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Using the fluctuation-dissipation theoremsFDTd in the context of density-functional theorysDFTd,
one can derive an exact expression for the ground-state correlation energy in terms of the
frequency-dependent density response function. When combined with time-dependent
density-functional theory, a new class of density functionals results that use approximations to the
exchange-correlation kernelfxc as input. This FDT-DFT scheme holds promise to solve two of the
most distressing problems of conventional Kohn–Sham DFT:sid It leads to correlation energy
functionals compatible with exact exchange, andsii d it naturally includes dispersion. The price is a
moderately expensiveOsN6d scaling of computational cost and a slower basis set convergence.
These general features of FDT-DFT have all been recognized previously. In this paper, we present
the first benchmark results for a set of molecules using FDT-DFT beyond the random-phase
approximationsRPAd—that is, the first such results withfxcÞ0. We show that kernels derived from
the adiabatic local-density approximation and other semilocal functionals suffer from an “ultraviolet
catastrophe,” producing a pair density that diverges at small interparticle distance. Nevertheless,
dispersion interactions can be treated accurately if hybrid functionals are employed, as is
demonstrated for He2 and HeNe. We outline constraints that future approximations tofxc should
satisfy and discuss the prospects of FDT-DFT. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1884112g

I. INTRODUCTION

Time-dependent density-functional theorysTDDFTd1,2

has developed into an accurate and inexpensive tool for de-
scribing excited state properties, energies and response prop-
erties of a variety of systemsssee, e.g., Refs. 3–5d. It is
somewhat less widely appreciated that TDDFT also provides
an alternative prediction of staticground-stateproperties via
the fluctuation-dissipation theoremsFDTd. The FDT was first
derived by Callen and Welton in 1951, who used it to relate
the mean square fluctuation of a local one-particle observ-
able in the ground stateC0 to the imaginarysdissipatived part
of the density-density response functionxsx1,x2;vd,

kC0usO − kOld2uC0l = − ImE
0

` dv

p
E dxOsxdxsx,x;vdOsxd;

s1d

as usual,x=sr ,sd denotes a set of space-spin coordinates.
The FDT may be considered as a special sum rule. The fre-
quency integral over the imaginary part ofx is used to gen-
erate a resolution of the identity, as is easy to verify by
inserting the Lehmann representation ofx sRef. 6d into
Eq. s1d,

xsx1,x2;vd = − o
nÞ0

S kC0ur̂sx1duCnlkCnur̂sx2duC0l
Vn − v − ih

+
kC0ur̂sx2duCnlkCnur̂sx1duC0l

Vn + v + ih
D . s2d

In the last equation,r̂sxd denotes the density operator, theCn

are excited states with excitation energiesVn, andh→0 is
used to indicate thatx is analytic in the upper half of the
complexv plane.

An intriguing aspect of the FDT is that it can be used to
factorizetwo-particlequantities into a sum overone-particle
quantities. In the constrained-search formulation of density-
functional theory7 we consider anN electron system with a
scaled Coulomb interactiona / r12, whose ground-state den-
sity rasxd is fixed at the physical valuersxd;rausxdua=1; thus
a=0 corresponds to the noninteracting Kohn–ShamsKSd
system.8 Langreth and Perdew generalized the FDT9,10 to
obtain an expression for the correlated part of the pair den-
sity,

Pa
csx1,x2d = − ImE

0

` dv

p
sxasx1,x2;vd − x0sx1,x2;vdd.

s3d

The correlation energy is obtained fromPa
c via coupling-

strength integration,adElectronic mail: tvan@mit.edu
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Ec =
1

2
E

0

1

daE dx1dx2
Pa

csx1,x2d
r12

. s4d

On the other hand,xa describes the response of the one-
particle density, and is therefore accessible from time-
dependent density-functional response theory.11 More pre-
cisely, for a pure density functionalxa satisfies the Dyson-
type equation12–14

xasx,x8;vd = x0sx,x8;vd +E dx1dx2x0sx,x1;vd

3S 1

r12
+ fa

xcsx1,x2;vdDxasx2,x8;vd. s5d

We stress again that this is anexactexpression for the cor-
relation energy that has been known for quite some time. In
practice, one can compute all excitation energies and transi-
tion densities to constructxa from its Lehmann representa-
tion. Thus, for a givenapproximateexchange-correlation
sXCd functional, wherefxc andx0 are both given as explicit
functionals of the density, Eqs.s3d–s5d define the FDT-DFT
correlation energy as a functional ofr.

Conventional DFT directly uses parametrizations of the
XC energy functionalExcfrg, as obtained, e.g., within the
local-density approximationsLDA d or the generalized gradi-
ent approximationsGGAd. At first sight, the FDT-DFT
scheme appears to be an unnecessary detour, especially since
computing the full response functionxa from Eq.s5d is com-
putationally much more demanding than a conventional DFT
calculation. However, FDT-DFT still produces useful results
even in the simplest possible approximation,fxc=0, which
corresponds to the random-phase approximation
sRPAd;9,10,15,16this is certainly not true for the Hartree ap-
proximation sExcfrg=0d of conventional DFT. Moreover,
RPA correlation energies are compatible with exact exchange
and include some dispersion, which is very difficult to
achieve with semilocal functionals. For dynamical correla-
tion, one hopes that FDT-DFT approximations can approach
the accuracy of coupled cluster methods such as coupled
cluster with single and double and perturbative triple excita-
tions fCCSDsTdg.17 Moreover, because FDT-DFT is based on
a density-functional reference, it holds promise for metal
clusters and other small gap systems where Hartree–Fock
sHFd-based single reference methods often fail.18,19 For
nearly uniform systems, this goal has actually been
achieved.20 Another advantage of FDT-DFT is the link be-
tween ground-state theory and TDDFT; apart from the
ground-state densitysor, equivalently, the independent par-
ticle Hamiltonian that generates this densityd, both ap-
proaches depend on the XC kernel as input only. Ideally,
both fields will benefit from progress in approximations to
fxc.

FDT-DFT beyond the RPA has been applied only to a
few cases—the uniform electron gas,21,22 jellium
models,23–25and a selection of few electron systems.25,26For
the uniform gas, accurate parametrizations offxc are
available27 that yield virtually exact results for the correla-
tion energy per particle in the FDT-DFT scheme,21 but much
less is known aboutfxc in nonuniform systems. In the present

work, we extend the basis set approach to FDT-DFT beyond
the RPA and present applications of the formalism to non-
uniform systems. Through several numerical applications,
we showcase the appealing features of FDT-DFTse.g., the
natural treatment of dispersiond. However, we also demon-
strate that standard semilocalsGGA and hybridd approaches
predict a divergent electron-electron cusp condition. This
rather serious limitation argues strongly for the development
of nonlocal approximations tofxc.

II. THEORY

A. FDT-DFT formalism

To evaluate Eqs.s3d–s5d we use an extension of the for-
malism developed previously by one of us.11,15 Here, we
only reiterate the crucial points.

All our calculations will be performed in a finite basis of
one-particle orbitals. In this case, the TDDFT response is
naturally expressed in the Hilbert spaceLocc^ Lvirt % Lvirt

^ Locc, where LoccsLvirtd is the space of occupiedsvirtuald
Kohn–Sham orbitals, denoted by indicesi , j ,k. . .sa,b,c. . .d.
We will generalize the previous treatment to allow for hybrid
functionals, containing an admixturegù0 of exact
exchange.28 The key quantities are the so-called orbital rota-
tion HessianssAa±Bad,

sAa − Badiajb ; sea − eiddi jdab + gaski j ubal − kiau jbld,

sAa + Badiajb ; sea − eiddi jdab − gaski j ubal + kiau jbld

+ 2ki j uabl + 2faiajb
xc .

ki j uabl denotes a two-electron repulsion integralsin Dirac
notationd; the fpsxd are the ground-state KS orbitals with
orbital energiesep.

faiajb
xc ;E dx1dx2fisx1dfasx1dfa

xcsx1,x2df jsx2dfbsx2d s6d

is a matrix representation of the XC kernel at coupling
strengtha, fa

xcsx1,x2d, which is a functional of the ground-
state density. In the adiabatic approximationsAA d, the fre-
quency dependence offa

xc is neglected by taking the static
limit,2,29

fa
xcsx1,x2d ;

d2Ea
xc

drsx1ddrsx2d
. s7d

Ea
xcfrg is related to the XC energy functional at full coupling

strengthExcfrg;Ea
xcufrgua=1 swithout the admixture of exact

exchanged via the relation30

Ea
xcfrg = a2Excfr1/ag, s8d

whererlsr ,sd=l3rslr ,sd is a scaled density, with uniform
scaling parameterl. An analogous identity for the
frequency-dependent XC kernel can be derived21 from the
scaling behavior of the time-dependent XC potential.31

The RPA is recovered in the limiting casefa
xcsx1,x2d=0.

The bare RPA in a density-functional context corresponds to
g=0, while the HF-based RPA with exchange results corre-
sponds tog=1, provided that HF orbitals and orbital ener-
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gies are used. From this perspective,fa
xc gives rise to a static

local-field correction32 that accounts for effects beyond the
RPA.

The coupling-strength integrand can be constructed di-
rectly in terms of the response matrices if we introduce the
correlation part of the two-particle density matrixPa

c ,

Pa
c = sAa − Bad1/2Ma

−1/2sAa − Bad1/2 − 1, s9d

where

Ma = sAa − Bad1/2sAa + BadsAa − Bad1/2. s10d

Then Eq.s4d becomes

Ec FDT-DFT =
1

2
E

0

1

dao
iajb

ki j uablPaiajb
c . s11d

The FDT-DFT XC energy is obtained by adding this corre-
lation energy to the exact exchange energy,

Exc FDT-DFT= −
1

2o
i j

ki j u ji l +
1

2
E

0

1

dao
iajb

ki j uablPaiajb
c .

s12d

Because the ground-state KS orbitals are uniquely fixed by
the density,Exc FDT-DFT is a functional of the density as well.

B. Stability

The FDT-DFT formalism is based on the tacit assump-
tion that the response calculated from an approximate XC
kernel is qualitatively similar to the exact response. Most
notably, we require that none of the approximate excitation
energies areimaginary, or else the use of the Lehmann rep-
resentationfEq. s2dg is questionable. As first shown by
Bauernschmitt and Ahlrichs,33 an approximate functional
gives real excitation energies only if the matricessAa±Bad
are positive semidefinite. Thesestability conditionshold for
any value of the coupling constant and are hence a powerful
constraint on approximations tofxc. In our FDT-DFT ap-
proach, instabilities are easily detected because they lead to
negative eigenvalues of the matrixMa defined in Eq.s10d
and, consequently, toimaginary correlation energies!

What is the physical origin of imaginary excitation en-
ergies? The exactxa has poles at real, non-negative excita-
tion energies for alla because it describes the response of a
ground state for alla by construction. An approximatexa,
generated from an approximate XC kernel, may violate this
condition in one of two ways:s1d The KS ground state may
be connected to anexcited stateat finite a due to the influ-
ence of strong multireference correlation in the systemse.g.,
singlet-triplet instabilities in the response matrixd. s2d The
response can be artificially spoiled by a mismatch between
the definition of fxc and the orbitalssor equivalently, the
potentiald used to definex0. For example, say one has a
system where van Leeuwen–Baerends 1994sLB94d34 pre-
dicts a singlet ground state for some value ofa, while LDA
predicts a triplet ground state for this same value ofa. Then,
if we use LB94 to approximatex0 si.e., we use the LB94
orbitals and eigenvaluesd and then compute the response us-
ing fLDA

xc , the response will have an imaginary eigenvalue due

to the fact that the LB94 reference isnot the ground state at
this intermediate value ofa.

We will term these two effectsphysicaland artifactual
instabilities, respectively. Our desire to avoid artifactual in-
stabilities leads us to focus our attention onconsistent
choices ofx0 and fxc. That is, we considerx0 and fxc to be
derived from a single exchange-correlation energy func-
tional. For the semilocal functionals used in this paper, we
have found only two casessCl atom and NO molecule within
the local spin-density approximationd where this leads to an
instability. On the other hand, ifx0 and fxc are chosen incon-
sistently, we find in practice that instabilities are encountered
ca. 10% of the time. This should not be confused with a
self-consistenttreatment of the FDT-DFT energy functional35

which is beyond our present scope.

III. SHORT-RANGE BEHAVIOR OF THE PAIR
DISTRIBUTION FUNCTION

Local-field corrections have a long history in the theory
of uniform systemsssee, e.g., Ref. 36 for a recent overviewd.
Their original motivation was to remedy the spurious behav-
ior of the RPA pair density at small inter-electron separa-
tions. Most work in uniform gas theory focuses on the pair
distribution functionsPDFd, ga, that gives the conditional
probability of finding an electron atr 8 given that another
electron is located atr ; its correlated part is closely related to
the correlated part of the pair density,

ga
csr 1,r 2d ;

os1s2
Pa

csx1,x2d

rsr 1drsr 2d
. s13d

In the last equation,rsr d=osrsxd is the total density. The
uniform gas PDF is known accurately.37 In the present for-
malism,Pa

csx1,x2d is obtained from the correlated part of the
two-particle density matrix defined in Eq.s9d,

Pa
csx1,x2d = o

iajb

Paiajb
c fisx1dfasx1df jsx2dfbsx2d. s14d

The exact PDF is finite atr12=0 and satisfies a cusp
condition.38,39 How does a semilocal XC kernel affect the
short-range behavior ofga? The adiabatic local spin-density
approximationsALDA d energy expression

Ea
xc ALDAfrg = a5E d3rFsa−3rsxdd s15d

implies that the XC kernel

fa
xc ALDAsx1,x2d =

1

a

]2Fsa−3rsx1dd
]rsr 1,s1d]rsr 1,s2d

dsr 1 − r 2d s16d

is proportional to a three-dimensional delta function. We re-
strict ourselves to the ALDA in the followingsrather quali-
tatived discussion; gradient corrections lead to additional
terms that behave like derivatives ofdsr 1−r 2d.

A. Uniform systems

It is well known that the ALDA kernelfEq. s16dg is
incorrect even for uniform systemsssee, e.g., Ref. 40 for a
review of properties of the uniform gas XC kerneld. In the
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uniform gas,ga
c , xa, andfa

xc depend only on the inter-electron
distancer12. We consider the spin-unpolarized case here.ga

c

can be obtained from the correlation part of the static struc-
ture factor at coupling strengtha, Sa

csqd, by Fourier transfor-
mation,

ga
csr12d =

9p2

2kF
6r12

E
0

`

dqqsinsqr12dSa
csqd. s17d

In the last equation,kF=s3p2rd1/3 denotes the Fermi wave
vector.Sa

csqd itself is related to the XC kernel via

Sa
csqd = − ImE

0

` dv

p
x̄0sq;vdSa

4p

q2 + f̄a
xcsqdDx̄asq;vd,

s18d

where Fourier-transformed quantities are denoted by a bar,
e.g.,

f̄a
xcsqd =

4p

q
E

0

`

dr12r12 sinsqr12dfa
xcsr12d. s19d

Equationss17d ands18d are equivalent to the definition of the
pair density within FDT-DFT given in Eq.s3d, but apply to
spin-unpolarized uniform systems only.

According to Eq.s17d, small r12 behavior ofga
csr12d is

determined by the large-q behavior ofSa
csqd. We consider

only the case of small coupling strengtha here. The lowest-
order contribution toSa

csqd is obtained by settingx̄asq;vd
= x̄0sq;vd in Eq. s18d. For largeq, the frequency integration
can be carried out,41

Sa
csqd = − a

4kE
5

9p4q2S4p

q2 + f̄ xsqdD, q → `, a → 0.

s20d

As noted by Kimball,41 Sa
csqd should decay as 1/q4 for large

q to make the PDF finite at the origin. This implies that

f̄ xsqd~1/q2 for q→`, i.e., the exchange kernel used in FDT-
DFT within the AA should not diverge faster than 1/r12 at

small r12. On the other hand,f̄ALDA sqd is a constant, which
leads to

gc ALDA sr12d ~
1

r12
, r12→ 0, s21d

i.e., the short-ranged ALDA kernel makesgc ALDA diverge at
small interparticle distances, at least in the limit of smalla.
This “ultraviolet catastrophe” of the ALDA may be related to
the fact that

f̄ x ALDA = lim
q→0

f̄ xsqd, s22d

i.e., the ALDA kernel corresponds to thesmall q limit of the
exact static exchange kernel. The literature is largely silent
on this pathological aspect of the ALDA, except for a hint in
the work of Dobson and Wang24 who mention in passing a
weak divergence of the PDF at smallr12, but do not give
further details.

B. Small coupling strength „high-density … limit

For small coupling strengtha, a perturbation expansion
for Pa

c may be derived from Eq.s9d,

Paiajb
c = − 2a

ki j uabl + f iajb
x

ea + eb − ei − e j
, s23d

where fx is defined via

fxsx1,x2d = lim
a→0

1

a
fa
xcsx1,x2d. s24d

To extract the short-range behavior ofPa
c at small a, we

expand it into pair contributions,

Pa
csx1,x2d = 2ao

i j

ci j
s0dsx1,x2dci j

s1dsx1,x2d + Osa2d, s25d

where ci j
s0dsx1,x2d=fisx1df jsx2d. To recover Eq.s23d, the

first-order geminalsci j
s1d must satisfy

sHsx1d + Hsx2d − sei + e jddci j
s1dsx1,x2d

= − sUs1dsx1,x2d − Eij
s0ddci j

s0dsx1,x2d, s26d

subject to the orthonormality constraintkci j
s1d uckl

s0dl=0 for all
i , j ,k, l. Here,H is the effective one-particle Hamiltonian of
the KS ground state,

Us1dsx1,x2d =
1

r12
+ fxsx1,x2d, s27d

is a first-order effective interaction, andEij
s0d=kci j

s0duUs1duci j
s0dl.

We now turn to the ALDA. Since Eq.s26d is linear, we may
decompose the first-order geminal into an RPA part and a
singular part

ci j
s1dALDA sx1,x2d = ci j

s1dRPAsx1,x2d + ci j
s1dsingsx1,x2d. s28d

ci j
s1dRPA is the solution of Eq.s26d within the RPA, i.e.,

fxsx1,x2d=0. ci j
s1dRPA is well behaved at the origin and satis-

fies the first-order cusp condition. The singular part must
satisfy

sHsx1d + Hsx2d − sei + e jddci j
s1dsingsx1,x2d

= sfxsx1,x2d − Eij
s0ddci j

s0dsx1,x2d

3~ dsr 1 − r 2dds1s2
ci j

s0dsx1,x2d, r12→ 0. s29d

The singularity on the right-hand side can be canceled only if
ci j

s1dsing behaves as

ci j
s1dsingsx1,x2d ~

1

r12
ds1s2

, r12→ 0. s30d

This implies thatPa
c ALDA andga

c ALDA exhibit a 1/r12 diver-
gence to first order ina, which generalizes the result of the
last section.

C. General case

It is very difficult to address the precise short-range be-
havior of the FDT-DFT pair density function for finite values
of the coupling constanta. This is mainly becausePa

csx1,x2d
is not directly related to a wave function in the present ap-
proach. It seems likely that the behavior observed in first
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order ina is not remedied at stronger coupling. One even has
to face the possibility thatPa

c behaves worse for finitea.
Caution seems appropriate in view of the pathological dis-
continuities of the wave function at small interparticle sepa-
ration observed for three-dimensional attractive delta inter-
actions at any finite coupling strength.42

Given thatPa
c can diverge at the origin in certain circum-

stances, one begins to wonder if the correlation energy pre-
dicted by ALDA-FDT-DFT can also be infinite. The first-
order term proportional to 1/r12 gives afinite contribution to
the second-order correlation energy. We cannot, however,
rule out the possibility that higher-order contributions to the
correlation energy are divergent. On the other hand, in the
case of GGA functionals, a similar analysis at weak coupling
uncovers an apparent 1/r12

2 divergence in the PDF, which,
taken by itself, would lead to a divergent correlation energy.
In this situation, the challenge arises in how different diver-
gent quantities can be added tosand subtracted fromd one
another as different terms in the coupling strength and gra-
dient expansions are summed up. It is therefore not clear if
one should expect a finite correlation energy from semilocal
FDT-DFT.

D. Basis set approach

In a finite basis, the divergence ofga can only be de-
scribedapproximately, and thus the finite basis estimates of
Ec will always be finite. In what follows, then, we turn our
attention to the obvious question: Can reasonable approxima-
tions toEc be found by applying FDT-DFT within a large but
finite basis? In this respect, it is important to note that the
expected divergence ofPa

c will result in a very slow conver-
gence of the correlation energy with basis set size. For ex-
ample, if we assume that the pair density behaves as 1/r12 at
short distances, then standard techniques43,44 show that the
lth partial-wave contribution toEc scales asymptotically as

Ecsld ~
1

sl + 1dsl + 2d
, s31d

which means that in a basis that is composed of a complete
set of functions up to a maximum angular momentumlmax,
the correlation energy will scale as

Ec ~ o
l=0

Lmax 1

sl + 1dsl + 2d
=

lmax

lmax+ 1/2
s32d

for large lmax. This convergence is much slower than the
conventional case,

Ec
conv~

1

slmax+ 1/2d3 . s33d

On the other hand, we can test the predicted short-range
behavior of the PDF by comparing Eq.s32d to results of
calculations in large basis sets.

IV. IMPLEMENTATION AND COMPUTATIONAL
DETAILS

Our FDT-DFT code is based on the RPA implementation
described in Ref. 15, which is part ofTURBOMOLE.45,46 Each

calculation involves threes steps:s1d A ground-state DFT
calculation produces the orbitals and eigenvalues.s2d Using
these orbital and eigenvalues as input, a TDDFT response
calculation is performedsusing the fxc appropriate to the
ground-state functionald to construct the FDT-DFT correla-
tion energyfEqs. s11dg. s3d This correlation energy is com-
bined with the exact exchange energy computed using the
same orbitals to obtain the exchange-correlation energyfEq.
s12dg. For large systems, the rate-determining step is the
computation of the square root ofM fand sA−Bd for hybrid
functionalsg, which scales asN6 if N measures the system
size. This is the same for all semilocal XC kernels within the
AA. Our algorithm gives the exact coupling-strength inte-
grand within the RPA, and a nearly exact one iffxc is evalu-
ated on a numerical grid.

The only modification of the RPA algorithm necessary
for FDT-DFT concerns the definition ofsAa+Bad. For each
coupling-strength integration point, the integralsfaiajb

xc have
to be added to the RPA part ofsAa+Bad. Within the adiabatic
GGA

Ea
xc AGGAfrg = a5E d3rFsa−3rsxd,a−4 ¹ rsxdd. s34d

Defining a first-order density

rs1dsxd = rsxd + o
ia

Uiafisxdfasxd, s35d

analytical expressions for the matrix elements offa
xc are con-

veniently derived from

faiajb
xc = U ]Ea

xcfrs1dg
]Uia]Ujb

U
U=0.

s36d

The quadrature overr is done numerically using standard
molecular integration schemes.47 Since there areOsN4d inte-
grals faiajb

xc , this is anN5 step. The transformation to compute
the integralski j uabl has the same scaling; however, except in
the exchange-only case thefaiajb

xc have to be constructed for
eacha integration point, becausefaiajb

xc is nonlinear ina. The
evaluation of the orbital productsfikxdfasxd on the molecu-
lar grid is an N3 step that is done before the coupling-
strength integration starts. Our code takes advantage of non-
Abelian point-group symmetry. This is achieved by the
reduction ofLocc^ Lvirt into irreducible tensor spaces, on the
one hand, and the use of integration points that are nonre-
dundant by symmetry, on the other. Thus, the total cost for
computingfaiajb

xc is reduced approximately by a factor ofg2,
whereg is the order of the point group. For the small, highly
symmetric systems considered in this work,g2 is typically
around 100 or larger.

The ground-state energies and orbitals were generated
with the DSCF module ofTURBOMOLE. Tight convergence of
the density matrixs10−7 a.u.d, fine integration gridsssize 5,
Ref. 47d and accurate coupling-constant integrations7
pointsd were used throughout. A further increase in the size
of either grid did not change the results significantly, as was
verified in exploratory calculations. Atomization energies
were computed at the experimental geometries taken from
the computational chemistry comparison and benchmark da-
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tabasesCCCBDBd.48 All open-shell systems were treated
with a spin-unrestricted reference state allowing for full sym-
metry breaking and all correlation energies were determined
within the frozen-core approximation.

V. RESULTS

A. Basis set convergence

We employed Dunning’s correlation-consistent polarized
valence X-tuple zeta scc-pVXZd basis sets fX
=3sTd ,4sQd ,5 ,6g49 to facilitate extrapolation to the infinite
basis set limit.50,51 In all these basis sets, the exchange con-
tribution is always converged to within a few tenths of a
kcal/mol, and hence the challenge lies in extrapolating the
correlation part. Table I illustrates the typical situation, from
which several conclusions can be drawn. First, it is obvious
that the total correlation energies obtained are much too posi-
tive. ALDA calculations for the uniform gas at metallic den-
sities lead to a very similar picture, with an underestimation
of the correlation energy by approximately the same amount
that the RPA overestimates it.21,24 Second, because of the
unphysical cusp behavior, the convergence ofEcsXd is ex-
tremelyslow, and the basis sets we are using are stillvery far
from convergence. However, since both these failures ulti-
mately derive from a very short-ranged effect, one hopes that
the resulting errors will largely cancel when energy differ-
ences are considered. This turns out to be the case, as illus-
trated in the last few columns of Table I.

Even for differential correlation, the basis set conver-
gence of the energy is still extremely slow, as would be ex-
pected from the predicted 1/s2lmax+1d asymptotic error of
the partial-wave expansion of the correlation energy. Unfor-
tunately, the theoretical largelmax limiting behavior is not
quantitatively observed in our calculations. As shown in
Table I, extrapolation using the simple form

EcsXd = Ecs`d +
A

2X + 1
s37d

does not produce a rapidly convergent prediction of the com-
plete basis result. This failure is primarily attributable to the
fact that the cc-pVXZ setssextended though they ared still do
not contain high enough angular momentum components for
the asymptotic partial-wave expansion to be valid. For ex-

ample, for finitelmax, the s2lmax+1d−1 term can be obscured
by the s2lmax+1d−3 contribution that comes from the Cou-
lombic interelectron cusp,38 causing extrapolation based on
the pure largelmax behavior to fail. Indeed, this effect is
evident in the data presented in Table I. Thes2lmax+1d−3

term, which contains RPA-like correlations and is primarily
energy lowering, partially cancels thes2lmax+1d−1 contribu-
tion, which comes fromfxc and is typically positive. As a
result the incremental correlation energies,EcsXd−EcsX−1d,
are actuallylarger for cc-pV6Z than for cc-pV5Z due to
smaller cancellation of terms in the larger basis.

In practice, we find that the form

EcsXd = Ecs`d +
A

s2X + 1d2 s38d

is a good compromise, taking into account the averaged ef-
fect of thes2X+1d−1 and s2X+1d−3 contributions in a stable
way. The results using this extrapolation scheme are shown
in the last column of the figure and the resulting predictions
are more satisfactorysespecially for the relative energeticsd.
However, it should be stressed that the extrapolated results
presented here should not be considered complete basis re-
sults; rather they correspond to “the best one can do” in the
present circumstances. Unlikeab initio approaches, where
the extrapolation is only needed to get the last few kcal/mol
of the total energy, here the data clearly indicate that we are
trying to predict a complete basis result that is many tens of
kcal/mol from the best finite basis calculation we can per-
form. Further, based on the analysis of the last section, we
cannot even rule out the possibility that the basis set limit of
the total correlation energy is not well defined for semilocal
functionals. Based on the variance in atomization energies
predicted by different extrapolation schemes, we estimate
that there is a residual uncertainty of at least 2-3 kcal/mol in
the energies presented here.

B. Atomization energies

The FDT-DFT results for the atomization energies of 18
small molecules using several standard functionals are pre-
sented in Table II. The local-density approximation gives
binding energies that are somewhat worse than RPAsfxc

=0d overall. Further, including gradient corrections, as is
done in Perdew–Burke–ErnzerhofsPBEd52 and Becke–
Perdew 1986sBP86d GGAs,53,54 has little effect on the re-
sults. These pure functionals tend to overbind by approxi-
mately the same amount as that by which RPA and time-
dependent Hartree–Fock methodsTDHFd underbind. Thus,
we conclude that a completely local model of the XC kernel
is not adequate. Meanwhile, including exact exchange in the
calculation, as in Perdew–Burke–Ernzerhof 2000sPBE0d55

and in Becke’s three-parameter hybridsB3LYPd,56 tends to
reduce the binding energy substantially, resulting in a signifi-
cantly improved agreement with experiment. The PBE0 pre-
dictions are particularly good, with a mean absolute error
sMAEd of 3.3 kcal/mol over the whole set. Thus, even the
relatively simple nonlocality that is present in hybrid func-
tionals allows for a more accurate description of FDT-DFT
correlation energies. This may be compared to results for the

TABLE I. Basis set dependence of the correlation energy of NH3 using the
PBE functional in the FDT-DFT scheme. The first three columns refer to the
total molecular correlation energy, while the last three refer to the correla-
tion contribution to the binding energy. “Raw” refers to the unextrapolated
result, and subsequent columns give various extrapolations based on the raw
results. Energies are in kcal/mol. The experimental result corresponds to a
total correlation energy of −215 kcal/mol and a relative correlation energy
of −97 kcal/molsRef. 48d.

Total correlation Relative correlation

cc-pVXZ Raw s2X+1d−1 s2X+1d−2 Raw s2X+1d−1 s2X+1d−2

X=3 −148.6 ¯ ¯ −87.3 ¯ ¯

X=4 −138.1 −101.3 −122.0 −90.6 −102.0 −95.6
X=5 −122.7 −53.2 −91.4 −91.4 −95.3 −93.1
X=6 −106.7 −19.0 −66.5 −91.9 −94.4 −93.0
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RPA+ functional proposed by Yan, Perdew, and Kurth,57

which uses a conventional GGA for short-range correlation
effects beyond RPA. As RPA, RPA+ has a well-behaved pair
density, but it does not improve consistently upon atomiza-
tion energies.15

These results should be compared with the results of
conventional DFT using these functionals in a large cc-pV5Z
basis, in which case one finds MAEs of 31.4 kcal/molslocal
spin-density approximation, LSDAd, 7.9 kcal/mol sPBEd,
7.3 kcal/mol sBP86d, 1.6 kcal/mol sB3LYPd, and
3.1 kcal/mol sPBE0d. Thus, the atomization energies pre-
dicted by FDT-DFT using standard functionals are typically
somewhat worse than the conventional approach. This is not
entirely surprising, as we have made no effort to calibrate the
functionals to the new methodology. All the functionals con-
sidered here contain parameters that are selected either em-
pirically based on experimental energetics or nonempirically
using the known properties of the XC energy. In both cases,
the functionals are in some sense optimal for describing the
energetics in the conventional DFT framework. The fact that
we want to use these functionals in conjunction with the
FDT may imply an entirely different set of empirical and
nonempirical constraints. For example, while one particular
parametrization may lead to an accurate description of the
energy of a nearly-uniform system, this is not necessarily the
best set of parameters for describing theresponseof the sys-
tem.

Similar considerations have motivated the “energy-
optimized” parametrization of local, static exchange-
correlation kernels by Dobson and Wang.24 We have not

been able to test these kernels in atomization energy calcu-
lations because no spin-resolved version was available to us.
However, all of these kernels are local, and thusany param-
etrization will retain the unphysical pair density and slow
basis set convergence. Any effort toward designing FDT-
DFT functionals should foremost be directed at fixing these
problems.

C. Dispersion

In some sense, comparing FDT-DFT with conventional
DFT for electron pair bond energies is not very useful. It is
well known that standard DFT already describes bond ener-
gies very well, and our primary focus is on improving DFT
in situations where it works poorly, such as bond breaking,58

transition state energetics,59 and nonbonded interactions.60 In
the specific case of long-range dispersion forces, it has long
been realized that conventional DFTsat least with local func-
tionalsd does not contain the proper physics to describe the
binding of van der Waals clusters.60,61 However, several au-
thors have noted that dispersion interactions, in the form of
C6 coefficients, can be obtained from TDDFT response
functions.62–64 These dispersion coefficients are actually
quite accurate, with typical errors in the order of 3% when
standard functionals are used to compute the response.65

Along these lines, TDDFT has successfully been used to
compute intermolecular forces in the framework of
symmetry-adapted perturbation theory.66 The dissatisfying
aspect of these approaches is that dispersion is included after
the fact rather than as a limiting case of a more accurate
energy functional. With FDT-DFT, though, theentire corre-

TABLE II. FDT-DFT atomization energiessin kcal/mold using various approximate functionals. Molecules
which have an error greater than twice the standard deviation for the given method are indicated in bold. RPA
energies are computed using PBE orbitals. Experimental valuessincluding zero-point vibrational correctionsd
are from Ref. 52.

Molecule RPA TDHF LSDA PBE BP86 B3LYP PBE0 Expt.

C2H2
a 381 394 421 427 423 396 409 405

C2H2
b 538 555 578 581 573 549 568 563

CH4
a 405 416 426 426 419 408 422 419

Cl2
b 50 57 c 74 74 56 64 58

COb 244 249 287 287 286 258 264 259
F2

b 31 22 74 63 76 42 43 39
H2

b 109 108 110 110 107 110 111 109
H2O

b 224 226 249 245 241 230 235 232
HCNb 299 298 322 325 321 304 315 312
HFb 133 138 157 152 157 143 144 141
LiFa 130 136 158 159 165 152 148 139
LiHa 57 58 61 63 63 66 62 58
N2

b 223 210 229 230 228 220 228 229
NH3

b 290 289 296 293 286 285 297 297
NOa 148 132 c 163 163 147 154 153
O2

a 113 97 155 151 150 119 125 121
OHb 104 103 117 114 112 106 109 107
P2

a 116 105 118 118 116 112 118 117

MAE 9.1 9.2 13.5 12.3 12.9 6.0 3.3 ¯

a4/5 extrapolation.
b5/6 extrapolation.
cKS-LDA reference is unstable for Cl atom and NO molecule.
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lation energy is computed using the TDDFT response func-
tion; it is therefore the natural framework for treating disper-
sion interactions in DFT. In fact, the “seamless” van-der-
Waals density functionals recently proposed by Dobson and
Wang and24,67 and by Langreth and co-workers68,69 start out
by approximating the FDT-DFT expression for the correla-
tion energyfEq. s4dg.

To illustrate this point, Figs. 1 and 2 present FDT-DFT
predictions of the dissociation curves for He2 and HeNe,
respectively. The calculations were performed in the aug-
mented cc-pV6Z basis, with a large radial grid to ensure
accurate integration of the XC energy. We havenot corrected
our results for basis set superposition errorsBSSEd. Because
of the slow convergence of the total correlation energy with
lmax, the counterpoise correction is unphysically large for
FDT-DFT and is not expected to be an accurate predictor of
the BSSE. Nevertheless, we conclude that our calculations
are fairly well-converged with respect to basis set, as the
FDT-DFT binding energies change by ca. 1% in going from
aug-cc-pV5Z to aug-cc-pV6Z. The more rapid convergence
of the present calculations as compared to that of the calcu-
lations in the previous section is to be expected, since dis-
persion is a long-range correlation phenomenon and hence
unlikely to be strongly affected by the short-range diver-
gence of the pair density.

Perhaps the most important point that can be gleaned
from the figures is that dispersion energies in FDT-DFT de-
pend strongly on the choice of functional. Pure density func-
tionals give such a poor description offxc that they do not
predict reasonable binding curves in simple rare gas dimers.
This is illustrated by the BP86 curves in Fig. 1. Although the
FDT-DFT result is an improvement over conventional DFT,
even the RPAsfxc=0d gives a much better description of
dispersion than FDT-DFT using this functional. This is not
entirely surprising; the atomization energies obtained above

clearly demonstrate the poor quality of pure density func-
tionals in the FDT-DFT scheme. Further, it has previously
been shown that the dispersion energies predicted by hybrid
functionals are a vast improvement over pure functionals.65

In fact, second-order perturbation theory based on an LDA
reference shows a very similar repulsive curve.73 Note that
one can prove that, for large enough distances, pure function-
als do show the expected −1/R6 energy dependence.35 Our
results simply indicate that, for pure functionals, the correct
energy term is swamped at moderate distances by unphysical
repulsive terms infxc.

However, for a hybrid functionalsin this case, PBE0d we
see that the FDT-DFT results describe dispersion effects in
He2 essentially quantitatively. The inner wall is somewhat
too steep, but the depth of the well and the long-range tail are
described very well. Furthermore FDT-DFT makes a quali-
tatively different prediction than conventional DFT, using the
same functional. The conventional PBE0 calculation predicts
a binding energy that is nearly 100% too large and does not
exhibit the expected 1/R6 decay at large separations. We
therefore conclude that hybrid functionals are absolutely cru-
cial for the accurate description of dispersion effects. For
HeNe, we have therefore focused our attention only on the
hybrid functionals. The results are somewhat less accurate,
but lead to similar conclusions. The FDT-DFT binding en-
ergy is underestimated and the van der Waals radius is sig-
nificantly too large. However, the long-range behavior of the
potential is again very accurately described by the FDT-DFT
approach, which again points to the proper treatment of long-
range dispersion effects in FDT-DFT.

VI. CONCLUSIONS AND OUTLOOK

In this article, the FDT-DFT formalism beyond the RPA
has been implemented and applied to molecular systems. We
have tested several approximate XC kernels within the AA.
Kernels derived from semilocal functionals are too short-

FIG. 2. Van der Waals interaction in HeNe. Energies are computed using the
PBE0 functional using either the fluctuation-dissipation theoremsFDT-DFTd
or conventional meanssDFTd. Experimental results are from Ref. 72.

FIG. 1. Van der Waals interaction in the helium dimer. Energies are com-
puted using two functionals, BP86 and PBE0, using either the fluctuation-
dissipation theoremsFDT-BP86 and FDT-PBE0d or conventional means.
The RPA results computed using BP86 orbitals are presented for compari-
son. Experimental results are from Ref. 70. Triangles denote accurateab
initio results from Ref. 71.
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ranged and lead to an unphysical divergence of the PDF at
small interparticle distances. Although this is a very serious
problem from both a fundamental and computational view-
point, it has received little attention so far. The unphysical
behavior of the PDF leads to a very slow basis set conver-
gence of the correlation energy, which severely limits the
usefulness of semilocal kernels in FDT-DFT. By using basis
sets with up toi functions, we have nevertheless been able to
estimate trends in atomization energies for a number of small
molecules. Although FDT-DFT contains 100% of exact ex-
change by definition, atomization energies are predicted with
an accuracy that is comparable tosif somewhat worse thand
the results one is used to in standard DFT. GGA kernels tend
to overbind approximately by the same amount that by which
RPA underbinds. We were further able to verify that FDT-
DFT, using standard functionals, is capable of accurately de-
scribing long-range dispersion effects on the same footing
with molecular binding energies.

Despite the somewhat disappointing failure of local ker-
nels, FDT-DFT has many appealing aspects and may deserve
continued effort. It is not clear to what extent the AA affects
the accuracy of FDT-DFT; the fact that accurate correlation
energies can be obtained within the AA, at least in the high-
density limit, suggests it as a reasonablesand efficientd start-
ing point. Similar conclusions have been drawn by Leinet
al. for the uniform gas.21 Thus, it would seem that further
work should focus on the construction of kernels that satisfy
two key properties:sid nonlocality andsii d stability. The most
natural and promising nonlocal functionals would seem to be
those that incorporate some treatment of exact exchange.
This woulds1d remove the unphysical divergence of the pair
distribution function sand thus facilitate basis set conver-
genced, s2d allow one to cancel the spurious self-correlation
present in a semilocal FDT-DFT calculation, ands3d repro-
duce the exact doubles contribution to the second-order cor-
relation energyfGörling–Levy sGL2d, Ref. 74g. Unfortu-
nately, the full exact exchange kernel required for exact
exchange FDT-DFT is frequency dependent and difficult to
implement.75 There are, of course, simplified nonlocal ex-
change kernels, for example, the Petersilka–Gossman–Gross
sPGGd kernel.13,40 However, in this case, one loses stability;
there is no simple nonlocal exchange kernel available that is
derivable from an XC potential. We have implemented one
such potential and verified that while self-correlation can be
effectively removed, in approximately 10% of the cases the
mismatch betweenfxc andx0 leads to an imaginary correla-
tion energy. Thus, one clear future direction is the develop-
ment of a simple nonlocal potential that approximately ac-
counts for exchange and correlation effects. Nonlocal kernels
can be easily incorporated into our computational frame-
work, as long as the integral evaluation time does not exceed
the rate-determiningOsN6d generation of the response.
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