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Adiabatic time-dependent density functional methods
for excited state properties

Filipp Furche® and Reinhart Ahlrichs
Institut fir Physikalische Chemie, Universit&arlsruhe, KaiserstraRe 12, 76128 Karlsruhe, Germany

(Received 22 May 2002; accepted 30 July 2002

This work presents theory, implementation, and validation of excited state properties obtained from
time-dependent density functional thedDDFT). Based on a fully variational expression for the
excited state energy, a compact derivation of first order properties is given. We report an
implementation of analytic excited state gradients and charge moments for local, gradient corrected,
and hybrid functionals, as well as for the configuration interaction singlE3 and time-dependent
Hartree—Fock(TDHF) methods. By exploiting analogies to ground state energy and gradient
calculations, efficient techniques can be transferred to excited state methods. Benchmark results
demonstrate that, for low-lying excited states, geometry optimizations are not substantially more
expensive than for the ground state, independent of the molecular size. We assess the quality of
calculated adiabatic excitation energies, structures, dipole moments, and vibrational frequencies by
comparison with accurate experimental data for a variety of excited states and molecules. Similar
trends are observed for adiabatic excitation energies as for vertical ones. TDDFT is more robust than
CIS and TDHF, in particular, for geometries differing significantly from the ground state minimum.
The TDDFT excited state structures, dipole moments, and vibrational frequencies are of a
remarkably high quality, which is comparable to that obtained in ground state density functional
calculations. Thus, yielding considerably more accurate results at similar computational cost,
TDDFT rivals CIS as a standard method for calculating excited state properties in larger
molecules. ©2002 American Institute of Physic§DOI: 10.1063/1.1508368

I. INTRODUCTION applications’ In the past five years, time-dependent density
There is a broad interest in properties of electronic eX_functionaI t_heory(TDDF_T)8_ has almost completely Super-
cited states ranging from spectroscopy to photochemistry angEded CIS invertical excitation energy calculations, yielding
biology2 In fact, for a deeper understanding of most pho_consgldlelrably !mproyed results at similar compl_JtatlgonaI
tophysical and photochemical phenomena, some informatiof®St- —~ The pioneering work of Amos and Van Caiffe
on excited state potential energy surfaces is necessary. F8Rd recent case studiés® indicate that TDDFT may be
example, luminescence and related emission processes dr@re accurate than CIS for excited state potential energy
associated with geometric relaxation of excited states. It isurfaces and other properties as well.
also well known that structural changes upon electronic ex- A number of state-based density functional methods has
citation can significantly alter the shape of absorption andeen proposed for excited state treatméhts?for the low-
circular dichroism spectra. According to the Franck—Condorest excited singlet state, a spin-restricted open-shell Kohn—
principle, knowledge of the excited state normal modes isSham(KS) type scheme has been proposgit. largely re-
required to describe the fine structure observed in highmains to be shown that these methods are competitive to
resolution spectra. Vibrations may induce forbidden transi-TDDFT in standard applications. Judging from experience
tions, or mediate nonadiabatic coupling. Information onwith wave-function method®, advantages of TDDFT, such
structure and dynamics of excited states is the most impors a consistent definition of transition moments and the ex-
tant prerequisite for modeling photochemical reactions. plicit treatment of near-degeneracy effects between singly
With the development of new techniques in laserexcited configurations, will not be easily overcome.
spectroscopf,excited state properties, e.g., vibrational fre- The purpose of the present work is threefold. First, we
quencies or dipole moments, can be probed selectively fagive a TDDFT excited state energy functional which is fully
increasingly large systems. Reliable theoretical models argariational with respect to all parameters. This considerably
necessary, however, to explain the experimental data in termsmplifies the derivation of analytic expressions for first or-
of the excited state geometric and electronic structure. Up t@ler excited state properties. We extend the theory for general
now, the standard for calculating excited state equilibriumspin-unrestricted ground states, recovering previous results
properties of larger molecules is the configuration interactiorgr |5 time-dependent Hartree—FocKTDHF),?* and
singles(CIS) method>® However, due to a neglect of elec- TpDFTL3 as special cases. Second, we describe an efficient
tron correlation, CIS results are not accurate enough in Manyplementation of excited state gradients with respect to
nuclear coordinates and other first order properties for the
¥Electronic mail: filipp.furche@chemie.uni-karlsruhe.de above methods. In contrast to numerical differentiation, the
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effort for calculating gradients analytically is independent offunctionals in the present work, at the static ground state
the number of nuclear degrees of freedom. We emphasize thlaensity. The hybrid mixing parametes, introduced by
analogy to ground state energy and gradient calculation®ecké>?* allows us to interpolate between the limits of
which allows us to transfer proven techniques to excited statépure” density functionals ¢,=0) and TDHF theory ¢,
methods. The feasibility of excited state geometry optimiza=1, E*=0), which is also known as the random phase
tions is investigated in typical applications. Finally, we as-approximation(RPA) for excitation energie® The CIS or
sess the quality of calculated adiabatic excitation energieSlamm—Dancoff approximatioiTDA) is easily derived by
excited state dipole moments, structures, and vibrational frezonstrainingY identically to zero in the variation o. A
guencies by comparison with accurate experimental datdalDA type scheme has recently been proposed in a TDDFT
Our test sample contains a variety of states of different chareontext as welt! All these methods are contained as special
acter and spin multiplicity. The methods include, besides ClSases in the present approach.

and TDHF, the most popular functionals used in TDDFT  Applying the variational principle, we obtain the station-
calculations. We analyze the results and discuss implicationarity conditions forG,

for theoretical treatments of excited states.

oG
IIl. THEORY S(XY| =(A=Q8)IX.¥)=0, (63
A. Excited state properties in TDDFT
The variational formulation of TDDFTRef. 22 pro- §=<X Y|A|X,Y)—1=0 (6b)
210} ' ' '

vides a very convenient framework for the calculation of
excited state properties. The basic statement is that excitation
energies are the stationary points of the functional Equation(6a) is the well-known time-dependent Kohn-Sham

GIX,Y, Q1= (X,Y|A|X,Y)— Q((X,Y|AIX,Y)=1). (1) (TDKS) eigenvalue problem; solution under constrgisib)
yields the TDDFT excitation energies as eigenval(¥and

) is a real Lagrange multiplier, and the vectors TDKS transition density matrices as eigenvectdtsr). Un-
X less stated otherwise, we shall assume in the following that
|X:Y>=(Y) (20 Egs.(6a and(6b) have been solved for a particular excited
] . state under consideration.
are defined on the Hilbert spate= Ly X Loec® LoceX Lyirt In analogy to ground state properties, excited state prop-

whereL . and L,y denote the Hilbert spaces of occupied grties are conveniently defined as derivatives of the excited
(oco and virtual (virt) molecular orbitals(MOs), respec-  state energy with respect to an external perturb@idrnese
tively. The MOsep,(r) are solutions of the static KS equa- gerivatives are, somewhat symbolically, denoted by a super-
tions with eigenvalues,,. As usual, indiced,j,... label  script & We think of ¢ as a nuclear coordinate in the first
occupied,a,b,... virtual, andp,q,... general MOs. We as- pjace, leading to excited state energy gradients with respect
sume the MOs to be real, which is always possible in thgg the positions of the nuclei. However, other excited state
absence of magnetic fields. The “superoperatoisandA  properties are accessible as wellélfepresents, e.g., a com-

read ponent of a static electric field, excited state dipole moments
A B 1 0 can be computed. The total excited state energy is the sum of
A= ( B A)' A= ( 0 - 1). 3 the ground state energy and the excitation energy. Thus, ex-

cited state properties are a sum of the corresponding ground
A andB are sometimes called orbital rotation Hessians andtate properties and an excitation part given by derivatives of
have the matrix representation the excitation energy. We can focus on the latter here since

_ B the computation of HF and KS ground state properties is
(At Bliasibs = (€as™ €ic) dij Sapdoo certainly well established. In terms of the functio@lde-

+2(iac|jbo’)+2 < fined in Eq.(2),

iacjbo’

—Cxéo.o.r[(]aO'||b0')+(ab0'||JO')], (4a) QgZG"C[X,Y,Q]:<X,Y|A§|X,Y> (7)

(A— B)iaojbo" :(eacr_ Eio’) 5I] 5ab50'0" + Cxamr’[(jao-“bo-)
—(abalijo)]. (4b) I_t is important to _note that dut_a to th_e v_ariational princ_iple,
. o ) ) first order properties doot require derivatives of the excita-
(pgolrso’) is zxactwo-electron repulsion integral in Mulliken tjon vectors|X,Y). If f denotes the number of nuclear de-
notation, andf, ., represents a matrix element of the grees of freedom in a molecule, computing first derivatives
exchange-correlation kernel in the adiabatic approximation,of |X,Y) would be roughlyf times as expensive as a single-

SPEXC point excitation energy calculation.
fffg,(r,r’)zm. (5) However, a straightforward calculation off still in-
Pa Pa’ volves derivatives of the MO coefficients. In basis set meth-

EX® denotes the static exchange-correlation energy funceds, the MOs are usually expanded as a linear combination
tional; the functional derivative is evaluated, as all otherof atomic orbitals(LCAO),
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The Lagrangiar is required to be stationary with respect to
QDpa(f):E CpoXull)- (8 all its parametersx, Y, Q, C, Z, andW, which are consid-

. ered as variables in Eq12). The sum of the ground state
A MO ¢, can depend on the perturbation through thelagrangian and. thus represents a fully variational expres-
atomic orbitals(AOs) y,(r) andthe expansion coefficients sion for the excited state energy functional. Similar tech-
C. Derivatives of the basis functiong,(r) are easily dealt niques have been used in correlated treatments of excited
with: In case¢ denotes a nuclear coordinate, the derivativesstate propertied: While variation ofL with respect tdX,Y)
x%(r) are nonzero only i refers to the atony,(r) is cen-  andQ leads back to Eqg6), the additional Lagrange mul-
tered at. The MO coefficients, though, depend onfaller- tipliers Z andW enforce the conditions
turbations in general, so that a calculation of the derivatives

C¢ would requiref times the work of a calculation of the JL

unperturbed MOs. Fortunately, it is possible to eliminate de- 77— =Fias=0, (13
rivatives C¢ by introducing so-called relaxed densities, at a 1as

computational cost independent fof This is a consequence aL

of the Sternheimer—Dalgarno interchange theotéffi, — =S . —8,,=0. (14)
which is better known as th vector metho® in quantum MWpge P

chemistry. However, the introduction of perturbed MO coef- . . )
ficients leads to lengthy expressions that have to be rear"® MOS@,(r) are thus constrained to satisfy the static KS

ranged in a nontrivial way in order to apply tf vector equations{up Fo uniFary equivalenm)ggnd to be orthonormal.
method. Although tedious, this procedure has previousl);rhese conditions fix th.e MO coefficient for all values of
been used to derive excited state gradients for QIBHF 2! the external perturbationz and W themselves are deter-

and TDDFTE213 methods. mined from the condition
JL
B. Lagrangian of the excitation energy —=0, (19
Cupe

We pursue a different strategy which avoids MO coeffi-
cient derivatives from the very beginning instead of first in-as shown in detail below. Solving E€L5) is approximately
troducing them and reeliminating them later. In a first step,f times more efficient than computing perturbed MO coeffi-
we replace the diagonal part oA¢-B) and (A—B) in Egs.  Cients.

(4a) and (4b) by At first sight, the definition of excitation energies as sta-
o 5 —F 5.8 9 tionary points ofL appears to be more complicated than the
(Fabs0ij = Fijodan) o ©  definition as stationary points @, because additional pa-

The effective KS one-particle Hamiltonian or Fock operatorrameters have been introduced. However, wkilelepends
implicitly through the MO coefficients on an external pertur-
Fpge= hpqg+2 [(pqoliic’)—cyb,, (picliqo)] bation,.th.is impli(_:it erendencg drops o_ut_Loby v.irtue of
io’ the variational principle. Thug, is anexplicit functional of
Ly (10) any external perturbation. This is a crucial advantage in the
PQo treatment of excited state properties: OnceY, Q, C, Z,
consists of the core Hamiltoh, a Coulomb andhybrid-)  and W have been determined from the stationarity condi-

exchange part, and the exchange-correlation potential tions, derivatives of the excitation energy follow as
Xc
VX(r)= . 11 Qf=LIX,Y,0,C,Z,W]
(= 50, (0
In the basis of canonical KS MOS; is diagonal with the =GO[X,Y, Q]+, ZiaoF) — > quUSéfq)g.
eigenvalues,, as diagonal entries. This choice is somewhat iao pgo.p<q
arbitrary, though, since all physical properties are invariant (16)

under unitary transformations of occupied and virtual orbit-
als among themselves. The above replacement renders the contrast to Eq(7), the derivatives are straightforward to
excited state formalism manifestly invariant under thesesvaluate, because the MO coefficieftsre held constant at
transformations. The constraint of a canonical choice of theheir zero order values, as indicated by the supers¢épt
MOs can thus be dropped when calculating derivatives of thehis is especially obvious for the contribution
excitation energy.

In a slight variation of an idea of Helgaker and G([X,Y, O]
Jargenser we define the auxiliary functional

=(X,Y|A®|X,Y)
LIX,Y.Q,C.ZW]=G[X,Y,Q]+ > Zig,Fia, 1 ©
=5 2 [A+B)) e (X Y)iag(X+Y)jpgr
iacjbo’
—pq;pgq Woao(Spas— Spa)- (12 +(A=B)D o (X=Y)iap(X=Y)jp,r]. (17)

Downloaded 27 May 2012 to 128.148.252.35. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



7436 J. Chem. Phys., Vol. 117, No. 16, 22 October 2002

C. Determination of the Lagrange multipliers Zand W

The orbital stationarity constraiiil5) gives rise to four
conditions forZ and the various parts &/. A detailed deri-
vation is given in Appendix A; we merely state the results

F. Furche and R. Ahlrichs

where the occ—occ and virt—virt parts df are zero. The
physical meaning oP will become obvious in the next sub-
section. The remaining conditions from E@L5) fix the
Lagrange multiplieraV according to

here. ForZ one obtains

Wijo= 2 Q{(X+Y)iag(X=Y)jag+ (X=Y)iaq
> (A+B)iacibe’Zjbe' = ~ Riags a

jba’

(18)

which is traditionally called th& vector equation. Defining

X (XY jaot = 2 €ark (XHY)iag(X+Y)jay
the unrelaxed difference density matfix 2

+(X=Y)iagX=Y)jagt +Hif [ P]

+2 >

kco'ldo”

Tano= 3 2 {(X+ YV)iag(X+V)ing .
9ij wkeo1do X T Yo (X+Y)iggn
+ (X_ Y)ia(r(x_ Y)ib(r}y

(19

Tij(r:_ %; {(X+Y)ia(r(X+Y)ja(r Wabo':z Q{(X-I—Y)iag(X—Y)ibU

+(X=Y)iaoc{X=Y)jac} T (X=YiacX+Y)ipg}

Tiae=Taie=0,
+ 2 € (Xt Y)iao(X+Y)ipe
and, for arbitrary vector¥ :

pgo» the linear transformations

+(X=Y)iaoc(X=Y)ipot (24

XC
pgorso’

Hogol V1= 2 {2(pgo]rse’)+2f

rso’

- CX50'0"

X[(psa|rqo)+(prolsqo) 1}V, s,

(209 wiaC,:; {(XFY)jagH X +Y]

HpgolVI= 2 68,0 [(PSolrqo) = (pro|sqe) Vs, , FX=ViaoHjio[X=YIH €i0Ziag

rso’
(20b
the right-hand sidéRHS) R is conveniently expressed as

jiol

W will turn out as the energy-weighted difference density
matrix below.

Riac= 2 {(X+Y)ipsHapo[ X+ Y]
b D. First order properties of excited states

+(X=Y)ibeHap [ X—Y]} Using the definitions of\, B, andF, Eq. (16) is easily

transformed into the final form
—Ej {(X+Y)jaoH} [X+Y]

_ §— ¢ — & Xxc (£)
X Vi My X Y11 S T) 0= 2% NP 2 St 22 Vi P
+2 2 gi)(é(l:ojbﬁ’kCU"(X+Y)l-ba'/(x—i_Y)kCU'”' + E (IU/V|K)\)§F;LVU'K)\0"
jbo’kco” uvkhoo'
@) é
. : + P XY e (X+Y) - (25
Opaorsortuer dENOtES @ Matrix element of the third order func- ,uw%:(r(r' prairet XEYV)o(XE ) gr (29

tional derivative

Greek indices indicate that operator matrix elements are

53EXC
= taken in the AO basis, and

- 5pa(r)5po"(rl)5p0'”(r”) '
From Eq.(21) it appears that the computation Rfis rather
involved; however, as discussed in Sec. Ill, it is never nec-
essary to set up and store more than two-index quantities.

After the Z vector Eq.(18) has been solved, the relaxed
one-particle difference density matrix is obtained as

P=T+2Z,

g

- ”(r,r/,r”)

oo’ o

(22

Vo= % CupeVpaoCoaos (26)

for V=P, W, and X*Y). If D denotes the ground state
density matrix, the effective two-particle difference density

(23)  matrix is given by
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_ sary in each iteration closely resemble those for a single
F,u,vo’ ko' T %{ZPMVO'DK)\O" +2(X+Y)/_LV0'(X+Y)K}\O', y . y . . 9
ground state Fock matrix construction.Nfis a measure of
—Cx050'[PuneDkve’ T P uioDivor the system size, the use of integral prescreening leads to an

asymptotic scaling of computational cost proportionaNfo

FXHEY) o (XEY) i for the Coulomb and hybrid exchange contributions, while
T (XHY) o X+ Y00 (nearly linear scaling of the exchange-correlation contribu-
tion is achieved by efficient molecular quadrature
—(X=Y) ino(X=Y) ot schemes®?’ The total effort for stepg1) and (2) is thus
+(X=Y) o X=Y)rsor 11 27) comparable to solving the ground state KS equations. For

higher excited states the first step becomes increasingly ex-

the various direct and exchange contributions thus separajgansive, since all lower states of the same symmetry have to
into products of lower rank quantities, which is important for pe calculated as well. This is not a significant limitation,
the processing of. however, since in the majority of applications highly excited

Equation(25) indicates that, after spin summatioR, states do not play an important role.
W, andI" may be regarded as partial derivatives of the exci-  Step(3), evaluation of the gradient, is largely identical to
tation energy with respect tb,,, S,,, and the electron— the analytic computation of ground state gradients. In fact,
electron interactionAll first order properties can be ex- apart from the exchange-correlation terms discussed below,
pressed in the form of Eq25) since the excitation energy only the expressions for the one- and two-particle density
can depend on an external perturbation only throbgls,  matrix as well as the energy-weighted density matrix have to
the electron—electron interaction, and the exchangepe replaced by?, W, andI'. By adding the ground state
correlation functional derivatives. For example, the differ-contributions toP, W, andI" before evaluating Eq(25),
ence between the excited and ground state dipole momenggadients of the total excited state energy can be obtained in
follows as a one-step procedure. The cost for st8pis thus virtually

Ap)=tr(Pp), (29 identical to that for grolund state gradients.'

To sum up, following the method outlined above, the
if p denotes the dipole moment operator. Population analysigffort for an excited state geometry optimization is not sub-
of P can elucidate the charge rearrangement and the changesntially higher than for a ground state geometry optimiza-
in bond order induced by an electronic excitation. This iStion. |t is important to stress the similarity to the computation
complementary to the information supplied by the vectorsyf the ground state energy and gradient since this implies that
IX,Y), which describe the excitation in terms of occupiedihe whole arsenal of efficient techniques for ground states is
and virtual MOs, i.e., the change in the electronic structuregpplicable to excited states, too. If there is progress in
The Z vector contribution taP in Eq. (23), which accounts  ground state methods, excited state methods will also benefit.
for orbital relaxation effects, is often of the same order OfFinaIIy, given a code for TDDFT excitation energies and
magnitude as the “unrelaxed” paff and cannot be ne- yesponse properties as well as a ground state gradient code,

glected, in contrast to what has occasionally been ass@fed gycited state gradients can be implemented by minor modi-
We note in passing that, in analogy to the ground statgjcations.

KS schemeP would yield the exact density difference if the
exact(time-dependentexchange-correlation functional were

used. This follows from the fact that the density computed ) -
from P is identical to the functional derivative of the excita- B- Exchange-correlation contributions

tion energy with respect to a local external potential. The only terms which are not straightforward to transfer
from ground state and linear response calculations are those
. IMPLEMENTATION containing third-order functional derivativéggs. (21) and
(24)] and geometric derivatives of the exchange-correlation
A. General strategy potential and kernelEq. (25)]. However, scrutiny of these

The results of the last section suggest that the analyti@OﬂtfibUtignS reveals that they can be reduced to the same
computation of excited state energy gradients and other profiorm asV’’,, andE* ), hoth routinely computed in ground

erties should be organized as follows: Given the solution oftate energy and gradient calculations. To put this into more
the ground state KS equations, explicit terms, consider the exchange-correlation energy

) o o functional within the generalized gradient approximation
(1) determine the excitation enerdy and excitation vector (GGA)

|X,Y) from Egs.(6);

(2) solve theZ vector Eq.(18) to obtain the Lagrange mul- XC 3

tipliers Z andW; and E :f d°r f(pu.Pg Yaar Yap: Ypp) (29
(3) evaluate the gradient and other properties according to

Eq. (25). where v, =Vp,Vp, . The local density approximation

(LDA), wheref depends only on the spin densities and
Methods for solving the TDKS eigenvalue problééa) and  pg, is a special case of the GGA. Now, the matrix of the
the static coupled KS Eqg18) are well developed®**-3%In  exchange-correlation potential is computed by numerical
an iterative integral direct algorithm, the operations necesguadrature of
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TABLE I. Survey of the exchange-correlation energy functionals used in this work.

Name Type Exchange Correlation Ref.
SVWN LDA S VWN 52-54
PW LDA S PW 55
BLYP GGA S+B88 LYP 56, 57
BP86& GGA S+B88 VWN + P86 58

PBE GGA SFPBEX) PW-+PBEC) 59
PBEO hybrid 0.25 HF-0.75[ S+PBEX)] PW+ PBEC) 60
B3LYP? hybrid 0.2 HF-0.72 B88+0.8 S 0.19 VWN+0.81 LYP 24

#The BP86 implementation inursomoLE and CADPAC differs from that isaussian andQ-cHeEM by the LDA
correlation part, which is VWN instead of PZ8Ref. 61).

PAt variance with thesaussian and Q-CHEM programs, we use the fulbeyond RPA VWN parametrization in
the spin-polarized cad@lso called VWN-V, as recommended by VWN.

Xc  _
Mmoo

. of of ground states. As is well known, in this case distinguishing
f dr{——+2 VpsV between singlet and triplet excitations further reduces CPU
IPe Voo .
and storage requirements by a factor of 2. Nevertheless,
EGRAD can also deal with general spin unrestricted open
VooV xuDxur), (30 shell references, thus permitting the treatment of excited
states of radicals. We have carefully checked the correctness
of our implementation by comparison with results from nu-
of merical differentiation.
gy Vo,V In Table Il we give some representative CPU timings for
7 the calculation of the excited state enetgyradient and
® compare them to timings for ground state energies. The num-
pe (1), (3D Y ,
o bers show that geometry optimizations for lower excited
states are not significantly more expensive than ground state

4 i ’38 i - . . . . .
whereo’ # o, as is of course well knowf:**The contribu geometry optimizations. The asymptotic scaling of computa-

tions necessary for_ excitgd sFate gradients are obtain_ed k%nal cost is approximately proportional I?, thus allow-
formally replacing first derivatives df by second and third ing for rather large applications already. The time-

derivatives, multiplied by an effective dgns?ty and its gradi'determining step, computation and processing of the two-
ents on the quadrature grid. The latter is given by electron repulsion integrals, can be further accelerated by
means of the resolution of the identitRl) technique®

+
dy

oo’

and the partial derivatives & are calculated as
of
xc@= | g3 4
E J d°r ; ( 5o 2

of
dy

+

Vpo.IV

oo’

% (X+Y) pwoX u (N X(1), (32 work along these lines is in progress.
i.e., the first order density response, for the terms containing
second and third functional derivatives, and by IV. COMPUTATIONAL DETAILS
% PuveX (N x,(1), (33 The structures of the molecules considered below were

optimized in the ground and excited statemergy change

i.e., the difference density, for the contribution fr(\rffy(f) in

Eq. (25). The only additional operations required for excited

state gradient calculations are thus the evaluation of the efFABLE Il. CPU timings (hourg for single point ground state energies
fective densities and the second and third derivative§. of (pscH and single point excitation energiegxcited state gradientsGrAD).

o : :~~_ The calculations were performed on a single CPU of an HP J240 worksta-
Analytlc |mple_mentat|9n of ,the latter for the GGA function tion (240 MH2). Start orbitals were generated by extendedtkél theory,
als used in this work is tedious, but elementary. and a convergence of the ground state density matrix o 0u. was

required. Quadrature grids were of sizéR&f. 36. Nge denotes the number
of contracted Gaussian basis functions. The basis sets are described in

Following the strategy outlined in Sec. IllA, TDDFT Sec. IV.
excited state gradients have been implemented in the NeW stem
module EGRAD, which is part of theTURBOMOLE program
suite® A survey of the most important functionals currently ransstibene  — C,, 1’8, B3LYP SVP 270 0:13 0:23

C. The program EGRAD

Sym. State Funct. BasisNgr DSCF EGRAD

. - . L . L . Triphenylmethyd C; 12E BP SVP 360 0:18 0:32
a_lva|lable and used in this work is given in 'I_'able I; in addi- [6]Helicene C, 1% BP SMP) 422 122 117
t|0n, the CIs and TDHF methods are aVa||a.b|e. We fU”yDMABNb C2v 21A1 BP TZVPP 546 2:25 2:54
exploit molecular point group symmetry for all finite point Retinal C, 2'A PBE SVWP 455 2:33  2:28
groups(with less than 100-fold symmetry ayeshus saving  (AICp*),° Dy 1'E BP SMP) 796 2:33 2:30

a factor of approximately the order of the point group inaopen <hell
computation time and disk space requirements. Spin symme4_(dimethwgmin()benzonitr"e_
try is also taken into account for spin restricted closed shelic p* = pentamethylcyclopentadienyl.
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TABLE lIl. Basis set dependence of the calculated properties of t&"1  TABLE IV. Basis sets of aug-TZVPP quality for the elements Li, Be, Mg,
excited state of CKD. The TDHF method is used. Energiésare in Har- Sc, and Cu. We list the names of the corresponding standard basis sets from
tree, excitation energiek, in eV, bond lengths in pm, out-of-plane anglg¢s  the TurRBoMOLE library (see Refs. 42, 43, and pas well as the primitive

in degrees, and dipole momenisin D. Gaussians added. Exponents obtained from downward extrapolation are des-
ignated by E.
Basis E T. C-O0 C-H ¢ “
Augmentation
SVP —113.620440 4.336 12533 109.43 26.14 1.411
aug-SVP —113.629459 4.356 125.04 109.38 24.21 1.350 Element Basis | Exponent Remarks
aug-TZVP —113754481 4328 12525 108.68 2556 1.290 - p—— 0010872 =
TZVPP ~113.758247 4.365 124.96 10859 2589 1.324 - s 0.009 000 =
aug-TZVPP  —113.759062 4.363 124.86 108.61 24.45 1.285 3 0.003 000
-cc-pVQZ  —113.762254 4.372 12475 108.57 24.47 1.282 :
augcepv d 0.001 000
Be TZ.3P s 0.023 096 E
p 0.016 372 E
d 0.510 000 Ref. 63
<108 Hartree, maximum gradient norsa10 3 a.u.). The d 0.127 500 Ref. 63
ground s;[ate energy and density r.nat'rlx were converged to T7VDP s 0.013 457 E
least 10 * a.u.; fine quadrature gridsize 4(Ref. 3] were P 0.015 285 E
used. Harmonic vibrational frequencies and zero point ener- d 0.350 000 Ref. 63
gies(ZPE9 were determined by numerical differentiation of d 0.087500 Ref. 63
the analytic gradient$central differences, default displace- . TZVDP s 0.011 775 E
ments 0.02 bohr T, values were obtained as energy differ- p 0.010 730 E
ences between the excited and ground states in their equilib- d 0.040 981 E
rium structures, T, values include ZPE differences. All I 0.350 000
calculatedT values, structural parameters, dipole moments, o 8'238 ggg
and frequencies were obtained in the harmonic approxima- '
tion. Cu TZVP s 0.013 896 E
In order to assess the basis set dependence of the calcu- P 0.032555 E
; . - . d 0.084 703 E
lated excited state properties, we have optimized tha"1 p 0.600 000
state of CHO in various basis sets, see Table Ill. SV denotes f 0.200 000
split valencé? and TZV triple zeta valen@basis sets; P is a g 0.400 000

single set of polarization functions, and PP a double one;
e.g., A1f for elements C—F. The prefix “aug” stands for
sets of diffuse basis functioffscontaining an additional
primitive Gaussian for eachquantum number in the origi-
nal basis set. The aug-cc-pVQZ basis'3&tis of quadruple  dard TURBOMOLE basis sets with diffuse and polarization
zeta valence quality, with three sets of polarization functiongunctions. The resulting basis sets are listed in Table IV.
and diffuse augmentation. The results in Table Il were ob-
tained using TDHF, but the other methods are expected to
exhibit very similar basis set dependence.

The diffuse augmentation has little influence on the enY- RESULTS
ergy of the rather compact\” state, but is necessary for an A. Choice of the test set
accurate description of the geometry. Considering the con-

vergence of both energy and properties, a hierarchy of basis _Compared to grour_1d states, t_he ampunt of a_ccurate_ex-
sets for excited state calculations is perimental data on excited states in the literature is very lim-

ited, especially for polyatomic molecules. The choice of mol-
aug-SVR<aug-TZVPR<aug-cc-pVQZ. (34)  ecules for the test set was therefore mainly dictated by the
availability of (presumably accurate results from gas-phase
This is not unexpected from the experience with ground statexperiments. Moreover, the test set was designed to contain a
calculations and other response properties such as polarizariety of excited states of different character and spin mul-
abilities. The energy convergence indicates that the aug-ctiplicity. The set thus should be considered a collection of
pVQZ results are close to the basis set limit. From Table Il interesting examples. Although tempting, a statistical analy-
we estimate the basis set errors for aug-TZVPP to be apsis does not make sense, because errors are of very different
proximately =0.02 eV in the excitation energy; 0.2 pm in  origin and show systematic behavior. We have observed that,
bond lengths and=0.02D in the dipole momentfor the by adding or removing a few cases, the outcome of a statis-
1 A" state of CHO). Since this appears quite sufficient for tics can be changed rather arbitrarily. Moreover, a statistical
our present purpose, all calculations were performed usingnalysis does not reflect the different quality of errors; for
the aug-TZVPP basis set, unless stated otherwise. For thexample, a systematic overestimation of element—hydrogen
elements Li, Be, Mg, Sc, and Cu, Dunning diffuse functionsbond lengths is much less severe in practice than a failure to
are not available. We, therefore, have constructed basis sadgscribe the strong C—O bond elongation in carbonyls upon
of quality comparable to aug-TZVPP by augmenting stann-=* excitation. For these reasons, we do not give any sta-
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tistical data in the following, except for maximum deviations basis set is further augmented by diffuse functions. In the
from experiment, indicated by bold typeface in TablesLDA and GGA treatments, B, of H,O is a continuum
V-VIII. state, which is clearly unphysical; these problems are well
We do not want to conceal that for certain manifest mul-known from vertical excitation energy calculations, and vari-
tireference cases, such as théB} state of NQ, all meth-  ous remedies have been suggeéfed.Hybrid functionals
ods studied here exhibit instabilities of the referenceperform significantly better for diffuse states, which is also
state?”*8 This means that the ground state intersects with amot unexpected: As for vertical excitations, gradient correc-
excited state of different symmetry, usually during geometrytions do not improve upon the LDA adiabatic excitation en-
optimization. As a consequence, negative or imaginary exciergies in general. The hybrid results mostly interpolate be-
tation energies occur, and the response formalism breaksveen TDHF and the GGA excitation energies. Error
down?2 Another well-known example is the singlet ground compensation therefore is observed only if GGA excitation
state of the @ molecule, which is triplet unstable in HF and energies are somewhat too small, and the TDHF values are
DFT methods even at the ground state geometry. An adtoo large. In all other situations, the admixture of HF ex-
equate treatment of these difficult systems remains the dashange does not improve the GGA results. This is especially

main of multideterminantal methods. true for states where TDHF exhibits instabilities. The TDA
schemé&! can be expected to be more robust, in particular for
B. Adiabatic excitation energies triplet states, whose excitation energy is often severely un-

Adiabatic excitation energies are in general more difﬁ_fjerest{mate_d by TDDFT methc_)ds; its performance in predict-
iabatic excitation energies may deserve further atten-

cult to calculate than vertical ones because they require 09 ad o )
theoretical model to work well not only at the equilibrium tion. Con5|der|ng the .present resul_ts, we hgsnate. o
structure of the ground state but also of the excited State(_ecommend hyb”d funct[onals as the first _ch0|ce n exqted
Obviously, the CIS and TDHF results in Table V dependSt‘f"te_ calculations, since it appears to be difficult to de.elde
sensitively on the quality of the HF reference determinant i 1or! whether error compensation works for a particular
the excitedstate structure. In cases such as thélistates of state or not.
CO and SiO, the 2B, state of HO, the 1'A” state of
CH,0, or the 1'B,, state of GHg, the structure changes
little upon excitation, and the HF reference is reasonable fo
both ground and excited states. Thus, as expected from varia- Relative errors in computed excited state structures, di-
tional considerations, CIS adiabatic excitation energies arpole moments, and vibrational frequencies are for all meth-
1-2 eV too high, which is somewhat improved by TDHF. Onods much smaller than errors in the excitation energies, as
the other hand, for the 1, ~ state of N, the 1*A” state of can be seen from Tables VI-VIIl. In fact, the accuracy is
HCN, or the 1'A, state of GH,, the CIS adiabatic excita- often comparable to that of the corresponding ground state
tion energies are too small by about 1 eV, indicating multi-methods, as long as no stability problems occur. CIS bond
reference ground states at the excited state structure. TDHENngths are in general several pm too small, and vibrational
fails even more badly due to nonreal instabilities leading tdfrequencies are too high by 20% and more, error character-
imaginary excitation energies for excited singlet states of Nistics well known from HF ground state calculations. One
and GH,. Nonreal instabilities of the HF reference are notmight conclude that CIS is already a useful method for the
uncommon for geometries differing significantly from that of investigation of excited states. There are drawbacks, how-
the ground state, while for triplet states TDHF stability prob-ever. CIS apparently tends to an artificial symmetry breaking
lems often occur for vertical excitations already. This lack ofin delocalized systems such as th&B}, state of pyridine,as
stability makes TDHF rather useless as a method for thés also familiar from ground state HF. The CIS geometry is
investigation of excited potential energy surfaces. qualitatively in error for the A" state of CHS, which is
Absolute errors in the LDA and GGA adiabatic excita- predicted planar. The C-O stretching maggein the n-7*
tion energies are considerably smaller and more systemat&xcited carbonyl compounds G& and (CHO) is
than those found for CIS and TDHF. For example, LDA as400—600 cm* too high in the CIS treatment, and C—O bond
well as the BP86 and PBE GGAs give a correct ordering olengths are too small. TDHF is not reliable due to stability
the three lowest singlet excited states of despite the dif- problems and hardly improves upon CIS even for stable sys-
ferent structure and character of these states. Even for thems.
difficult cases HCN and £H,, comparably small errors of All density functional methods yield substantially better
—0.4 or—0.5 eV are observed. This can be attributed to theesults for excited state structures, dipole moments, and vi-
fact that the ground state KS solution is stable on a muclbrational frequencies than CIS. As for ground states, bond
larger region of the potential energy surface than the HHRengths are somewhat overestimated by GGA functionals; the
solution®® The errors in the LDA and GGA adiabatic excita- LDA and hybrid functionals give slightly shorter bonds.
tion energies follow a very similar pattern as those observedlevertheless, the GGA errors are systematic, and the general
in vertical excitation energies for these methods. There is @icture obtained from GGA calculations is very consistent.
tendency to underestimate excitation energies systematicallizor example, the elongation of the C—O bond upon excita-
which increases as the KS ionization threshold is reachedion in CH,O and (CHO) is best described by the GGA, and
Excitation energies of Rydberg states such aB2in H,O  the same trend is observed for other excitations with consid-
are calculated too small, and may become even smaller if therable changes in the bond order. The accuracy of the calcu-

C. Structures, dipole moments, and vibrational
Frequencies
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TABLE V. Calculated adiabatic excitation energied/) compared to experiment. Calculated and experimental
energies include ZPE difference$(values except for diatomics and porphyrifl{ values. Experimental
results are from Ref. 64 for diatomic and from Ref. 65 for polyatomic molecules, unless otherwise stated.
Instabilities of the reference state are denotedipybold typeface indicates maximum absolute deviations from
experiment. RPA stands for TDHF, LDA for PW, BLP for BLYP, BP for BP86, PBO for PBEO and B3P for

B3LYP.
System State CIS RPA LDA BLP BP PBE PBO B3P  Expt.
BeH 1211 2.72 2.69 2.35 2.53 251 249 252 255 248
Li, 13 2.12 1.96 191 1.92 188 1091 195 195 174
BH 11 2.85 2.64 2.49 271 272 266 264 268 287
NH 130 4.18 4.02 3.63 391 402 3.98 396 387 3.70
BeO 111 2.37 2.27 1.26 1.05 121 115 144 126 117
BF 11 6.55 6.22 595 599 604 6.02 612 6.08 6.34
N, 1%,  7.70 7.20 7.03 6.76 6.73 6.74 6.96 698 7.39
1y, 754 () 827 799 809 810 795 7.90 845
1 1Hg 9.60 9.27 8.46 834 839 839 8.69 861 859
1A, 8.12 7.59 886 832 850 855 855 836 894
Cco 1311 5.77 5.13 573 549 540 543 549 559 6.04
1 8.81 8.50 7.84 7.79 7.83 7.82 8.06 8.00 8.07
NO 12t 0) () 550 575 545 6.22 6.09 545
Mg, 1sr 333 3.23 320 321 320 316 317 324 323
Sio 1 6.11 5.87 5.06 493 498 497 525 517 531
ScO 1211 2.00 1.94 2.00 194 193 186 187 195 204
CuH 213 3.93 3.84 3.06 2.85 297 291 3.09 299 2091
H,O 2'B; 11.73 1170 9.01 8.70 8.84 888 982 950 10.00
PH, 12A, 2.78 2.59 2.13 234 240 238 240 234 227
SO, 1°B, 3.01 () 2.73 2.43 243 245 251 254 319
SiF, 1B, 591 5.58 5.15 5.11 511 5.09 529 529 534
CCl, 1B, 2.17 () () 204 200 196 (I 194 214
CS 13A, 3.37 () 3.23 2.98 3.02 3.05 3.04 301 325
HCN 1A 5.64 4.88 6.27 597 607 6.09 603 596 6.48
HCP A7 3.55 () 4.08 3.86 395 3.96 3.88 382 431
C,H, 1A, 4.52 () 4.98 469 477 AT79 477 469 523
CH,0° 1A 4.44 4.25 3.38 341 344 342 364 360 349
13a” 3.53 () 2.68 2.57 254 253 270 273 312
CH,S° 1A, 2.61 2.50 194 194 198 197 211 207 203
13A" 1.88 () 1.44 1.36 134 135 143 145 180

trans-(CHO), 1'A, 359 341 190 204 201 1.98 245 242 272

Benzené 1'B,, 587 567 501 484 491 491 524 513 472
Pyridind 1B, 58¢ 558 511 494 500 501 536 524 4lke
Porphyrin 1B,, 245 176 219 208 211 212 231 225 202

“Reference 66.

PReference 67.

‘Experimental data from Ref. 68.

dZPE calculated in the aug-SVP basis.

‘Reference 69.

fStructures and ZPE calculated in the SVP basis.

9Saddle point.

"Reference 70.

T, value obtained by correction of experimenitalvalue(Ref. 71) by ZPE difference calculated using B3LYP/
SVP.
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TABLE VI. Calculated excited state equilibrium structures compared to experifinentd lengths in pm, angles
in degrees Experimentak . values are corrected for anharmonicity. See Table V for further explanations.

System State  Param. CIS RPA LDA BLP BP PBE PBO B3P Expt
BeH 1211 le 132 132 134 133 133 134 133 132 133
Li, RS SR 309 320 307 307 307 307 307 307 311
BH 171 le 120 120 123 121 122 123 121 121 122
NH 131 le 102 101 106 106 105 105 104 104 104
BeO 111 le 142 144 143 143 145 144 143 143 146
BF 111 le 129 129 129 130 130 130 130 130 130
N, 1%, re 118 119 120 121 121 121 120 120 121

1130 re 126 (1) 127 129 129 129 128 128 128

1ML, e 119 120 121 122 122 122 121 121 122

1A, 1o 123 126 127 129 129 128 126 127 127

co 1311 le 118 119 120 121 121 121 120 120 121
17 le 121 122 122 124 124 123 122 123 124

NO 125% 1, 0 0) () 107 107 107 105 105 106
Mg, 1135 1, 324 321 309 317 319 316 316 316 308
Sio 11 le 158 159 160 163 162 162 161 162 162
ScO 1211 le 166 166 168 172 171 170 168 170 69
CuH 215t g 151 150 159 163 162 162 157 158 157
H,O0 2B, O-H 96 96 102 102 102 101 100 100 102
/(HOH) 109 109 105 104 105 104 105 105 107

PH, 12A, P-H 139 139 141 141 141 141 140 140 140
/ (HPH) 120 121 123 122 122 122 122 122 123

SO, 1%B; S-O 144 (1) 151 154 153 153 150 151 149
/. (0S0) 127 () 126 125 126 126 127 126 126

SiF,° 1B, Si-F 158 158 163 167 166 166 162 163 160
/ (FSiF) 11 112 114 114 114 114 114 114 116

ccL® 1B, cC-Cl 165 (1) () 167 166 165 () 165 165
/(Clccl) 133 (1) 0) 134 135 135 () 135 131

cs 1%A, C-S 159 () 163 165 164 164 162 163 164
/(SCS) 145 (1) 138 137 137 137 138 138 136

HCN 1A C-H 110 108 115 114 114 114 112 112 114
N-C 128 135 129 130 130 130 129 130 130

Z/ (HCN) 121 125 123 123 123 123 123 123 125

HCP 1'A”  P-C 168 (1) 169 172 171 171 170 170 169
£ (HCP) 132 (1) 129 127 127 128 130 129 128

C,H, 1A, cC-C 135 () 136 137 137 137 136 137 139
£ (HCC) 125 () 124 122 122 122 122 123 120

CH,0° 1'A” C-H 109 109 111 110 110 110 110 109 110
c-0 125 125 128 131 131 131 128 129 132

/ (HCH) 118 117 115 117 116 116 116 117 118

) 22 24 34 31 33 33 31 30 34

13A" C-H 109 (1) 112 111 110 111 111 110 108

c-0 124 (1) 128 132 131 131 128 129 131

/ (HCH) 112 (1) 111 112 110 111 110 112 122

) 40 ) 44 46 49 48 47 45 41

CH,S 1'A, C-H 107 107 109 109 109 109 108 108 108
Cc-S 163 163 168 171 170 170 167 168 168

£ (HCH) 119 118 120 120 120 120 119 119 121

1°A”  C-H 107 () 109 109 109 109 108 108 108

c-S 162 () 167 171 170 170 167 168 168

/ (HCH) 19 () 120 119 118 118 119 119 119
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TABLE VI. (Continued)

System State Param. CIS RPA LDA BLP BP PBE PBO B3P Expt

0 (1 1 22 26 24 18 15 12

|
O

trans-(CHO),® 1A, 109 109 112 111 111 111 110 110 112
119 120 123 125 124 124 122 123 125
151 151 146 148 148 147 148 148 146
cc) 112 113 113 114 114 114 113 113 114

CC) 124 123 126 126 126 126 125 125 124

—_

Benzené 11B,, 107 107 109 109 109 109 108 108 108

141 141 142 143 143 143 142 142 143

OO0 l\!\(l)OO <
o0

|
O O

*Reference 66.

PExperimental data from Ref. 67.
‘Experimental data from Ref. 68.
YExperimental data from Ref. 72.
*Experimental data from Ref. 69.

lated excited state dipole moments is surprisingly high forVIll, the GGA assignment is correct, though. This is most

both LDA and GGA, while hybrid functionals can suffer important for the possible use of TDDFT in excited state
from artifacts of TDHF and do not always improve upon structure elucidation, since vibrational frequencies are often
GGA. For vibrational frequencies of excited states, GGAthe only structural information which is experimentally ac-

functionals, especially BP86 and PBE, are superior to altessible in excited states of larger systems.

other methods. Some caution is appropriate, however, since

most experimental frequencies in Table VIII are not cor-

rected for anharmonicity effects. Again, there is apparentIW'- CONCLUSIONS

no benefit from admixing HF exchange. The LDA frequen-  giapility of the ground state is critical in single-reference

cies tend to somewhat lower values. For example, the lowesteaiments of excited state properties. TDDFT is consider-
b, mode. of f[he 1B, state of pyrldlne is imaginary in the ably more robust than CIS and especially TDHF since the
LDA, which is probably an artifact. On the other hand, thexg” reference is stable on a larger range of nuclear geom-
critical C-O stretching modes in the lowest singlet excitedyyries than the HF reference. TDDFT adiabatic excitation en-
states of CHO and (CHO}) are calculated about 100 crh ergies improve upon CIS and TDHF, but errors can reach 0.4
higher than within the GGA. However, even the GGA meth-¢\/ and more, which is still far from the desired “chemical
ods falil to give the correct ordering of the totally symmetric accuracy” of 0.05 eV. However, TDDFT excited state struc-
vz and vg rrj(l)des. With a measured separation of only 100res, dipole moments, and force constants are nearly as ac-
and 200 cm*, the correct assignment 0k, and v5 is cer-  crate as the corresponding DFT ground state properties:
tainly a challenge. This example illustrates well the degree Ofjmijar behavior can be expected for activation barriers and
accuracy that can be expected from TDDFT excited stat@oaction paths. In view of the success of ground state DFT,
calculations. In the vast majority of the vibrations in Table yis js a promising result. With the availability of stable and
efficient TDDFT implementations, CIS will become obsolete
for excited state geometry optimizations since it generally
leads to inferior results at the same computational cost. We
recommend TDDFT for standard applications to excited
System State CIS RPA LDA BLP BP PBE PBO B3P Expt. States of molecules in the size range of 20—200 atoms, where
correlatedab initio methods are still too expensive.

TABLE VII. Calculated excited state dipole moment®)( compared to
experiment. See Table V for further explanations.

BH 1 0.63 048 051 044 052 0.49 0.49 0.49 0.58

NH 1% 126 1.22 1.37 1.31 1.29 128 1.27 1.30 1.31
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CH,O° 1'A” 137 1.28 1.63 1.56 1.56 1.54 151 153 1.57

1°%A” 140 (1) 1.57 1.41 1.42 142 142 141 129
APPENDIX A: DERIVATION OF THE EQUATIONS

CH,S" 1'A, 044 037 0.84 0.80 0.84 0.83 0.73 0.72 0.79 FOR THE LAGRANGE MULTIPLIERS Z AND W

1%A” 0.02 () 0.56 050 0.56 0.55 0.41 0.38 0.57

*Reforence 73 In this Appendix, it is shown in detail how to derive the
bReference 66. equations for the Lagrange multiplieZfsandW in Sec. 11 C
°Experimental data from Ref. 68. from the orbital stationarity conditiofl5). In order to trans-
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TABLE VIII. Calculated harmonic vibrational frequencies (ch compared to experiment. Experimenta
values are corrected for anharmonicity. See Table V for further explanations.

System State Mode CIS RPA LDA BLP BP PBE PBO B3P Expt
BeH 121 w, 2241 2232 2083 2117 2096 2090 2150 2161 2089
Li, 1157 o, 271 235 249 243 256 253 258 248 255
BH 1T o, 2551 2602 2281 2306 2263 2267 2389 2406 2251
NH 1% w, 3594 3618 3015 2937 3000 3015 3219 3123 3231
BeO 1M w, 1254 1084 1250 1218 1210 1205 1219 1251 1144
BF 1M w, 1369 1368 1308 1227 1244 1244 1297 1274 1265
N, 131, o, 2027 1781 1858 1728 1767 1782 1840 1792 1733

113 o, 1686 () 1387 1282 1311 1318 1545 1513 1530
1M, w, 1904 1802 1789 1665 1707 1719 1789 1736 1694
18, e 1861 1496 1544 1457 1483 1488 1622 1576 1559
co 1% w, 1963 1854 1831 1729 1762 1769 1836 1792 1743
1M w, 1636 1584 1611 1474 1513 1524 1591 1543 1518
NO 1237 w, M () () 2393 2397 2443 2574 2552 2374
Mg, 1157 o, 153 160 177 153 156 153 163 156 191
Sio 1M w, 944 907 1057 874 895 897 925 900 853
Sco 121 w, 973 967 865 809 837 845 891 846 876
CuH 213* w, 1817 1811 1584 1588 1604 1611 1738 1711 1698
H,0 2B, w(a;) 3832 3834 2995 2978 2946 2997 3261 3213 3170
PH, 12A, w(a;) 1046 1042 919 951 934 929 959 977 951
SO, 138, wm(a) 1157 () 935 763 881 888 973 928 906
vy(a;) 454 () 353 338 341 342 368 361 360
SiF, 1B, w(a;) 866 870 702 623 648 646 744 715 598
vo(a;) 300 296 230 220 223 221 249 245 342
cclp 1B, w(a) 678 () () 590 617 622 () 630 634
v(a) 311 () () 280 273 260 () 272 303
cs, 13A, wm(a) 716 () 716 665 681 686 705 689 692
vo(a;) 279 (1) 309 305 306 305 296 303 311
HCN 1IA"  wy(a’) 629 425 950 973 969 964 983 992 941
vy(a’) 1766 1686 1532 1458 1477 1483 1557 1531 1496
HCP 1'A"  w,(a’) 588 () 668 708 699 690 668 694 567
vy(a’) 844 () 966 914 931 936 983 959 951
C,H, 1A, wvy(a) 1549 () 1448 1389 1427 1403 1456 1437 1385
vi(ag) 1149 () 1041 1084 1098 1078 1088 1097 1048
CH,O° 1'A"  p(a’) 3135 3134 2871 2918 2906 2916 3002 2987 2846
v,(a’) 1633 1620 1364 1279 1289 1294 1408 1361 1183
vy(a’) 1385 1390 1194 1247 1249 1254 1287 1301 1293
vs(a’) 3223 3217 2963 3023 3008 3016 3096 3083 2968
v(a’) 947 954 809 870 852 855 873 890 904
13A"  wy(a’) 1613 (I) 1369 1201 1251 1261 1369 1323 1283
CH,S 1'A, w(a;) 3265 3265 3050 3063 3066 3068 3148 3133 3034
vp(a;) 1488 1485 1293 1334 1329 1311 1365 1377 1316
vs(a;) 1070 1071 904 835 862 870 942 903 820
vs(b,) 3366 3364 3162 3176 3180 3183 3260 3242 3081
ve(b,) 851 846 749 773 773 752 789 803 799
13A"  wy(a’) 1482 (I) 1286 1329 1306 1303 1346 1364 1320
va(@’) 1096 (I) 912 836 858 868 948 909 859
trans-(CHO),' 1'A, wi(a,) 3164 3177 2837 2888 2882 2883 2986 2965 2809
vy(a;) 1806 1796 1589 1475 1513 1520 1622 1570 1391
vs(dg) 1295 1305 1170 1222 1208 1204 1226 1237 1195
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TABLE VIII. (Continued.

System State Mode CIs RPA LDA BLP BP PBE PBO B3P  Expt.

va(ag) 1009 1017 987 957 970 973 991 972 952
vs(d,) 544 544 512 509 508 509 521 520 509
vs(a,) 838 838 757 761 763 759 796 786 720
v(a,) 256 256 258 249 253 252 267 259 233
vg(by) 859 856 767 765 765 764 797 789 735
viby) 1709 1682 1565 1460 1492 1499 1576 1530 1281

vi(by) 1326 1331 1093 1125 1112 1110 1197 1198 1172
viby) 441 441 337 344 341 341 397 392 379

Benzené 1'B,, w(a;,) 3392 3392 3146 3147 3155 3161 3252 3226 3093
vy(a;g) 1026 1025 965 928 939 943 981 963 923
va(ay) 1455 1452 1231 1286 1286 1275 1332 1331 1327
va(ap) 647 647 575 592 575 573 596 619  515-518
v/(by) 905 907 868 868 842 838 879 922 745
ve(by) 426 434 247 370 331 319 377 418 365
vo(by) 1849 1912 1458 1380 1408 1415 1532 1482 1571
viboy) 1254 1254 1099 1126 1125 1119 1161 1160 1150
vifey) 724 724 595 629 606 602 639 666 581
vife,) 3381 3381 3137 3137 3145 3152 3242 3217 3084
vife) 1570 1570 1374 1386 1388 1383 1449 1440 1405
vifen) 1062 1061 944 920 933 934 989 971 920
vig(€yq) 3367 3366 3125 3125 3132 3139 3229 3204 3077
vif€,) 1713 1714 1545 1501 1520 1523 1604 1570 1516
vide,) 1249 1248 1112 1128 1132 1128 1169 1163 1148
vi€,) 571 560 495 512 507 506 523 525 521
vife,) 887 888 798 797 781 779 820 843 717
va€) 269 286 262 275 272 267 292 304 238

Pyridind 1B, wg(a) 1309 1311 1172 1169 1173 1173 1221 1210 %215
vg(a) 1086 1089 971 939 950 954 1003 984 995
ve(a) 1049 1048 941 911 921 925 977 960 950
vifa;) 565 566 489 502 496 495 512 516 542
@)  (im) (m) 257 272 266 264 313 309 327

aReference 66.

PExperimental data from Ref. 67.

°Experimental data from Ref. 68.

YExperimental data from Ref. 74.

fAug-SVP basis set, experimental data from Ref. 69.
'SVP basis.

9Reference 70.

form Eq.(15) to a more manageable form, we multiply both Qijot HJU[Z]ZW”U, (A4)
sides byC 4, and sum overu. Using the definition ofl
(12), this leads to vv_hereH is defi_ned in .Eq.(20), and, using the unrelaxed
difference density matriX from Eq. (19),
aFiao"
quo-+ 2 Ziaa’z JC Cp.qa
ag’ o Pube Qijo= 20 X+ Y)iag(X=Y)jaglX=V)iao(X+ Y)jas}
FIS
= 2 Wy oo Cpgp. (A1)
rso r=s v Cups =2 €art XYV ian(X+Y)jag
whereQ is given by *
—Y). VAN h
GIX.Y.Q] +(X=Y)iag(X=Y)jagh + Hij,[ T]
Qpao= 2 —C _ Cuao- (A2) y
. o ivati - 2 2  Gijokeo 1donXF Vkeo! (X4 Y)iggr . (AS)
In the next step, we evaluate the derivatives with respect to kea'ldo
C. This is conveniently done by expressing all operator maere, the definition o6 (1) has been inserted; moreover, the
trix elements in terms of AO integrals, e.g., fact that the MO coefficient€ satisfy the KS equations and
the excitation vector solves the TDKS eigenvalue problem
hpq(r:% CpoNuCogo - (A3)  (6a) has been exploited, which is clearly legitimate after the

derivative has been taken. Similarly, we obtain for the occ—
If p=i<qg=] are both occupied, E¢A1) thus transforms to virt block
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Qla0+ 6aUZIaU'+ H [Z]zwiau—v (A6)

Qiaf; {(X+Y)ipoHap[ X+ Y]
+(X=Y)ipoHapo X= YT+ Hio [ T]

+2 E gixaco'jbo’kca”(x—’_Y)jbﬂ'(x+Y)kCo”1

jba'keo”
(A7)
for the virt—occ block
Qaia+ 6io'ZiaO': WiaO' ’ (AS)
Qaiv= 2 {(X+Y)jaoH [X+Y]
+(X= Y)IaO'Hon'[X_Y]}l (A9)
and for the virt—virt block, witha<b,
Qabs=Wabe » (A10)

Qabr= 2 X+ Y)iagX=Vingt (X=Yiag(X+Y)ino}

+ 2 eio{(x+ Y)iao(x+ Y)ibo’

+(X=Y)iaocdX=Y)ipe} - (A11)
Subtracting Eq(A8) from (A6), we obtain
(éao_ Eia)ziaU—FHi*e—w-[Z]: _(Qiaa_Qaia)- (A]-Z)

which is theZ vector equation(18) with the RHS given in
Eqg. (21). Once theZ vector equation has been solvédl,is

determined from EqgA4), (A10), and the sum of Eq$A8)

and (A6) according to

Wi o= Qij o+ Hij o[ Z],
ab(r Qab(rv (Al3)

Wiao= Qais T € 6Ziac -

This is identical to the definition diV as given in Eq(24).
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