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1. Introduction
Since the electronic Schrödinger equation (SE) was

first written down, it was clear that it cannot be

solved exactly for real molecular systems due to the
electron-electron interaction and the resulting high
dimensionality. Consequently, approximations had to
be introduced, which gave birth to the research field
of quantum chemistry. The most prominent ap-
proximation is the Hartree-Fock approach,1,2 which
treats each electron independently moving in an
average field of all other electrons and the nuclei.
This leads to an uncoupling of the many-body SE to
many single-particle equations, the so-called Har-
tree-Fock (HF) equations, and concomitantly to the
familiar and in chemistry widely used single-particle
picture of molecular orbitals. However, an inherent
approximation in the HF method is the neglect of
electron correlation, that is, the explicit electron-
electron interactions. Much effort has been under-
taken to recover the missing electron correlation and
as a consequence a plethora of quantum chemical ab
initio methods have emerged. Examples of such
wave-function-based methods are Møller-Plesset
perturbation theory (MP),3,4 configuration interaction
(CI),5,6 and coupled-cluster approaches (CC).7,8

A conceptually different approach to include elec-
tron correlation is represented by density functional
theory (DFT),9-11 which relies on the electron density
as a fundamental quantity. In DFT, exchange and
correlation effects are gathered in the so-called
exchange-correlation (xc) functional. Since the exact
xc functional is unknown, it is fitted empirically to a
set of experimental data or it is modeled on the basis
of model systems such as the uniform electron gas
and other known properties. Once determined, it is
then employed as a universal xc functional. Depend-
ing on the choice of the ansatz, many different
approximate xc functionals are available today. In
general, xc functionals can be divided into three
different classes: local functionals, gradient-corrected
functionals, and hybrid functionals. In fact, the art
of performing a DFT calculation is closely related to
choosing the appropriate xc functional for the system
under investigation. However, DFT is a formally
exact theory, that is, if the exact xc functional were
used, exact results would be achieved. Density func-
tional theory is built on the famous Hohenberg-Kohn* E-mail: andreas.dreuw@theochem.uni-frankfurt.de.
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theorems, HK I and HK II.12 The first ensures a one-
to-one mapping between the electron density and the
external potential containing the electron-nuclei
attraction and any additional magnetic or electric
field, while HK II guarantees the existence of a
variational principle for electron densities analogous
to the famous Raleigh-Ritz principle for wave func-
tions. Together, HK I and HK II, are the necessary

ingredients for the formulation of a many-body theory
based on the electron density alone. Present-day DFT
calculations are almost exclusively done within the
so-called Kohn-Sham formalism,13 which corre-
sponds to an exact dressed single-particle theory. In
analogy to HF theory, the electrons are treated as
independent particles moving in the average field of
all others but now with correlation included by virtue
of the xc functional. This again gives rise to single-
electron molecular orbitals and orbital energies. All
the methods described so far aim at precise calcula-
tion of the electronic ground state of molecular
systems, and in principle, they can be divided into
wave-function-based methods and density-based meth-
ods. Especially Hartree-Fock and DFT form the
basis on which excited-state calculations are per-
formed, as we will show in the following paragraphs.

Knowledge about the energetic position of elec-
tronically excited states relative to the ground state,
as well as information about geometric and electronic
properties of excited states, is necessary for the
explanation and interpretation of electronic spectra
of molecular systems. Furthermore, optically forbid-
den (dark) states, which are thus experimentally not
or only very poorly accessible, very often play impor-
tant roles in determining the dynamics of electroni-
cally excited systems. Quantum chemical calculations
of such excited states can, for instance, provide useful
information and do indeed often contribute to the
fundamental understanding of excited-state dynam-
ics.

Sometimes a ground-state method can be tweaked
to calculate a particular electronically excited state,
if the ground-state formalism can be forced to con-
verge onto an energetically higher solution by intro-
duction of constraints. These constraints may be
given, for example, as a different spin multiplicity;
hence one can use a ground state method to calculate
the ground state of every possible spin multiplicity.
Equally well, the excited state of interest can belong
to a different irreducible representation of the spatial
symmetry group than the ground state. Then, it is
possible to converge the ground-state calculation for
the lowest solution of each irreducible representation
of the point group of the given molecular system.
Following this procedure, excited-state properties
such as equilibrium geometries and static electric
moments are accessible. The excitation energy is
given as the difference of the total energies of the
electronic ground state and the excited state obtained
in two independent calculations. This method is also
commonly referred to as ∆-method. Logically, this
methodology breaks down immediately if one is
interested in excited states of the same spin multi-
plicity and same irreducible representation of the
spatial symmetry group as the one of the electronic
ground state. This is particularly often the case if one
seeks to compute optical spectra of large molecular
systems, which mostly do not exhibit any spatial
symmetry. It is also commonly the case that excited-
state configurations are not well represented by the
model commonly used for ground-state wave func-
tions, for example open-shell singlets.
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Today, several quantum chemical approaches for
the calculation of excited states are available that do
not require any a priori constraints and that yield
energies and oscillator strengths of several excited
states in one single calculation. In analogy to ground-
state methods, excited-state methods can also be
divided into wave-function-based methods and elec-
tron-density-based methods. Typical wave-function-
based methods are CI,6,5 multireference CI (MR-
CI)14,15 or multireference MP approaches,16,17 multi-
configurational self-consistent field (MCSCF) meth-
ods,2 for example, complete active space SCF (CASS-
CF),18 and complete active space perturbation theory
of second order (CASPT2).19 These approaches are in
principle based on the explicit inclusion of excited
states in the many-body wave function as additional
so-called “excited” Slater determinants constructed
from the HF ground state by swapping occupied with
virtual orbitals. The expansion coefficients of the
Slater determinants are then calculated via the
Raleigh-Ritz variation principle, which in the case
of CI corresponds to the diagonalization of the
Hamiltonian matrix in the basis of the excited
determinants.1 In multiconfigurational SCF ap-
proaches also the expansion coefficients of the mo-
lecular orbitals setting up the Slater determinants
are reoptimized1 making these calculations prohibi-
tively computationally expensive for large molecules.

Other prominent wave-function-based approaches
are the equation-of-motion20-22 and linear-response23-26

coupled cluster theories (EOM-CC and LR-CC, re-
spectively), which depending on the level of trunca-
tion in the CC expansion can yield very accurate
results. Closely related to these coupled-cluster theo-
ries is the symmetry-adapted cluster configuration
interaction (SAC-CI) approach.27 Propagator theories
emerging from the Green’s function formalism, such
as the algebraic diagrammatic construction (ADC)
scheme,28-30 also provide an elegant route to the
calculation of excited state properties. However, all
these wave-function-based methods are limited to
fairly small molecules due to their high computa-
tional costs.

The cheapest excited-state methods that include
correlation via the wave function available today are
the CIS(D) approach31,32 and the approximate coupled-
cluster scheme of second order (CC2).33,34 The CIS-
(D) approach is a perturbative correction to config-
uration interaction singles (CIS)35 that approximately
introduces effects of double excitations for the excited
states in a noniterative scheme very similar to MP2,
in which doubly excited states are coupled to the
ground state. It can also be compared to the pertur-
bative triples correction (T) to the CCSD scheme.36

Similar in spirit is the CC2 method, which is an
approximation to CCSD and of which the linear
response functions yield excited states and oscillator
strengths of about MP2 quality. CC2 is also closely
related to the ADC(2) scheme mentioned before.37

Modern implementations of these wave-function-
based approaches allow for the treatment of molec-
ular systems of up to about 50 atoms.34

In this review, we want to focus on single-reference
ab initio excited state methods, which are applicable

to large molecules and do not explicitly include
correlation through the ground-state wave function.
In quantum chemical calculations, the size of a
molecule is defined by the number of basis functions
rather than by the number of atoms, and we are
interested in methods that can handle ca. 5000 basis
functions in a computation time of maximum a few
days on a standard personal computer (PC). If one
assumes a typical basis set size of about 15 basis
functions per second row atom, one can then inves-
tigate molecules with up to 300 such atoms. These
restrictions limit the applicable ab initio methods
essentially to the wave-function-based methods CIS35

and time-dependent Hartree-Fock (TDHF), as well
as to the density-based approach time-dependent
DFT (TDDFT), which builds upon the electron den-
sity obtained from ground-state DFT. CIS and TDHF
are fairly old methods that have been widely used
not only in quantum chemistry but also in nuclear
physics, where TDHF is better known as the random
phase approximation (RPA) and CIS as the Tamm-
Dancoff approximation (TDA) to it.38 TDDFT, how-
ever, is a very modern method that was developed
about 20 years ago39-42 and today has become one of
the most prominent methods for the calculation of
excited states of medium-sized to large molecules.
Several reviews are available in the literature that
focus on the theoretical derivation and development
of the method,41-44 but so far, no review focuses on
the applicability of TDDFT to various systems, its
practical benefits, and its limitations. Also the dif-
ferent available techniques for the analysis of com-
plicated electronic transitions has never been re-
viewed. The aim of this review is thus threefold.
First, CIS, TDHF, and TDDFT are rigorously intro-
duced by outlining their derivations and theoretical
footing, where special emphasis is put on their
relations to each other. Second, different methods for
the analysis of complicated electronically excited
states are reviewed and comparatively discussed.
Third, we focus on the applicability of the presented
methods and show their limitations and point out
their strengths and weaknesses.

The review is organized as follows. In the next
section (section 2), the wave-function-based methods
CIS and TDHF are presented. The derivations and
fundamental theoretical concepts are outlined in
sections 2.1.1 and 2.2.1 for CIS and TDHF, respec-
tively, and their properties and limitations are dis-
cussed in sections 2.1.2 and 2.2.2. Then we turn to
time-dependent DFT (section 3), where we first
review the theoretical foundations of the theory
(section 3.1) and then rederive the basic equations
of linear response TDDFT in a density-matrix for-
mulation (section 3.2). The relations between the
introduced methods CIS, TDHF, TDDFT/TDA, and
TDDFT (section 3.3) and properties and limitations
of TDDFT are pointed out (section 3.4). In last
subsection 3.5 of this section, we focus on one of the
most severe failures of TDDFT for charge-transfer
excited states. In section 4, modern schemes for the
analysis of electronic transitions are reviewed com-
prising the analyses of molecular orbitals (section
4.1), the transition density (section 4.2), the difference
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density matrix (section 4.3), and attachment/detach-
ment density plots (section 4.4). In the last section
5, two illustrative examples of typical theoretical
studies of large molecules employing TDDFT are
given, where special emphasis is put onto the ap-
plicability, advantages, and limitations of TDDFT.

2. Wave-Function-Based Methods
2.1. Configuration Interaction Singles
2.1.1. Derivation of the CIS Equations

Configuration interaction singles (CIS) is the com-
putationally as well as conceptually simplest wave-
function-based ab initio method for the calculation
of electronic excitation energies and excited-state
properties. The starting point of the derivation of the
CIS equations is the Hartree-Fock (HF) ground
state, Φ0(r), which corresponds to the best single
Slater determinant describing the electronic ground
state of the system. It reads

For simplicity, we assume a closed-shell ground-state
electronic configuration, and thus, the φi(r) cor-
respond to doubly occupied spatial orbitals and n )
N/2 (N is the number of electrons). Φ0(r) is obtained
by solving the time-independent Hartree-Fock equa-
tion, which is given by

with

and

In this equation, ĥ(r) contains the kinetic energy of
the ith electron and its electron-nuclei attraction,
while the Coulomb operator Ĵi(r) and exchange
operator K̂i(r) describe the averaged electron-elec-
tron interactions. They are defined as

Solution of the Hartree-Fock equations for the
ground-state Slater determinant (eq 1) within a given
basis set of size K yields n occupied molecular
orbitals, φi(r), and v ) K - n virtual orbitals, φa(r).
Here and in the following, we use the indices i, j, k,
etc. for occupied orbitals, a, b, c, etc. for virtual ones,
and p, q, r, etc. for general orbitals. In configuration
interaction, the electronic wave function is then

constructed as a linear combination of the ground
state Slater determinant and so-called “excited”
determinants, which are obtained by replacing oc-
cupied orbitals of the ground state with virtual ones.
If one replaces only one occupied orbital i by one
virtual orbital a and one includes only these “singly
excited” Slater determinants, Φi

a(r), in the CI wave
function expansion, one obtains the CIS wave func-
tion, ΨCIS, which thus reads

The summation runs over index pairs ia and has the
dimension n × v. This ansatz for the many-body wave
function is substituted into the exact time-indepen-
dent electronic Schrödinger equation,

where T̂ has the usual meaning of the kinetic energy
operator

and V̂el-nuc corresponds to the electron-nuclei attrac-
tion

where the index i runs over all electrons and K over
all nuclei. ZK is the charge of nucleus K. The
electron-electron interaction, V̂el-el(r) is given as

Projection onto the space of singly excited determi-
nants, that is, multiplication of eq 8 from the left with
〈Φj

b|, yields

and with

one readily obtains an expression for the excitation
energies ωCIS ) ECIS - E0

ϵa and ϵi are the orbital energies of the single-electron
orbitals φa and φi, respectively, and (ia||jb) corre-

Φ0(r) ) |φ1(r)φ2(r)...φn(r)| (1)

F̂(r)Φ0(r) ) E0Φ0(r) (2)

F̂(r) )∑
i

n

f̂i(r) (3)

f̂i(r) ) ĥi(r) + Ĵi(r) - K̂i(r) (4)

Ĵi(r)φi(r) ) [∑
j

N

∫dr′
φj
/(r′)φj(r′)

|r - r′| ]φi(r) (5)

K̂i(r)φi(r) ) [∑
j

N

∫dr′
φj
/(r′)φi(r′)

|r - r′| ]φj(r) (6)

ΨCIS )∑
ia

ci
aΦi

a(r) (7)

Ĥ(r)Ψ(r) ) [T̂(r) + V̂el-nuc(r) + V̂el-el(r)]Ψ(r) )
EΨ(r) (8)

T̂(r) ) -∑
i

1

2
∇2

i (9)

V̂el-nuc(r) ) -∑
i
∑
K

ZK

|ri - rK|
(10)

Vel-el )∑
i

N

∑
j>i

N 1

|ri - rj|
(11)

∑
ia
〈Φj

b|Ĥ|Φi
a〉ci

a ) ECIS∑
ia

ci
aδijδab (12)

〈Φj
b|Ĥ|Φi

a〉 ) (E0 + ϵa - ϵi)δijδab + (ia||jb) (13)

∑
ia
{(ϵa - ϵi)δijδab + (ia||jb)}ci

a ) ωCIS∑
ia

ci
aδijδab (14)
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sponds to the antisymmetrized two-electron integrals,
which are defined as

Equation 14 can be nicely written in matrix nota-
tion as an eigenvalue equation

in which we use the unusual symbol A for the matrix
representation of the Hamiltonian in the space of the
singly excited determinants to make the connection
to later occurring equations more clear. ω is the
diagonal matrix of the excitation energies, and X is
the matrix of the CIS expansion coefficients. The
matrix elements of A are given as

The excitation energies are finally obtained by solv-
ing the following secular equation

that is, by diagonalization of the matrix A. The
obtained eigenvalues correspond to the excitation
energies of the excited electronic states, and its
eigenvectors to the expansion coefficients according
to eq 7.

2.1.2. Properties and Limitations
In the previous section, the derivation of the CIS

working equations has been outlined, and it has been
shown how excitation energies and excited-state
wave functions are obtained. Here, we want to
compile some useful properties of CIS:

(1) Since the CIS wave function is determined by
variation of the expansion coefficients of the ansatz
(eq 7), its total energy corresponds to an upper bound
of the true ground-state energy by virtue of the
Raleigh-Ritz principle. Also all excited-state total
energies are true upper bounds to their exact values.
(2) Owing to Brillouin’s theorem, which states that
“singly excited” determinants Φi

a(r) do not couple to
the ground state, that is,

the excited state wave functions are Hamiltonian
orthogonal to the ground state. (3) In contrast to
other truncated configuration interaction methods,
for instance, CI with single and double excitations
(CISD), CIS is size-consistent, that is, the total
ground-state energy of two noninteracting systems
is independent of whether they are computed to-
gether in one calculation or are computed indepen-
dently. This is immediately plausible having Bril-
louin’s theorem in mind, owing to which the ground-
state energy within CIS is nothing else but the
Hartree-Fock energy. And since Hartree-Fock is
size-consistent,1 so is CIS. (4) Another useful property
of CIS is that it is possible to obtain pure singlet and

triplet states for closed-shell molecules by allowing
positive and negative combination of R and # excita-
tions from one doubly occupied orbital. Due to its
conceptually simple ansatz (eq 7) and the listed
properties, the CIS excited-state wave functions are
well defined. Hence, their wave functions and corre-
sponding energies are directly comparable, which is
a particularly necessary prerequisite if one is inter-
ested in transitions between excited states.

An analytic expression for the total energy of
excited states can be obtained from eq 14 by adding
E0 and multiplying from the left with the correspond-
ing CIS vector. It reads

As a consequence, ECIS is analytically differentiable
with respect to external parameters, for example,
nuclear displacements and external fields, which
makes the application of analytic gradient techniques
for the calculation of excited-state properties such as
equilibrium geometries and vibrational frequencies
possible. Analytic first derivatives for CIS excited
states have been published,45,46 and also second
derivatives are available.46 They have been imple-
mented in various computer codes, for instance,
Q-Chem, CADPAC, or TURBOMOLE.47-49

In general, excitation energies computed with the
CIS method are usually overestimated, that is, they
are usually too large by about 0.5-2 eV compared
with their experimental values (see, for instance, refs
45, 50, and 51). This is on one hand because the
“singly excited” determinants derived from the Har-
tree-Fock ground state are only very poor first-order
estimates for the true excitation energies, since the
virtual orbital energies ϵa are calculated for the (N
+ 1)-electron system instead of for the N-electron
system.1 Consequently, the orbital energy difference
(ϵa - ϵi), which is the leading term in eq 17, is not
related to an excitation energy, if the canonical
Hartree-Fock orbitals are used as reference. In other
words, the canonical HF orbitals are not a particu-
larly good basis for the expansion of the correlated
wave function, which then needs a high flexibility to
compensate for this disadvantage, that is, doubly and
higher excited determinants are demanded in the
wave function. On the other hand, since electron
correlation is generally neglected within the CIS
method, the error will be the differential correlation
energy, which must be at least on the order of the
correlation energy of one and sometimes several
electron pairs. Such energies are typically on the
order of 1 eV per electron pair, and hence, one should
expect errors of this magnitude.

Furthermore, CIS does not obey the Thomas-
Reiche-Kuhn dipole sum rule, which states that the
sum of transition dipole moments must be equal to
the number of electrons.52-54 Thus, transition mo-
ments cannot be expected to be more than qualita-
tively accurate. While a full presentation of the
computational algorithms used to evaluate the CIS
energy is beyond our present scope, it is still impor-
tant to understand the dependence of computational
cost on molecule size. The computational cost for CIS

(ia||jb) ) ∫∫dr dr′

[φi(r)φa(r)φj(r′)φb(r′) - φi(r)φj(r)φa(r′)φb(r′)
|r - r′| ] (15)

AX ) ωX (16)

Aia,jb ) (ϵa - ϵi)δijδab + (ia||jb) (17)

(A - ω)X ) 0 (18)

〈Φi
a(r)|Ĥ|Φ0(r)〉 ) 0 (19)

ECIS ) EHF +∑
ia

(ci
a)2(ϵa - ϵi) + ∑

ia,jb
ci

a cj
b(ia||jb) (20)
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calculations on large molecules is dominated by the
evaluation and processing of two-electron integrals
in the atomic orbital basis.45 Per state, this cost scales
with the square of the molecule size for sufficiently
large systems, because the number of significant two-
electron integrals also grows quadratically for large
enough molecules (for very small molecules the
growth is fourth-order). This is under the assumption
that an atomic orbital basis of fixed size (per atom)
is chosen. Instead, if the atomic orbital basis on a
given atom is increased in size for a given molecule,
then the computational cost grows as O(n4), making
large basis set calculations very expensive. This can
be reduced to O(n3) by employing auxiliary basis
expansions, as is discussed in section 3.4 for TDDFT.
Additionally there are linear algebra operations the
cost of which scales with the cube of basis set size
that are nonetheless relatively small in comparison
to two-electron matrix element contractions.

The small cost of the linear algebra is a result of
the use of efficient Davidson-type algorithms55 to
iteratively obtain a small number of excited-state
eigenvalues and eigenvectors, in comparison to the
very large rank of the CIS matrix, n(occ) × n(virt).
Direct diagonalization would scale as the cube of this
rank, n(occ)3 × n(virt)3, which would be with the sixth
power of molecule size. Thus iterative diagonalization
is critical to the applicability of CIS (and the related
TDHF and TDDFT methods) to large molecules.
Additionally, iterative diagonalization allows memory
requirements to be kept very modest, scaling with
the square of system size. This is because the full
CIS matrix, A, which grows as the square of the rank,
n(occ)2 × n(virt)2, or the fourth power of molecule size,
is never constructed directly. The iterative diagonal-
ization consists of the repeated contraction of the CIS
matrix A against a trial vector x for each state to
produce a residual vector r. This step in the AO basis
becomes the contraction of two-electron integrals
with a density-like matrix representing x. On today’s
standard computers, this allows for the treatment of
fairly large molecules of about 300 first row atoms
or 5000 or so basis functions.

2.2. Time-Dependent Hartree−Fock
The time-dependent Hartree-Fock equations were

written down for the first time by Dirac as early as
1930 following a density matrix and equation-of-
motion formalism.56 Since then several different
derivations have been given (see, for instance, refs
38 and 57-60), most notably the one by Frenkel
using a time-dependent variation principle.57 The
time-dependent Hartree-Fock equations constitute
an approximation to the exact time-dependent Schrö-
dinger equation making use of the assumption that
the system can at all times be represented by a single
Slater determinant composed of time-dependent
single-particle wave functions. These equations, how-
ever, which will be given later in detail, do not
correspond to the scheme that is generally referred
to when today’s quantum chemists speak of time-
dependent Hartree-Fock (TDHF). What is meant,
though, are the equations that are obtained in first-
order time-dependent perturbation theory from Dirac’s

equation, that is, the linear response. In the follow-
ing, we will follow this common convention. In most
quantum chemical applications, the TDHF approach
is used to calculate electronic excitation spectra and
frequency-dependent polarizabilities of molecular
systems (for the latter see, for instance, ref 61).
Furthermore, the linear response TDHF equations
are also well-known in physics under the name
random phase approximation (RPA) and have been
applied in various fields.38,59,60

2.2.1. Concepts and Derivation of TDHF
The starting point of the derivation of the TDHF

equation is the general time-dependent electronic
Schrödinger equation for molecular systems

where Ĥ is the time-dependent Hamiltonian

where Ĥ(r) is defined as in eq 8 and V̂(r,t) corresponds
to an arbitrary single-particle time-dependent opera-
tor, for example, time-dependent electric field

With the approximation that Ψ(r,t) can be written
as a single Slater determinant (which is the well-
known Hartree-Fock assumption) of the form

a time-dependent variant of the Hartree-Fock equa-
tion is obtained56 that reads

In addition to the definition of the time-indepen-
dent Fock operator (eq 3), the operator F̂(r,t) contains
the time-dependent single-particle potential V̂(r,t).
Furthermore, the Coulomb and exchange operators
are analogously defined as in eqs 5 and 6, respec-
tively, but acquire a time dependence since the
single-particle wave functions φi(r,t) are now time-
dependent.

Let us assume that at t ) 0 a molecular system is
in a stationary state given by a single Slater deter-
minant Φ0(r) that obeys the time-independent
Hartree-Fock equation (eq 2). Now a small time-
dependent perturbation is applied, and the un-
perturbed orbitals of the Slater determinant will
respond to this perturbation but change only slightly,
since the perturbation is weak. The TDHF equations
are obtained via time-dependent perturbation theory
to first order, that is, the linear response of the
orbitals and of the time-dependent Fock operator are
taken into account. The latter comprises the time-
dependent perturbing potential itself as well as the
response of the Coulomb and exchange operators due
to the change in the orbitals. One possible derivation

ĤΨ(r,t) ) i ∂

∂tΨ(r,t) (21)

Ĥ(r,t) ) Ĥ(r) + V̂(r,t) (22)

V̂(r,t) )∑
i

N

v̂i(r,t) (23)

Φ(r,t) ) |φ1(r,t)φ2(r,t)...φN(r,t)| (24)

F̂(r,t)Φ(r,t) ) i ∂

∂tΦ(r,t) (25)
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of the TDHF equations is via a density matrix
formulation, which is outlined later in section 3.2 for
TDDFT, and as mentioned earlier, several other
routes can be found in the literature (see, for ex-
ample, refs 2, 38, 59, and 60). Therefore we postpone
a detailed derivation until section 3.2. After some
algebra and Fourier transformation from the time to
the energy domain, one arrives at a non-Hermitian
eigenvalue equation, which yields the excitation
energies and transition amplitudes as eigenvalues
and corresponding eigenvectors. It can be written
conveniently in matrix notation as

where the matrix elements are defined as follows

The leading term on the diagonal of the A matrix is
the difference of the energies of the orbitals i and a,
which are the ones from which and to which the
electron is excited, respectively. The second term of
the A matrix and the elements of the B matrix, the
antisymmetrized two-electron integrals (eq 15), stem
from the linear response of the Coulomb and ex-
change operators to the first-order changes in the
single-particle orbitals. It is worthwhile to note, and
it will indeed be important later on, that the response
of the exchange operator corresponds to a Coulomb-
like term and vice versa.

Furthermore, comparison of the TDHF eq 26 with
the CIS eigenvalue eq 16 reveals that the latter is
contained in the first one: when the B matrix of the
TDHF equation is set to zero, it reduces to the CIS
scheme. In physics, this approximation is well-known
as the Tamm-Dancoff approximation,38,59 which will
also be discussed later in section 3.2 in the context
of TDDFT. Here, we instantly realize that there exist
two different derivation routes to CIS. One is via
projection of the Hamiltonian operator Ĥ onto the
space of “singly excited” Slater determinants, a
procedure that we will term CI formalism in the
following, and the other is by time-dependent re-
sponse theory to first order and subsequent neglect
of the B matrix.

2.2.2. Properties and Limitations
In the previous subsection, the basic concepts and

the working equation of linear response TDHF has
been derived, and it has been shown that it yields
excitation energies and transition vectors. In com-
parison with CIS, TDHF is an extension since it
contains not only “singly excited” states but also
“singly de-excited” states, which are constructed by
interchanging the orbital indices i and a. This state-
ment ought to reflect the attempt to give a math-
ematical procedure a physical meaning, but of course,
the “de-excitations” are nonphysical since one cannot
de-excite the Hartree-Fock ground state. Historically
one can justify this statement, since TDHF (RPA) has
been constructed to include correlation effects in the

ground state by virtue of some classes of “doubly
excited“ Slater determinants, and in this context, one
can indeed speak about “de-excited” states.59 In
practice, however, one uses the Hartree-Fock ground
state as reference state, and all necessary expectation
values are evaluated with respect to it. This ap-
proximation is also known as the quasi-boson ap-
proximation, which in general is reasonable if corre-
lation effects are only small in the corresponding
ground state. This again is indicated by the magni-
tude of the Y amplitudes, which are a measure of the
ground-state correlation and which, as a conse-
quence, should be small compared to the X ampli-
tudes.

The time-dependent HF method exhibits similar
properties as the CIS scheme. It is a size-consistent
method, and one can obtain pure singlet and triplet
states for closed-shell molecules. However, TDHF
encounters problems with triplet states, and in
general, triplet spectra are only very poorly predicted
by TDHF calculations. This is because the HF ground
state is used as the reference, which in many cases
even leads to triplet instabilities.62 In contrast to CIS,
TDHF obeys the Thomas-Reiche-Kuhn sum rule of
the oscillator strengths,63 and thus, one should expect
improved transition moments compared to CIS.

It is worthwhile to note that time-dependent HF
has a close connection to ground-state HF stability
theory, in which it is analyzed whether a converged
HF solution is stable in the sense that it corresponds
to a minimum in parameter space.2,62,64 The structure
of the equations to be solved for a stability analysis
are very similar to the ones for TDHF, and they also
contain the first (gradient) and second derivatives
(Hessian) of the energy with respect to variational
parameters.

Since the energy of the excited states in TDHF are
given by an analytical expression that is similar to
the one for CIS (eq 20), analytical first derivatives
are accessible and have indeed been derived and
implemented in connection with TDDFT.65,66 As we
will see later, the analytical derivatives of TDHF are
necessary ingredients for analytical gradients in
TDDFT when hybrid functionals are employed (sec-
tion 3.4).

In all applications where the orbitals do not exhibit
triplet instabilities, the difference matrix (A - B, eq
26) becomes positive definite, which allows reduction
of the non-Hermitian TDHF eq 26 into a Hermitian
eigenvalue equation of half the dimension

with

From a technical point of view, the TDHF eq 26 can
then in analogy to CIS again be solved using the
Davidson procedure,55 but the computational cost is
roughly twice the one of a CIS calculation since in
addition to the CIS calculation one has to form trial
vector-matrix products also for the B matrix.

Although TDHF is in some sense an extension of
CIS or equally well CIS is an approximation to

[A B
B* A* ][XY ]) ω[1 0

0 -1 ][XY ] (26)

Aia,jb ) δijδab(ϵa - ϵi) + (ia||jb)

Bia,jb ) (ia||bj) (27)

(A - B)1/2(A + B)(A - B)1/2Z ) ω2Z (28)

Z ) (A - B)-1/2(X + Y) (29)
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TDHF, TDHF has not been very successful in the
quantum chemistry community, that is, it has not
been applied very often. Probably, this is because
excitation energies calculated with TDHF are slightly
smaller than the ones obtained with CIS, but they
are still overestimations. The effect of the additional
B matrix must be only small, since its elements are
supposed to be small. Otherwise the underlying
“quasi-boson approximation” is a bad one. But if the
elements of the B matrix are small, one can equally
well use the computationally cheaper CIS scheme.
More seriously, the problem of the above-mentioned
poor treatment of triplet states does not exist in CIS.
In summary, TDHF does usually not constitute a
significant improvement over CIS that would justify
its increased computational cost.

3. Time-Dependent Density Functional Theory
Twenty years after the formulation of the Runge-

Gross theorem,39 which laid the theoretical founda-
tion for time-dependent density functional theory
(TDDFT), it has become one of the most prominent
and most widely used approaches for the calculation
of excited-state properties of medium to large molec-
ular systems, for example, excitation energies, oscil-
lator strengths, excited-state geometries, etc. Every
week a large number of publications containing
successful applications of TDDFT appear in the
literature. In this section, first the formal foundations
of TDDFT are reviewed, which comprise the Runge-
Gross theorem, the role of the action integral, and
the time-dependent Kohn-Sham equation (section
3.1). They represent the necessary ingredients to
derive the TDDFT equations in the linear response
formulation (section 3.2). Afterward, relations be-
tween CIS, TDHF, TDDFT/TDA, and TDDFT are
discussed in section 3.3, and properties and limita-
tions of TDDFT are outlined (section 3.4), where
special emphasis is put on the failure of TDDFT for
CT excited states, which is one of the most severe
problems of TDDFT (section 3.5).

3.1. Formal Foundations
Traditional ground-state density functional theory

in the Kohn-Sham formulation (KS-DFT) relies on
the Hohenberg-Kohn (HK) theorems and the exist-
ence of a noninteracting reference system, the elec-
tron density of which equals the electron density of
the real system (for reviews in the field of ground-
state DFT, the reader is referred to refs 9-11, 67,
and 68). The first HK theorem (HK I) establishes a
one-to-one mapping between the exact electron den-
sity, F(r), and the exact external potential, Vext(r), and
since Vext(r) determines the exact ground-state wave
function Ψ(r), the exact ground-state wave function
is a functional of the electron density, Ψ[F](r). The
second HK theorem (HK II) ensures the existence of
a variational principle such that the electronic energy
of a system calculated with a trial density is always
higher than the total energy obtained with the exact
density. Both theorems together allow the construc-
tion of an exact many-body theory using the electron
density as the fundamental quantity. The assumption

of the existence of a noninteracting reference system,
the ground state of which is a single Slater determi-
nant and the electron density of which is by con-
struction exactly equal to the electron density of the
interacting real system, leads to the derivation of the
well-known Kohn-Sham (KS) equations.

However, traditional KS-DFT is limited to time-
independent systems, that is, ground states, and if
one wants to establish an analogous time-dependent
theory, time-dependent versions of the first and
second HK theorems must be formulated and proven
and a time-dependent KS equation must be derived.
In the following three subsections, we present the
Runge-Gross theorem, which is a time-dependent
analogue to HK I, we analyze the role of the action
integral in a time-dependent variational principle,
and we will outline the derivation of the time-
dependent Kohn-Sham equations. The key steps of
the mathematical derivations, as well as the associ-
ated physical concepts will be outlined.

3.1.1. The Runge−Gross Theorem
The Runge-Gross theorem can be seen as the time-

dependent analogue of the first Hohenberg-Kohn
theorem and constitutes the cornerstone of the formal
foundation of the time-dependent Kohn-Sham for-
malism.39 It states that the exact time-dependent
electron density, F(r,t), determines the time-depend-
ent external potential, V(r,t), up to a spatially con-
stant, time-dependent function C(t) and thus the
time-dependent wave function, Ψ(r,t), up to a time-
dependent phase factor. The wave function is thus a
functional of the electron density

with (d/dt)R(t) ) C(t). The density, as well as the
potential, has to fulfill certain requirements, which
we will encounter in detail as we proceed with the
proof of the Runge-Gross theorem. The proof starts
from the general time-dependent Schrödinger equa-
tion

where

T̂(r), V̂el-nuc, and V̂el-el(r) correspond to the kinetic
energy operator, the electron-nuclei attraction, and
electron-electron repulsion as defined in eqs 9-11,
respectively. V̂(t) is a time-dependent external po-
tential and is given as a sum of one-particle poten-
tials

N is the number of electrons and is constant with
time. The electron density is given as

Ψ(r,t) ) Ψ[F(t)](t) e-iR(t) (30)

i ∂

∂tΨ(r,t) ) Ĥ(r,t)Ψ(r,t) (31)

Ĥ(r,t) ) T̂(r) + V̂el-el(r) + V̂el-nuc(r) + V̂(t) (32)

V̂(t) )∑
i

N

v̂(ri,t) (33)

F(r,t) ) ∫|Ψ(r1,r2,r3,...rN,t)|2 dr2 dr3 ... drN (34)

4016 Chemical Reviews, 2005, Vol. 105, No. 11 Dreuw and Head-Gordon



In the following, spin variables will be omitted for
clarity. To prove the Runge-Gross theorem, it must
be demonstrated that two densities FA(r,t) and FB(r,t)
evolving from a common initial state Ψ0 under the
influence of two different potentials vA(r,t) and vB-
(r,t) are always different if the two potentials differ
by more than a purely time-dependent function, that
is

The first assumption to be made is that the potentials
can be expanded in a Taylor series in time around t0
according to

Since vA(r,t) and vB(r,t) differ by more than a time-
dependent function, some of the expansion coef-
ficients, vk

A(r) ) (∂kvA(r,t))/∂tk|t0 and vk
B(r) ) (∂kvB(r,t))/

∂tk|t0, must differ by more than a constant. Hence,
there exists one smallest integer k such that

From here, the proof proceeds in two steps. First it
will be shown that the current densities, jA(r,t) and
jB(r,t), corresponding to vA(r,t) and vB(r,t) are always
different, and in a second step, it will be derived that
different current densities require different electron
densities. In general, the current density is defined
as

By definition, the current density j(r,t) and the
electron density F(r,t) obey the so-called continuity
equation69,70

which states that the temporal change of the electron
density in a certain volume is equal to the flux of
current density through the surface of that volume.
Here, at initial time t ) t0, the current densities and
the electron densities are given as

and the time-evolution of the current densities jA(r,t)
and jB(r,t) is given by their equation of motion

Subtraction of these equations yields

and evaluation of this expression at t ) t0 gives an
expression that relates the time evolution of the
different current densities to the external potentials.
It reads

Consequently, if the potentials vA(r,t) and vB(r,t) differ
at t ) t0, the right-hand side of eq 43 cannot vanish
identically, and hence, the current densities jA(r,t)
and jB(r,t) will be different infinitesimally later than
t0. Thus we have established a one-to-one mapping
between time-dependent potentials and current den-
sities. It is worthwhile to note that eq 43 holds in
this form only if eq 36 is satisfied for k ) 0. If the
integer k for which eq 36 holds is greater than zero,
the (k + 1)th time derivative of (jA(r,t) - jB(r,t)) must
be evaluated at t ) t0 and the equation of motion is
to be applied (k + 1) times. Corresponding math-
ematical expressions can be found, for example, in
ref 41, which have a very similar form as eq 43 and
lead to the same conclusion. To be able to make this
argument, the potential v(r,t) must be expandable in
a Taylor expansion in time according to eq 36.

Since now a one-to-one mapping between time-
dependent external potentials and time-dependent
current densities is established, it remains to be
proven that different current densities require dif-
ferent electron densities. For this objective, the
continuity equation (eq 39) is applied to FA(r,t) and
FB(r,t), and subtraction of the resulting equations and
differentiation with respect to time yields

Insertion of eq 43 yields

which corresponds to the desired relation between
time-dependent electron densities and time-depend-
ent external potentials. If one can show that the
right-hand side of this equation cannot vanish identi-
cally, it would be proven that FA(r,t) and FB(r,t) are
different if the corresponding external potentials are
different. This proof is done by reductio ad absurdum
assuming that the right-hand side does vanish.
According to Gauss’ theorem, the following equation
is valid

vA(r,t) * vB(r,t) + C(t) (35)

v(r,t) ) ∑
k)0

∞ 1

k!

∂kv(r,t)

∂tk
|t0

(t - t0)
k

) ∑
k)0

∞ 1

k!
vk(r)(t - t0)

k (36)

vk
A(r) - vk

B(r) * const (37)

j(r,t) ) 1
2i[Ψ*(r,t)∇Ψ(r,t) - ∇Ψ*(r,t)Ψ(r,t)] (38)

∂

∂tF(r,t) ) -∇j(r,t) (39)

jA(r,t0) ) jB(r,t0) ) j0(r)

FA(r,t0) ) FB(r,t0) ) F0(r) (40)

∂

∂tj
A(r,t) ) -i〈Ψ(r,t)|[ĵ(r),ĤA(r,t)]|Ψ(r,t)〉

∂

∂tj
B(r,t) ) -i〈Ψ(r,t)|[ĵ(r),ĤB(r,t)]|Ψ(r,t)〉 (41)

∂

∂t[j
A(r,t) - jB(r,t)] )

-i〈Ψ(r,t)|[ĵ(r),{ĤA(r,t) - ĤB(r,t)}]|Ψ(r,t)〉 (42)

∂

∂t[j
A(r,t) - jB(r,t)]t)t0

) -F0∇(vA(r,t) - vB(r,t)) (43)

∂2

∂t2[F
A(r,t) - FB(r,t)] ) -∇ ∂

∂t[j
A(r,t) - jB(r,t)] (44)

∂2

∂t2[F
A(r,t) - FB(r,t)] ) ∇[F0∇(vA(r,t) - vB(r,t))] (45)

∫F0(∇(vA - vB))2 d3r )

-∫(vA - vB)∇(F0∇(vA - vB)) d3r +

I(vA - vB)F0∇(vA - vB) dS (46)
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For real, experimentally realizable potentials, the
surface integral vanishes, because the fall off of the
asymptote is at least as 1/r, and the second term of
the right-hand side vanishes by assumption. Because
the integrand is nonnegative, it follows that for all r

and since F0 is greater than zero

and thus

which is in contradiction to the assumption (eq 35).
Consequently, the right-hand side of eq 45 cannot
vanish identically, and for different time-dependent
external potentials at t ) t0, one obtains different
time-dependent electron densities infinitesimally
later than t0. With this, the one-to-one mapping
between time-dependent densities and time-depend-
ent potentials is established, and thus, the potential
and the wave function are functionals of the density.

Recently, van Leeuwen presented a generalization of
the Runge-Gross theorem and proved that a time-
dependent density F(r,t) obtained from a many-
particle system can under mild restriction on the
initial state always be reproduced by an external
potential in a many-particle system with different
two-particle interaction. For two states with equiva-
lent initial state and the same two-particle interac-
tion, van Leeuwen’s theorem reduces to the Runge-
Gross theorem.71

Furthermore, the expectation value of any quan-
tum mechanical operator is a unique functional of
the density because the phase factor in the wave
function cancels out according to

Strictly speaking, the expectation value implicitly
depends also on the initial state, Ψ0, that is, it is a
functional of F and Ψ0. For most cases, however,
when Ψ0 is a nondegenerate ground state, O[F](t) is
a functional of the density alone, because Ψ0 is a
unique functional of its density F0 by virtue of the
traditional first Hohenberg-Kohn theorem.

3.1.2. The Action Integral
In the previous section, the one-to-one mapping

between time-dependent potentials and time-depend-
ent functionals has been established, which repre-
sents the first step in the development of a time-
dependent many-body theory using the density as
a fundamental quantity. A second requirement is
the existence of a variational principle in analogy to
the time-independent case, in which it is given by
the above-described second Hohenberg-Kohn theo-
rem. In general, if the time-dependent wave function

Ψ(r,t) is a solution of the time-dependent Schrödinger
eq 31 with the initial condition

then the wave function corresponds to a stationary
point of the quantum mechanical action integral.

which is a functional of F(r,t) owing to the above
proven Runge-Gross theorem, that is,

Consequently, the exact electron density F(r,t) can be
obtained from the Euler equation

when appropriate boundary conditions are applied.
Furthermore from eq 32, the action integral can be
split into two parts, one that is universal (for a given
number of electrons) and the other dependent on the
applied potential v(r,t) ) Vel-nuc(r) + V(r,t)

The universal functional B[F] is independent of the
potential v(r,t) and is given as

In summary, the variation of the action integral with
respect to the density according to eq 54 is a
prescription of how the exact density can be obtained.
In the next section, this stationary action principle
will be applied to derive a time-dependent Kohn-
Sham equation in analogy to the time-independent
counterpart.

3.1.3. The Time-Dependent Kohn−Sham Equation
In analogy to the derivation of the time-indepen-

dent Kohn-Sham equations, it is assumed that a
time-dependent noninteracting reference system ex-
ists with external one-particle potential vS(r,t) of
which the electron density FS(r,t) is equal to the exact
electron density F(r,t) of the real interacting system.
According to the generalization of the Runge-Gross
theorem by van Leeuwen,71 the existence of a time-
dependent noninteracting reference system is usually
ensured. The noninteracting system is then repre-
sented by a single Slater determinant Φ(r,t) consist-
ing of the single-electron orbitals φi(r,t); thus, its
density is given by

F0[∇(vA(r,t) - vB(r,t))]2 ) 0 (47)

∇(vA(r,t) - vB(r,t)) ) 0 (48)

vA(r,t) ) vB(r,t) + const (49)

F(r,t) T v[F](r,t) + C(t) T Ψ[F](r,t) e-iR(t)

O(t) ) 〈Ψ[F](r,t)|Ô(t)|Ψ[F](r,t)〉 ) O[F](t) (50)

Ψ(r,t0) ) Ψ0(t) (51)

A ) ∫t0

t1 dt 〈Ψ(r,t)|i ∂

∂t - Ĥ(r,t)|Ψ(r,t)〉 (52)

A[F] ) ∫t0

t1 dt 〈Ψ[F](r,t)|i ∂

∂t - Ĥ(r,t)|Ψ[F](r,t)〉 (53)

δA[F]
δF(r,t)

) 0 (54)

A[F] ) B[F] - ∫t0

t1 dt ∫d3r F(r,t)v(r,t) (55)

B[F] ) ∫t0

t1 dt 〈Ψ[F](r,t)|i ∂

∂t - T̂(r) -

V̂el-el(r)|Ψ[F](r,t)〉 (56)

F(r,t) ) FS(r,t) )∑
i

N

|φi(r,t)|2 (57)
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Provided that the one-particle potential vS(r,t) exists,
the single-electron orbitals are then given as the
solution of the time-dependent one-particle Schröd-
inger equation

On the other hand, the noninteracting density,
which is by assumption equal to the exact density,
is also determined by the Euler eq 54, in which the
action integral is varied with respect to the density.
For the noninteracting system (V̂el-el ) 0 in eq 56),
the action functional takes on the following appear-
ance:

where

and v(r,t) corresponds as usual to the time-dependent
external potential as defined in eq 33. Applying the
stationary action principle (eq 54) yields

If now a time-dependent single-particle potential vS-
(r,t) exists that allows for the construction of the time-
dependent single-particle Schrödinger eq 58, this
potential is a unique functional of the density by
virtue of the Runge-Gross theorem and can accord-
ing to eq 61 be expressed as

evaluated at the exact interacting density F(r,t). To
obtain more information about the properties of BS-
[F], one considers the action functional (eq 55) of the
interacting system and as a first step rewrites it in
the following form

Axc is the so-called “exchange-correlation” part of
the action integral and is defined as

If eq 63 is inserted into the stationary action principle
corresponding to the Euler eq 54, one obtains

This equation is only solved by the exact interacting
density. Comparison with eq 62 gives an expression
for the time-dependent single-particle potential

Inserting this equation into the time-dependent
single-particle Schrödinger eq 58 yields the time-
dependent Kohn-Sham equations

in which the density is given according to eq 57. The
time-dependent Kohn-Sham equations are, in anal-
ogy to the time-independent case, single-particle
equations in which each electron is treated individu-
ally in the field of all others. The kinetic energy of
the electrons is represented by -1/2∇i

2; the external
time-dependent potential v(r,t) and the Coulomb
interaction between the charge distribution of all
other electrons with the electron under consideration
are explicitly contained. In analogy to the traditional
time-independent Kohn-Sham scheme all exchange
and correlation effects (explicit Coulomb interaction
between the electrons) are collected in (δAxc[F])/(δF-
(r,t)). To this end, no approximation has been intro-
duced and consequently the time-dependent Kohn-
Sham theory is a formally exact many-body theory.
However, the exact time-dependent “exchange-cor-
relation” action functional (also called the xc kernel)
is not known, and approximations to this functional
have to be introduced. The first approximation gen-
erally made is the so-called adiabatic local density
approximation (ALDA) in which the originally non-
local (in time) time-dependent xc kernel is replaced
with a time-independent local one based on the
assumption that the density varies only slowly with
time. This approximation allows the use of a standard
local ground-state xc potential in the TDDFT frame-
work. The available approximate xc functionals will
be discussed in section 3.4.

The time-dependent Kohn-Sham equations can be
conveniently expressed in matrix notation in a basis
of, say, M time-independent single-particle wave
functions {$i(r)} such that

Then, the time-dependent KS equation reads

Here, the ith column of the matrix C contains the
time-dependent expansion coefficients of φi(r,t) and
FKS is the matrix representation of the time-depend-

i ∂

∂tφi(r,t) ) (- 1
2∇i

2 + vS(r,t))φi(r,t) (58)

AS[F] ) BS[F] - ∫t0

t1 dt ∫ d3r F(r,t)vS(r,t) (59)

BS[F] ) ∫t0

t1 dt 〈Ψ[F](r,t)|i ∂

∂t - T̂(r)|Ψ[F](r,t)〉 (60)

δAS[F]
δF(r,t)

) 0 )
δBS[F]
δF(r,t)

- vS(r,t) (61)

vS(r,t) )
δBS[F]
δ%(r,t)

|%(r,t))F(r,t) (62)

A[F] ) BS[F] - ∫t0

t1 dt ∫d3r F(r,t)v(r,t) -

1
2∫t0

t1 dt ∫d3r ∫d3r′
F(r,t)F(r′,t)

|r - r′| - Axc[F] (63)

Axc[F] ) BS[F] - 1
2∫t0

t1 dt ∫ d3r ∫ d3r′
F(r,t)F(r′,t)

|r - r′| -

B[F] (64)

δBS[F]
δF(r,t)

) v(r,t) + ∫ d3r′
F(r′,t)
|r - r′| +

δAxc[F]
δF(r,t)

(65)

vS(r,t) ) v(r,t) + ∫ d3r′
F(r′,t)
|r - r′| +

δAxc[F]
δF(r,t)

(66)

i ∂

∂tφi(r,t) )

(- 1
2∇i

2 + v(r,t) + ∫ d3r′
F(r′,t)
|r - r′| +

δAxc[F]
δF(r,t) )φi(r,t)

i ∂

∂tφi(r,t) ) F̂KSφi(r,t) (67)

φp(r,t) )∑
j

M

cpj(t)$j(r) (68)

i ∂

∂tC ) FKSC (69)
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ent Kohn-Sham operator in the given basis. Multi-
plication of eq 69 from the right with C† and then
subtraction from the resultant equation of its Her-
mitian transpose leads to the Dirac form of the time-
dependent Kohn-Sham equation in density matrix
form. This equation reads

in which the density matrix Ppr is in general related
to the electron density via

To obtain excitation energies and oscillator strengths
employing the time-dependent KS approach, two
different strategies can be followed. One possibility
is to propagate the time-dependent KS wave function
in time, which is referred to as real-time TDDFT.72,73

This technique still has the status of an expert’s
method but is beginning to be used in chemistry and
biophysics, and some successful applications have
been reported recently in the literature.74,75 In the
following section, however, we want to focus on the
analysis of the linear response of the time-dependent
KS equation. This leads to the linear-response TD-
DFT equations, which correspond to the widely used
TDDFT scheme implemented in most standard quan-
tum chemistry codes.

3.2. Derivation of the Linear-Response TDDFT
Equation

In this section, the derivation of the linear response
TDDFT equation is presented. Using a density
matrix formalism, it is shown how the excitation
energies are obtained from the linear time-dependent
response of the time-independent ground-state elec-
tron density to a time-dependent external electric
field. Before the time-dependent electric field is
applied, the system is assumed to be in its electronic
ground state, which is determined by the standard
time-independent Kohn-Sham equation, which in
the density matrix formulation takes on the following
appearance:

with the idempotency condition

Fpq
(0) and Ppq

(0) correspond to the Kohn-Sham Hamil-
tonian and density matrix of the unperturbed
ground state, respectively. The elements of the time-

independent Kohn-Sham Hamiltonian matrix are
given as

In the basis of the orthonormal unperturbed single-
particle orbitals of the ground state, these matrices
are simply given as

and

Again, we follow the convention that indices i, j, etc.
correspond to occupied orbitals, a, b, etc. correspond
to virtual orbitals and p, q, r, etc. refer to general
orbitals, and ϵp is the orbital energy of the one-
electron orbital p.

Now, an oscillatory time-dependent external field
is applied, and the first-order (linear) response to this
perturbation is analyzed. In general perturbation
theory, the wave function or in this case the density
matrix is assumed to be the sum of the unperturbed
ground state and its first-order time-dependent
change,

The same holds for the time-dependent Kohn-
Sham Hamiltonian, which to first order is given as
the sum of the ground-state KS Hamiltonian and the
first-order change

Substituting eqs 77 and 78 into the time-dependent
Kohn-Sham eq 70 and collecting all terms of first
order yield

The first-order change of the Kohn-Sham Hamilto-
nian consists of two terms. The first contribution
corresponds to the applied perturbation, the time-
dependent electric field itself, and it has been shown
that it is sufficient to consider only a single Fourier
component of the perturbation,2 which is given in
matrix notation as

∑
q
{FpqPqr - PpqFqr} ) i

∂

∂t
Ppr (70)

F(r,t) )∑
p,q

M

cp(t)cq
/(t)$p(r)$q

/(r)

)∑
p,q

M

Ppq$p(r)$q
/(r) (71)

∑
q
{Fpq

(0) Pqr
(0) - Ppq

(0) Fqr
(0)} ) 0 (72)

∑
q

Ppq
(0) Pqr

(0) ) Ppr
(0) (73)

Fpq
(0) ) ∫ d3r φp

/(r){- 1

2
∇2 - ∑

K)1

M ZK

|r - RK|
+

∫ d3r′
F(r′)

|r - r′|
+

δExc

δF(r)}φq(r) (74)

Fpq
(0) ) δpqϵp (75)

Pij
(0) ) δij

Pia
(0) ) Pai

(0) ) Pab
(0) ) 0 (76)

Ppq ) Ppq
(0) + Ppq

(1) (77)

Fpq ) Fpq
(0) + Fpq

(1) (78)

∑
q

[Fpq
(0) Pqr

(1) - Ppq
(1) Fqr

(0) + Fpq
(1) Pqr

(0) - Ppq
(0) Fqr

(1)] )

i
∂

∂t
Ppr

(1) (79)

gpq )
1
2[fpq e-iωt + fqp

/ eiωt] (80)
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In this equation, the matrix fpq is a one-electron
operator and describes the details of the applied
perturbation. Furthermore, the two-electron part of
the Kohn-Sham Hamiltonian reacts on the changes
in the density matrix, on which it explicitly depends.
The changes in the KS Hamiltonian due to the
change of the density are given to first order as

such that the first-order change in the KS Hamilto-
nian is altogether given as

Turning to the time-dependent change of the
density matrix induced by the perturbation of the KS
Hamiltonian, this is to first order given as

where dpq represent perturbation densities. Inserting
eqs 80-83 into eq 79 and collecting the terms that
are multiplied by e-iωt yield the following expression

The terms multiplied by eiωt lead to the complex
conjugate of the above equation. The idempotency
condition (eq 73) gives an expression for the first-
order change of the density matrix of the form

which restricts the form of the matrix dpq in eq 84
such that occupied-occupied and virtual-virtual
blocks dii and daa are zero, and only the occupied-
virtual and virtual-occupied blocks, dia and dai,
respectively, contribute and are taken into account.
Remembering the diagonal nature of the unperturbed
KS Hamiltonian and density matrixes, one obtains
the following pair of equations:

where we have set xai ) dai and yai ) dia to follow
conventional nomenclature. In the zero-frequency
limit (fai ) fia ) 0), that is, under the assumption that

the electronic transitions occur for an infinitesimal
perturbation, and making use of the fact that in the
basis of the canonical orbitals Fpp

(0) ) ϵp and Pii
(0) ) 1

(eqs 75 and 76), one obtains a non-Hermitian eigen-
value equation, the TDDFT equation,

the structure of which is equivalent to the TDHF eq
26 introduced in section 2.2. Here, the elements of
the matrices A and B are given as

where the two-electron integrals are again given in
Mulliken notation. In comparison with the TDHF eq
26, the definitions of the matrix elements differ only
in their last terms. While in TDHF the last terms
correspond to the response of the nonlocal HF ex-
change potential, which yields a Coulomb-like term,
they correspond in TDDFT to the response of the
chosen xc potential, which replaces the HF exchange
potential in KS-DFT. In the ALDA approximation
(see section 3.1.3), the response of the xc potential
corresponds to the second functional derivative of the
exchange-correlation energy, which is also called the
xc kernel, and is given as

Explicit expressions for the xc kernel are given, for
example, in ref 76.

An alternative elegant route to the derivation of
the linear response expressions for TDDFT (eq 88)
via the energy-dependent density-density response
function $(r,r′,ω) of the interacting system, which
contains all physical information about how the exact
density F(r,ω) changes upon small changes in the
external potential vext(r,ω), has been presented by
Marques and Gross.44 The quantities are energy-
dependent since they correspond to the Fourier
transforms of the corresponding time-dependent ones.
The change in the density can equally well be
calculated using the response of the noninteracting
Kohn-Sham system, $KS(r,r′,ω) and is given as

From eq 91 a formally exact expression for the exact
density response function of the interacting system
can be derived that reads

Knowing that the exact density response function
possesses poles at the exact excitation energies of the
system,44 one can starting from eq 92 through a series

∆Fpq
(0) )∑

st

∂Fpq
(0)

∂Pst

Pst
(1) (81)

Fpq
(1) ) gpq + ∆Fpq

(0) (82)

Ppq
(1) ) 1

2[dpq e-iωt + dqp
/ eiωt] (83)

∑
q [Fpq

(0)dqr - dpqFqr
(0) + (fpq +∑

st

∂Fpq
(0)

∂Pst

dst)Pqr
(0) -

Ppq
(0)(fqr +∑

st

∂Fqr
(0)

∂Pst

dst)] ) ωdpr (84)

∑
q
{Ppq

(0) Pqr
(1) + Ppq

(1) Pqr
(0)} ) Ppr

(1) (85)

Faa
(0)xai - xaiFii

(0) +

(fai +∑
bj
{∂Fai

∂Pbj

xbj +
∂Fai

∂Pjb

ybj})Pii
(0) ) ωxai (86)

Fii
(0)yai - yaiFaa

(0) -

Pii
(0)(fia +∑

bj
{∂Fia

∂Pbj

xbj +
∂Fia

∂Pjb

ybj}) ) ωyai (87)

[A B
B* A* ][XY ]) ω[1 0

0 -1 ][XY ] (88)

Aia,jb ) δijδab(ϵa - ϵi) + (ia|jb) + (ia|fxc|jb)

Bia,jb ) (ia|bj) + (ia|fxc|bj) (89)

(ia|fxc|jb) )

∫ d3r d3r′ φi
/(r)φa(r)

δ2Exc

δF(r)δF(r′)
φb
/(r′)φj(r′) (90)

δF(r,ω) ) ∫ d3r′ $KS(r,r′,ω)δvS(r′,ω) (91)

$(r,r′,ω) ) $KS(r,r′,ω) + ∫ d3 r′′ ∫d3 r′′′ $(r,r′′,ω)

[ 1
|r′′ - r′′′| + fxc(r′′,r′′′,ω)]$KS(r′′′,r′,ω) (92)
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of algebraic manipulations arrive at a pseudo-eigen-
value equation similar to eq 88, which yields exact
excitation energies. If furthermore the single-pole
approximation (SPA)77 and the ALDA approximation
as described in section 3.1.3 are employed, one
obtains exactly the linear-response TDDFT, eq 88.

In analogy to TDHF and CIS (section 2.2), the
Tamm-Dancoff approximation (TDA) to TDDFT has
recently been introduced.78 Again, it corresponds to
neglecting the matrix B in eq 88, that is, only the
occupied-virtual block of the initial d matrix (eq 84)
is taken into account. This leads to a Hermitian
eigenvalue equation

where the definition of the matrix elements of A is
still the same as in eq 89. It is worthwhile to note
that TDA/TDDFT is usually a very good approxima-
tion to TDDFT.78,79 A possible reason may be that in
DFT correlation is already included in the ground
state by virtue of the xc functional, which is not the
case in HF theory. Since the magnitude of the Y
amplitudes and the elements of the B matrix are a
measure for missing correlation in the ground state,
they should be even smaller in TDDFT than in TDHF
and, thus, be less important. TDDFT is also more
resistant to triplet instabilities than TDHF.

Equations 88 and 89 represent the TDDFT formal-
ism, which is solved to obtain excitation energies ω
and transition vectors |XY〉 when the unperturbed KS
Hamiltonian (eq 74), from which the response is
derived, contains a so-called pure DFT xc potential
and not also parts of Hartree-Fock exchange. How-
ever, today it is very common to include parts of
Hartree-Fock exchange in the xc potential, which
corresponds to using so-called hybrid functionals. For
instance, the widely used B3LYP functional contains
20% HF exchange (cHF ) 0.2 in eq 94).80 In this case,
the unperturbed KS Hamiltonian acquires an ad-
ditional term and takes on the following appearance:

Using this more general time-independent KS Hamil-
tonian and following the same derivation route as
above, one arrives at more general expressions for
the TDDFT equations, which allow for the use of
hybrid functionals. Although the non-Hermitian eigen-
value eq 88 remains the same, the elements of its
matrices A and B are now given as

containing the response of the Hartree-Fock ex-
change potential, as well as the one of the chosen xc
potential at a rate determined by the factor cHF
determined in the hybrid xc functional. Comparing
the definitions of the matrix elements of TDHF (eqs
27) and TDDFT (eqs 89) with eq 96, it becomes
apparent that the latter equation contains TDHF and
TDDFT as limiting cases if cHF ) 1 or cHF ) 0,
respectively. In other words, eq 96 corresponds to a
linear combination of eqs 27 and 89 thereby combin-
ing TDHF and TDDFT in one hybrid scheme.

3.3. Relation of TDDFT and TDHF, TDDFT/TDA,
and CIS

In the previous section, we have seen that TDDFT
and TDHF are closely related by a hybrid scheme
that emerges when the unperturbed Kohn-Sham
Hamiltonian contains both a nonlocal Hartree-Fock
exchange potential and a local xc potential. In Figure
1, the relations between the introduced methods CIS
and TDHF as well as TDDFT/TDA and TDDFT are
schematically shown. Starting from the usual time-
independent Hartree-Fock scheme, the ground-state
Kohn-Sham equations are in principle obtained by
exchanging the nonlocal HF exchange potential, vx

HF

with the local Kohn-Sham xc potential vxc. Analyses
of the linear response of the ground-state density
calculated either with HF or with DFT to an external
time-dependent perturbation lead to the TDHF or
TDDFT schemes, respectively, as is indicated by the
vertical arrows in Figure 1.

In analogy to the ground-state methods, TDHF and
TDDFT are similarly related since the TDHF equa-
tions can be converted into the TDDFT equations by
simply replacing the response of the HF exchange
potential, ∂vx

HF/∂F1, by the response of the xc poten-
tial from DFT, ∂vxc/∂F1. The Tamm-Dancoff ap-
proximation, that is, the neglect of the B matrix in
the TDHF or TDDFT equations, leads in the TDHF
case to CIS, while in the TDDFT case one obtains
the TDDFT/TDA equations. Of course, CIS and
TDDFT/TDA are equally related as TDHF and TD-
DFT are. However, in the case of CIS there exists a
derivation route other than the Tamm-Dancoff ap-
proximation to TDHF, namely, via a CI formalism,
that is, direct projection of the molecular Hamiltonian
onto the “singly excited” Slater determinants. This
is only possible because the projection of the Coulomb
operator ∑1/(r1 - r2) contained in the molecular
Hamiltonian yields terms equivalent to the response

AX ) ωX (93)

Fpq
(0) ) ∫ d3r φp

/(r){- 1

2
∇2 + ∑

K)1

M -ZK

|r - RK|
+

∫ d3r′
F(r′)

|r - r′|
- cHF∫ d3 r′

F(r,r′)

|r - r′|
+

(1 - cHF)
δExc

δF(r)}φq(r) (94)

Aia,jb ) δijδab(ϵa - ϵi) + (ia|jb) - cHF(ij|ab) +
(1 - cHF)(ia|fxc|jb) (95)

Bia,jb ) (ia|bj) - cHF(ib|aj) + (1 - cHF)(ia|fxc|bj) (96)

Figure 1. Schematic sketch of the relation between
Hartree-Fock (HF) and density functional theory (DFT),
time-dependent Hartree-Fock and time-dependent DFT
(TDDFT), and configuration interaction singles (CIS) and
the Tamm-Dancoff approximation to TDDFT (TDA).
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of the Hartree-Fock exchange and Coulomb poten-
tial. Obviously, this is not the case for TDDFT/
TDA, since the response of the xc potential contains
the second derivative of the approximate local xc
functional. Projection of the KS determinant would
result in equations analogous to the CIS equation
but the matrix elements evaluated for the KS orbit-
als.

3.4. Properties and Limitations
In section 3.2, it was presented how the linear

response formulation of time-dependent density func-
tional theory allows for the calculation of excitation
energies and transition vectors in the DFT frame-
work. At present, TDDFT represents one of the most
prominent approaches for this task, especially when
excited states of medium-sized or large molecular
systems are under investigation.

Since the exact local xc potential, which is the key
ingredient in DFT-based methods, is not known, an
approximate xc functional has to be chosen in any
practical calculation. Many different flavors of xc
functionals are available today, for example, local
functionals such as Slater-Vosko-Wilk-Nussair
(SVWN),56,81 gradient-corrected ones (GGAs) such as
Becke-Lee-Yang-Parr (BLYP),82,83 Perdew-Burke-
Enzerhof (PBE),84,85 or Becke-Perdew 1986 (BP86),82,86

and hybrid functionals such as Becke3-Lee-Yang-
Parr (B3LYP).80 Moreover, the development of im-
proved xc functionals is still a very active field of
research. At present, the functionals B3LYP and PBE
are the most widely used xc functionals in standard
ground-state DFT applications, and although all
these functionals have been developed with respect
to the electronic ground state, they are also employed
in TDDFT calculations, which is a consequence of the
ALDA approximation (section 3.1.3). In many cases,
results obtained with TDDFT are quite sensitive to
the choice of the xc functionals, in particular, when
local or GGA functionals are compared with hybrid
functionals (see, for instance, refs 87 and 88). This
aspect is also discussed in section 5.1. Therefore, the
reliability of TDDFT calculations should always be
checked by comparison with either wave-function-
based benchmark calculations or experimental data,
as well as by the sensitivity of the results to the
choices of xc functional.

Although approximate xc functionals are employed
in TDDFT, it has been proven to yield accurate
results for valence-excited states the excitation ener-
gies of which lie well below the ionization potential.
For such states, the typical error of TDDFT lies
within the range of 0.1-0.5 eV, which is almost
comparable with the error of high-level correlated
approaches such as EOM-CCSD or CASPT2. How-
ever, to reach such high accuracy within the linear
response formulation of TDDFT, one needs to include
large sets of virtual orbitals. Still, in TDDFT, the
accuracy is reached at very favorable computational
cost making TDDFT applicable to fairly large mol-
ecules.

In general, the hybrid TDDFT scheme is solved
analogously to the TDHF approach as it has been
outlined in section 2.2.2. Again, the non-Hermitian

eigenvalue problem (eq 88) can be converted into a
Hermitian one, since the orbitals are usually real. It
reads

with

The solution of the hybrid TDDFT equations scales
very similarly to the solution of the CIS and TDHF
problems, which were already discussed in sections
2.1.2 and 2.2.2, respectively. However, hybrid TDDFT
is slightly more expensive than TDHF since in
addition to the response of the HF exchange, the
response of the xc potential also needs to be evalu-
ated. In common with ground-state DFT calculations,
this is usually done numerically on an atom-centered
three-dimensional quadrature grid.89 With thresh-
olding, this step can eventually scale linearly with
the size of the molecule for sufficiently large systems,
and thus eventually it becomes insignificant. The
prefactor, however, is quite large, particularly for
finer grids, and thus for medium-sized molecules, this
step can dominate the computation.

When in addition only pure xc functionals are
employed that do not include parts of HF exchange,
the matrix (A - B) becomes diagonal (eq 89) and one
can fully exploit this to avoid its multiplication with
the trial vectors within the iterative Davidson scheme.
In this case, the Tamm-Dancoff approximation does
not imply a decrease in computational cost. On the
contrary, as soon as hybrid functionals are used and
(A - B) is thus not diagonal, the matrix multiplica-
tion must be performed and then TDDFT/TDA does
save computation time by a factor of approximately
two. Another algorithm to solve the TDDFT or TDHF
response equations has been provided by Olsen et
al.,90 which exploits the specific paired structure of
the non-Hermitian eigenvalue eq 90. This algorithm
does not require the involved matrices to be explicitly
available and thus allows for accurate calculations
with high dimensions.

Additional computation time can be saved by a
factor of 3-8 depending on the system of interest if
the resolution-of-the-identity (RI) approximation91 is
used to evaluate the Coulomb-like terms of eq 96.92,93

The RI approximation involves computational effort
that scales with the cube of system size for Coulomb
interactions (and the fourth power for HF exchange)
for fixed basis set size. It is particularly valuable for
medium and large atomic orbital basis sets because
the cost for fixed molecule size grows only as O(n3),
while conventional AO integral processing grows as
O(n4). The additional error introduced in the excita-
tion energies by the RI approximation is negligible
since the larger errors in the total energies of the
ground and excited states are subtracted out, making
TDDFT applicable to very large molecular systems.
On a modern computer, molecular systems with up
to 3000 basis functions (approximately 200 first row
atoms) can be treated by TDDFT in the standard
implementation and systems with up to 4500 or so

(A - B)1/2(A + B)(A - B)1/2Z ) ω2Z (97)

Z ) (A - B)-1/2(X + Y) (98)
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basis functions (300 atoms) can be reached by TDDFT
when the RI approximation is used.

The reason for the accuracy of TDDFT excitation
energies is that the difference of the Kohn-Sham
orbital energies, which are the leading term of the
diagonal elements of the A matrix in eq 96, are
usually excellent approximations for excitation ener-
gies.94,95 This is because the virtual KS orbital ener-
gies are evaluated for the N-electron system and,
thus, correspond more to the single-particle energy
of an excited electron than to the energy of an
additional electron as in Hartree-Fock theory, where
the virtual orbital energies are evaluated for the N
+ 1 electron system. Consequently, orbital energy
differences are a much better estimate for valence-
excited states in KS-DFT than in HF theory. Al-
though TDDFT performs usually very well for valence-
excited states, it is now well-known that TDDFT has
severe problems with the correct description of Ry-
dberg states, valence states of molecules exhibiting
extended π-systems,96,97 doubly excited states,98,99 and
charge-transfer excited states.100-103 For such states,
the errors in the excitation energies can be as large
as a few electronvolts, and the potential energy
surfaces can exhibit incorrect curvature. The prob-
lems with Rydberg states and extended π-systems
can be attributed to the wrong long-range behavior
of current standard xc functionals, since they decay
faster than 1/r, where r is the electron-nucleus
distance. For example, asymptotically corrected func-
tionals such as van Leeuwen-Baerends 1994 (LB94)104

or statistical averaging of orbital potentials (SAOP)105

or local exact exchange potentials106,107 yield substan-
tially improved Rydberg state excitation energies.108

States with substantial double excitation character
cannot be treated within linear response theory in
the usual ALDA approximation, since only singly
excited states are contained in the linear response
formalism.98,99 They can however be recovered when
the xc kernel is allowed to be frequency/energy
dependent, since the xc kernel is in fact strongly
frequency-dependent close to a double excitation.98,99

In the case of excited charge-transfer (CT) states,
which are the topic of section 3.5, the excitation
energies are much too low and the potential energy
curves do not exhibit the correct 1/R asymptote when
R corresponds to a distance coordinate between the
positive and negative charges of the CT state.

Since TDDFT and TDHF are very closely related
linear response theories, it is not surprising that
TDDFT possesses all the properties of TDHF (section
2.2.2). The linear response equations can be derived
variationally,66 but due to the approximate nature
of the employed xc functionals, comparison with the
exact total energy is not possible. One can say,
though, that TDDFT is variational within the “model
chemistry”109 defined by the approximate xc func-
tional. In analogy to TDHF, TDDFT is size-consis-
tent, and it can yield pure spin singlet and triplet
states for closed-shell molecules. Furthermore, TD-
DFT obeys the Thomas-Reiche-Kuhn sum rule of
the oscillator strengths.42

Since 2002, analytic first geometric derivatives of
the excitation energies given by the hybrid expression

of TDDFT (eqs 88 and 96) are available,65,66,110 which
allow for the efficient calculation of first-order prop-
erties of excited states, for instance, their equilibrium
geometries and dipole moments. The equilibrium
structures, dipole moments, and harmonic frequen-
cies of excited states calculated with TDDFT are of
generally high quality, which is comparable to that
of ground-state KS-DFT calculations.66 So far, the
analytic gradients have been implemented in CAD-
PAC and TURBOMOLE.48,49

3.5. Charge-Transfer Excited States in TDDFT
As already mentioned in section 3.4, TDDFT yields

substantial errors for charge-transfer excited
states.87,100,101,103,111 The excitation energies for such
states are usually drastically underestimated, and
moreover, the potential energy curves of CT states
do not exhibit the correct 1/R dependence along a
charge-separation coordinate R,101,102,112 for in reality
the positive and negative charges in a CT state
electrostatically attract each other and, thus, separa-
tion of these charges must result in an attractive 1/R
dependence. The wrong shape of the potential energy
curves excludes the CT states from the reliable
calculation of all molecular properties that involve
their geometric derivative employing TDDFT or
TDDFT/TDA.

These failures of TDDFT in the calculation of CT
excited states can be understood by analysis of the
basic eqs 88 and 96 for the case of charge-transfer
excited states. In contrast to a valence-excited state,
in a long-range, say for example, an intermolecular
charge-transfer state, an electron is transferred from
an occupied orbital i of molecule A to a virtual orbital
a of another molecule B (Figure 2). For simplicity,
let us assume that the overlap between orbitals on
molecule A and orbitals on molecule B is zero.

Figure 2. Schematic sketch of a typical valence-excited
state, in which the transition occurs on one of the indi-
vidual molecules, that is, the orbitals i, j and a, b are
located on the same molecule in contrast to a charge-
transfer excited state in which an electron is transferred
from orbital i on molecule A to orbital a on molecule B.
When the molecules A and B are spatially separated from
each other the orbitals i and j do not overlap with a and b.
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Consequently, for such a state, all terms of eq 96
containing products of occupied and virtual orbitals
vanish. This comprises the second and fourth term
of the definition of the A matrix (eq 96) being the
response of the Coulomb potential and the xc poten-
tial of the KS operator, respectively. Only the first
term, which is the difference of the one-particle
energies of the donor orbital i on A and the acceptor
orbital a on B, and the third term originating from
the nonlocal HF exchange part of the Kohn-Sham
operator contribute to the A matrix of eq 86. This
term contributes to the matrix elements of A, since
orbitals i and j are both on A and the orbitals a and
b are on B. In fact, this term is a Coulomb-like term,
since the created holes (orbitals i and j corresponding
to the positive charge in the CT state) interact with
the electrons (orbitals a and b reflecting the negative
charge), which relates to the electrostatic attraction
within the CT state. Consequently, this term is
essential for the correct 1/R dependence of the
potential energy curves of CT states along the
intermolecular separation coordinate. The same ar-
guments are valid for the elements of the matrix B
(eq 96), and all terms are zero, that is, this matrix
does not contribute to CT states at all. For CT states,
eq 96 reduces to the following simple expressions

It is now obvious from the definition of the A matrix
in eq 100 that the excitation energy of a CT state in
TDDFT is simply given by the difference of the orbital
energies of the electron-accepting and electron-donat-
ing molecular orbitals, ϵa and ϵi, respectively, when
a pure local xc functional (for instance, SVWN,
BLYP,82 or LB94) is employed, that is, cHF ) 0.
Within HF theory this is already a rough estimate
for the energy of the CT state at large distances, since
Koopman’s theorem states that -ϵi and -ϵa cor-
respond to the ionization potential of molecule A and
to the electron affinity of molecule B, respectively.
This is because the occupied orbitals are calculated
for the N-electron system, while the virtual orbitals
are formally evaluated for the (N + 1)-electron
system. This is not the case in density functional
theory following the Kohn-Sham formalism (DFT),
since the same potential is used to calculate the
occupied and virtual orbitals. As a consequence, while
the HOMO still corresponds to the IP, the LUMO is
generally more strongly bound in DFT than in HF
theory and cannot be related to the EA. Since the
negative of the LUMO energy is therefore much
larger than the true EA, the orbital energy difference
corresponding to a CT state is usually a drastic
underestimation of its correct excitation energy.
Furthermore, since the excitation energy of a CT
state is simply given by the constant difference of the
corresponding orbital energies, the potential energy
curves of CT states do not exhibit the correct 1/R
shape along a distance coordinate but are constant.
As already mentioned, the electrostatic attraction
between the positive charge (the holes i, j on A) and
the negative charge (the electrons a, b on B) is

contained in the second term of eq 100, which
corresponds to the linear response of HF exchange.
Therefore, the correct 1/R long-range behavior of the
potential energy surfaces can in principle be recov-
ered by inclusion of nonlocal HF exchange in the xc
potential, which will improve the asymptotic behavior
according to the factor cHF of the exchange functional
(eq 100). This explains the observed asymptotic
behavior of potential energy curves of CT states of a
tetrafluoroethylene-ethylene complex calculated with
the SVWN, LB94, B3LYP, and “half-and-half” func-
tional compared to configuration interaction singles
(CIS) (Figure 3).101

The 1/R failure of TDDFT employing pure standard
xc functionals has in fact been understood as an
electron-transfer self-interaction error. To clarify this,
let us first inspect the case of TDHF (cHF ) 1 in eq
90). The excitation energy of a long-range CT state,
where an electron is excited from orbital i on molecule
A into orbital a on molecule B, is dominated by the
orbital energy difference ϵa - ϵi. In general, ϵa
contains the Coulomb repulsion of orbital a with all
occupied orbitals of the ground state including the
orbital i, which is no longer occupied in the CT state.
In other words, the electrostatic repulsion between
orbitals a and i, the integral (aa|ii), is contained in
the orbital energy difference although orbital i is
empty in the CT state. That means that the trans-
ferred electron in orbital a experiences the electro-
static repulsion with itself still being in orbital i, that
is, it experiences molecule A as neutral. This electron-
transfer self-interaction effect is canceled in TDHF
by the response of the HF exchange term, the second
term of the A matrix (eq 100), being (ii|aa), which
gives rise to the particle-hole attraction. In pure
TDDFT employing approximate xc functionals, HF
exchange is not present and the electron-transfer self-
interaction effect is not exactly canceled leading to
an incorrect long-range behavior of their potential

Aiaσ,jbτ ) δστδijδab(ϵaσ - ϵiτ) - δστcHF(iσjσ|aτbτ) (99)

Biaσ,jbτ ) 0 (100)

Figure 3. Comparison of the long-range behavior of the
lowest CT excited state of an ethylene-tetrafluoroethylene
dimer along the intermolecular separation coordinate
computed with TDDFT employing the SVWN (black), LB94
(red), B3LYP (green), and “half-and-half” (blue) functionals
with the curve obtained at the CIS (brown) level. The
excitation energy of the lowest CT state at 4 Å is set to
zero.
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energy curves.
It is also worthwhile to note another peculiarity of

CT states, namely, that the B matrix (eq 100)
vanishes for a long-range CT state in the TDDFT,
as well as TDHF, case. Since the neglect of the B
matrix is equivalent to applying the Tamm-Dancoff
approximation, TDHF and CIS, as well as TDDFT
and TDDFT/TDA, yield identical results for the
excitation energies of long-range CT states, which is
the difference of the corresponding orbital energies.
This fact can be exploited in TDDFT as a first
diagnostic for whether one deals with a problematic
CT state.

However, if the exact local Kohn-Sham xc poten-
tial would be used, which unfortunately is not known,
the correct 1/R long-range behavior would be found.
This is due to the derivative discontinuities of the
exact exchange-correlation energy with respect to
particle number.112,113 In the case of an electron
transfer from orbital i on molecule A to orbital a on
molecule B, the xc potential jumps discontinuously
by the constant IPA - EAB, leading to a singularity
in the derivative of the xc potential with respect to
the density, that is, the xc kernel fxc used in the
TDDFT calculation (eq 96). This singularity then
compensates the vanishing overlap between the
orbitals i and a when the molecules A and B are being
separated, and thus, the fourth term of eq 96 does in
fact contribute to a CT state when the exact xc
potential would be employed, and the correct 1/R
asymptote along the separation coordinate would
then be obtained for a CT state. Furthermore, this
clearly explains why standard approximate xc func-
tionals in TDDFT fail in describing long-range CT
states correctly since they do not contain the deriva-
tive discontinuities.

At present, several different pathways are starting
to emerge to address this substantial failure of
TDDFT for CT states and to correct for it. The most
obvious way is to improve the xc functional by
including exact exchange in the unperturbed Hamil-
tonian, either in the form of nonlocal Hartree-Fock
exchange or of the exact local Kohn-Sham exchange
potential. The latter are known as local Hartree-
Fock (LHF) or also optimized effective potentials
(OEPs), which have recently been introduced by
Görling106 and Ivanov et al.107 These potentials may
be able to yield the correct asymptotic 1/R depen-
dence of excited CT states, since they possess singu-
larities as soon as the overlap between the electron-
donating and electron-accepting orbitals i and a,
respectively, approaches zero. This, however, remains
to be explored in detail, and it seems numerically
difficult to compensate the vanishing overlap with
the divergence of the xc kernel fxc such that the fourth
term of the A matrix (eq 96) cancels the electron-
transfer self-interaction error correctly and recovers
the correct 1/R asymptote. Also, satisfactory match-
ing correlation functionals remain to be developed.

Inclusion of nonlocal Hartree-Fock exchange has
been realized in a few schemes so far.114-116 In all
these schemes, the Coulomb operator of the Hamil-
tonian is split into two parts, a short-range and a
long-range part, as, for example, in ref 114,

where r12 ) |r1 - r2|. The first term of the right-hand
side (rhs) corresponds to the short-range part and is
evaluated using the xc potential from DFT, while the
second term, the long-range part, is calculated with
exact Hartree-Fock exchange. This idea is fairly old
and had originally been suggested by Stoll and Savin
already in 1985.117-120 The scheme (eq 101) has been
applied in combination with various xc functionals
yielding, for instance, LC-BLYP, which indeed cor-
rects the failures of TDDFT for CT excited states.114

A major drawback of this approach, however, is that
the standard xc functionals require a refitting pro-
cedure. Similar in spirit is the approach of Baer and
Neuhauser, who also include long-range Hartree-
Fock exchange but who employ a different partition
function for the Coulomb operator.116 An extension
of this approach has been presented by Yanai et al.,
who combine B3LYP80 at short range with an in-
creasing amount of exact HF exchange at long range
resulting in a functional called CAM-B3LYP,115 which
gives excellent CT excitation energies in comparison
with benchmark calculations. But since they use at
long range at most 60% HF exchange, the long-range
asymptotic behavior of the CT states is not fully
corrected.115 A slightly different route is taken by
Gritsenko and Baerends who suggest a new long-
range corrected xc kernel that shifts the orbital
energy of the acceptor orbital to a value related to
the electron affinity. The wrong asymptotic behavior
of the CT states is corrected by a distance-dependent
Coulomb term correcting for electron-transfer self-
interaction.95

A completely different ansatz to the solution of the
CT problem may be represented by time-dependent
current density functional theory (TDCDFT), which
has recently been implemented in the Amsterdam
density functional (ADF) package.121,122 We have
previously seen that a correct description of charge-
transfer excited states requires the nonlocal HF
exchange potential, and current functionals are non-
local. However, at present no test calculation has yet
been performed to show whether TDCDFT would in
principle yield correct CT excited states. Also, due
to its high computational cost the question remains
whether this method will be applicable to large
molecules soon.

4. Analysis of Electronic Transitions
When a molecule is excited from the electronic

ground state to an energetically higher lying excited
state, the electronic many-body wave function changes.
To gain insight in the nature of the corresponding
electronic transition, this change in the wave function
needs to be analyzed. In principle, this is possible by
direct analysis of the excited state wave function or
its electron density. For this objective, the techniques
developed for the analysis of the wave function or
electron density of the ground state are simply
applied to the excited state of interest. However, here
we want to focus on approaches that are dedicated

1
r12

)
1 - erf(µr12)

r12
+

erf(µr12)
r12

(101)
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to addressing differences in the ground state and
excited state directly, avoiding tedious analysis of the
excited-state wave function. These approaches com-
prise inspection of the molecular orbitals involved in
the transition (section 4.1), the analysis of the transi-
tion density (section 4.2) or the difference density
(section 4.3), and the so-called attachment/detach-
ment density plots (section 4.4). The advantages and
disadvantages of these analysis tools will be il-
luminated in the following subsections.

4.1. Molecular Orbitals
Usually, the electronic ground state of a molecular

system can be represented by a single Slater deter-
minant composed of single-electron wave functions
describing the movement of the individual electrons
in the molecule. These single-electron wave functions
are the familiar molecular orbitals (MOs) well-known
to chemists and often used to understand molecular
processes. It is thus natural to analyze the changes
in the many-body wave function, that is, the Slater
determinant, in terms of the MOs that constitute it.
As we have already seen in section 2.1, eq 7, an
ansatz for an excited state wave function can be
easily constructed by exchange of an occupied MO
with a virtual one in the ground-state Slater deter-
minant. Usually, an excited state is a linear combi-
nation of several such “excited” determinants, and
the expansion coefficients are obtained by the corre-
sponding calculation, in case of eq 7 by a CIS
calculation. However, sometimes only one or two
excited determinants contribute significantly to the
excited-state wave function (i.e., cia ) 0.8-1.0), and
in such cases, it is easily possible to analyze the
nature of the corresponding transition in terms of the
occupied and virtual MOs that have been inter-
changed in the excited state determinants compared
to the ground state. Such a case is, for instance, the
charge-transfer excited state of the zincbacteriochlo-
rin-bacteriochlorin complex investigated in section
5.2. The wave function of this excited state is
composed of essentially one Slater determinant in
which the highest occupied MO (HOMO) of the
ground state is replaced with the lowest unoccupied
MO (LUMO), since it has an expansion coefficient of
0.99 at the theoretical levels of TDDFT as well as
CIS. Hence, the excited state corresponds to a single-
electron transition from the HOMO to the LUMO (see
also Figure 9 in section 5.2).

Although the analysis of an electronic transition
via MOs is computationally easy and thus convenient
and straightforward for states with only one or two
significantly contributing Slater determinants, it can
become very tedious for states that are represented
by several determinants with expansion coefficients
of similar size. Examples for this scenario are the
wave functions of the repulsive excited states of CO-
ligated heme, the investigation of which is described
in section 5.1. These states are represented by a
linear combination of four “singly excited” determi-
nants with coefficients between 0.3 and 0.7, thus
making it almost impossible to obtain a clear picture
of the nature of these electronic transitions based on
MOs.

4.2. Transition Density
Another possibility to obtain information about an

electronic transition is to analyze the one-electron
transition density. The transition density, T(r), couples
the electronic ground state with the excited state of
interest and is in general given as

If the electronic ground state is given as a single
Slater determinant and the electronically excited
state of interest as a linear combination of determi-
nants, then T(r) is given as a linear combination of
single-determinant transition densities weighted by
their expansion coefficients

In principle, one can analyze the transition density
directly to obtain valuable information about the
symmetry of the transition and about the way in
which a one-electron operator couples two different
states. It is however useful to analyze the transition
density matrix, which is given in the molecular
orbital basis as

via so-called “natural transition orbitals” (NTOs)
analogous to the well-known natural orbitals ob-
tained by diagonalization of the ground-state single-
electron density.123 Since the transition density ma-
trix is a rectangular nocc × nvirt matrix, it cannot
simply be diagonalized. Instead, the “corresponding
orbital transformation” by Amos and Hall124 can be
applied, which is based on a singular value decom-
position of the transition density matrix

where U and V are nocc × nocc and nvirt × nvirt unitary
matrices, respectively, and S is a singular matrix
containing the singular values of T. In general, one
can write

from which follows that

that is, the unitary transformation U diagonalizes
the matrix TT† and consequently contains its eigen-
vectors as columns. The singular values of S are
given as the square root of the eigenvalues of TT†.
Therefore, one can determine the unitary transfor-

T(r) ) N∫|Ψex(r1,r2,...rn)〉〈Ψ0(r1,r2,...rn)| dr2...drn

(102)

T(r) )

∑
ia

cia∫|Φia(r1,r2,...rn)〉〈Φ0(r1,r2,...rn)| dr2...drn (103)

Tia ) 〈φi|T̂(r)|φa〉 (104)

T ) USV† (105)

TT† ) USV†VS†U†

) USS†U†

) US2U† (106)

U†TT†U ) S2 (107)
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mation matrix U and the singular matrix S by
solving the eigenvalue equation

Following an argument for the matrix T†T analogous
to eq 106 one finds that the unitary matrix V can be
determined by solving a corresponding eigenvalue
equation

Although the matrices TT† and T†T have different
dimensions, namely, nocc × nocc and nvirt × nvirt,
respectively, their first nocc eigenvalues are identical,
and the eigenvalues λnocc...λnvirt of the larger matrix
T†T are zero in the case of CIS or TDA

These additional zero eigenvalues arise from map-
ping the original transition density matrix onto the
larger matrix T†T, and hence the additional eigen-
vectors and eigenvalues must belong to the kernel
of the map. In the case of TDHF or TDDFT, the sum
of the eigenvalues will not be identical to one but will
deviate from that to the extent that the de-excitations
are significant. Especially in TDDFT, these contribu-
tions are usually small.

The occupied and virtual “natural transition orbit-
als”, φi

nto and φa
nto, respectively, are defined as

where in eq 112 the index a ends at nocc and not nvirt,
since nvirt - nocc virtual orbitals are mapped onto the
null vector. Following this procedure, a one-to-one
mapping between occupied and virtual orbitals is
established, because one occupied and one virtual
NTO correspond to each eigenvalue λi.

In summary, the originally nocc × nvirt dimensional
transition density matrix has been reduced to a nocc
× nocc dimensional matrix in the basis of so-called
“natural transition orbitals”, which correspond to nocc
particle-hole amplitudes. With each hole in the
occupied space, one single corresponding particle in
the virtual space can be associated by means of the
associated eigenvalue λ. The importance of a par-
ticular particle-hole excitation to an electronic ex-
citation is reflected by the value of the corresponding
eigenvalue. Usually, electronic transitions can be
expressed by one single particle-hole pair in the
NTO basis with an associated eigenvalue of es-
sentially one, even such transitions that are highly
mixed in the canonical molecular orbital basis. Plot-

ting the corresponding NTOs gives detailed insight
into the nature of the electronic transition.

An example for the successful application of NTOs
is the analysis of the nature of the energetically
lowest excited states of the ruthenium complex [Ru-
(bpy)2dppz]2+ (bpy ) 2,2′-bipyridine; dppz ) dipyrido-
[3,2-a:2′,3′-c]phenazine, which serves as very sensi-
tive luminescent reporter of DNA in aqueous solu-
tion.125 In Figure 4, the molecular structure of the
complex and the NTOs of the hole and particle of the
lowest 3π-π* transition are given. In this case, an
analysis of the involved molecular orbitals is very
tedious since the transition is represented by a linear
combination of several singly substituted determi-
nants, while on the contrary, the natural transtion
orbitals capture 90% of the character of the transi-
tion. More examples for the application of analyses
via NTOs can be found in refs 123, 125, and 126.

4.3. Difference Density
A complementary approach to the analysis of the

transition density matrix T is the investigation of the
difference density matrix ∆, which is simply given
as the difference between the single electron density
matrices of the excited state Pex and the electronic
ground state P0

Today, the analysis of an electronic transition by
means of the difference density is frequently per-
formed (see, for example, refs 127-130), and in
principle, valence and Rydberg excited state can be
easily distinguished. Also the nature of the transition
(n-π* or charge-transfer) is often readily apparent
for simple molecular systems. However, the differ-
ence density is a complicated function with often
intricate nodal surfaces, which makes its plotting and
analysis often very tedious especially for larger
molecules. This is mostly because both the ground-
state electron density that is removed upon excitation
and the “new” electron density of the excited state
are shown with different signs together in one
picture. It is also somewhat awkward that a density
acquires a negative sign since it is originally defined
as the square of the wave function.

TT†ubi ) λiubi i ) 1, 2, ..., nocc (108)

T†Tυbi ) λibυi i ) 1, 2, ..., nvirt (109)

1 g λi ) λ′i g 0 i ) 1, 2, ..., nocc

∑
i

nocc

λi ) 1

λi ) 0 i ) (nocc + 1), ..., nvirt (110)

φi
nto ) φiU i ) 1, 2, ..., nocc (111)

φa
nto ) φaV a ) 1, 2, ..., nocc (112)

Figure 4. Molecular structure (A) and NTOs of the hole
(B) and particle (C) densities of the lowest 3π-π* transition
of [Ru(bpy)2dppz]2+.125

∆ ) Pex - P0 (113)
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4.4. Attachment/Detachment Density Plots
The physically most appealing and conceptually

easiest way to analyze the nature of a complicated
electronic transition is via so-called attachment/
detachment density plots.32,131 The basis of this
analysis is the diagonalization of the difference
density matrix ∆ given by eq 113 in section 4.3 via

where U is a unitary transformation matrix contain-
ing the eigenvectors of the difference density matrix,
which again could be considered as “natural orbitals
of the electronic transition” but which are generally
different from those in section 4.2. δ is the diagonal
matrix containing the eigenvalues δp of ∆, which are
interpreted as occupation numbers of the eigenvec-
tors. The difference density matrix is a square N ×
N dimensional matrix, where N is (nocc + nvirt). In
electronic transitions that do not involve ionization
or electron attachment, the sum of all occupation
numbers must be zero; otherwise it corresponds to
the net electron gain or loss of electrons n during the
transition, that is,

In a next step, the diagonal difference density matrix
δ is split into two matrices A and D. The matrix D,
the so-called detachment density, is defined as the
sum of all eigenvectors of ∆ that possess negative
eigenvalues, weighted by their absolute value of their
occupations. Consequently, if d is a diagonal matrix
with elements

then

The detachment density matrix D is a positive
semidefinite N × N matrix, since the sign of the
negative eigenvalues is changed, and thus, it has
positive entries everywhere, where ∆ has negative
ones. All other values of ∆ are set to zero. This
density corresponds to the electron density of the
ground state that is removed upon electron excitation
and can thus be seen as a hole density, although not
in general corresponding to removal of an integral
number of electrons.

The attachment density matrix A is similarly
defined as the sum of all natural orbitals of the
difference density matrix with positive occupation
numbers, weighted by the absolute value of their
occupation. Consequently, if a is a N × N diagonal
matrix with elements

then

This density matrix A corresponds to the particle
levels occupied in the electronic transition. The
difference between the two new matrices A and D
corresponds to the original difference density matrix
∆:

In other words, the detachment density is that part
of the single-electron ground-state density that is
removed and rearranged as attachment density.
Together these densities characterize an electronic
transition as Df A, which permits the visualization
and analysis of electronic transitions more or less as
if they correspond to just single-orbital replacements,
regardless of the extent of configuration mixing that
occurs in the excited-state wave function and regard-
less of how inappropriate the molecular orbitals are
for the description of the transition. The analysis via
attachment/detachment density plots can be applied
to any excited-state calculation that yields a one-
particle difference density.

An application of attachment/detachment density
plots is given in section 5.1, where the excited states
of CO-ligated heme are analyzed (Figure 7). These
states are characterized by strong configuration
mixing of four excited Slater determinants, which
makes an analysis in the molecular orbital basis
impossible. By means of attachment/detachment
plots, the nature of the repulsive states could be
easily analyzed and understood in terms of an Fe-
CO back-bonding to anti-back-bonding transition.
Further applications of attachment/detachment plots
can be found, for example, in refs 132-135.

5. Illustrative Examples
In this section, illustrative and educative examples

for applications of CIS, TDHF, and TDDFT to large
molecular systems will be presented. First, an inves-
tigation of the ultrafast photodissociation process of
CO-ligated heme employing TDDFT is described,
which is a well suited model study, since it demon-
strates the necessity to perform a detailed investiga-
tion of the functional performance and it highlights
the usefulness of attachment/detachment density
plots to analyze complicated electronic transitions.
Then, we will show TDDFT results for a zincbacte-
riochlorin-bacteriochlorin complex, where we are
interested in the spectral properties of the complex
in comparison to the individual molecules. Here,
severe problems with charge-transfer excited states
are encountered using TDDFT alone, and a practical
hybrid approach combining the benefits of TDDFT
and CIS must be applied to obtain physically reason-
able results. During the whole section, emphasis is
put on the theoretical approach and the choice of
method rather than on the chemically and physically
interesting results of the investigations, which can
be found in the original publications.

5.1. The Initial Steps of the Ultrafast
Photodissociation of CO-Ligated Heme

CO-ligated iron porphyrin (heme) is known to
undergo ultrafast dissociation of the CO ligand

U†∆U ) δ (114)

Tr(∆) ) ∑
p)1

N

δp ) n (115)

dp ) -min(δp,0) (116)

D ) UdU† (117)

ap ) max(δp,0) (118)

A ) UaU† (119)

∆ ) A - D (120)
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within 50 fs upon excitation of the system in the
energetically lowest lying Q-states of the porphyrin
ring.136 In a recent theoretical investigation employ-
ing TDDFT, the electronically excited states of CO-
ligated heme were studied with the objective to
identify and characterize the electronic states that
are involved in the ultrafast photodissociation pro-
cess.88,137 Within the calculation, a model complex
was used that reflects the structural characteristics
of the heme group in the intact proteins hemoglobin
and myoglobin (Figure 5).

A crucial step in theoretical investigations employ-
ing TDDFT is the choice of an appropriate exchange-
correlation (xc) functional and a reasonable basis set.
Since one cannot expect that one approximate xc
functional describes all excited states of a molecule
equally well, it is important to test several xc func-
tionals with respect to their performance for the
system under investigation. In principle, calculated
properties are compared with their experimental
values, for example, geometrical parameters or ex-
perimentally determined excitation energies of opti-
cally allowed transitions. In the presented investi-
gation of the CO-ligated heme group, the geometrical
parameters optimized with ground-state DFT, as well
as the values of the experimentally observable elec-
tronic transitions, the Q and B states, calculated with
TDDFT, are compared with their experimental val-
ues. Three different xc functionals were tested: the
local Slater-Vosko-Wilk-Nusair (SVWN) func-
tional,56,81 the gradient-corrected Becke-Lee-Yang-
Parr (BLYP)82 functional, and the hybrid Becke3-
Lee-Yang-Parr (B3LYP)80 functional. As first test,
the geometries of the complex were optimized using
standard ground-state DFT with the three xc func-
tionals mentioned above and the LANL2DZ basis set,
which makes use of the Los Alamos effective core
potential for the inner electron shell of the iron atom
and uses the 6-31G basis set on all other lighter
atoms. The calculated values for four selected pa-
rameters (the Fe-CO bond, the bond between the
iron and the porphyrin nitrogens (Fe-NP), the bond
between the iron and the imidazole nitrogen (Fe-
NIm), and the C-O bond of the CO ligand) are given
in Table 1 and compared with their experimental
values.138,139 It can be seen that the calculated values
depend only slightly on the quality of the xc func-
tional, that is, they are essentially independent of the
choice of the functional.

As second test of the functional performance, the
excited states of the model complex were calculated
using TDDFT employing the functionals from above,
and the obtained values were compared with the
experimentally known values of the excitation ener-
gies of the allowed transitions, the Q and B states.140

The Q and B states are known to be π-π* transitions
and can thus be expected to be reasonably well
described by TDDFT. For these test calculations, the
standard 6-31G* basis set and the LANL2DZ basis
set were employed. The results of the test calcula-
tions are summarized in Table 2.

In contrast to the geometrical parameters, which
varied only slightly when different xc functionals
were tested, the excitation energies are sensitive to
the choice of the xc functional. While the local SVWN
and the gradient-corrected BLYP functional strongly
underestimate the excitation energies of the Q states,
the B bands are in good agreement with the experi-
mental values. The hybrid B3LYP functional, how-
ever, overestimates the excitation energies of both
the Q states and the B states by about 0.2 eV. After
a closer look at the basis set dependence, the results
of the SVWN and BLYP calculations change strongly
when going from the LANL2DZ basis set to the
6-31G* basis set. This is not the case for the calcula-
tions employing the B3LYP functional. Due to the
consistent error of 0.2 eV for all tested states and the
robustness of the B3LYP functional with respect to
basis set change, the B3LYP functional has been
chosen to be the one used throughout the whole
investigation of the photodissociation process of CO-
ligated heme. This investigation clearly illustrates
the importance of a performance check of the xc
functionals prior to the actual investigation. As one
can see, it is not possible to pick one random
functional and be guaranteed to obtain reliable
results for excitation energies within the TDDFT
framework.

To identify the relevant excited electronic states
for the ultrafast photodissociation process of CO-
ligated heme, the lowest excited singlet states of the
system were calculated along the CO stretch coordi-
nate employing TDDFT in combination with the
B3LYP functional and the LANL2DZ basis set. The

Figure 5. Model complex used for the theoretical inves-
tigation of CO-ligated heme.

Table 1. Calculated Geometrical Parameters (Å) of
the CO-Ligated Heme Model Complex in Comparison
with Experimentally Determined Values for the
Complete System

BLYP B3LYP expt

Fe-CO 1.81 1.80 1.73-1.93
Fe-NP 2.01 2.03 1.98-2.06
Fe-NIm 1.98 2.04 2.06-2.20
C-O 1.21 1.16 1.07-1.12

Table 2. Excitation Energies (eV) of the Q and B
States of the Model Complex Compared with the
Experimentally Observed Values

SVWN BLYP B3LYP

LANL2DZ 6-31G* LANL2DZ 6-31G* LANL2DZ 6-31G* expt

Qy 1.515 1.396 1.833 1.573 2.404 2.403 2.18
Qx 1.537 1.418 1.843 1.593 2.418 2.413 2.30
Bx 3.009 2.909 3.049 2.927 3.347 3.314 2.96
By 3.020 2.927 3.056 2.943 3.359 3.325 3.16

4030 Chemical Reviews, 2005, Vol. 105, No. 11 Dreuw and Head-Gordon



geometry of the system was not optimized along the
dissociation pathway, since geometry relaxation ef-
fects can be expected to be small for this ultrafast
process. The calculated potential energy curves are
shown in Figure 6.

Upon photoexcitation of CO-ligated heme into the
Q states (1A′ and 1A′′ in Figure 6), the system decays
nonradiatively into two quasi-degenerate repulsive
states. These states are identified as 3A′ and 5A′′ at
the equilibrium geometry of CO-ligated heme. Along
the dissociation coordinate, a small energy barrier
of 0.15 eV must be crossed, but this is probably easily
accomplished by vibrational excitation going along
with the photoexcitation. Calculation of the vibra-
tional frequencies of the electronic ground state with
DFT/B3LYP/6-31G* corroborates this picture, since
the period of the vibration associated with the Fe-
CO stretch coordinate is calculated to be about 70
fs, which strongly correlates with the time scale of
the photodissociation process of 50 fs.

Since the repulsive excited states involve linear
combinations of several molecular orbitals and are,
thus, difficult to analyze in terms of orbitals, the
nature of the repulsive states has been analyzed
using attachment/detachment density plots32 (see
also section 4.4) at the equilibrium geometry, as well
as at an Fe-CO bond length of 2.5 Å. The calculated
plots are displayed in Figure 7. Comparison of the
detachment and attachment densities nicely explains
the repulsive character of the 5A′′ and 3A′ states at
the equilibrium geometry (upper panel of Figure 7).
While the detachment density, which is removed
from the ground-state density, is clearly dominated
by a bonding iron-carbon interaction, the attach-
ment density, which is added to the ground-state
density, has clearly antibonding character, which is
seen as a node along the Fe-C bond. The bonding
interaction between the iron atom and the CO ligand
in the detachment density can be understood in
chemical terms as back-bonding from an iron d-
orbital into the π* orbital of CO. The antibonding
interaction in the attachment density corresponds to
the antibonding combination of these orbitals (anti-

back-bonding). Furthermore, it can be seen from the
attachment/detachment density plots of the repulsive
states at 2.5 Å Fe-CO bond distance (lower panel of
Figure 7) that the character of this state changes
along the Fe-CO stretch coordinate and that it gets
more iron d-orbital character.

In summary, application of TDDFT to the ultrafast
photodissociation of CO-ligated heme has led to a
detailed understanding of the initial steps of this
complicated process. Furthermore, the presented
investigation can serve as a good example for a
typical TDDFT study, since the excited electronic
states under investigation are typical valence-excited
states, which can be expected to be reasonably well
described with TDDFT. A detailed study of the
dependence of the results on different xc functionals
has been performed, which is a crucial step in any
theoretical investigation employing TDDFT. The
usefulness of density-based analyses, here attach-
ment/detachment density plots, has been demon-
strated.

5.2. Charge-Transfer Excited States in
Zincbacteriochlorin−Bacteriochlorin Complexes

Despite its failure for CT states as outlined in
section 3.5, TDDFT has recently been applied to
several molecular complexes in which photoinitiated
electron transfer might occur and, thus, long-range
CT excited states are relevant. In this spirit, phe-
nylene-linked free-base porphyrin and zincporphyrin
complexes, as well as their bacteriochlorin (BC)
analogues, have been investigated employing TDDFT
in combination with the BLYP functional,141,142 and
a plethora of spurious CT states was obtained in the
visible range of the electronic spectra of these com-
pounds. In contrast, in a similar study of linked
zincporphyrin dimers in which the symmetry-adapted
cluster configuration interaction (SAC-CI) method27

has been employed, CT excited states were not found
in the energy regime of the energetically lowest Q

Figure 6. Calculated potential energy curves along the
Fe-CO stretch coordinate for CO-ligated heme. The data
have been obtained using TDDFT/B3LYP/LANL2DZ. Figure 7. Attachment/detachment density plots of the

repulsive states calculated at the equilibrium Fe-CO
distance of 1.8 Å (top) and at an Fe-CO bond length of 2.5
Å (bottom) using TDDFT/B3LYP/LANL2DZ. The isosur-
faces shown are calculated for a 90% density enclosure.
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states of zincporphyrins,143 which is in accordance
with experimental findings (see ref 144 and refer-
ences herein). Typically, charge-transfer excited states
are experimentally identified via polarity dependent
solvatochromic shifts of their absorption band or by
means of ultrafast transient absorption spectros-
copy.145-147 In this section, we are going to outline a
recent reinvestigation of the excited states of a
phenylene-linked zincbacteriochlorin-bacteriochlorin
complex (Figure 8) employing TDDFT102 for two
reasons. On one hand, we want to demonstrate the
substantial failure of TDDFT employing standard xc
functionals for CT excited states, and on the other
hand, the usefulness of the practical scheme to
circumvent the problem introduced in here should be
pointed out.

As a first step, the excited states of the monomers
zincbacteriochlorin and bacteriochlorin have been
calculated employing TDDFT with the BLYP82 xc
functional and the 6-31G* basis set at the separately
optimized geometries. At this level of theory, ZnBC
possesses weakly allowed singlet excited states at
2.07 and 2.44 eV, as well as strongly allowed transi-
tions at 3.62 and 3.88 eV, which are interpreted as
the well-known Qx and Qy, as well as By and Bx,
states, respectively. The corresponding states of
bacteriochlorin are found at energies of 2.10 (Qx), 2.39
(Qy), 3.67 (By), and 3.85 eV (Bx). Our calculated as
well as experimental values for the excitation ener-
gies of the Q states are given in Table 3.

All values are in reasonable agreement with other
calculations of the electronic absorption spectra of
ZnBC and BC.148-150 Using the same theoretical
approach for the calculation of the 10 lowest singlet
excited states of the full (1,4)-phenylene-linked ZnBC-
BC complex (Figure 8), one obtains the values given
in Table 3. As expected, the Q-states of the constitut-
ing monomers are found at almost exactly identical
energies in the linked complex. They are slightly red-
shifted by only 0.01-0.02 eV. In addition to the
monomer states, further energetically low-lying states
are found at 1.33, 1.46, 1.86, and 1.94 eV. The

energetically lowest state at 1.33 eV is a pure one-
electron transition from the highest occupied molec-
ular orbital (HOMO) into the lowest unoccupied
molecular orbital (LUMO), and analysis of these MOs
(Figure 9) clearly shows that this state corresponds
to an electron transfer from ZnBC to BC. In analogy,
states 2 and 3 at 1.46 and 1.86 eV represent BC-to-
ZnBC CT states, while state 4 at 1.94 eV is again a
ZnBC-to-BC CT state. Of course, these states cannot
be present if the monomers are calculated individu-
ally but are a characteristic of complex formation.

However, as pointed out in section 3.5, the calcu-
lated values of the CT states are given at too low
energies, which can be easily confirmed by simple
electrostatic considerations. Assuming that the sepa-
rated charges in the CT states could be treated as
point charges, the distance-dependent excitation
energy of the energetically lowest ZnBC-to-BC CT
state ωCT(R) can simply be estimated via

Figure 8. Molecular structure of the (1,4)-phenylene-
linked zincbacteriochlorin-bacteriochlorin complex, as well
as of the model complex used in some calculations. The
distance coordinate R is here defined as the distance
between the formerly linked carbon atoms.

Table 3. Comparison of the Energies of the Ten
Lowest Singlet Excited States of the Full
Phenylene-Linked ZnBC-BC Complex as Well as of
the Model Complex without the Phenylene Bridge
with the Individually Calculated and Experimentally
Determined Excitation Energies of the Q States of
the Monomersa

ZnBC-BC complex monomers

state full model transition calcd expt

1 1.33 (0.000) 1.32 (0.000) ZnBC f BC CT
2 1.46 (0.000) 1.47 (0.000) BC f ZnBC CT
3 1.86 (0.000) 1.90 (0.000) BC f ZnBC CT
4 1.94 (0.001) 1.96 (0.000) ZnBC f BC CT
5 2.05 (0.393) 2.07 (0.266) π-π* ZnBC (Qx) 2.07 (0.231) 1.65b

6 2.09 (0.131) 2.12 (0.170) π-π* BC (Qx) 2.10 (0.187) 1.6c

7 2.38 (0.059) 2.40 (0.038) π-π* BC (Qy) 2.39 (0.034) 2.3c

8 2.42 (0.019) 2.46 (0.018) π-π* ZnBC (Qy) 2.44 (0.026) 2.2b

9 2.43 (0.022) 2.42 (0.000) ZnBC f BC CT
10 2.58 (0.000) 2.66 (0.000) BC f ZnBC CT

a The oscillator strength of each transition is given in
brackets behind the corresponding energy. All calculations
have been performed at the level of TDDFT/BLYP/6-31G* and
all energies are given in eV. b Experimental data for zinctetra-
phenylbacteriochlorin-pyridine were taken from ref 154.
c Experimental data for bacteriopheophorbide were taken from
ref 155.

Figure 9. Highest occupied molecular orbital (HOMO,
bottom) and lowest unoccupied molecular orbital (LUMO,
top) of the ZnBC-BC complex. In the lowest excited CT
state, an electron is transferred from the HOMO to the
LUMO, and thus, this transition corresponds to an electron
transfer from ZnBC to BC.

ωCT(R) > IPZnBC + EABC - 1/R (121)
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where IPZnBC is the ionization potential of the ZnBC
monomer, EABC is the electron affinity of bacterio-
chlorin, and 1/R is the electrostatic attraction be-
tween them. Of course, R corresponds to the distance
between the charges, which in our approximation is
chosen to be the smallest distance between the
carbon atoms of the different tetrapyrrol rings in the
(1,4)-phenylene-linked ZnBC-BC complex, which has
a value of 5.84 Å (see also Figure 8). At the level of
DFT/BLYP/6-31G*, IPZnBC has a value of 5.57 eV and
EABC is given as -0.42 eV yielding an excitation
energy for the lowest ZnBC-to-BC CT state of about
2.69 eV at the equilibrium distance R of the linked
complex. In this equation, the cation and anion are
treated as point charges and the shortest possible
distance R is assumed, which of course leads to an
overestimation of the electrostatic attraction. As a
consequence, the estimated excitation energy ωCT is
a true lower bound to the correct value. Comparison
with the excitation energy calculated at the level of
TDDFT/BLYP/6-31G*, which has a value of 1.33 eV,
yields a minimum error of 1.36 eV for this CT state.
This demonstrates the tendency of TDDFT to under-
estimate the excitation energies of CT states drasti-
cally. It is worthwhile to note that the excitation
energies of the CT states computed with TDDFT
correspond in fact exactly to the difference of the
orbital energies involved in the excitations, as we
have already discussed in section 3.5. For instance,
the excitation energy of the lowest CT state (1.33 eV)
is solely given by the difference of the HOMO (-3.70
eV) and LUMO (-2.37 eV) energies of the electronic
ground state.

As the next step, the dependence of the excitation
energies of the lowest CT states on the distance R
between the separated charges will be investigated.
This requires the introduction of a suitable model
complex, in which the distance between the positive
and negative charges of the CT state can be easily
varied. For the (1,4)-phenylene-linked ZnBC-BC
complex, this is easily accomplished by neglecting the
phenylene bridge, and choosing the distance between
the formerly connected carbon atoms as the distance
coordinate R, which has a value of 5.84 Å in the
linked complex and was used previously to estimate
the minimum excitation energy, ωCT, in eq 121. As
can be seen in Table 3, the phenylene bridge has only
minor influence on the 10 lowest excited states of the
complex, which are slightly shifted by an average of
0.03 eV, while the largest shift of 0.08 eV occurred
for state 10. As a consequence, the model complex
can be used in further calculations without losing
general validity of the obtained results.

To investigate the asymptotic behavior of the
excited states and, in particular, of the excited CT
states of the ZnBC-BC complex, the 10 lowest
excited states of the model complex (Figure 8) have
been calculated employing TDDFT with the BLYP
functional and the 6-31G* basis set along the dis-
tance coordinate R. The obtained potential energy
curves (PECs) are displayed in the upper part of
Figure 10. As can be easily seen, the potential energy
curves of the CT states are constant along the
distance R between the monomers (the excitation

energies correspond to the orbital energy differences),
and they do not show the correct 1/R dependence.
This is due to the electron-transfer self-interaction,
which is not canceled in the employed pure BLYP
functional as we have outlined in section 3.5. In the
lower part of Figure 10, potential energy curves are
shown that are obtained with a hybrid approach of
TDDFT and CIS that will be described in detail
within the next paragraph.

In contrast to TDDFT methods, CIS and TDHF
yield the correct 1/R behavior of the potential energy
curves of CT states with regard to a distance coor-
dinate, because of the full inclusion of HF exchange,
which leads to the cancellation of electron-transfer
self-interaction. On the other hand, the excitation
energies calculated with CIS or TDHF are usually
much too large owing to the calculation of the
energies of the virtual orbitals for the (N + 1)-electron
system instead of for the N-electron system. There-
fore, we suggest using a hybrid scheme that combines
the benefits of both methods to obtain reasonable
estimates for the energies and potential energy
surfaces of CT states relative to valence-excited
states. This approach can only be seen as a practical

Figure 10. Potential energy curves of the lowest singlet
excited states of the ZnBC-BC complex along the distance
coordinate R calculated with TDDFT/BLYP/6-31G* (top)
and with the hybrid TDDFT/CIS approach (bottom, see text
for details). Short-dashed lines correspond to CT excited
states, solid lines are the valence-excited Q states, and the
long-dashed line represents the electronic ground state.
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work-around to the CT problem in TDDFT until a
more theoretically sound solution is found. However,
it is a useful “diagnostic” for whether CT states are
in the range of the valence excitations of interest. As
the first step of this hybrid approach, a ground-state
DFT calculation is performed for the energetically
lowest CT state at a large intermolecular distance
(R0) by exchanging the orbital i located at molecule
A against the orbital a located at molecule B in the
#-part of the wave function. To converge the DFT
calculation onto the energetically lowest CT state, we
generally use the geometric direct minimization
technique (GDM).151 At shorter distances when the
orbitals start to overlap, GDM converges to the
closed-shell ground state of the dimer, presumably
because the CT solution is no longer a distinct wave
function minimum. Otherwise this would provide a
convenient way to map out a complete potential
energy surface of the CT state. A corrected excitation
energy for the lowest CT state is then easily obtained
by subtraction of the total energies of the ground
state and the CT state, which corresponds to the
known ∆DFT method.152 This excitation energy does
not suffer from electron-transfer self-interaction. The
self-interaction-free long-range value of the CT ex-
citation energy is then used as a constant offset (for
exchange-correlation effects) for the asymptotically
correct potential energy curve calculated at the CIS
level:

The quality of the total energy of the CT state is
roughly the same as the one of the ground state, since
the energetically lowest CT state usually corresponds
to a pure occupied-virtual single-electron transition
over the considered distance range, that is, the
excited state is well described by a single Slater
determinant. Furthermore, in the limit of the exact
xc functional, TDDFT and ∆DFT are equivalent.
Plotting the shifted CIS curve together with the
curves of the valence-excited states calculated with
TDDFT yields a complete self-interaction-free picture
of all relevant excited states of the dimer. We have
investigated the error that is introduced by using the
CIS curve instead of the ∆DFT curve by studying the
energetically lowest CT state of a tetrafluoroethyl-
ene-ethylene dimer. In this small system, it is
possible to converge the ground-state DFT calculation
at even shorter distances onto the CT state with the
help of a maximum-overlap method (MOM)153 and
thereby to map out a complete potential energy
surface for the CT state. We found that by using the
CIS curve with the self-interaction-free offset value
instead of the ∆SCF curve one introduces an ad-
ditional error of at most 0.1 eV. Therefore, it can be
expected that the accuracy of the hybrid approach
for CT states is of about the same order as TDDFT
is for valence-excited states.

The proposed hybrid approach is of course not
useful for small systems, since more reliable wave-
function-based methods are available, but for large
systems, this approach is at present a viable way to
gain insight into the energetic positions of intermo-

lecular CT states compared to valence-excited states
and to obtain reasonable potential energy curves
along an intermolecular separation coordinate. The
hybrid approach has already been successfully ap-
plied to CT states in large xanthophyll-chlorophyll
dimers.87,111

In Figure 10, the electron-transfer self-interaction-
free PECs of the two energetically lowest CT states
of the ZnBC-BC complex are shown that have been
calculated along the distance coordinate R with CIS
and shifted by a ∆DFT offset. This offset has been
calculated for the lowest ZnBC-to-BC CT state to be
3.79 eV and for the lowest BC-to-ZnBC CT state to
be 3.95 eV at the level of BLYP/6-31G*. These curves
are then plotted together with the curves of the
Q-states given by the TDDFT/BLYP/6-31G* calcula-
tion. The obtained picture is substantially different
from the one obtained by TDDFT alone. First of all,
the two energetically lowest CT states are clearly
above the valence-excited Q-states of the complex.
Second, the CT states do exhibit the correct asymp-
totic behavior such that the excitation energies do
increase with 1/R. Furthermore, from this picture one
can obtain a reasonable value for the lowest intramo-
lecular CT states of the 1,4-phenylene-linked ZnBC-
BC complex. At the value of 5.84 Å, the value of R in
the full complex, the lowest CT state possesses an
excitation energy of 3.75 eV and the second lowest
CT state has an excitation energy of 3.91 eV, which
agrees with the previously computed lower bound for
the excitation energies of these states. Compared
with the TDDFT computed values of 1.33 and 1.46
eV for these states, this yields errors in the TDDFT
calculation of 2.42 and 2.43 eV, respectively. As a
consequence, the spectrum as obtained by TDDFT
alone and published previously142 is an artifact of the
approximate xc functionals employed in present-day
TDDFT.

6. Brief Summary and Outlook
At present, time-dependent density functional theory

(TDDFT) is the most prominent method for the
calculation of excited states of medium-sized and
large molecules. Every week, a large number of
publications appear that present successful applica-
tions of the method in fields such as inorganic,
organic, and physical chemistry. With the enormous
advance in computer technology, systems up to 300
second-row atoms became tractable, which even
allows for the treatment of excited-state problems in
the fields of biochemistry, biophysics, and material
sciences.

TDDFT is a formally exact theory that relies on
the analysis of the time-dependent linear response
of the formally exact ground-state density to a time-
dependent external perturbation, which after Fourier
transformation yields exact excited-state energies
and oscillator strengths. The derivation of the famous
Runge-Gross theorem and the subsequent formula-
tion of a time-dependent Kohn-Sham equation were
the cornerstones in the development of the TDDFT
formalism. However, since the exact xc functional is
not known, approximate xc functionals need to be
employed in a practical calculation. Usually the

ωCT(R) ) ωCT
CIS(R) + (∆DFT(R0) - ωCT

CIS(R0)) (122)
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adiabatic local density approximation (ALDA) is
employed, and standard time-independent xc func-
tionals derived for ground-state DFT are used. Con-
comitantly, errors in the excitation energies and
oscillator strengths are introduced. Still, for most
valence-excited states, which lie well below the first
ionization potential, TDDFT yields results with high
accuracy at relatively low computational cost in
comparison with highly accurate methods such as
MRCI, CASPT2, or EOM-CCSD, which are applicable
only to small molecules up to 20 atoms. In fact, the
quality of the excitation energies often lies within
0.1-0.5 eV compared with experimental data. Nev-
ertheless, one has to be very careful using TDDFT
with approximate xc functionals owing to its failures
for Rydberg states, systems with large π-systems,
doubly excited states, and CT states. The latter
failure limits the applicability of TDDFT to large
systems or small molecules in solution or protein
environments dramatically, because erroneous inter-
and intramolecular CT excited states occur in the
low-energy region of the electronic spectra. At present,
this prevents TDDFT from being a black-box method
for the calculation of excited-state properties in the
same fashion that time-independent DFT has become
a standard tool for the study of electronic ground
states.

In view of these findings, much research is still
dedicated to the improvement and development of
new xc functionals to eliminate the known failures
of TDDFT. However, a remaining open question is
whether there exists an approximate xc functional
that can describe all excited states equally well. Since
different excited states can possess very different
electronic structures, it seems unlikely that they can
all be captured by one simple approximate xc func-
tional. An approximation may be an excellent one for
one class of excited states but at the same time a very
poor one for another equally important class of
excited states. From this point of view, the discovery
of the “one” approximate xc functional that solves all
the problems seems unlikely; at least it poses a huge
challenge to leading experts in the field.

After its birth in 1984, TDDFT has now left its
childhood behind and advanced to a juvenile method
that has proven to be a useful alternative approach
to standard wave-function-based methods for the
calculation of excited states. Whether its indicated
failures are remainders of children’s diseases that can
be fully cured in the future and whether TDDFT
thereby possesses the potential to advance to a
standard black-box research tool for excited states
as its older cousin DFT has become for ground states,
the near future will show.
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