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Random-phase-approximation correlation method including exchange interactions
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Two random-phase-approximation correlation methods are introduced that take into account exchange
interactions. The first one, termed RPAX, is obtained from a simple modification of the ring coupled-cluster
doubles amplitude equation, while the second, termed RPAX2, is based on the first method using a slightly
modified update equation for the amplitudes. It is shown that this second RPAX2 method can be implemented
with a computational algorithm that scales only with the fifth power of the molecular size with the aid of density
fitting or the Cholesky decomposition of two-electron integrals. It is thus not much more costly than standard
second-order perturbation theory methods and can be applied to quite large molecular systems. Moreover,
numerical tests for chemical reaction energies and intermolecular interaction energies have shown that the
RPAX2 method, if based on a Perdew-Burke-Ernzerhof exchange Kohn-Sham reference determinant, yields
results which are very close to coupled-cluster with single, double, and perturbative triple excitations reference
results.
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I. INTRODUCTION

The direct random-phase approximation (dRPA) describes
electron correlation effects by summing over all particle-hole
interactions [1]. This leads to the so-called ring approximation
as the corresponding correlation energy contributions are
represented by corresponding ring diagrams in a perturbation
expansion. It turns out that in the limit of a high-density
electron gas, these ring diagrams represent the most important
contributions to the correlation energy [1]. Thus, it can be
expected that the dRPA method performs well for bulk systems
while its performance deteriorates for describing electron
correlation in molecules. In fact, some recent studies have
shown that the dRPA correlation energies strongly overesti-
mate the correlation energies from accurate reference methods
for a number of atoms and molecules [2–4]. The reason
for this, in analogy to the first-order case if only Coulomb
interactions are accounted for (Hartree method), is that the
dRPA correlation energy contains correlation interactions of
the electrons with themselves that are not corrected. These
higher-order self-correlation terms, however, can be removed
if exchange effects are accounted for in the infinite-order
summation of particle-hole interaction terms.

There is no unique way to account for electron exchange
in RPA methods, and a number of approaches have been
developed [5–11], the most early one perhaps being the
ring coupled-cluster doubles method from McLachlan and
Ball (see also a recent review about RPA exchange meth-
ods based on both Hartree-Fock and Kohn-Sham reference
determinants [4]). It turns out, however, that in contrast
to, for example, second-order Møller-Plesset perturbation
theory methods or not much more computationally expen-
sive coupled-cluster methods, some of these RPA exchange
methods are not very accurate in describing the ground
states of molecules [3,4]. A recent study of Hartree-Fock-
based RPA methods has shown that this can be attributed
to a large over- or underestimation of third-order correlation
effects occurring in these methods, stemming from neglected
particle-particle and hole-hole interaction terms, which are not
accounted for in “normal” RPA methods (they are described in

so-called higher-order RPA variants such as the second-order
polarization propagator approximation (SOPPA) [3,9,12]. A
simple correction method for the third-order correlation
contribution has led to a strong improvement for both total
energies and energy differences, namely reaction energies and
intermolecular interaction energies, for these methods [3].

Another way to improve upon RPA methods is to combine
RPA with [4,11,13] or without [14,15] exchange using Kohn-
Sham instead of Hartree-Fock reference determinants. It was
found in recent works that in the dRPA case this approach
leads to fairly good atomization energies compared to standard
density functional theory (DFT) methods [14] and even is able
to describe the dissociation of chemical triple bonds [14], the
latter being a very difficult case for standard single-reference
correlation methods. A study by Kresse et al. has shown
that the dRPA method yields excellent lattice constants and
good relative energies for a set of 24 solids [16]. However,
though dRPA methods describe van der Waals interactions
qualitatively correctly, Kohn-Sham-based dRPA methods fail
to deliver an accuracy at least comparable to MP2 theory for
weak intermolecular interactions [13,17].

One approach to improve on Kohn-Sham dRPA methods
for intermolecular interactions is to combine dRPA [18,19]
or RPA including exchange effects [13,20,21] with standard
density functional methods for describing the short-range
electron-electron interactions using a range separation of
the Coulomb interaction operator. These range-separated
DFT-RPA methods not only were shown to yield accurate
intermolecular interaction energies [13,19] but also reduce the
unfavorable basis set dependence of standard RPA methods
as the interelectronic cusp does not need to be described
(explicitly) in range-separated DFT-RPA.

Another recently developed exchange RPA method, termed
EXX-RPA, is based on the adiabatic-connection fluctuation-
dissipation theorem and takes exchange effects into account
using the nonadiabatic and frequency-dependent exact ex-
change DFT kernel [2,4,22–24]. While this method so far
has not been tested for weak intermolecular interactions, it
yields fairly good atomic energies [2] and chemical reaction
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energies [23] and describes the dissociation of molecular pair
bonds correctly [24]; that is, it gives a good description of
static electron correlation effects in contrast to perturbation
theory methods, for example.

A main problem of current Kohn-Sham-based RPA meth-
ods that contain exchange interactions is that, apart from
the interelectronic cusp problem, the total scaling behavior
with respect to the molecular size is much larger than with
common DFT methods. Since RPA exchange methods can be
categorized as coupled-cluster doubles (CCD) methods that
exclude ladder diagrams [25,26], also their scaling behavior is
the same as for CCD, that is,N 6 withN denoting a measure for
the molecular size. This is one order of magnitude larger than
with second-order perturbation theory correlation methods
and even between one and two orders of magnitude larger
than with dRPA [27]. Therefore, such RPA exchange methods
soon become impractical for larger molecular systems. A
remedy to this problem has been derived by Kresse et al.,
who contract the amplitudes from the direct ring CCD equation
with antisymmetrized integrals to obtain the correlation energy
[11]. This method, termed second-order screened exchange
(SOSEX), is exact to the second order of perturbation theory
and scales only with the fifth power ofN , thus having a similar
computational expense as MP2. While it has been shown that
SOSEX improves the dRPA method for atomization energies
and lattice constants [11], a recent study of chemical reaction
energies has shown that the SOSEX method is not much more
accurate than MP2 [4].

In this work, a new Kohn-Sham-based RPA method with
exchange interactions is introduced which also scales only with
the fifth power of the molecular size and at the same time yields
very accurate reaction energies and intermolecular interaction
energies. As this method is based on a computational efficient
update scheme for the amplitudes that first was derived for
the dRPA case, in Sec. II A, a corresponding approach is
presented for the dRPA case. Then, in Sec. II B, two new RPA
methods, termed RPAX and RPAX2, are introduced that are
both based on a modified ring CCD equation. The first method,
RPAX, can not be implemented with an N 5 scaling and does
not perform much better than MP2 for a set of chemical
reactions; see Sec. IV C. In contrast to this, the second method,
termed RPAX2, not only scales with N 5 but even yields
reaction energies and intermolecular interaction energies that
are in fairly good agreement with high-level coupled-cluster
singles doubles with perturbative triples (CCSD(T)) values;
see Secs. IV C and IV D. General technical details of this
method are presented in Sec. III while in Sec. IV A the accuracy
of the density fitting and Cholesky decomposition approaches
required to achieve an N 5 scaling is analyzed. Section V
summarizes the results.

II. METHOD

A. Efficient implementation of the direct RPA method

The dRPA correlation energy can be obtained from the
equation [26,28]

EdRPA
c = 1

2 Tr(CT), (1)

where Cia,jb = [ia|jb] is a two-electron repulsion integral
(in chemist’s notation) using combined indices of occupied

(i,j ) and virtual spin-orbital indices (a,b) and T are double
excitation amplitudes that can be obtained from the solution
of the Riccati equation [26,29]

C + εT + Tε + CT + TC + TCT

= εT + Tε + (1 + T)C(1 + T) = 0, (2)

where ε is a diagonal matrix containing the orbital energy
differences εa − εi in its diagonal. Equation (2) can be solved
through an iterative update of the amplitudes by using

T(n+1) = −� ◦ (C + CT(n) + T(n)C + T(n)CT(n)), (3)

where n denotes the current cycle of the iterative process
and the operator ◦ here defines an entrywise matrix product
(Hadamard product). The matrix � is defined by the matrix
elements �ia,jb = 1/(εa − εi + εb − εj ) with the orbital en-
ergies εi,εj corresponding to the occupied orbitals φi and φj

and the orbital energies εa,εb corresponding to the unoccupied
orbitals φa and φb. The iteration of Eq. (3) can be initialized
with T(0) = 0, yielding T(1) = −� ◦ C in the first cycle. As the
matrix products in Eq. (3) scale as (NoccNvirt)3 with Nocc and
Nvirt being the number of occupied and unoccupied orbitals,
respectively, the direct implementation of Eq. (3) leads to an
overall scaling behavior of N 6 with the molecular size N , and
thus the expense would be prohibitively large. However, this
scaling behavior can be reduced by two orders of magnitude if
the matrix C, which is positive definite, is decomposed using
its Cholesky decomposition [30,31]

C = LLT (4)

with L being a triangular matrix containing the Cholesky vec-
tors in its columns or similarly by using density fitting [32–34]

C = (NS−1/2)(NS−1/2)T = LLT , (5)

where N is a three-index Coulomb repulsion integral defined
by the matrix elements Nia,P = [ia|P ] with P denoting an
auxiliary basis function index [note that the matrices L differ
in Eqs. (4) and (5)]. The matrix S is an overlap matrix in
the auxiliary function space. The crucial point is now that
either the number of Cholesky vectors or the number of
auxiliary basis functions required to approximate the matrix
C via Eqs. (4) or (5) will only scale linearly with the system
size. Correspondingly, the positive definite matrix � can be
decomposed using the Cholesky decomposition

� = εεT =
Nω∑
ω

εia,ωεjb,ω =
∑

ω

eωeT
ω (6)

with ω denoting the index of the Cholesky vector and eω

representing the corresponding Cholesky vector. In Ref. [35],
it has been shown that the Cholesky decomposition of energy
denominators is size intensive; that is, for two identical non-
interacting systems the number of Cholesky vectors required
to obtain the matrix � with a given precision is identical to
the number of Cholesky vectors required for one subsystem.
Moreover, even for quite large systems the number of Cholesky
vectors required to achieve a precision of the denominator
matrix elements of 10−8 ranges between 10 and 15 and so it
can be assumed that it is almost independent of the system size.
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The insertion of Eqs. (4) or (5) and Eq. (6) into Eq. (3) leads
to the following efficient update formula for the amplitudes:

T(n+1) = −
∑

ω

eω · (L + T(n)L)(L + T(n)L)T · eT
ω, (7)

where the center dots are introduced to define the products (a ·
b)ij = aibij between a vector a and a matrix b. Equation (7)
shows that in each cycle of the iteration the amplitudes can be
written in the form

T(n+1) = −
∑

ω

eω · U(n)U(n)T · eT
ω (8)

with U(n) = L + T(n)L so that instead of updating the full
four-index amplitudes it is sufficient to update the three-index
matrix U that has Nocc × Nvirt rows and Nchol or Naux columns,
depending on whether the decomposition of Eqs. (4) or (5) is
used. It can easily be verified that this requires only matrix
products that scale as NoccNvirtN

2
chol or NoccNvirtN

2
aux and thus

is an N 4 scaling process. Using Eqs. (4), (5), and (8), the
correlation energy can be obtained by

EdRPA
c = 1

2

∑
ω

Tr[(LT eω · U)(LT eω · U)T ], (9)

which too can be computed with N 4 scaling. In the next
section, it is shown that a very similar scheme is also possible
if electron exchange effects are accounted for; however, that
leads to a scaling behavior that is one order of magnitude larger
than for dRPA.

B. RPA method with exchange interactions

There exists no unique way to include exchange effects
in RPA methods, and a number of different approaches
have been derived in the past [5–11]. The most simple way
to account for electron exchange is to contract the dRPA
amplitudes (denoted hereafter as TdRPA) from Eq. (2) with
antisymmetrized two-electron integrals, which are defined
here as Bia,jb = [ia|jb] − [ib|ja] = Cia,jb − P̂ abCia,jb =
Cia,jb − Kia,jb, where P̂ab is a permutation operator that
permutes the orbitals with indices a and b. This yields

ESOSEX
c = 1

2 Tr(BTdRPA), (10)

which is termed as second-order screened exchange (SOSEX)
correlation energy [11]. It can be shown that SOSEX is
exact to second order [28] (if singles contributions are
neglected); that is, the correlation energy contribution to
second order in the electron-electron interaction is given by
E(2)

c = − 1
2 Tr(CB ◦ �). In third and higher orders, however,

the correction of the self-correlation error which occurs in
dRPA is incomplete [3,4]. A more effective way to include
the self-correlation correction in RPA that is proposed here is
to use antisymmetrized two-electron integrals in the Riccati
equation (2), which then is written as

B + εT + Tε + BT + TB + TBT

= εT + Tε + (1 + T)B(1 + T) = 0. (11)

Note that this equation differs from the ring coupled-cluster
doubles equation [26] in which the linear terms in the am-
plitudes are contracted with the integrals Aia,jb = [ia|jb] −

[ij |ab]. A justification for using Eq. (11) instead of the ring
coupled-cluster doubles equation is that it can easily be verified
that for a two-electron system, for which B = 1

2 C holds true,
the approach will be identical to the EXX-RPA method (if an
exact-exchange Kohn-Sham reference determinant is used),
which has been shown to accurately describe both the static
and the dynamic correlation contributions of two-electron
systems [2,24]. The correlation energy of this approach, termed
as RPAX here, is then given as

ERPAX
c = 1

2 Tr(CTRPAX) (12)

and has thus the same form as for dRPA [Eq. (1)] but with
the amplitudes TRPAX stemming from the solution of Eq. (11)
instead of Eq. (2).

We now seek an efficient implementation of the RPAX
method similar to the scheme used for dRPA presented in
Sec. II A. For this, the Riccati equation (11) is transformed to
an iterative update formula for the amplitudes

T(n+1) = −� ◦ [(1 + T(n))B(1 + T(n))]

= −� ◦ [(1 + T(n))C(1 + T(n))

− (1 + T(n))K(1 + T(n))] (13)

= −� ◦ [(1 + T(n))C(1 + T(n))

− (1 + T(n))P̂ C(1 + T(n))]. (14)

Equation (14) is identical to Eq. (7) with exception
of the antisymmetrized second term in the brackets in Eq. (14).
If the iteration is initialized with T(0) = 0, then the amplitudes
of the first iteration cycle are given by

T(1) = −�◦(C − P̂ C) = −�◦(LLT − P̂ LLT ), (15)

where the decompositions of Eqs. (4) or (5) for the matrix
C were used. In order to arrive at a computationally efficient
scheme, Eq. (14) is slightly modified by moving the antism-
metrization operator P̂ to the front of the second term within
the parentheses, yielding

T(n+1) = −� ◦ [(1 + T(n))C(1 + T(n))

− P̂ (1 + T(n))C(1 + T(n))], (16)

which now has the same structure as Eq. (15). Using the
decompositions (4) or (5) of the matrix C, the amplitudes
iteration can therefore be written as

T(n+1) = −� ◦ [U(n)U(n)T − P̂ U(n)U(n)T ] (17)

with U(n) = L + T(n)L. Similar to the the dRPA case [see
Eq. (8)], it is therefore sufficient to iterate on the three-index
matrix U with the dimension Nocc × Nvirt × Naux instead of the
full four-index amplitudes T. Explicitly, the update equation
for U is given by

U(n+1) = L + T(n)L (18)

with T(n) computed from the matrix U(n) of the previous cycle
using Eq. (17). It can be seen that this iteration process requires
at most operations that scale as N2

occN
2
virtNaux and therefore has

a total scaling behavior of N 5 with the molecular size N . The
correlation energy can be obtained by

ERPAX2
c = 1

2 Tr(LT T(∞)L), (19)
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which scales as N 5 with the aid of Eq. (17) and T(∞)

represents the solution to Eqs. (16) or (17), respectively. As
the correlation energy of Eq. (19) will differ from the RPAX
correlation energy of Eq. (12), due to the modification made
in Eq. (16), this second approach is termed as RPAX2 here.
The RPAX2 method itself is again exact to second order
but differs from RPAX in third and higher orders. Using
the definition �◦M = M for a general matrix M with the
dimension Nocc × Nvirt and K = P̂ C, the third-order energy
of the RPAX approach is given by

E(3)
c [RPAX] = Tr[CCC] − 1

2 Tr[KCC] − 1
2 Tr[CCK]

− Tr[CKC] + 1
2 Tr[KKC] + 1

2 Tr[CKK],

(20)

while in case of the RPAX2 approach it is given by

E(3)
c [RPAX2] = Tr[CCC] − Tr[KCC]

− Tr[CCK] + Tr[KCK]. (21)

It can be seen that the last three terms in Eq. (20) are improper
third-order contributions as they do not correspond to terms
appearing in third-order of perturbation theory. The reason
for this is that the corresponding perturbation theory diagrams
contain interaction vertices with two incoming fermion lines
on one side so that it is impossible to draw a closed loop
for it, and thus it violates one of the rules for Feynman
diagrams [25]. On the other hand, the third-order terms
appearing in the RPAX2 correlation energy shown in Eq. (21)
are all proper third-order contributions, and their diagrammatic
representation is displayed in Fig. 1. It can thus be seen that
the modification of Eq. (14), which was motivated by gaining
a higher efficiency of the method, also leads to a theoretically
more justified approach, in contrast to the RPAX method. In
Sec. IV, we investigate how the RPAX and RPAX2 methods
differ from each other with respect to their total energies and
reaction energies for a number of small organic molecules.

So far, the descriptions of the reference state and single
excitations have been omitted. Since the RPA method here is
presented as a wave function method, it seems reasonable
to describe single excitations in very much the same way
as is done in related coupled-cluster methods; that is, in
addition to Eqs. (14) or (16), it is possible to derive equations
for single excitation amplitudes. However, while this might
be useful in Hartree-Fock-based RPA methods, in Kohn-
Sham-based RPA approaches (i.e., RPA approaches that use
Kohn-Sham reference determinants) this would lead to some
redundancies in the description of single excitations. The
reason for this is that the Kohn-Sham determinant (obtained
from approximate exchange-correlation potentials) is close to
the Brueckner determinant from a Brueckner coupled-cluster
doubles (BCCD) wave function [36]. In BCCD, singles do not

appear but they are “absorbed” into the reference determinant
by an occupied-virtual unitary transformation [37]. Therefore,
in this work an explicit description of single excitations is
omitted, and the reference determinant � is calculated using
Kohn-Sham DFT. The total energy of the RPAX and RPAX2
method is then calculated by

ERPAX,RPAX2 = 〈�KS|Ĥ |�KS〉 + ERPAX,RPAX2
c , (22)

where Ĥ is the Hamilton operator and ERPAX,RPAX2
c is defined

in Eqs. (12) and (19). It has been observed that in the case of
intermolecular interactions, in particular, the performance of
the RPAX and RPAX2 method depends on the choice of the
exchange-correlation functional used to calculate the Kohn-
Sham orbitals. A few examples for this are shown in Sec. IV C.
It was found that a very accurate description, both for reaction
energies and intermolecular interactions, is achieved if the
reference determinant is calculated using the Perdew-Burke-
Ernzerhof exchange (PBEx) functional [38]; see Sec. IV for
numerical results.

III. COMPUTATIONAL DETAILS

The RPAX and RPAX2 methods described in Sec. II B
were tested for a set of 16 chemical reaction energies of
some small organic molecules shown in Table I and for
the 22 intermolecular complexes from the S22 database
developed by Hobza et al. [39] for studying the performance
for intermolecular interaction energies. In the case of the
set of chemical reactions the molecular geometries were
taken from Ref. [40], while in the case of the S22 systems
the geometries were taken from Ref. [39]. While the S22
database contains complexes that are in their equilibrium
structure, for two systems from the S22 database, namely
the ethyne-ethene and the ethene dimer, also the interaction
energies at nonequilibrium distances have been studied by
decreasing and increasing the distance of the centers of mass
in both cases relative to their equilibrium structures.

The RPAX and RPAX2 methods have been implemented
using the amplitude update Eqs. (14) and (16), respectively. It
turned out that a simple damping scheme using

T̃(n+1) = (1 − n)T(n+1) + nT(n) (23)

with n = 0.4 is sufficient to achieve a convergence of the
energy of 10−8 Hartree to within 10 to 20 iteration cycles. The
same scheme with a mixture of 40% of the U matrix from
the previous cycle has also been used for the density-fitting
respectively Cholesky decomposition approach for the RPAX2
method using the update Eqs. (17) and (18). It was found that
with this, for a given system, the density fitting and Cholesky
decomposition approach even converged more rapidly than the
iteration on the full amplitudes.

+ + +

FIG. 1. Third-order Goldstone diagrams that represent the third-order correlation energy contribution to the RPAX2 correlation energy.
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TABLE I. Reaction energies for 16 chemical reactions (in kcal/mol). The mean absolute errors (mae) and relative deviations (|�|) to the
CCSD(T) reference values are shown in the last two lines of the table.

Reaction MP2 CCSD CCSD(T) RPAX RPAX2

C2H2+H2→C2H4 −47.16 −50.46 −49.44 −51.69 −49.39
C2H4+H2→C2H6 −40.86 −40.49 −39.47 −40.70 −39.40
C2H6+H2→2CH4 −17.73 −18.76 −18.18 −18.35 −18.42
CO+H2→HCHO −5.94 −5.61 −5.47 −4.62 −4.00
HCHO+H2→CH3OH −30.15 −30.78 −29.70 −31.63 −29.31
H2O2+H2→2H2O −91.98 −89.55 −87.63 −89.79 −87.97
C2H2+H2O→CH3CHO −36.41 −38.53 −38.28 −39.65 −38.02
C2H4+H2O→C2H5OH −14.86 −14.43 −14.12 −15.17 −13.67
CH3CHO+H2→C2H5OH −25.60 −26.36 −25.28 −27.21 −25.05
CO+NH3→HCONH2 −12.23 −9.35 −10.26 −9.57 −8.57
CO+H2O→CO2+H2 −10.02 −3.76 −6.18 −4.30 −5.36
HNCO+NH3→NH2CONH2 −19.28 −22.04 −20.70 −22.62 −19.59
CO+CH3OH→HCOOCH3 −15.19 −12.12 −13.59 −12.62 −11.93
HCOOH+NH3→HCONH2+H2O −2.03 −1.24 −1.16 −1.42 −1.25
CO+H2O→CO2+H2O −102.00 −93.31 −93.81 −94.09 −93.33
H2CCO+HCHO→C2H4O+CO −3.12 −4.93 −3.83 −5.92 −3.91

mae 1.93 0.95 1.31 0.59
|�| (%) 14.93 7.79 11.38 5.79

For comparison, second-order Møller-Plesset perturbation
theory (MP2), coupled-cluster singles doubles (CCSD), and
coupled-cluster singles doubles with single, double, and per-
turbative triple excitations [CCSD(T)] calculations were done
for the set of small molecules from the first column of Table I.
The CCSD(T) method serves as an accurate reference method
in this work. In the case of the S22 dimer systems, the complete
basis set (cbs)–extrapolated MP2 and CCSD(T) values were
taken from the work of Takatani et al. [41]. In the case of the
potential energy curves of the C2H4-C2H2 dimer and the C2H4

dimer, F12-MP2, F12a-CCSD, and F12a-CCSD(T) [42–44]
calculations have been performed for comparsion.

All correlation energies have been extrapolated to the cbs
limit by using the two-point extrapolation formula from Bak
et al. [45] using correlation energies calculated with the
augmented valence triple-zeta (aug-cc-pVTZ) and quadruple-
zeta (aug-cc-pVQZ) basis set by Dunning [46]. The reference
energies have not been extrapolated but were calculated using
the aug-cc-pVQZ basis set, which yields reference energies
with a negligible basis set error.

In the case of the explicitly correlated F12 methods, the aug-
cc-pVDZ basis set has been employed. Since the use of this
basis set in explicitly correlated calculations generally gives
correlation energies smaller on magnitude than corresponding
basis set extrapolated values, the F12a model was used, as this
is known to yield results slightly overestimating the cbs limit
results if large basis sets are used. Moreover, the triples correc-
tion was calculated without using F12 terms and therefore has
been scaled by the ratio EMP2−F12

c /EMP2
c as proposed and tested

in [44] with EMP2−F12
c , EMP2

c being the correlation energies of
MP2-F12 and MP2, respectively. The CABS (complementary
auxiliary basis set) singles correction was included in the
reference energy as proposed in Refs. [42,43]. It has been
found that at the equilibrium distances of C2H4-C2H2 and
(C2H4)2 the thus-obtained F12 results are close to the basis set
extrapolated interaction energies of Takatani et al. [41].

In calculations with more than 400 basis functions, density
fitting has been employed to calculate the molecular repulsion
integrals. In the case of the Coulomb and exchange integrals,
the aug-cc-pVXZ-JKFit (X = D,T ,Q) fitting basis set of
Weigend [47] has been used with X corresponding to the
cardinal number of the orbital basis set. For the correlation
calculations, the density fitting approach [Eq. (5)] was used
unless otherwise noted. For this, the aug-cc-pVXZ-MP2fit
basis set from Weigend et al. [48] has been used, again with
X corresponding to the respective orbital basis.

Since the current implementation of the RPAX2 method
has not yet been fully optimized, here only a few details of
the timing for one larger system are given: for the stacked
form of the uracil dimer using the aug-cc-pVQZ orbital basis
set (1648 basis functions), a processing time of 24 min per
iteration has been measured on a 3-GHz Intel Woodcrest
machine. Compared to this, a corresponding density fitting
MP2 calculation [49] for this system required only 12 min on
the same computer. The main reason for the larger processing
time (per cycle) of the RPAX2 method compared to DF-MP2 is
that in addition to the generation of the amplitudes, Eq. (17),
also a contraction of the amplitudes with the three-index L
matrix is required in each iteration cycle; see Eq. (18). The
computational cost for this step is about the same as for the
generation of the amplitudes and thus explains the timing
difference to the DF-MP2 method. Furthermore, note that
while for the systems studied in this work the three-index
matrices U(n) could be kept in memory, this will not be possible
anymore for even larger systems, so these then have to be
written on disk, slowing down the real computation time.

Core electrons have been kept frozen in the calculations.
The Boys-Bernadi counterpoise correction [50] was used in
the intermolecular interaction energy calculations in order
to reduce the basis set superposition error (BSSE). All
calculations were done using the developers version of the
MOLPRO quantum chemistry program [51].
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FIG. 2. (Color online) Absolute deviations of RPAX2 energies using density fitting (top left) or Cholesky decomposition (top right) from
numerically exact RPAX2 energies in the aug-cc-pVTZ orbital basis set. The bottom diagrams show the ratio of the number of auxiliary
functions (left) or Cholesky vectors (right) Naux over the number of occupied times virtual orbitals Nocc × Nvirt.

IV. RESULTS

A. Accuracy of total energies using the C matrix decomposition

The two diagrams in the top of Fig. 2 show the numerical
accuracy of the RPAX2 energy [Eq. (19)] calculated with the
aug-cc-pVTZ orbital basis set for various small molecules
using the decompositions of Eqs. (5) and (4). In case of the
density fitting decomposition (left top diagram in Fig. 2), the
aug-cc-pVXZ-MP2Fit basis sets [48] were used as auxiliary
basis with X = D,T ,Q,5. It can be observed that the error
clearly decreases when increasing the auxiliary basis set size
from double to quintuple-ζ quality. However, this decrease is
irregular as one can see a large decrease from aVDZ→aVTZ
and a notable decrease from aVQZ→aV5Z while the decrease
from aVTZ→aVQZ is rather small, and sometimes the aVQZ
fitting basis set even yields energies that more strongly deviate
from the exact energy than the aVTZ basis set. In contrast
to this, the energy errors for the Cholesky decomposition
approach, which is simply controlled using a threshold value
for the linear dependence of the Cholesky vectors, behave

more regular with increasing auxiliary basis set size (here cor-
responding to the number of nonlinearly dependent Cholesky
vectors). This can be seen in the top right diagram in Fig. 2,
which shows the errors for Cholesky thresholds of 10−4, 10−5,
10−6, and 10−7. On the other hand, it appears that the error
of the RPAX2 energies using the Cholesky decomposition
become larger with increasing system size (left → right in
the diagrams) while with the density fitting approach the
errors seem to be less dependent on the system size. Another
important result of this analysis is that the aVTZ-MP2Fit
auxiliary basis set, which corresponds to the orbital basis
with respect to the cardinal number, yields errors that are
smaller than 10−4 hartree. This is lower than 0.1 kcal/mol and
therefore should give sufficient accuracy in most applications.
In the case of the Cholesky decomposition approach, this
accuracy is achieved if the Cholesky threshold is at least set
to a value of 10−5 or lower; see the top right diagram in
Fig. 2.

In the two bottom diagrams of Fig. 2, the percentage
contribution of the number of auxiliary functions used in
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the density fitting case (left) and the Cholesky decomposition
case (right) to the total number of occupied times unoccupied
orbitals, which is the dimension of the matrix C, are shown.
As expected, a drastic reduction of the number of auxiliary
functions required to decompose the matrix C is obtained upon
increase of the system size (left → right in the diagrams). One
can observe that the number of auxiliary functions with the
density fitting aVTZ-MP2Fit basis set corresponds well with
the number of Cholesky vectors with a Cholesky threshold of
10−5 for the different molecules. This explains why in both
cases the deviations to the exact energies are comparable.

B. Total energies

In Fig. 3, the energy differences of MP2, CCSD, RPAX, and
RPAX2 to CCSD(T) total energies are shown for some small
organic molecules. Note that the molecules on the abscissa are
ordered with respect to the absolute value of the total CCSD(T)
energy so that the order is approximately from small to larger
systems in the diagram. It can be seen that with only few
exceptions all methods yield energies that underestimate the
CCSD(T) energies; that is, the energies usually are higher than
with CCSD(T). The MP2, CCSD, and RPAX methods yield
total energies which have similar deviations to the CCSD(T)
energies; however, in the case of MP2 the deviations behave
very irregularly upon increase of the system size. In contrast
to this, the deviations of the CCSD and RPAX energies to
CCSD(T) are more regular and tend to become larger in
magnitude for the larger molecular systems. Also note that
both the CCSD and RPAX energies are quite close to each other
for the systems shown in Fig. 3. Clearly smaller deviations to
the CCSD(T) energies are obtained with the RPAX2 method
that yields energies which do not deviate by more than
0.015 hartree for the molecular systems considered, while in
the case of CCSD and RPAX the maximal deviation found
is about 0.04 hartree. Also, the diagram in Fig. 3 shows
that the deviations of the RPAX2 energies behave rather
regularly when increasing the system size; that is, the deviation
to the CCSD(T) energies gradually increases for the larger

H
2

C
H

4

N
H

3

H
2O

C
2H

2

C
2H

4

C
2H

6

C
O

H
C

H
O

C
H

3O
H

H
2O

2

H
2C

C
O

C
2H

4O

C
H

3C
H

O

C
2H

5O
H

H
N

C
O

H
C

O
N

H
2

C
O

2

H
C

O
O

H
N

H
2C

O
N

H
2

H
C

O
O

C
H

3

0

0.01

0.02

0.03

0.04

0.05

en
er

gy
 d

iff
er

en
ce

 [a
.u

.]

MP2
CCSD
RPAX
RPAX2

FIG. 3. (Color online) Energy differences of various methods to
CCSD(T) energies. All energies are extrapolated to the complete basis
set limit.

molecules. In Sec. IV C, we investigate whether this finding
also plays a role for molecular reaction energies calculated
from the total energies of the molecules of Fig. 3.

C. Reaction energies

Table I displays the reaction energies for various methods
for the set of chemical reactions shown in the first column of
the table. One can observe that the reaction energies yielded
by the CCSD method are, with few exceptions, consistently
closer to the CCSD(T) reference values than the MP2 reaction
energies, as expected. The mean absolute error (mae) for the
CCSD method is about 1 kcal/mol only for the reactions shown
and thus only one half of the error of MP2; see the statistical
data in the last two lines in the table. In comparison to this, the
RPAX reaction energies are also closer to the CCSD(T) values
than the MP2 reaction energies, but the improvement is not as
large as with CCSD. More precisely, the mean absolute error
of RPAX for the set of chemical reactions is 1.31 kcal/mol and
thus about 0.35 kcal/mol larger than with CCSD. The absolute
percentage error of RPAX, which is more biased to measure
the errors of chemical reactions with a smaller reaction energy,
is 11.4% and thus clearly larger than the deviation of 7.8%
yield by CCSD. In contrast to this, the reaction energies of
the RPAX2 method are more close to the CCSD(T) reaction
energies than the CCSD reaction energies. The mean absolute
error of RPAX2 is 0.6 kcal/mol only and thus almost only
half as large as with CCSD. Also, the absolute percentage
error of RPAX2 is smaller by 2% on average than with CCSD,
though for this measure the improvement is not as large due
to a relatively large error for the CO+H2→HCHO reaction of
about 30% of the RPAX2 method, which is the only significant
outlier for the given test set. From this finding it can be
concluded that the good performance of the RPAX2 methods
for total energies as observed in Sec. IV B also transfers to
some extent to its ability to predict reaction energies with
good accuracy.

D. Intermolecular interaction energies

The S22 database of intermolecular complexes developed
by Hobza et al. [39] has emerged as a standard test set for as-
sessing new methods for their ability to describe intermolecu-
lar interaction energies. It comprises seven hydrogen-bridged,
eight dispersion-dominated, and seven mixed-type dimer
complexes in their equilibrium structure (see Table II) and thus
presents a challenging test for quantum chemistry methods
that often yield an unbalanced description for the different
interaction types. One example for this is the MP2 method,
which shows very good performance for hydrogen-bridged
systems (see lines 1–7 in Table II), while its accuracy strongly
deteriorates compared to CCSD(T) interaction energies for
dispersion-dominated systems (see lines 8–15 in Table II). In
total, the MP2 method yields an error of 0.88 kcal/mol to the
CCSD(T) reference interaction energies for the S22 database,
which is unacceptably large for studying weak interactions of
molecules.

In Table II, only interaction energies yielded by the RPAX2
method are shown, not those for the RPAX method. The
reasons for this are that the scheme for calculating RPAX
energies cannot be cast in a computational efficient approach
as with RPAX2—see Sec. II B—so that the calculation of
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TABLE II. Intermolecular interaction energies for the S22 complexes (in kcal/mol). The mean absolute errors (mae) and relative deviations
(|�|) to the CCSD(T) reference values are shown in the last two lines of the table.

RPAX2 RPAX2
Dimer MP2/cbs CCSD(T)/cbs aVDZ→aVTZ aVTZ→aVQZ

(NH3)2 (C2h) −3.16 −3.17 −2.94 −3.00
(H2O)2 (Cs) −4.98 −5.02 −4.70 −4.83
(HCOOH)2 (C2h) −18.57 −18.80 −18.64 −19.13
(CHONH2)2 −15.84 −16.12 −16.09 −16.45
Uracil-uracil (C2h) −20.41 −20.69 −20.89 −20.85
2-Pyridoxine-2-aminopyridine −17.37 −17.00 −16.83 −17.13
AT (WC) −16.54 −16.74 −16.61 −16.91

(CH4)2 (D3d ) −0.49 −0.53 −0.59 −0.59
(C2H4)2 (D2d ) −1.58 −1.50 −1.58 −1.59
Bz-CH4 (C3) −1.81 −1.45 −1.44 −1.47
Bz-Bz (C2h) −4.96 −2.62 −2.32 −2.37
Pyrazine-pyrazine (Cs) −6.91 −4.20 −3.79 −3.90
Uracil-uracil (C2) −11.10 −9.74 −9.87 −10.04
Indole-Bz (stacked) −8.09 −4.59 −3.99 −4.08
AT (stacked) −14.83 −11.66 −11.29 −11.51

C2H4-C2H2 (C2v) −1.67 −1.51 −1.52 −1.53
Bz-H2O (Cs) −3.54 −3.29 −3.28 −3.33
Bz-NH3 (Cs) −2.66 −2.32 −2.33 −2.37
Bz-HCN (Cs) −5.16 −4.55 −4.43 −4.50
Bz-Bz (C2v) −3.63 −2.71 −2.69 −2.72
Indole-Bz (T-shaped) −6.98 −5.62 −5.63 −5.68
Phenole-phenole −7.76 −7.09 −6.96 −7.12

mae (total) 0.88 0.16 0.16
|�%| (total) 19.61 3.60 3.39

interaction energies for larger systems as the adenine-thymine
base pair is prohibitively large, especially if large basis sets are
used. Moreover, it has been observed for smaller dimer systems
that, similar to the reaction energies–see Sec. IV C—the RPAX
method yields worse results than RPAX2 if compared to
CCSD(T) reference values. Because of this, here only the
performance of the RPAX2 method is studied.

The RPAX2 interaction energies for the S22 systems
are shown for two basis set extrapolation schemes in the
columns 4 and 5 in Table II, namely using an aVDZ→aVTZ
extrapolation and an aVTZ→aVQZ extrapolation. As can be
seen, with exception of the strong hydrogen-bridged sytems
(HCOOH)2 and (CHONH2)2, the aVDZ→aVTZ extrapolation
yields interaction energies that deviate by only +0.1 to
+0.2 kcal/mol to the aVTZ→aVQZ extrapolated results. This
means that in most cases it suffices to do calculations with the
moderately large aug-cc-pVTZ basis set only in order to obtain
extrapolated results that are fairly converged.

The average absolute error of 0.16 kcal/mol of the RPAX2
interaction energies shown in Table II indicates not only a
large improvement over the MP2 interaction energies but
also such high accuracy that has not been observed even
for a number of recently developed (partially semiempiri-
cal) density functional [52–57] and wave function methods
[21,41,58,59]. In fact, with exception of the semiempirical
double hybrid functional B2PLYP-D, for which even a mean
absolute deviation of only 0.12 kcal/mol is reported [41], to the
best of our knowledge, no other quantum chemistry method
tested so far for the S22 dimer systems has yielded such a

small error to the CCSD(T) reference interaction energies.
An analysis of the errors for the individual interaction-type
groups of the S22 database yields errors of 0.23 kcal/mol
for the hydrogen-bridged systems and 0.26 kcal/mol for the
dispersion-dominated systems for RPAX2. This shows that the
method gives a very balanced description for these different
interaction types. In the case of the mixed-type systems, an
error of only 0.04 kcal/mol to the coupled-cluster reference
values is obtained.

It should be noted that this good performance of the RPAX2
method to some extent depends on the reference determinant
used. Some of the smaller systems of the S22 database,
namely (H2O)2, (NH3)2, (CH4)2, (C2H4)2, and C2H4-C2H2,
were also calculated using the full PBE functional instead
of the exchange-only PBEx functional for calculating the
reference determinant. It has been observed that on average
the interaction energies yield by RPAX2 based on the PBE
determinant decreases by about 0.2 kcal/mol in magnitude and
thus worsens the results shown for the PBEx case in Table II.
This shows that even the choice of different GGA functionals
for calculating the reference determinant matters in this case
and should be investigated further in future works. Note that
a corresponding study for the reaction energies did not show
such a significant dependence of the reference determinant on
the performance of the method, apparently because here the
total energy differences are larger on average; see Table I.

Since the S22 dimer systems comprise only equilibrium
structures, the RPAX2 method has also been tested at
nonequilibrium dimer configurations for two systems from
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FIG. 4. (Color online) Interaction energy potentials for the
ethylene-acetylene (top) and ethylene dimer (bottom).

the S22 set, namely the ethene-ethyne dimer, which belongs
to the mixed-type complexes, and the ethene dimer, which is
categorized as a dispersion-dominated system. The potential
energy curves of RPAX2 and CCSD(T) along with MP2 and
CCSD curves for both systems are shown in Fig. 4 (refer
to Sec. III for details). Note that the far asymptotic region
is not shown in both cases, as in this region all curves
are indistinguishable. In the case of the C2H4-C2H2 dimer,
Fig. 4(a), one can observe that MP2 slightly overestimates and
CCSD underestimates the CCSD(T) interaction curve at short
and close equilibrium distances. In contrast to this, the RPAX2
interaction potential is very close to the CCSD(T) potential for
all distances shown in the diagram. This is different in the case
of the C2H4 dimer, where in the minimum region the RPAX2
method yields interaction energies slightly larger than with
CCSD(T) while interestingly here the MP2 curve follows the
CCSD(T) curve more closely. In both cases, for C2H4-C2H2

and (C2H4)2 the locations of the potential minima yield by
the different methods agree well with each other. The largest
deviation to the locations of the CCSD(T) minima is found

for CCSD with displacements of +0.070 Å and +0.090 Å for
C2H4-C2H2 and (C2H4)2, respectively. Compared to this, for
RPAX2 displacements smaller than 0.01 Å from the CCSD(T),
equilibrium are found.

V. SUMMARY

Two new random-phase approximation (RPA) correlation
methods have been developed which take into account ex-
change effects, termed as RPAX and RPAX2. Both methods
are based on a modified ring coupled-cluster doubles amplitude
equation in which all integrals are replaced by antisymmetrized
integrals; see Eq. (11). This modification has been justified
with the fact that the correlation energy calculated using the
solutions of the amplitude equation correspond to the EXX-
RPA correlation energy for two-electron systems. However,
while exact to second-order of perturbation theory, it has been
observed that the first method obtained in this way, termed
RPAX, yields third-order correlation contributions which do
not correspond to proper perturbation theory diagrams. A
simple modification of the amplitude equation by replacing
the antisymmetrization operator could solve this problem and
at the same time has lead to a computationally efficient scheme
that scales only with the fifth power of the molecular size with
the aid of density fitting or the Cholesky decomposition. This
second approach, termed RPAX2, is therefore applicable to
fairly large molecular systems for which also standard (density
fitting) second-order Møller-Plesset perturbation (MP2) theory
methods are still feasible.

In this work, the reference determinant used in the RPAX
and RPAX2 method has been obtained from a preceding Kohn-
Sham DFT calculation using the PBE exchange functional. It
has been argued that the similarity of Kohn-Sham orbitals and
Brueckner orbitals from a Brueckner coupled-cluster wave
function means that in this way the approach is able to
capture single excitations which are not described in standard
RPA methods. It has been observed that especially for weak
intermolecular interactions the choice of the density functional
plays a role; for example, when using the full PBE functional,
the intermolecular interaction energy results with the RPAX2
method deteriorate.

The numerical accuracies of the density fitting and the
Cholesky decomposition methods have been tested for a
number of small molecules using the aug-cc-pVTZ orbital
basis set. It has been found that in the density fitting case
the corresponding aug-cc-pVTZ-MP2Fit auxiliary basis set is
sufficient to obtain errors lower than 0.1 kcal/mol, which is
good enough in most practical applications. Correspondingly,
using the Cholesky decomposition, a threshold of 10−5 turned
out to be sufficient to obtain total energies of 0.1 kcal/mol
accuracy and lower.

Numerical tests on reaction energies and intermolecular
interaction energies revealed a moderate good performance
for the RPAX method and an extremely good performance
for the RPAX2 method. For the small test set of organic
reactions, the RPAX method performed better than the MP2
method but not as well as CCSD if compared to CCSD(T)
reference results. In contrast to this, the RPAX2 method
yielded a mean absolute error of 0.6 kcal/mol only for the
chemical reactions considered, almost reducing the error of
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the CCSD method by one half. For the S22 database, a very
small average absolute error of 0.16 kcal/mol was found
for the RPAX2 method, which is surprisingly accurate for a
method that is free from any empirical parameters as compared
to other recent correlation methods that aim at describing
weak intermolecular interactions [21,41,52–59]. The study of

the C2H4-C2H2 and the (C2H4)2 dimers at nonequilibrium
intermolecular distances has shown that in the asymptotic
short- and long-range parts of the intermolecular interaction
potentials the RPAX2 interaction energies are quantitatively
in agreement with CCSD(T) reference interaction energies.
Further tests, however, are required for a full assessment.
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