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The random phase approximation �RPA� to the density functional correlation energy systematically
improves upon many limitations of present semilocal functionals, but was considered too
computationally expensive for widespread use in the past. Here a physically appealing reformulation
of the RPA correlation model is developed that substantially reduces its computational complexity.
The density functional RPA correlation energy is shown to equal one-half times the difference of all
RPA electronic excitation energies computed at full and first order coupling. Thus, the RPA
correlation energy may be considered as a difference of electronic zero point vibrational energies,
where each eigenmode corresponds to an electronic excitation. This surprisingly simple result is
intimately related to plasma theories of electron correlation. Differences to electron pair correlation
models underlying popular correlated wave function methods are discussed. The RPA correlation
energy is further transformed into an explicit functional of the Kohn–Sham orbitals. The only
nontrivial ingredient to this functional is the sign function of the response operator. A stable iterative
algorithm to evaluate this sign function based on the Newton–Schulz iteration is presented. Integral
direct implementations scale as the fifth power of the system size, similar to second order Møller–
Plesset calculations. With these improvements, RPA may become the long-sought robust and
efficient zero order post-Kohn–Sham correlation model. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2977789�

I. INTRODUCTION

A well-established route to improved density functionals
is to identify parts of the total electronic ground state energy
functional suitable for approximation and treat the remainder
exactly. Ground-breaking successes of this strategy were the
Kohn–Sham �KS� method,1 which treats the noninteracting
kinetic energy exactly, and the more recent exact exchange
methods including hybrid functionals.2 At the next stage, part
of the electron correlation energy must be computed exactly.
Here the central problem is to identify a zero order treatment
that captures the most important correlation effects, yet is
efficient enough to be widely applicable in chemistry and
solid state physics.

In single-reference post Hartree–Fock �HF� theory, the
most popular zero order correlation treatment is second order
Møller–Plesset perturbation theory �MP2�. For single-
reference ground states, MP2 energy differences are accurate
to a few kcal/mol;3 the formal scaling of computational cost
as the fifth power of the system size is manageable, and
modern implementations are capable of applications in the
100 atoms regime. The density functional analog of MP2,
second order Görling–Levy perturbation theory �GL2�,4 is
more sensitive than MP2 to near-degeneracy effects and se-
verely overbinds multiply bonded molecules,5 despite its ex-
actness in the high-density �low coupling strength� limit.
This failure of GL2 has been a major obstacle to the devel-
opment of correlated post-KS methods. An early remedy was

the interaction strength interpolation proposed by Seidl and
Perdew,6 a Padé-type resummation of GL perturbation
theory. A variant of GL perturbation theory using a different
zero order Hamiltonian was introduced by Schweigert et al.7

To date, these methods have not found widespread use.
Grimme recently proposed the Becke-Lee-Yang-Parr func-
tional with second-order correlation �B2PLYP� functional,
mixing the MP2 and generalized gradient approximation
�GGA� energy functionals in a hybrid fashion.8 B2PLYP im-
proves over conventional hybrid functionals for �mostly or-
ganic� thermochemistry, and a number of promising applica-
tions have been reported. For small gap systems, B2PLYP is
bound to inherit the divergence of GL2 and MP2. B2PLYP
yields an infinite correlation energy when applied to the uni-
form gas, which essentially precludes systematic improve-
ment of the GGA part.

A strong candidate for a zero order post-KS correlation
model is the random phase approximation �RPA� correlation
energy. The RPA ground state energy functional is

ERPA = TS + Vext + EH + EX + ECRPA, �1�

where TS denotes the noninteracting kinetic energy, Vext the
external �nuclear� potential energy, EH the Hartree energy,
EX the exact exchange energy, and ECRPA the RPA correla-
tion energy. Thus, as opposed to the GGA level, the ex-
change energy and part of the correlation energy are treated
exactly in RPA. The origins of RPA go back to Bohm’s and
Pines’s9,10 plasma theory of electron correlation in the early
1950s. The RPA correlation energy in a density functionala�Electronic mail: filipp.furche@uci.edu.

THE JOURNAL OF CHEMICAL PHYSICS 129, 114105 �2008�

0021-9606/2008/129�11�/114105/8/$23.00 © 2008 American Institute of Physics129, 114105-1

http://dx.doi.org/10.1063/1.2977789
http://dx.doi.org/10.1063/1.2977789
http://dx.doi.org/10.1063/1.2977789


context was defined by Langreth and Perdew in 1975.11 In
the following decades, Dobson12 pioneered the theoretical
development of RPA, and applied it to van der Waals inter-
actions of extended systems. The first applications to mol-
ecules were published in 2001.13 Recent years have seen a
steady growth of interest in the RPA, with implementations
for molecules,14,15 atoms,16,17 and solids.18

The RPA model has a number of attractive features:
First, RPA is not perturbative and corresponds to a partial
resummation of the GL perturbation series. The RPA corre-
lation energy is finite for metallic systems and for the uni-
form gas. At low coupling strength or high density, the RPA
correlation energy reproduces the direct part of GL2 for any
system. RPA is thus a stable generalization of GL2. Second,
although total RPA correlation energies do not improve upon
the GGA ones, correlation contributions to atomization ener-
gies are approximately three times more accurate at the RPA
level compared to the GGA level.13,19 Since there is no need
for error cancellation between approximate exchange and
correlation within RPA, RPA calculations use the exact ex-
change energy functional. This dramatically reduces Cou-
lomb self-interaction error, a central limitation of present-day
semilocal functionals. Third, the RPA includes long-ranged
van der Waals interactions in a “dispersion consistent” fash-
ion, i.e., it yields molecular interaction energies at the
coupled KS monomer level for large intermolecular
separations.20 In the uniform gas, the RPA covers the most-
long-ranged part of the pair-distribution function. This sug-
gests that correlation effects beyond RPA are short-ranged,
and may be accurately approximated by semilocal
functionals.21

The comparatively high computational cost is presently
the most serious obstacle to further development of RPA
correlation methods. My 2001 implementation13 scales as
N6, where N measures the system size. Fuchs and Gonze14

claimed an O�N4� scaling for their method, but presented
results for H2, He2, and Be2 only. The slow basis set conver-
gence convergence of RPA correlation energies13 is charac-
teristic of methods that expand the electron coalescence cusp
in a single-particle basis and adds to the computational com-
plexity of RPA calculations. To become a viable zero order
correlation model of practical and greater theoretical interest,
the efficiency of molecular RPA correlation energy calcula-
tions must be substantially improved.

The present work introduces methods that reduce the
cost of molecular RPA correlation energy calculations by
several orders of magnitude, and improve upon the scaling.
This is possible by a new, intuitively and computationally
appealing formulation of the RPA correlation model. Exploit-
ing the variational stability of RPA excitation energies along
the lines of McLachlan and Ball,22 I will show in Sec. II that
the RPA correlation energy functional is exactly given by the
difference of correlated and uncorrelated electronic zero
point vibrational energies �ZPVEs�. The resulting expression
is fully analytical and does not require any numerical fre-
quency or coupling strength integration, which greatly sim-
plifies the computations. An interpretation in the contexts of
plasma theory and wave function theory is presented in Sec.
III. In Sec. IV, I will introduce a method to compute the RPA

correlation energy without explicit evaluation of all excita-
tion energies. This method involves computation of the sign
function of the response operator as rate-determining step. I
will outline an O�N5� scaling algorithm, and present first
numerical examples. Conclusions are drawn in Sec. V.

II. THE PLASMON FORMULA

RPA belongs to the family of adiabatic connection
fluctuation-dissipation theorem density functional
methods.11,12,19 These methods use the zero-temperature
fluctuation-dissipation theorem to express the ground state
correlation energy functional in terms of the imaginary �dis-
sipative� part of the frequency-dependent density-density re-
sponse function ���� ,x1 ,x2�

EC = −
1

2
Im�

0

1

d��
0

� d�

�
� dx1dx2

�
����,x1,x2� − �0��,x1,x2�

�r1 − r2�
, �2�

where x denotes spin and space coordinates of an electron. At
every electron interaction strength �, the external potential is
chosen to constrain the ground state density to equal the
physical ��=1� ground state density. Thus, �=0 corresponds
to the noninteracting KS system, while the full interacting
system is recovered at �=1.

Time-dependent density functional theory �TDDFT� has
shown23 that ���� ,x1 ,x2� satisfies the Dyson equation

����,x1,x2� = �0��,x1,x2� +� dx1�dx2��0��,x1,x1��

�f�
HXC��,x1�,x2������,x2�,x2� . �3�

Equations �2� and �3� are exact, but involve the frequency-
dependent Hartree, exchange and correlation kernel
f�

HXC�� ,x1 ,x2�, which is unknown as an explicit density
functional. The RPA ignores exchange and correlation effects
in f�

HXC�� ,x1 ,x2� and replaces it by the Hartree kernel,
� / �r1−r2�. Thus, the RPA version of Eq. �3� is

��
RPA��,x1,x2� = �0��,x1,x2�

+ �� dx1�dx2�
�0��,x1,x1����

RPA��,x2�,x2�
�r1� − r2��

,

�4�

which can be solved for ��
RPA. The use of the latter in Eq. �2�

defines the RPA correlation energy, ECRPA.
Straightforward evaluation of Eq. �2� is impractical be-

cause it involves, apart from an integration over two electron
coordinates, integrations over the coupling strength � and the
frequency �. It was generally believed that, if the coupling
strength integration is performed using Eq. �4�, the frequency
integration has to be performed numerically. It is reasonable
to assume that constant accuracy in ECRPA requires � grids
growing superlinearly with N, because the number of poles
in ��

RPA grows as O�N2� �see Eq. �5� below�. For similar
reasons, a strong dependence of the � grid size to the basis
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set and inclusion or omission of core excitations must be
expected, making numerical � integration unattractive.

The frequency dependence of ��
RPA is obvious from its

spectral or Lehmann representation,

��
RPA��,x1,x2� = − �

n
���n�x1���n�x2�

��n − � − i	

+
��n�x1���n�x2�
��n + � + i	

	 , �5�

where ��n ,��n�x� are RPA excitation energies and transition
densities at coupling strength �, and i	 is a small contour
distortion making ��

RPA analytical in the upper complex
plane. Using Im 1

�+i	 =−�
���, the � integration in Eq. �2�
becomes trivial, yielding

ECRPA =
1

2
�

0

1

d��
n
� dx1dx2

�
��n�x1���n�x2� − �0n�x1��0n�x2�

�r1 − r2�
. �6�

Thus, ECRPA equals the coupling strength average over the
Hartree energy differences of all transition densities. The lat-
ter are conveniently expanded in a basis of static KS spin
orbital products,24

��n�x� = �
ia

�X�n + Y�n�ia�i�x��a�x� , �7�

where indices i , j , . . . indicate occupied and indices a ,b , . . .
virtual ground state KS molecular orbitals �MOs�, and all
MOs are chosen real. The vectors

�X�n

Y�n
	 = �X�n,Y�n
 �8�

and the excitation energies ��n�0 are solutions of the non-
Hermitian eigenvalue problem

�� − ��n���X�n,Y�n
 = 0 �9a�

under the orthonormality constraint

�X�m,Y�m���X�n,Y�n
 = 
mn. �9b�

The operators �sometimes called superoperators�

� = �A� B�

B� A�
	, � = �1 0

0 − 1
	 �10�

contain the RPA version of the so-called orbital rotation
Hessians,13

�A� + B��iajb = ��a − �i�
ij
ab + 2��ij�ab
 ,

�11�
�A� − B��iajb = ��a − �i�
ij
ab,

where �ij �ab
 is an electron repulsion integral in the Dirac
notation and �a−�i are zero order KS orbital energy differ-
ences. Equations �9a� and �9b� generalize24 the Dyson Equa-
tion �3� and are widely used to compute excitation energies
and transition properties in time-dependent Hartree–Fock
�TDHF� and TDDFT.22,25,26

The largest RPA correlation energy calculations reported
for molecules so far13,19 effectively evaluated Eq. �6� by
computing all transition densities ��n�x� from Eqs. �7�, �9a�,
and �9b� followed by numerical coupling strength integra-
tion. The latter is less critical than numerical frequency inte-
gration, but complete diagonalization of �−�� at each �
integration point scales as N6 with a large prefactor.

I will now show that both the frequency and the coupling
strength integrations may be performed analytically. Because
of Eqs. �9a� and �9b�, the excitation energy

��n = �X�n,Y�n���X�n,Y�n
 �12�

is stationary with respect to first order variations of
�X�n ,Y�n
. Thus, the Hellmann–Feynman theorem holds and

d��n

d�
= �X�n,Y�n�

d�

d�
�X�n,Y�n
 . �13�

Using Eqs. �10� and �11�, the first order response operator is,
within RPA,

d�

d�
= �1� = �C C

C C
	 , �14�

where Ciajb= �ij �ab
. Thus,

d��n

d�
= �

iajb

�X�n + Y�n�ia�ij�ab
�X�n + Y�n� jb

=� dx1dx2
��n�x1���n�x2�

�r1 − r2�
, �15�

i.e., the coupling strength derivative of ��n equals twice the
Hartree energy of the transition density within RPA. Using
this result, Eq. �6� becomes

ECRPA =
1

2
�

0

1

d��
n
�d��n

d�
− �d��n

d�
�

�=0
	 . �16�

This is easily integrated over coupling strength to yield a
central result of the present paper,

ECRPA =
1

2�
n

��n − �n
D� . �17�

�n is the nth RPA excitation energy at full coupling, and �n
D

is the sum of the zero and first order RPA excitation energies,

�n
D = �0n + �d��n

d�
�

�=0
. �18�

The �n
D equal the eigenvalues of −�� if all off-diagonal

elements of �A+B� �in the KS orbital basis� are neglected;
this is closely related to the single pole approximation in
TDDFT.23 If the excitation n reduces to the single-particle
transition i→a in the zero coupling ��=0� limit,

�n
D = �a − �i + �ii�aa
 , �19�

compare Sec. III B.
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III. PHYSICAL INTERPRETATION OF THE RPA
CORRELATION MODEL

A. Plasmon picture

According to Eq. �17�, the RPA correlation energy may
be viewed as the difference of electronic ZPVEs

ZPVE� =
1

2�
n

��n �20�

at full coupling and to first order in �. In this picture, each
electronic eigenmode �X�n ,Y�n
 corresponds to one harmonic
oscillator with angular frequency ��n. As the coupling
strength � increases, the �X�n ,Y�n
 change from single-
particle excitations of the KS system into collective density
modes �within RPA�. The RPA correlation energy measures
the change in the ground state energy of these collective
density modes due to electron interactions. In the uniform
electron gas, the index n is replaced by the wavevector q
denoting the momentum transfer upon excitation. The long
wavelength �q→0� limit of �q is the classical plasmon
frequency.27

To first order, the ZPVE equals 1
2 tr�A�, because

ZPVED =
1

2�
n

�n
D =

1

2�
ia

��a − �i + �ii�aa
� =
1

2
tr�A� .

�21�

The eigenvalues of A, �n
TDA, correspond to the Tamm–

Dancoff approximation27 to the RPA excitation energies at
full coupling. Since the trace is a unitary invariant, Eq. �21�
may be rewritten

ZPVED =
1

2�
n

�n
TDA = ZPVETDA, �22�

and by Eq. �17�, an alternative expression for the RPA cor-
relation energy is

ECRPA =
1

2�
n

��n − �n
TDA� . �23�

The TDA is equivalent to constraining the variation of all
RPA excitation energies, Eq. �12�, to the space of positive
energy single-particle excitation by setting Y =0. Since this is
a linear constraint, McDonald’s theorem applies and28

�n � �n
TDA. �24�

Thus, the RPA correlation energy is always nonpositive.
While the TDA has successfully been used in excitation en-
ergy calculations, it is invalid here, yielding zero correlation
energies when used to approximate the full RPA excitation
energies. It is the mixing of positive and negative energy
excitations caused by the B matrix and reflected by Y �0 that
gives rise to electron correlations in the RPA.

The simple and appealing physical picture underlying
RPA goes back to the plasma theory of electron correlation.
This theory, first proposed by Bohm and Pines9,10 in 1952
and later refined by Nozières and Pines,29 produced the first
quantitative correlation energies for the uniform electron gas.
Bohm and Pines suggested to transform the interacting uni-

form gas Hamiltonian to a sum of decoupled harmonic os-
cillator Hamiltonians, whose ZPVE covers the long-range
part of the ground state correlation energy. This was
achieved by a series of approximations. One of these ap-
proximations consists in an assumed cancellation of phases
of collective density modes, giving rise to the name “random
phase approximation.” Equation �17� does not appear in this
early work, and neither the results of Bohm and Pines nor the
Pines–Nozières treatment are fully equivalent to the RPA
defined by Eqs. �2� and �4�.

A HF version of Eq. �17� appeared in McLachlan’s and
Ball’s22 ground-breaking 1964 paper on TDHF theory; it dif-
fers from Eq. �17� by a factor of 1/2. While the TDHF RPA
was widely used to compute molecular response properties,
few results for ground state correlation energies were
reported28,30 �for a review of TDHF RPA correlation energy
calculations see Ref. 31�. Despite some theoretical
development,32–34 McLachlan’s and Ball’s formula appears
to have been largely ignored after 1980, possibly due to trip-
let instabilities that affect the TDHF RPA �Ref. 31� but not
the present formalism, because all triplet excitation energies
cancel out of Eq. �17�. To the best of my knowledge, it has
never clearly been recognized that Eq. �17� yields the exact
density functional RPA correlation energy for any system.

B. Wave function picture

Equation �17� may be recast to bring out more clearly
the relation to correlated wave function theories. For �→0,
each eigenvector �X�n ,Y�n
 reduces to some vector
�Xia

�0� ,Yia
�0�
, with Xia

�0�=
ia, Yia=0. This is a single-particle ex-
citation of the noninteracting KS system. The corresponding
excitation energy goes to �ia

�0�=�a−�i, i.e., the bare KS or-
bital energy difference. Because at finite � the noncrossing
theorem for the eigenvalues ��n holds, each n may be
uniquely assigned, up to zero order degeneracies, to a non-
interacting transition i→a. This holds as long as the re-
sponse operator  is frequency independent, which is satis-
fied in the RPA. Choosing intermediate normalization, the
eigenvector at full coupling belonging to ia may be decom-
posed into a KS zero order part and a correlation part,

�Xn,Yn
 = �Xia
�0�,Yia

�0�
 + �Xia
C,Yia

C 
 , �25�

where normalization is now chosen such that

�Xia
�0�,Yia

�0����Xia
C,Yia

C 
 = 0. �26�

Thus, �Xia
C ,Yia

C 
 may be expanded in the basis of KS excita-
tions of positive and negative energy,

�Xia
C,Yia

C 
 = �
jb

�Xiajb
C �Xjb

�0�,Y jb
�0�
 + Yiajb

C �Y jb
�0�,Xjb

�0�
� , �27�

with Xiaia
C =Yiaia

C =0 by Eq. �26�.
Requiring �Xn ,Yn
 to satisfy eigenvalue problem �9a�, we

obtain a standard result for the eigenvalue,
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�n = �ia = �ia
�0� + �ia

�1� + �Xia
�0�,Yia

�0���1��Xia
C,Yia

C 


= �ia
D + �

jb

�ij�ab
�X + Y�iajb
C . �28�

The collective part �Xia
C ,Yia

C 
 satisfies the coupled equation
system

��b − � j − �ia�Xiajb
C + �

kc

�jk�bc
�X + Y�iakc
C = − �ij�ab
 ,

�29a�

��b − � j + �ia�Yiajb
C + �

kc

�jk�bc
�X + Y�iakc
C = − �ij�ab
 .

�29b�

Equations �29a� and �29b� are nonlinear, because the excita-
tion energies �ia are a functional of �Xia

C ,Yia
C 
 by Eq. �28�.

Inserting the eigenvalues into the plasmon formula, Eq. �17�,
a simple result for the RPA correlation energy follows,

ECRPA =
1

2 �
iajb

�ij�ab
�X + Y�iajb
C . �30�

A connection to correlated wave function theory is estab-
lished through the relation

EC = ���H − HKS��C


= �
ia

���Vee − VHXC��i
a
ti

a +
1

4 �
iajb

���Vee��ij
ab
tij

ab,

=�
ia

���Vee − VHXC��i
a
ti

a +
1

2 �
iajb

�ij�ab
tij
ab, �31�

which is a consequence of the Schrödinger equation for the
interacting ground state ��
. H and HKS are the interacting
and KS Hamiltonians, Vee denotes the full electron interac-
tion, and VHXC the sum of the Hartree, exchange, and corre-
lation potential operators; ��
 is KS ground state determi-
nant, and ��i

a
 and ��ij
ab
 denote singly and doubly excited

KS determinants, respectively. The interacting wave function
��
 in intermediate normalization has the expansion

��
 = ��
 + ��C
 = ��
 + �
ia

ti
a��i

a
 +
1

4 �
iajb

tij
ab��ij

ab
 + ¯ .

�32�

In contrast to the textbook expression for the ground state
HF correlation energy,35 the density functional correlation
energy, Eq. �31� involves singles excitations, too, because
Brillouin’s theorem does not hold in the KS case.

Comparing Eqs. �30� and �31�, it follows that RPA cor-
responds to setting

ti
a = 0, tij

ab = �X + Y�iajb
C . �33�

Thus, the RPA approximates the doubles amplitudes tij
ab by

the collective part of the single excitation �Xia ,Yia
. Analysis
of TDHF one-electron transition properties starting from the
hypervirial theorem leads to similar conclusions.36 Although
tii
aa=0, the tij

ab in Eq. �33� are not antisymmetric under per-
mutations of i and j or a and b; this violation of Pauli’s

principle reflects the neglect of exchange effects in the
present bare RPA formalism. Equations �30�, �29a�, and
�29b� also permit a comparison to well-established correlated
wave function methods that approximate doubles amplitudes,
such as pair correlation and coupled cluster theories.35 A
striking difference to pair theories is that the RPA correlation
energy is a sum of excitation rather than pair interaction
energy differences; likewise, the energy shift �ia in Eqs.
�29a� and �29b� is an excitation energy, not a pair energy.
Another striking difference is the occurrence of a second set
of coefficients, �X−Y�iajb

C , in Eqs. �29a� and �29b�, caused by
the negative energy part of �Xia ,Yia
. Equations �29a� and
�29b� also differ qualitatively from the “ring approximation”
to coupled cluster doubles theory, which has been applied to
the uniform electron gas.37 This is obvious, e.g., from the the
fact that TDA is a useful approximation to the latter,38 while
it entirely misses the point in the present approach, as dis-
cussed in Sec. III A.

IV. EFFICIENT COMPUTATION OF ECRPA

The plasmon formula, Eq. �17�, requires neither fre-
quency nor coupling strength integration, which speeds up
RPA correlation energy calculations by roughly an order of
magnitude compared to previous implementations. The cost
of a straightforward evaluation of Eq. �17� still grows as N6,
because the complete spectrum of eigenvalues �n must be
computed. At first sight, iteration of Eqs. �30�, �29a�, and
�29b� may seem a promising alternative, but closer inspec-
tion shows that it is difficult to implement the orthonormality
constraint �9b� in this approach.

Equation �17� expresses ECRPA in the special basis of
�−�� eigenvectors at full and zero coupling. I will show
in the following that Eq. �17� may be generalized to an arbi-
trary basis, making explicit computation of the eigenvalue
spectrum �n unnecessary. The idea is to compute ECRPA

from the trace of some not necessarily diagonal operator. As
a first step, consider

� = � A B

− B − A
	 . �34�

Although � is not self-adjoint, it has real eigenvalues ��n.
This follows from Eq. �9a� using �2=1,

��Xn,Yn
 = �n�Xn,Yn
 , �35a�

��Yn,Xn
 = − �n�Yn,Xn
 . �35b�

� is diagonalized by the similarity transformation

Z−1�Z = �diag��� 0

0 − diag���
	 , �36�

where Z and Z−1 may be expressed in terms of the eigenvec-
tors at full and zero coupling,
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Z = �
n

��Xn,Yn
�Xn
�0�,− Yn

�0�� + �Yn,Xn
�Yn
�0�,− Xn

�0�� , �37a�

Z−1 = �
n

��Xn
�0�,Yn

�0�
�Xn,− Yn� + �Yn
�0�,Xn

�0�
�Yn,− Xn�� .

�37b�

This follows from Eqs. �35a� and �35b� and the extended
orthonormality relations

�Xm,Ym���Xn,Yn
 = − �Ym,Xm���Yn,Xn
 = 
mn

�38�
�Xm,Ym���Xn,Yn
 = 0.

Equation �36� implies that Z−1�Z is a Jordan canonical
form of �, with 1�1 Jordan blocks containing the eigen-
values.

ECRPA cannot be computed from tr���, since, by Eq.
�36�,

tr��� = tr�Z−1�Z� = �
n

��n − �n� = 0. �39�

If an operator S that changes the sign of the negative eigen-
values such that

Z−1�SZ = �diag��� 0

0 diag���
	 �40�

can be found, ECRPA may be computed from tr��S�. S is
readily constructed using Eq. �36�,

S = Z�1 0

0 − 1
	Z−1 = Z�Z−1. �41�

It turns out that this is the definition of the sign function39 of
�, i.e.,

S = sign��� . �42�

Only the difference between the sign functions at full and
zero coupling

� = sign��� − sign���0�� = sign��� − � , �43�

enters the final expression for for ECRPA,

ECRPA = 1
4 tr���� . �44�

Equation �44� is the essence of the present paper. It is the
desired generalization of the plasmon formula, Eq. �17�, to
an arbitrary basis. Equation �44� is a rare example of a non-
perturbative correlation energy that is an explicit functional
of noninteracting quantities: All that is needed to evaluate
Eq. �44� are the RPA response operators  and �, expressed
in any basis. The most obvious choice is the basis of static
KS orbitals, because  and � may be set up with O�N5�
operations using Eqs. �10� and �11�. Sign ��� may be com-
puted without prior diagonalization of �. The matrix sign
function has been the subject of intense research due to its
importance for the algebraic Riccati equations, e.g., in opti-
mal control theory; an extensive literature including theoret-
ical results and algorithms exists.39,40 In electronic structure
theory, Németh and Scuseria41 used the matrix sign function
to devise an efficient linear scaling algorithm for computing

the noninteracting one-particle density matrix avoiding di-
agonalization. Particularly appealing for the present purpose
are methods that approximate sign��� by a finite-order
polynomial of �. A straightforward method to generate
such a polynomial approximation is the Newton–Schulz it-
eration for the matrix sign function:39,42 Starting from S0

=�,

Sk+1 = 1
2Sk�3 · 1 − Sk

2� �45�

converges quadratically to sign��� after S0 has been appro-
priately scaled. The scaling procedure and further details of
the implementation are described in the Appendix. Table I
shows for three representative examples that the Newton–
Schulz iteration for � yields accurate RPA correlation en-
ergies and converges reasonably fast. The number of itera-
tions increases slowly with the condition number ����,
which depends on the basis set size. The quadruple zeta va-
lence basis sets used here yield reasonably accurate energy
differences in molecular applications.13 The present explor-
ative calculations were based on my 2001 implementation13

in TURBOMOLE.47,48

It is of great practical significance that there are efficient
and stable polynomial approximations to sign���. As de-
tailed in the Appendix, any polynomial of ���k may be
re-expressed by mixed polynomials of �A+B� and �A−B� up
to order k. If P denotes a �k−1�th order polynomial, the only
nontrivial operation is the multiplication of P by the off-
diagonal part of �A+B�,

Qiajb = 2�
kc

�jk�bc
Piajb. �46�

Such matrix products may be evaluated with O�N5� opera-
tions if integral direct methods are used, i.e., if �jk �bc
 is
evaluated “on the fly” in the atomic orbital basis. This is a
standard technique widely used in configuration
interaction49,50 and coupled cluster theory.51 Thus, ���k

may be recursively computed at O�N5� computational cost
starting from P=1. �Equation �44� could even be evaluated
entirely in the atomic orbital basis set. This would further
reduce the scaling with N, but increase the prefactor.�

At first sight, it may seem promising to evaluate ECRPA

from the trace of the symmetric matrix

TABLE I. Performance of the Newton–Schulz iteration for computing
sign���. d is the dimension of particle-hole vector space of the specified
irreducible representation of the molecular point group, � denotes the con-
dition number, and Nit the number of iterations required for r�10−10, where
the residual norm r is defined in the Appendix. �ECRPA denotes the differ-
ence in the correlation energies in Hartrees computed from Eq. �44� using
the Newton–Schulz iteration and Eq. �17� using diagonalization . The PBE
GGA �Ref. 43� and cc-pVQZ �Refs. 44 and 45� basis sets were used to
compute the KS ground state structure and KS orbitals �Ref. 46�. Very fine
grids �size 5 �Ref. 58�� were used in the PBE calculations.

O3, B1 PH3, E C6H6, E2g

d 526 418 1025
���� 287 314 114
Nit 19 19 16
�ECRPA −1�10−12 6�10−12 −4�10−12
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M1/2 = ��A − B�1/2�A + B��A − B�1/2�1/2, �47�

whose eigenvalues are all positive �n.13 There are reasons to
prefer Eq. �44�: �i� Most useful iterative methods to compute
matrix square roots are based on rewriting the problem in
terms of the matrix sign function.52 �ii� ��M�=����2, so
Eq. �44� is numerically advantageous. �iii� For nondiagonal
�A−B�, it is impractical to compute M, while the use of Eq.
�44� is straightforward. Likewise, it is possible to express
ECRPA in terms of the so-called sign factor

N = � sign��� = ����2�1/2 �48�

generalizing the modulus of a real number. However, the
most common methods to compute N use the sign function.39

Another advantage of Eq. �44� is that once � has been com-
puted, first order properties such as gradients with respect to
nuclear positions or dipole moments are readily obtained
from

ECRPA� = 1
4 tr��� �� , �49�

where the superscript � denotes the first order derivative with
respect to the perturbation. This is another consequence of
the Hellmann–Feynman theorem �Eq. �13��.

V. CONCLUSIONS

There are two main results of the present work. First, the
RPA correlation energy functional is simply the difference of
RPA and first order electronic ZPVEs. Although similar re-
sults have been in the literature for a long time, it was not
generally recognized that the plasmon formula, Eq. �17�, ex-
actly holds for any system. The second main result is that the
plasmon formula may be recast into an explicit functional of
the RPA response operator. The resulting expression, Eq.
�44�, is also a functional of the KS orbitals and contains the
sign function of the response operator at full coupling. Stable
polynomial approximations to the latter are available and
may be implemented at O�N5� computational cost.

The methods developed here achieve a dramatic reduc-
tion of computational complexity in molecular RPA correla-
tion energy calculations. The results of Sec. IV indicate that
O�N5� implementations requiring little more effort than MP2
are within reach. Resolution of the identity �RI� methods53

are straightforward to apply to RPA and hold promise of
further substantial savings.

The present results also reveal simple and appealing
physics underlying the RPA. That the RPA correlation energy
is a difference of electronic ZPVEs is highly intuitive; this is
by itself an argument to use it. There are plenty of directions
to improve upon RPA. Examples are GGAs for short-range
correlation,21 and perturbative or local field corrections to
��

RPA starting from Eq. �3�, e.g., along the lines of Ref. 19 or
the recently proposed inhomogeneous Singwi–Tosi–Land–
Sjölander method.54,55 Connections to correlated wave func-
tion methods may be worth pursuing from either side, start-
ing from, e.g., the results of Sec. III B. Almost all RPA
correlation energy calculations reported so far �including the
present ones� are post-KS and make use of GGA or
exchange-only ground state densities and potentials. RPA
correlation potentials are accessible via Green’s function

techniques;56,57 recent results for atoms17 are promising, sug-
gesting that self-consistent RPA calculations for larger sys-
tems will be possible. RPA has the potential to become a
building block of future generations of electronic structure
methods.
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APPENDIX: ITERATIVE COMPUTATION OF ECRPA

Applying the unitary transformation

U =
1
2

�1 1

1 − 1
	 �A1�

to � and , Eq. �44� becomes

ECRPA =
1

4
tr��A + B��K − 1� + �A − B��L − 1�� , �A2�

where K and L are determined by

�0 K

L 0
	 = sign� 0 �A − B�

�A + B� 0
	 . �A3�

Thus, only two instead of four matrices need to be iterated
and it can be used that �A−B� is diagonal in the KS orbital
basis. Before applying the Newton–Schulz iteration, �45�, it
is necessary to scale �A+B� and �A−B� by � ,��0,

�Ã + B̃� = ��A + B� ,

�A4�
�Ã − B̃� = ��A − B� .

The iteration is guaranteed to converge if all eigenvalues of

�Ã+ B̃� and �Ã− B̃� are less than 1.39 Bounds for the largest

eigenvalue of �Ã+ B̃� can be computed iteratively or from
Gershgorin’s circle theorem.41 In practice, the simple choice
�cf. Ref. 52�

� = 1/max
ia

�A + B�iaia,

�A5�
� = 1/max

ia
�A − B�iaia,

was found to yield quadratic convergence of the Newton–
Schulz iteration for

�0 K̃

L̃ 0
	 = sign� 0 �Ã − B̃�

�Ã + B̃� 0
	 �A6�

in all cases tested. The Euclidean norm r= �1− K̃L̃� was used
as convergence indicator. After convergence, the unscaled
quantities are recovered from
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K =�

�
K̃ ,

�A7�

L =�

�
L̃ .
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