in the theory, as the
solution of the Schrödinger equation gives a minimum of this
functional even though it is not the eigenvalue of the nonlin-
ear Hamiltonian, here indicated as E. The difference between
E and G has, however, a clear physical meaning, it represents
the polarization work done by the solute to create the charge
density inside the solvent. It is worth noting that this inter-
pretation is equally valid for zero-temperature models and
for those in which the thermal agitation is implicitly or ex-
plicitly taken into account.

Within a DFT framework, the molecular Kohn-Sham
�KS� operator thus becomes a sum of the core Hamiltonian h,
a Coulomb and �scaled� exchange term, the exchange-
correlation potential Vxc, and the solvent reaction operator
VPCM of Eq. �1�, namely,

Fpq� = hpq� + �
i��

��pq��ii��� − cx�����pi��iq���

+ Vpq�
xc + Vpq�

PCM, �3�

where �pq� � ii��� is a two-electron repulsion integral in the
Mulliken notation and

Vpq�
xc =

�Exc

�Ppq�

being P the ground state density matrix �indices i , j , . . . label
occupied, a ,b , . . . virtual, and p ,q , . . . generic molecular or-
bital �MO� whereas � ,�� are spin labels�. In Eq. �3� we have
used the hybrid mixing parameter cx originally introduced by
Becke20 which allows us to interpolate between the limits of
“pure” density functionals �cx=0, no “exact” exchange� and
HF theory �cx=1, full exchange and Exc=0�.5

The solvent induced term Vpq�
PCM represents the electro-

static interaction between the solvent apparent charge � and
the solute’s nuclei and electrons. In the computational prac-
tice a boundary-element method �BEM� is applied by parti-
tioning the cavity surface into discrete elements, called

tesserae, and by substituting the apparent charge � by a col-

Downloaded 17 Mar 2013 to 141.161.91.14. Redistribution subject to AIP lic
lection of point charges qk, each one placed at the center of a
tessera sk. We thus obtain

qk = �
l

QklVl. �4�

The detailed expression of the Q matrix in Eq. �4� depends
on the specific version of the PCM method being used and it
has been previously published �see Ref. 19 for a complete
survey�, together with efficient ways to solve the associated
linear system.21 Here we simply recall that the Q matrix is
determined by the form and shape of the cavity, by the de-
tails of the discretization of the surface and by the solvent
permittivity �.

As the matrix Q is not symmetric, the correct expression
of the solvent induced term Vpq�

PCM is obtained by introducing
the symmetric analog of the matrix Q, namely,

Qs =
Q + Q†

2
,

where Q† is the transpose. In such a way, the apparent
charges qk can be substituted by the so-called polarization
weights, qk

w,22 and the solvent term becomes

Vpq�
PCM = �

k

Vpq�,k
E qk

w, �5�

where Vpq�,k
E is the electronic electrostatic potential integral

at the kth point on the cavity surface,

Vpq�,k
E = −	 �p�

* �r��p��r�
1

�r − sk�
dr .

The polarization weights qk
w are the solution of the symme-

trized PCM linear system of equations:

qk
w = �

l

Qkl
s Vl, �6�

where Vk=Vk
N+Vk

E is the solute’s total electrostatic potential
at the tesserae. The nuclear contribution Vk

N is trivially com-
puted from the solute’s nuclear charge distribution while Vk

E

is also easily computed in the atomic orbital �AO� basis from
a generic one-particle density matrix P as

Vk
E = − �

���

P���	 	�
* �r�	��r�

1

�r − sk�
dr ,

where greek indices refer to AO basis functions.

B. Excitation energies within the PCM-TDDFT
framework

In the linear response theory the excitation energies of a
molecular system are determined as poles of the linear re-
sponse function to a time-dependent perturbation.2 They can
thus be determined as the solution of the non-Hermitian

23
eigensystem,
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A B

B A
�
X

Y
� = 

1 0

0 − 1
�
X

Y
� , �7�

where the eigenvalue problem is of dimension 2NOccNVir and
the vector �X ,Y� are defined in the same Hilbert space24 and
are normalized as

�X Y� = 
1 0

0 − 1
�
X

Y
� = 1. �8�

The vectors �X ,Y� represent the �frequency dependent� lin-
ear response of the density matrix in the basis of the unper-
turbed molecular orbitals; in particular, X=�Pia�
� corre-
spond to excitations, while Y=�Pai�
� corresponds to
deexcitation contributions. When the solvent effects are in-
troduced according to the PCM model, the definition of the
vectors �X ,Y� does not change while the matrices A and B
involve a separation into isolated-type and PCM-type poten-
tials according to25

Aai�,bj�� = �ab�ij������a� − �i�� + �ia��jb��� + fai�,bj��
xc

− cx�����ab��ij�� + Vai�,bj��
PCM , �9�

Bai�,bj�� = �ia��jb��� + fai�,bj��
xc − cx�����ja��ib��

+ Vai�,bj��
PCM , �10�

where fai�,bj��
xc represents a matrix element of the exchange-

correlation kernel in the adiabatic approximation

f���
xc =

�2Exc

�������
, �11�

while Vai�,bj��
PCM is the corresponding matrix element of the

PCM reaction potential which can be seen as a generalization
of Eqs. �5� and �6�,

Vai�,bj��
PCM = �

kl

Vai�,k
E Qkl

s Vbj��,l
E . �12�

Equation �12� follows because in the current model the reac-
tion field is determined by the solution of the SCF equations
�i.e., by the ground state density� and interacts with, but is
not changed by, the excited state density. The PCM-TDDFT
equations �7� can be transformed into a non-Hermitian eigen-
value problem of half the dimension which involves the di-
agonalization of the matrix23

��A − B��A + B��ai�,bj��, �13�

to find its eigenvalues, which correspond to the square of the
excitation energies 
, and both its left, �X−Y�, and right
�X+Y� eigenvectors, which form a biorthonormal set

�Xm − Ym�Xn + Yn� = �mn.

Note that, following the above transformation, the PCM con-
tributions is only present in the �A+B� matrix. In this frame-
work, the excitation energy for the nth state is computed as


n = 1
2 �Xn + Yn��A + B��Xn + Yn�

+ 1 �Xn − Yn��A − B��Xn − Yn� .
2

Downloaded 17 Mar 2013 to 141.161.91.14. Redistribution subject to AIP lic
C. Analytical gradient of the excited state
energy in the gas phase and in solution

The differentiation of the TDDFT excitation energy 

with respect to the generic nuclear coordinate � �Refs. 4 and
5� can be carried out along the same line as in Refs. 12 and
28. First, we note that the derivative expression


n
� = 1

2 �Xn + Yn��A + B���Xn + Yn�

+ 1
2 �Xn − Yn��A − B���Xn − Yn� �14�

does not involve the derivatives of the excitation amplitudes
�i.e., the left and right eigenvectors of Eq. �13�� because they
have been variationally determined, but it does require the
knowledge of the change in the elements of Fock matrix in
the MO basis Fpq�

� , which in turn requires the knowledge of
the MO coefficients derivatives, which are the solution of the
couple perturbed Kohn-Sham equations �CPKS�. It is well
known, however, that there is no need to solve the CPKS
equations for each perturbation, but rather only for one de-
gree of freedom, to find the so called Z vector26 �or relaxed
density�, which represents the orbital relaxation contribution
to the one-particle density matrices �1PDM� involved in all
post-SCF gradient expressions.

Using a notation similar to that of Ref. 5, we define two
contractions of a nonsymmetric density matrix P with the
four-indexes portion of the �A+B� and �A−B� matrices into
the two-electron integrals portion of a nonsymmetric Fock-
like matrix,

Gpq�
+ �Prs� = �

rs��

�2�pq��rs��� + 2fpq�,rs��
xc + 2Vpq�,rs��

PCM

− cx������ps��rq�� + �pr��sq����Prs��,

Gpq�
− �Prs� = �

rs��

�cx������ps��rq�� − �pr��sq����Prs��,

where the indexes on the argument matrix can be used to
limit the range of the summation, e.g., Gab�

+ �Pij� is the
virtual-virtual block of the contraction of the occupied-
occupied block of P.

The quantities defined above could be computed in the
MO basis, but in the actual implementation three steps are
involved: �i� the density matrix to be contracted is trans-
formed to the AO basis and the appropriate symmetric/
antisymmetric component or spin combination is formed; �ii�
the contraction is performed in a direct fashion with the AO
two-electron integrals �or their suitable Raffenetti
combinations27�; and �iii� the final Fock-like matrix is post-
processed and back-transformed to the MO basis.

Using the above definitions it is possible to generalize
the notation of Ref. 28 and write the Z-vector equation as

Gai�
+ �Pbj

 � + �ab�ij������a� − �i��Pai�
 = Lai�, �15�
where Lai� is the TDDFT Lagrangian

ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Lai� = C1ai� − C2ai� + Gai�
+ �Pkl

� + Gai�
+ �Pbc

 � ,

C1ai� = �
b

�X + Y�bi�Gba�
+ ��X + Y�rs�

+ �
b

�X − Y�bi�Gba�
− ��X − Y�rs�

+ �
b

�X + Y�bi�Gba�
xc ��X + Y�rs� , �16�

C2ai� = �
j

�X + Y�aj�Gij�
+ ��X + Y�rs�

+ �
j

�X − Y�aj�Gij�
− ��X − Y�rs� .

Note that the Lagrangian depends on the occupied-occupied
and virtual-virtual blocks of the P matrix which are already
available from the diagonalization of �13� and are

Pij�
 = −

1

2�
a

��X + Y�ia��X + Y� ja�

+ �X − Y�ia��X − Y� ja�� ,

Pab�
 = +

1

2�
i

��X + Y�ia��X + Y�ib�

+ �X − Y�ia��X − Y�ib�� ,

while the occupied-virtual block is the unknown in Eq. �15�.
The Lagrangian �16� includes the exchange-correlation term
Gpq�

xc which involves the third derivative of Exc and whose
detailed expression is given in the Appendix. The current
implementation also allows for “frozen core” calculations29

were the range of excitations involved in the construction of
the matrix �13� is limited only to a portion of the occupied
and virtual MOs.

Using the definitions introduced in Secs. II A and II B,
Eq. �14� can be transformed into its final form which is con-
veniently expressed in the AO basis as


� = �
���

h��
� P���

 + �
���

S��
� W���

+ �
�������

������������,���� + 
xc,� + 
PCM,�, �17�

where we used � ,� , . . . to indicate the atomic basis func-
tions. We already defined P which is the change in the
1PDM between the ground state and the excited state �in-
cluding orbital relaxation effects� and �X+Y� which is the
transition density �i.e., the right eigenvectors of matrix �13��.
The two-particle density matrix �2PDM� ����,���� collects
all the contributions that multiply the integrals first deriva-
tives ��� ����� and its expression is given in Ref. 5, while
h��

� and S��
� are the derivatives of the one-electron Hamil-
tonian and the overlap matrix, respectively.

Downloaded 17 Mar 2013 to 141.161.91.14. Redistribution subject to AIP lic
Equation �17� also includes two exchange-correlation
contributions,


xc,� = �
���

V���
xc���P���

 + �
�������

f���,����
xc���

��X + Y�����X + Y�����,

where we have introduced the superscript ��� to label quan-
tities involving only atomic basis functions derivatives. The
first of the two XC contributions is common to all “post-
Kohn-Sham” gradients as it depends on the change in the
1PDM, while the second one is specific to the TDDFT gra-
dient as it involves the derivative of the XC matrix element
f���,����

xc in Eqs. �9� and �10�. The form of these exchange-
correlation terms, together with details on their evaluation, is
given in the Appendix. The expression of the energy-
weighted density matrix W��� is more easily given in the
MO basis5,12,28

Wij� = − Pij�
 �i� − S1ij� − Gij�

+ �Ppq
 � ,

Wai� = − C2ai� − Pai�
 �i�,

Wab� = Pab�
 �a� − S2ab�,

where

S1ij� =
1

2�
a

�X + Y�ia�Gaj�
+ ��X + Y�rs�

+
1

2�
a

�X − Y�ia�Gaj�
− ��X − Y�rs�

+
1

2�
a

�X + Y�ia�Gaj�
xc ��X + Y�rs� ,

S2ab� =
1

2�
i

�X + Y�ia�Gbi�
+ ��X + Y�rs�

+
1

2�
i

�X − Y�ia�Gbi�
− ��X − Y�rs� .

The gradient of the excitation energy includes two explicit
PCM contributions, but the solvent reaction field also implic-
itly affects Eq. �17� through P and W,


PCM,� = �
���

V���
PCM���P���



+ �
�������

V���,����
PCM��� �X + Y�����X + Y�����.

The first explicit PCM contribution is common to all post-
SCF gradients and involves the change in the 1PDM due to
the specific post-SCF procedure,12,30

�
���

V���
PCM���P���

 = �
���

P���
 
�

k

V��,k
E qk

w����

= �
k

Vk
E,���qk

w + �
kl

Vk
E,Qkl

s Vl
���

+ � Vk
E,Qkl

s,�Vl, �18�

kl
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where we have used Eq. �6�. In Eq. �18�, Vk
E, is the change

in the solute’s electronic electrostatic potential at the tesserae
corresponding to the change in the 1PDM,

Vk
E, = �

���

P���
 V��,k

E .

The second explicit PCM contribution to Eq. �17� is specific
to the linear response theory and arises from the derivative of
the reaction field matrix element V���,����

PCM in the �A+B�
matrix,

�
�������

V���,����
PCM��� �X + Y�����X + Y�����

= 2�
k

Vk
E,�X+Y�����qk

w�E,�X+Y� + �
kl

Vk
E,�X+Y�Qkl

s,�Vl
E,�X+Y�,

�19�

where Vk
E,�X+Y� and �qk

w�E,�X+Y� are the contributions to the
solute’s electronic electrostatic potential and the polarization
weights related to the transition density �X+Y�,

Vk
E,�X+Y� = �

���

�X + Y����V��,k
E ,

�qk
w�E,�X+Y� = �

l

Qkl
s Vl

E,�X+Y�.

Note that, in the above expressions �18� and �19� the deriva-
tive of the electronic electrostatic potential are taken while
keeping the MOs coefficients and the TDDFT amplitudes at
their variationally determined values �hence the superscript
in parentheses ����. However, since the positions of the
tesserae sk ultimately depend on the nuclear coordinates, the
��� derivative as actually two terms

V��
E��� = −	 �	�

* �r�	��r��� 1

�r − sk�
dr

−
�sk

��
· 
−	 	�

* �r�	��r�
�r − sk�
�r − sk�3

dr� ,

where the latter term involves the geometrical derivatives of
the cavity31 and the solute’s electronic electric field at the
tesserae. The quantities in Eqs. �18� and �19� involving the
derivative of the Q matrix can be calculated using different
approaches. In the present implementation, the approach for-
mulated by Cossi et al. has been used.22

Equation �17� can be finally summed to the standard
DFT contribution to give the expression for the total free
energy gradient of each state in the presence of the solvent,

GTDDFT,� = Ggs
DFT,� + 
�.

For the description of the ground state DFT gradient contri-
bution Ggs

DFT,�, the reader is referred to the original papers on
the formulation of efficient analytical free energy gradients

22
within the PCM scheme.
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D. The relaxed density and the first order properties

The solution of the Z-vector equation �15� as well as the
knowledge of eigenvectors �X+Y�n and �X−Y�n allows one
to calculate the change Pn

 in the one-particle density matrix
between the ground and the excited state, for each excited
state n.

The knowledge of P is all it is required to evaluate the
changes upon excitation of the first order properties. Among
them, the most common example is the dipole moment
which now becomes a difference between the excited and the
ground state,

�A = trPmA, A = x,y,z ,

where mA is the dipole integrals matrix.
In the same way we can perform a population analysis of

P and thus obtain information on the charge redistribution
and the change in bond order induced by an electronic
excitation.

The inclusion of solvent effects enriches this kind of
analysis. In fact, by tuning the value of the solvent dielectric
permittivity �, which is included in the expression of the Q
matrix, we can describe the changes in the excited state
charge density when passing from the Franck-Condon region
of the solvent coordinate �i.e., the nonequilibrium� to a com-
pletely relaxed solvent. This is done by changing the value of
� used to compute the polarization weights in Eqs. �6�, �18�,
and �19� from the optical value �� �namely, the square of the
refractive index� to the static bulk value �0. Effects of these
changes can be significant for polar solvent for which
����0.

III. ENERGIES, STRUCTURES, AND PROPERTIES
OF PNA AND DMABN EXCITED STATES

In this section, we present two case studies of the excited
state properties and geometries of two molecules which
show large solvent effects on both the energy and the struc-
ture of their lowest singlet excited states. In particular, the
selected molecules, PNA and DMABN, are well-known ex-
amples of systems with excited states characterized by an
intramolecular charge transfer and thus extremely sensitive
to the presence of a stabilizing polar solvent. It is well
known that the TDDFT tends to underestimate the charge-
transfer excitation energies considerably due to spurious
self-interaction.32 It is, however, also known that this error is
reduced when hybrid functionals are used. The focus of the
present work is on excited-state properties such as the struc-
tures which are generally much less affected by the self-
interaction error than excitation energies. Nevertheless, in
order to ensure a reasonable overall accuracy for our results,
the hybrid B3LYP functional has been used, together with a
triple-zeta basis set, namely, 6-311G�d , p�. For both mol-
ecules the analysis of the excited states is limited to valence
states, for which the use of larger basis sets including diffuse
functions should not be necessary. However, in order to ad-
dress this issue, we have repeated all the calculations on

PNA using the 6-311+G�d , p� basis set and the results
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obtained in this way �vide infra� have not shown significative
differences with respect to the ones obtained using the
smaller basis set. Thus only the 6-311G�d , p� has been used
in the calculations carried out on DMABN.

In addition to the two applications presented in this sec-
tion, papers dealing with the study of excited state PES by
means of TDDFT in the gas phase33 and including solvent
effects34 recently appeared in the literature.

In PCM calculations, the IEFPCM method7 has been
used and the solute cavity has been built starting from a set
of interlocking spheres centered on selected atoms and the
scaled van der Waals radii have been used. For both systems
the spheres have been centered on all atoms but the aromatic
hydrogens which have been included in the sphere centered
in the nearest carbon atom. Namely, we obtain 12 spheres for
PNA and 11 spheres for DMABN with radii set to RC

=2.04 Å, RCH=2.28, RN=1.92, RO=1.824, and RH�N�=1.44.
Two solvents have been chosen, an apolar and a polar one,
namely, cyclohexane �with permittivity �0=2.02 and ��

=2.02� and acetonitrile �with permittivity �0=36.64 and ��

=1.8060�.
All the calculations have been performed using a devel-

opment version of the GAUSSIAN code35 which includes the
TDDFT gradient implemented as described in Sec. II C.

A. PNA

The PNA represents one of the simplest compounds
showing intermolecular charge transfer �ICT� from −NH2 to
−NO2, and therefore serves as an important model for
theoretical36–38 and experimental39–44 studies.

The PNA has an intense absorption band in the near
ultraviolet to visible spectral region which strongly depends
on the solvent polarity and thus indicates a large increase of
the molecular dipole moment upon optical excitation. In the
gas phase this band peaks at 4.24 eV �Ref. 41� whereas it is
redshifted by 0.39 eV in cyclohexane and by 0.83 eV in
acetonitrile.44 In the excited PNA molecules, both the strong
donor and the strong acceptor groups may modify their con-
formation, leading to an increased intramolecular charge
separation. The twisting of the nitro group relative to the
central benzene moiety was first considered in Ref. 42 where
it was shown that in the excited state the dipole moment is
larger when the −NO2 is twisted compared to the coplanar
conformation and that the twisted state is stabilized in highly
polar solvents.

More recently, transient absorption spectra in acetonitrile
and water have been measured by Kovalenko et al.44 in a
range 300–700 nm with 30 fs resolution, allowing for the
observation of the complete spectral evolution. According to
these studies, the relaxation of the PNA molecule after pho-
toexcitation is initiated by the twist of −NO2 to a new equi-
librium position. More specifically, the relaxation involves
several stages corresponding to different processes. The fast-
est process develops on a 10 fs time scale and corresponds to
intramolecular vibrational relaxation of the high frequency
modes. The next process, on a 100 fs time scale, corresponds
to solvent relaxation and it is observed as the dynamic

Stokes shift of the stimulated emission band. Intramolecular

Downloaded 17 Mar 2013 to 141.161.91.14. Redistribution subject to AIP lic
charge transfer and internal conversion are accessed by the
twisting of −NO2 as it is driven to the new equilibrium po-
sition. This happens roughly between 100 fs and 1 ps and it
is recognized in the simultaneous decay of the excited state
absorption and the simulated emission band.

Following these observations we have applied the TD-
DFT approach described in the previous section to calculate
the ICT transition energies and relaxed geometries of the
PNA in cyclohexane and acetonitrile. In addition, we have
also calculated the dipole moment and the �natural bond or-
bitals� �NBO� charges45 at the geometry of the ground and of
the excited state in order to describe the changes from the
Franck-Condon to the relaxed excited state. Moreover, in the
case of the polar solvent we have compared equilibrium and
nonequilibrium solvation to study the effect of the solvent
reorganization on these properties.

In Table I we report the calculated and experimental ver-
tical excitation energies in the gas phase and in the two
solvents. The calculated values refer to the ground state
�GS� geometries �obtained at the B3LYP/6-311G�d , p�
level� and in the case of acetonitrile to nonequilibrium
solvation.

The calculated values correctly reproduce the experi-
mental trend from gas phase to cyclohexane and acetonitrile.
More quantitatively, we found a redshift of 0.25 eV in cyclo-
hexane and 0.44 eV in acetonitrile. These results indicate an
underestimation of the solvent effect when compared to the
experimental shifts of 0.39 and 0.83 eV. A probable reason
for this underestimation �or at least for a part of it� is related
to the DFT description which amplifies the solvent polariza-
tion effects on GS while it cannot stabilize enough the ICT
excited state �see below for further details�. As a result the
redshift calculated is smaller than the observed one.

The main geometrical parameters for the GS and the CT
state in gas phase and in the two solvents are reported in
Tables II and III, respectively.

Both in gas phase and in solution, the molecule is essen-
tially planar; only −NH2 is slightly wagged �but not twisted�
as shown by the wagging dihedral angle �w�HN9C4C3�:
such a wagging decreases in more polar solvents. In
all cases, the calculations of the Hessian were performed
and confirmed that the geometries really correspond to a
minimum.

The solvent effects show a clear trend. As the polarity of
the solvent increases �from gas phase to cyclohexane to ac-
etonitrile�, the pattern of the bond lengths changes, the C4C3

TABLE I. TDDFT and experimental ICT excitation energies �eV� of pNA in
gas phase and in solution. For solvated systems we also report calculated
and observed gas-to-solution shifts. The experimental energies correspond
to absorption spectral maxima.

TDDFT Exp.

Vacuum 4.07 4.24
Cyclohexane 3.82 3.85

�Shift� 0.25 0.39
Acetonitrile 3.63 3.41

�Shift� 0.44 0.83
bond length increases, while the C1N10, C3C2, and C4N9
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bond lengths decrease, thus amplifying their respective
single and double bond characters. Such a behavior is easily
explained using the common picture of two molecular reso-
nance structures, the neutral and the zwitterionic, and observ-
ing that in more polar solvents the weight of the zwitterionic
structure is increased and accounts for the changes in the
geometry.

Next, we consider the CT excited state. The main geo-
metrical parameters calculated both in gas and in solution are
reported in Table III.

The first remark is that both in gas phase and in solution
the minimum of the ICT state is a −NO2 twisted structure;
we note, however, that this twisting also involves a wagging
of the oxygen atoms thus leading to a net dihedral angle of
about 70°. Due to this deformation, the oxygen atoms are
closer to a side of the aromatic moiety �here the C2C3 side�
and thus the bond lengths are no longer symmetric. We note
that the solvent effects for the ICT state are generally small,
the main differences being in the C4N9 and the C1N10 bond
lengths.

Both for the isolated and solvated systems, the main
changes from GS to ICT state are found in the N10O bond
length which in the ICT state becomes significantly longer

TABLE II. Main geometrical parameters for the GS state in gas and in the
two solvents.

Vacuum Cyclohexane Acetonitrile

R�C4N9� 1.376 1.370 1.357
R�C4C3� 1.409 1.412 1.417
R�C3C2� 1.382 1.381 1.378
R�C2C1� 1.394 1.396 1.400
R�C1N10� 1.462 1.456 1.442
R�N10O� 1.227 1.230 1.235

�w�HN9C4C3� 19.2 17.2 11.2
�t�ON10C1C2� 0.0 0.0 0.0

TABLE III. TDDFT optimized geometrical paramete
The values in parentheses refer to the calculations in

Vacuum

R�C4N9� 1.351 �1.352�
R�C4C3/5� 1.424/1.423

�1.425/1.423�
R�C3/5C2/6� 1.367/1.374

�1.368/1.374�
R�C2/6C1� 1.416/1.408

�1.415/1.408�
R�C1N10� 1.419 �1.422�
R�N10O� 1.304 �1.303�

�w�HN9C4C3� 0.0
�l�ON10C1C2� 71.1 �71.6�
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and in the C4N9 bond which becomes shorter. In gas phase
we also observe a significant decrease in the C1N10 bond
length.

Few among the many theoretical studies of PNA explic-
itly consider excited state molecular geometries. Among
them, we cite here the work of Kovalenko et al.,44 who per-
formed semiempirical SAM1 calculations on the excited
state nuclear dynamics of PNA in gas phase and in water
�using the COSMO mode46� and a successive study by Mo-
ran et al.38 using an excited state molecular dynamics �MD�
approach to calculate both ground and excited electronic
state equilibrium geometries. In the latter study the simula-
tions were performed by combining the AM1 semiempirical
Hamiltonian with the CEO method14 and solvent effects
were incorporated using the Onsager formulation of the self-
consistent reaction field. In both studies the equilibrium ge-
ometry of the CT excited state was found to have a greater
zwitterionic character compared to that of the ground state
which resulted in corresponding changes of the bond-length
alternation. The only exception with respect to this two-state
model was given by the increase of the C1N10 in acetonitrile
�but not in gas phase or in cyclohexane� and the twisting of
the NO2 group in acetonitrile �ca. 25° in the AM1 study and
90° in the SAM1 study�.

In the study by Moran et al.,38 a comparison with experi-
ments was also presented using the resonance Raman �RR�
data measured by Moran and Kelley.40 We note, however,
that the use of the RR technique is to get information about
the geometry changes from the ground to the excited state is
based on models that involve drastic assumptions which nec-
essarily weaken the reliability of the results. This technique,
in fact, does not allow a direct determination of absolute
geometry changes since the measured intensities depend only
on the magnitudes and not on the signs of the dimensionless
mode displacements. The determination of respective signs
requires the selection of the most probable signs combination
among the 2N possibilities �N is the number of Raman active
normal modes�. The resulting values thus depend on the re-
quirements imposed by the experimentalists. In particular, in
Moran and Kelley’s study the selection was made by requir-
ing that the direction of the geometry change is expected for
a transition to a more zwitterionic state. More specifically,

r the ICT state in gas phase and in the two solvents.
ng diffuse basis functions on the heavy atoms.

Cyclohexane Acetonitrile

1.344 �1.344� 1.333 �1.331�
1.427/1.425 1.432/1.430

�1.428/1.426� �1.433/1.433�
1.367/1.373 1.367/1.372

�1.367/1.373� �1.367/1.371�
1.414/1.408 1.414/1.408

�1.413/1.408� �1.414/1.408�
1.428 �1.430� 1.429 �1.431�
1.305 �1.305� 1.307 �1.307�

0.0 0.0
71.8 �72.1� 72.6 �73.7�
rs fo
cludi
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they required that the NO bonds lengthens, the C4N9 bond
shortens, and the phenyl C2C3 bonds also shorten. Indeed, all
these requirements are confirmed by our calculations even if
the agreement is not quantitative. The discrepancies can be
due to different reasons but it is worth noting that, as the RR
intensities are sensitive mainly to the excited state surface
near the Franck-Condon region with respect to both the in-
ternal and solvent modes, it is most appropriate to use the
description of the excited state at the ground state equilib-
rium value of the solvent coordinates while our calculations
have been done assuming a completely relaxed solvent. In-
deed, our model is appropriate for the prediction of the equi-
librium geometry in the excited states, while a nonequilib-
rium treatment would have been more suited for the
comparison with the RR experiments. In addition we note
that to extract the “experimental” displacements a prelimi-
nary knowledge of the GS normal modes from DFT calcula-
tions on the isolated system was exploited.

Unfortunately, the resonance Raman experiments on
PNA cannot detect the low frequency modes corresponding
to the NH2 wagging and the NO2 twisting and thus no con-
firmation of the twisted structure can be obtained in this way.

We conclude the analysis of the solvent effects on the
CT state of PNA by considering the dipole moments and the
NBO charges calculated with the relaxed density matrix �see
Sec. II D�.

In order to allow for a comparison with the experimental
data we first consider the Franck-Condon ICT states, i.e., we
calculate the dipole moments of the excited state by keeping
the geometry frozen in the ground state. The results are re-
ported in Table IV.

As previously done for the geometry displacements also
in the case of dipole moments we have to add some com-
ments on the experimental data. The latter are reported in
Table IV for gas phase and they have been extracted from the
measurements in dioxane solution by applying the Onsager
reaction field model to eliminate the solvent effect.43 In con-
trast, the cyclohexane experimental dipole moments have
been obtained from those reported in Ref. 43 reincluding the
proper reaction field factors �see Eqs. �3�–�5� of the same
reference for the expressions used�. Given these facts, we
note that the observed solvent induced changes on both the
ground and excited state dipole moments are quantitatively

TABLE IV. TDDFT and experimental ground state and a Franck-Condon
ICT dipole moments � �in Debye� of pNA in gas phase and in solution.
Values in parentheses refer to the previous CASSCF calculations �Ref. 37�.

GS ICT

Calc. Exp. Calc. Exp.

Vacuum 7.2 6.2 12.4 15.3±1
�6.1� �17.2�

Cyclohexane 8.3 7.4a 14.0 18±1a

�6.9� �19.4�
Acetonitrile 10.5 14.2

�7.9� �19.7�
aIn dioxane �Ref. 43�
reproduced by the calculations.
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Another interesting test for the accuracy of our results is
the comparison with a previous IEFPCM-CASSCF
calculation37 �for a direct comparison, these data are reported
in Table IV�. In that case the calculated solvent induced
changes in the dipole moments were +0.8 D in the apolar
solvent and +1.8 D in the polar solvent for GS, while they
were +2.2 D and +2.5 D for ICT state. When these data are
compared with the TDDFT results reported in Table IV it is
apparent that the DFT calculations amplify the solvent polar-
ization effects on GS �for which both the absolute values and
the gas-to-solvent shifts are larger CASSCF level� while they
give a less polarized and polarizable ICT state.

As we have noted the data reported in Table IV refer to
the Franck-Condon CT states; it thus becomes interesting
to analyze the effects of both the solute and the solvent re-
laxation. For the apolar cyclohexane, solvent relaxation ef-
fects are null whereas they are large for the polar acetonitrile,
as shown in Fig. 1 in where we show a graphical represen-
tation of the evolution of the dipole moment and of the
NBO charges of the ICT state of PNA in acetonitrile when
we allow for both the solvent and solute geometry
relaxation.

As shown by the relative changes in both the NBO
charges and the dipole moment, the solvent relaxation in-
duces an increase of 10% in the charge transfer and of 16%
in the dipole moment whereas the effect of the twisting �and
of the related changes in the order geometrical parameters�
gives a further 46% charge transfer and a further 26% dipole
moment increase.

B. DMABN

The DMABN represents the paradigm of anomalous
emissive behavior or dual fluorescence which consists in an
additional emission �A band� redshifted with respect to the
“normal” emission band �B band�. Generally, the A band is
ascribed to an ICT state, whose formation should be favored
in the polar solvents as compared to the less polar “locally
excited” �LE� state which gives rise to the B band.

Since the first observation of dual fluorescence in
DMABN by Lippert et al. in 1959,47 a number of other com-
pounds exhibiting dual fluorescence were discovered. How-
ever, DMABN still remains one of the most studied ex-
amples, and not only for historical reasons. The relatively

FIG. 1. Graphical representation of the change in the NBO charges and the
dipole moment of the PNA excited state not allowing �left� or allowing for
solvent �center� and solute geometry �right� relaxation. Charges are in a.u.
and dipole moments in Debye.
small dimensions, now easily tractable with accurate compu-
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tational tools, and the numerous experimental data available
for comparison have made DMABN a challenging test for
different ab initio methods, and, in fact, many calculations,
at various levels, have been performed, in particular, in the
past few years.48

Despite these numerous studies, the mechanism of the
ICT in DMABN is still a controversial matter. Among the
proposed mechanisms, we cite here the twisted intramolecu-
lar charge transfer �TICT� model by Rotkiewicz et al.49 Ac-
cording to the TICT model the newly formed excited state
yields towards another minimum on its potential energy sur-
face by twisting the dialkylamino group from a planar �or
nearly planar� to a perpendicular position with respect to the
benzonitrile ring. The twisting is accompanied by an in-
tramolecular charge transfer from the donor �the amino
group� to the acceptor moiety �the benzonitrile group�. The
resulting excited state, characterized by a large intramolecu-
lar charge separation and an increased dipole moment, can be
stabilized in the polar solvents, thus leading to the observed
“anomalous” second fluorescence band. On the other hand,
the “standard” B band, is assigned to the less polar LE state,
where no twisting has occurred.

Besides the TICT, other models have been proposed
in which no twisting is required to lead to the CT state; as
an example, we cite here the so-called planar ICT �PICT�
model advocated by Zachariasse et al.50 This model assumes
the presence of a quinoidal ICT state with a slightly pyrami-
dalized Me2N group and the ICT reaction coordinate in-
volves the Me2N out-of-plane angle and the quinoidal ring
deformation.

An important contribution towards the settlement of this
open controversy should come from the QM studies in which
both the energetics and the geometries of the relevant states
can be determined along the reaction coordinate. However,
this has not been the case until very recently. In fact, the
implementations of analytical derivatives for the excited
states correlated methods were not available, or the cost was
still prohibitive or they were limited to the gas-phase sys-
tems. To the best of our knowledge, the only example of QM
geometry optimizations of the LE and ICT states including
solvent effects is a study carried out by some of the present
authors12 at the CIS level using PCM. In a successive study51

the same authors also used a multireference perturbed CI
approach still with PCM but, due to the lack of analitica
derivatives, geometry optimization was not performed. The
energies of the excited states were simply plotted against the
twisting angle while keeping the rest of the geometry frozen
in the ground state optimized minimum. The twisting angle
was varied from 0° to 90°. The main result of this study was
that the twisting curves of the various states in the presence
of a polar solvent are significantly different from the ones
obtained in the gas phase. In fact, the highly polar ICT ex-
cited state can be stabilized much more effectively than the
less polar LE state, thus leading to an inversion of their rela-
tive energies even at a nontwisted geometry. This behavior
was found only once before, in the calculations by Gedeck

52
and Schneider, all other previous studies including solvent
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effects, in fact, showed the preferential stabilization of the
ICT state with respect to LE but they were only limited to a
few specific conformations and did not explore the whole
energy profiles. The second important finding in the MRCI
study was the large stabilization of the ICT state at the
twisted geometry which turned out to be the global minimum
on the curve; the twisted conformation lied 19.5 kcal/mol
below the planar one, and the thermodynamic equilibrium of
the charge-transfer reaction was therefore almost totally
shifted towards the twisted conformation.

In the present work, we reconsidered the problem of
photoinduced ICT in DMABN by means of the time-
dependent density functional methods. Recently a TDDFT
study on excited states structures and properties have ap-
peared but is still limited to isolated DMABN.33 The two
lowest singlet excited states were characterized using
TDDFT in gas phase, and their energies were found to cross
at a twisting angle near 50°. In particular, the most stable
excited state at the nontwisted geometry �the LE state� shows
a very small dependence on the twisting angle, while the
second one �the ICT state� shows a strong dependence with a
minimum at 90°. This leads to the crossing of the corre-
sponding energy curves. Here we repeated the LE and
ICT TDDFT optimizations both in gas phase and in two
solvents, the apolar cyclohexane and the polar acetonitrile
�ACN� using the same B3LYP functional used in the refer-
ence gas-phase paper and a triple-zeta basis set, namely,
6-311G�d , p�.

Before exploring the excited states potential energy
surface, however, we have calculated the vertical excitations
keeping the DMABN in the ground state optimized
geometries in each solvent �and in gas phase�. The results
obtained for the first two excited states are reported in
Table V. For the polar solvent �ACN� two sets of data are
reported, one assuming a nonequilibrium response of the sol-
vent and the other assuming a completely �equilibrated�
response.

In Table V, the state having its major contribution from
the highest occupied molecular orbital �HOMO�→ lowest
unoccupied molecular orbital �LUMO�+1 transition is the
LE state while the one mainly described by a HOMO
→LUMO transition is the ICT state. This is confirmed by the
NBO charges on the donor/acceptor pair �NMe2 and CN and
groups� and it is also apparent from the graphical represen-
tation of the MOs involved �see Fig. 2�.

In order to properly compare the PCM-TDDFT excita-
tion energies reported in Table V with the experimental ab-
sorption spectra it is better to consider gas-to-solvent shifts
instead of absolute energies; this for two simple reasons. The
first is that the experimental data refer to absorption maxima
while the calculated ones are vertical excitations and thus we
can assume that the error we introduce by comparing these
different values is smaller when the shifts are considered.
The second, and more important reason is that absolute en-
ergies are largely affected by the intrinsic limitations of the
QM method being used �here TDDFT� and thus the analysis

of the solvent effects can be difficult due to the combination
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of physical and numerical issues. The experimental solvent
induced shifts53 of the LE and CT excitation energies are
−0.15 and −0.16 eV in cyclohexane, respectively, while for
ACN only the shift of the CT absorption can be observed
�−0.36 eV�. If we analyze the data reported in Table V we
find that the TDDFT shifts are very accurate for the CT state:
−0.17 eV in cyclohexane and −0.27 eV in ACN, which be-
comes −0.44 eV when we allow for the complete relaxation
of the solvent response. The agreement is worse for the LE
state for which the calculated −0.03 eV shift in cyclohexane
is underestimated.

Another important comment is in order about the data
reported in Table V. In ACN, if we allow for a complete
solvent relaxation �equilibrium solvation� the order of the
excited states is reverted even if the solute geometry is not
relaxed. Indeed, the ICT state becomes the lowest state even
at the GS geometry.

This important effect related to the solvent relaxation �or
reorganization� has to be further examined by considering
also the relaxation of the molecular geometry. We will as-
sume that the same time evolution described for PNA,
namely, an initial relaxation of the solvent at fixed geometry

TABLE V. Excitation energies �in eV�, oscillator strengths �f�, and NBO ch
For all excitations we also report the major orbital changes contributing to the
on the excitation energies are reported.

VAC CYC

E 4.46 4.43 �−0
f 0.0311 0.040

Main contr. HOMO→LUMO+1 HOMO→L
NBO�CN� −0.033 −0.03

NBO�NMe2� +0.177 +0.29

E 4.71 4.54 �−0
f 0.5263 0.669

Main contr. HOMO→LUMO HOMO→
NBO�CN� −0.133 −0.17

NBO�NMe2� +0.179 +0.21

aThe experimental shift in cyclohexane is −0.15 eV while it cannot be mea
bThe experimental shift is −0.16 and −0.36 eV in cyclohexane and in aceto

FIG. 2. Graphical representation of the HOMO, LUMO, and LUMO+1 for

DMABN at the ground state geometry.
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followed by the twisting towards the new equilibrium posi-
tion, is also valid for DMABN. Thus, we will use equilib-
rium solvation for the prediction of the excited state opti-
mized geometry. The results of these calculations for the
excited states planar and twisted conformation in both sol-
vents are reported in Tables VI and VII. In Table VI the main
geometrical parameters are shown for each state in both sol-
vents whereas in Table VII energies and dipole moments are
reported together with the corresponding ground state
properties.

of DMABN in gas phase and in solution for the two lowest excited states.
sition. For cyclohexane and for nonequilibrium acetonitrile the solvent shifts

ACN �neq� ACN �eq�

4.40 �−0.06�a 4.27
0.0356 0.8919

+1 HOMO→LUMO+1 HOMO→LUMO
−0.062 −0.239
+0.333 +0.258

4.44 �−0.27�b 4.36
0.6678 0.0620

O HOMO→LUMO HOMO→LUMO+1
−0.216 −0.058
+0.233 +0.351

in acetonitrile �Ref. 53�.
, respectively �Ref. 53�.

TABLE VI. Main geometrical parameters for the planar and twisted excited
states in gas and in the two solvents. The values in parentheses are the
percentage change with respect to the gas-phase parameters.

VAC CYC ACN

planar planar planar planar

RCN�Me� 1.4110 �+2.67� 1.4093 �+2.86� 1.4030
�+2.78�

1.4074
�+3.11�

R1 1.4070 �−0.64� 1.4073 �−0.76� 1.4092
�−0.83�

1.4269
�+0.41�

R2 1.4353 �+3.80� 1.4367 �+3.96� 1.4383
�+4.16�

1.3751
�−0.41�

R3 1.4076 �+0.32� 1.4069 �+0.18� 1.4069
�+0.02�

1.4467
�+2.85�

RCC 1.4264 �−0.15� 1.4273 �+0.23� 1.4277
�+0.46�

1.3957
�−2.55�

RCN 1.1577 �+0.09� 1.1576 �+0.02� 1.1580
�−0.07�

1.1784
�+1.70�

twisted twisted twisted
RCN�Me� 1.4426 �+4.98� 1.4381 �+4.96� 1.4312 �+4.85�
R1 1.4216 �+0.38� 1.4214 �+0.24� 1.4218 �+0.06�
R2 1.3691 �−1.00� 1.3692 �−0.91� 1.3695 �−0.82�
R3 1.4408 �+2.69� 1.4420 �+2.69� 1.4447 �+2.71�
RCC 1.4001 �−1.80� 1.3976 �−1.86� 1.3933 �−1.94�
RCN 1.1683 �+1.00� 1.1705 �+1.13� 1.1741 �+1.31�
arges
tran

.03�a

8
UMO
2
7

.17�b

9
LUM
6
1

sured
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In gas phase and in cyclohexane the nontwisted mini-
mum corresponds to the LE state while the second excited
singlet state �ICT� upon optimization relaxes into a minimum
with a 90° twisted amino group conformation �TICT�. On the
contrary, in acetonitrile, the ICT state is the lowest state even
at the nontwisted geometry �see also Table IV� and it corre-
sponds to a minimum.

The nature of each state is confirmed by the differences
in the main geometrical parameters. In fact, in the LE state
we observe a significant increase in the R2 and RCN�Me� bond
lengths which is consistent with an increased quinoidal char-
acter of the structure, while the RCC bond length does not
change significantly. For the TICT state, besides the twisting
of the amino group, we find a net increase of the RCN and a
corresponding decrease of the RCC lengths accompanied by a
significant increase of the R3 and the RCN�Me� lengths. This is
an expected consequence of the charge transfer from the do-
nor �the amino group� to the acceptor moiety �the benzoni-
trile group�. It is interesting to note that a similar behavior
�with the exception of the twisting� is found for the planar
ICT state in acetonitrile.

Next, we consider the energies and the dipole moments
reported in Table VII. The inversion in the order of the ver-
tical states found in ACN when an equilibrium solvent re-
sponse is used �see Table V� is still present when we allow
for geometry relaxation. However, the difference between
the two nontwisted states is now reduced to about
0.5 kcal/mol with respect to the 2 kcal/mol found for the
vertical states. These results are in perfect agreement with
what was found in the previous MRCI study51 not only from
a qualitative point of view but also quantitatively. In fact, the
energy difference between the optimized planar and the
twisted structures of the ICT state is 19.02 kcal/mol at TD-
DFT level, whereas in the previous study �in which the struc-
tures where not completely relaxed as explained above� was
19.5 kcal/mol.

In the gas-phase TDDFT study of DMABN by Rap-
poport and Furche33 the minimum energy paths �MEPs� for
the ICT and LE states along the reaction coordinate were
also presented as a result of a geometry optimization where
all the internal degrees of freedom except the twisting angle

TABLE VII. Energies �in a.u.� and dipole moments �i
phase and in solution. Values in parentheses are the e
in each phase.

VAC

E �

GS −458.579 060 4 7.772 −458.
LE −458.422 000 3

�4.274�
10.536 −458.4

�4.
ICT ¯ ¯

TICT −458.451 741 5
�3.464�

15.682 −458.4
�3.
were relaxed and the conservation of C2 symmetry was

Downloaded 17 Mar 2013 to 141.161.91.14. Redistribution subject to AIP lic
imposed. Significant results that study were the location of
the intersection of the LE and ICT states at twisting angle
�=52° and the small slope of the LE curve, which was
found to be essentially flat. According to the authors, both
observations imply that the LE-state minimum is metastable
with respect to the ICT-state minimum at �=90°. In the
present paper, we have shown that this picture can be modi-
fied by the inclusion of solvent effects. In fact, in a polar
solvent the preferential stabilization of the ICT state can lead
to an intersection of the LE and ICT states even without
relaxing the geometry but simply allowing for a complete
solvent
relaxation.

This result, already observed at the MRCI level, and
here confirmed at the TDDFT level, is interesting as it pro-
vides a new way of looking at the dual fluorescence phenom-
enon and, hopefully, a step forward in the debate on the ICT
mechanism.

IV. CONCLUSIONS

In this paper, we presented the theory and implementa-
tion of analytic derivatives of TDDFT excited states ener-
gies, both in vacuo and including solvent effects by means of
the polarizable continuum model. Despite the increased com-
plexity introduced by the solute-solvent interaction in the
study of excited states energies and potential energy surfaces,
TDDFT is confirmed as a powerful and useful tool, being
both accurate and computationally affordable. In addition,
the PCM-TDDFT approach offers in a very straightforward
way the flexibility required to correctly describe both the
nonequilibrium and equilibrium solvations. However, when
used to model excited states in solution, TDDFT has limita-
tions, common to all other linear response formalisms,13 and
future work will better assess this issue and compare more
thoroughly TDDFT with state specific wave function meth-
ods as already discussed in the Introduction. We also re-
ported on the application of PCM-TDDFT to two case stud-
ies: p-nitroaniline �PNA� and 4-�dimethyl�aminobenzonitrile
�DMABN�. For both molecules PCM-TDDFT is shown
to be successful in supporting the analysis of experimental
data and providing useful insights for a better under-
standing of photophysical and photochemical pathways in

bye� of the optimized planar and twisted states in gas
differences �in eV� with respect to the ground state

YC ACN

� E �

54 8.8142 −458.592 029 6 10.3365
3 4 12.010 −458.439 257 3

�4.157�
14.057

¯ −458.440 124 2
�4.134�

15.191

0 6 17.572 −458.470 438 4
�3.309�

20.361
n De
nergy

C

E

584 2
28 83
229�
¯

59 26
401�
solution.
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APPENDIX: DETAILS ON THE EVALUATION
OF THE EXCHANGE-CORRELATION TERMS

In this appendix, we establish a general framework for
the evaluation of the exchange-correlation energy and its de-
rivatives and we provide a more detailed description of the
various terms involved in the excitation energy gradient,
with respect to what can be found in Ref. 5. First, we express
the exchange-correlation energy as

Exc = �
g

wgFg��zI�P, . . . �� ,

where wg are the numerical quadrature weights and Fg are
the functional values evaluated at the grid points. The func-
tional itself depends on a set of variables �zI which in turn
depend either linearly or quadratically on a generic 1PDM P.
Currently, in our implementation we allow for the use of six
variables linear in P, namely, the density, the kinetic energy
density, and the Laplacian of the density �both alpha and
beta�,

���P� = �
��

P��
� �	�	�� ,

���P� = �
��

P��
� ��	� · �	�� ,

l��P� = �
��

P��
� �2�	�	�� ,

and three variables quadratically dependent on P

�����P,Q� = ����P� � ����Q�

= ��
��

P��
� � �	�	�����

��

Q��
�� � �	�	��� .

In the above definitions we used � ,�� as spin labels and �	�
to indicate the atomic basis set.
derivatives of the MOs coefficients nor of the excitation amplitu
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We introduce now three new sets of quantities indicated
as uI�Q�, uI,��, and vI,��; their form is given in the following
table for each of the zI variable ��, �, l, and ��, namely,

�� ��� ���� �� l�

vI,�� �	�	�� ��	�	�� ��	�	�� ��	� ·�	�� �2�	�	��
uI�Q� 1 2����Q� �����Q� 1 1
uI,�� 0 2� �	�	�� ��	�	�� 0 0

Using this formalism, the derivatives of the zI variables
with respect to the generic density matrix element P��

�

become

�zI�P,Q�
�P��

� = uI�Q��I,��,

whereas the exchange-correlation contribution to the G���
+

contraction in the AO basis can be written as

f���,����
xc =

�2Exc

�P��
� �P��

��

= �
g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ,g�P��J,g,��uI,g�P��I,g,��

+ �
g

wg�
I
� �F

�zI
�

g
uI,g,���I,g,��.

Its derivatives with respect to the MOs coefficients contrib-
ute to the Lagrangian in the following form:
G���
xc =

�

�P��
� 
 �

�����
��

f����,�
��
xc �X + Y������X + Y��
���

=
�

�P��
� 
�

g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�P��J�X + Y�uI�P��I�X + Y� + �

g

wg�
I
� �F

�zI
�

g
uI�X + Y��I�X + Y��

= �
g

wg�
IJK
� �3F

�zI�zJ�zK
�

g
uK�P��K�X + Y�uJ�P��J�X + Y�uI�P��I,��

+ 2�
g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�P��J�X + Y�uI,���I�X + Y� + �

g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�X + Y��J�X + Y�uI�P��I,��,

where we omitted the obvious grid point index on some quantities.
On the other hand, the derivative with respect to the generic nuclear coordinate �, which does not involve any explicit
des, can be written as
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fxc��� =
�

��
 �
�����
��

f����,�
��
xc �X + Y������X + Y��
���

=
�

��
�
g

wg�
I,J
� �2F

�zI�zJ
�

g
uJ�P��J�X + Y�uI�P��I�X + Y� + �

g

wg�
I
� �F

�zI
�

g
uI�X + Y��I�X + Y��

= �
g

wg
�
�

IJ
� �2F

�zI�zJ
�

g
uJ�P��J�X + Y�uI�P��I�X + Y� + �

I
� �F

�zI
�

g
uI�X + Y��I�X + Y��

+ �
g

wg�
IJK
� �3F

�zI�zJ�zK
�

g
uK�P��K�X + Y�uJ�P��J�X + Y�zI

����P�

+ 2�
g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�P��J�X + Y��uI

����P��I�X + Y� + uI�P��I
����X + Y��

+ �
g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�X + Y��J�X + Y�zI

����P�

+ �
g

wq�
I
� �F

�zI
�

g
�uI

����X + Y��I�X + Y� + uI�X + Y��I
����X + Y�� ,

where wg
� are the derivatives of the integration weights and the zI

���, uI
���, and vI

��� are quantities that involve only basis function
derivatives. These two exchange-correlation terms are computed together when the MOs Lagrangian is assembled so that the
functional third derivatives are generated only once. The last exchange-correlation contribution to the excitation energy
gradient involves only up to the second derivative of the functional and has the following form:

Vxc����P� =
�

��
�
���

V���
xc P���

 �
=

�

��
�
���

��
g

wg�
I
� �F

�zI
�

g
uI�P��I,���P��

,��
=

�

��
�
g

wg�
I
� �F

�zI
�

g
uI�P��I�P��

= �
g

wg
�
�

I
� �F

�zI
�

g
uI�P��I�P�� + �

g

wg�
IJ
� �2F

�zI�zJ
�

g
uJ�P��J�P�zI

����P�

+ �
g

wg�
I
� �F

�zI
�

g
�uI

����P��I�P� + uI�P��I
����P�� .
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