************************************************************************ *************** Dalton - An Electronic Structure Program *************** ************************************************************************ This is output from DALTON release Dalton2017.alpha (2017) ( Web site: http://daltonprogram.org ) ---------------------------------------------------------------------------- NOTE: Dalton is an experimental code for the evaluation of molecular properties using (MC)SCF, DFT, CI, and CC wave functions. The authors accept no responsibility for the performance of the code or for the correctness of the results. The code (in whole or part) is provided under a licence and is not to be reproduced for further distribution without the written permission of the authors or their representatives. See the home page "http://daltonprogram.org" for further information. If results obtained with this code are published, the appropriate citations would be both of: K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen, J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Agren, "The Dalton quantum chemistry program system", WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172) and Dalton, a Molecular Electronic Structure Program, Release Dalton2017.alpha (2017), see http://daltonprogram.org ---------------------------------------------------------------------------- Authors in alphabetical order (major contribution(s) in parenthesis): Kestutis Aidas, Vilnius University, Lithuania (QM/MM) Celestino Angeli, University of Ferrara, Italy (NEVPT2) Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties) Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection) Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks) Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies) Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems) Ove Christiansen, Aarhus University, Denmark (CC module) Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2) Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS) Janusz Cukras, University of Trieste, Italy (MChD in RESPONS) Paal Dahle, University of Oslo, Norway (Parallelization) Erik K. Dalskov, UNI-C, Denmark (SOPPA) Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA) Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA) Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA) Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS) Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response) Heike Fliegl, University of Oslo, Norway (CCSD(R12)) Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM) Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library) Christof Haettig, Ruhr-University Bochum, Germany (CC module) Kasper Hald, Aarhus University, Denmark (CC module) Asger Halkier, Aarhus University, Denmark (CC module) Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA) Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals) Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more) Alf Christian Hennum, University of Oslo, Norway (Parity violation) Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry) Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition) Pi A. B. Haase, University of Copenhagen, Denmark (Triplet AO-SOPPA) Maria Francesca Iozzi, University of Oslo, Norway (RPA) Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response) Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more) Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module) Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules) Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS) Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module) Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals) Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules) Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF) Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF) Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition) Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA) Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model) Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian) Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings) Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM) Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2) Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12)) Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM) Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS) Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules) Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM) Anders Osted, Copenhagen University, Denmark (QM/MM) Martin J. Packer, University of Sheffield, UK (SOPPA) Filip Pawlowski, Kazimierz Wielki University, Poland (CC3) Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model) Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition) Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals) Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR) Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info) Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS) Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more) Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code) Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI) Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition) Trond Saue, Paul Sabatier University, France (direct Fock matrix construction) Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors) Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module) Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM) Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model) Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model) K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF) Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation) Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D) David P. Tew, University of Bristol, England (CCSD(R12)) Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT) David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities) Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model) -------------------------------------------------------------------------------- Date and time (Linux) : Wed Oct 9 15:27:21 2019 Host name : nazare063.cluster * Work memory size : 6400000000 = 47.684 gigabytes. * Directories for basis set searches: 1) /home/CEISAM/jacquemin-d/TITOU/CO/TZ-FC 2) /home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis Compilation information ----------------------- Who compiled | blondel-a Host | jaws.cluster System | Linux-3.10.0-862.9.1.el7.x86_64 CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | ON MPI | OFF Fortran compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/ifort Fortran compiler version | ifort (IFORT) 18.0.3 20180410 C compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/icc C compiler version | icc (ICC) 18.0.3 20180410 C++ compiler | /trinity/shared/apps/ccipl/machine-dependant/machi | ne-dependant/soft/intel/2018.3.022/compilers_and_l | ibraries_2018.3.222/linux/bin/intel64/icpc C++ compiler version | icpc (ICC) 18.0.3 20180410 Static linking | ON Last Git revision | 9303ffee678b31bc7478a34c517e03bc6fdd0083 Git branch | master Configuration time | 2018-07-26 15:11:23.544354 Content of the .dal input file ---------------------------------- **DALTON INPUT .RUN WAVE FUNCTIONS **INTEGRALS .DIPLEN .DEROVL .DERHAM **WAVE FUNCTIONS .CC *CC INP .CC2 .CCSD .CC3 .FREEZE 2 0 *CCEXCI .NCCEXCI 3 3 3 3 3 3 3 3 **END OF DALTON INPUT Content of the .mol file ---------------------------- BASIS cc-pVTZ CO/Scan Dalton Run w/o symmetry AtomTypes=2 Charge=0 Cartesian Charge=6.0 Atoms=1 C 0.0000000 0.0000000000 0.000 Charge=8.0 Atoms=1 O 0.00000000 0.0000000000 3.500 ******************************************************************* *********** Output from DALTON general input processing *********** ******************************************************************* -------------------------------------------------------------------------------- Overall default print level: 0 Print level for DALTON.STAT: 1 HERMIT 1- and 2-electron integral sections will be executed "Old" integral transformation used (limited to max 255 basis functions) Wave function sections will be executed (SIRIUS module) -------------------------------------------------------------------------------- **************************************************************************** *************** Output of molecule and basis set information *************** **************************************************************************** The two title cards from your ".mol" input: ------------------------------------------------------------------------ 1: CO/Scan 2: Dalton Run w/o symmetry ------------------------------------------------------------------------ Atomic type no. 1 -------------------- Nuclear charge: 6.00000 Number of symmetry independent centers: 1 Number of basis sets to read; 2 Basis set file used for this atomic type with Z = 6 : "/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ" Atomic type no. 2 -------------------- Nuclear charge: 8.00000 Number of symmetry independent centers: 1 Number of basis sets to read; 2 Basis set file used for this atomic type with Z = 8 : "/home/CEISAM/blondel-a/soft/dalton/2016/dalton/SMP_PATCHE/basis/cc-pVTZ" SYMADD: Requested addition of symmetry -------------------------------------- Symmetry test threshold: 5.00E-06 @ The molecule is centered at center of mass and rotated @ so principal axes of inertia are along coordinate axes. Symmetry class found: C(oo,v) Symmetry Independent Centres ---------------------------- 8 : 0.00000000 0.00000000 1.50027246 Isotope 1 6 : 0.00000000 0.00000000 -1.99972754 Isotope 1 The following elements were found: X Y SYMGRP: Point group information ------------------------------- @ Full point group is: C(oo,v) @ Represented as: C2v @ * The irrep name for each symmetry: 1: A1 2: B1 3: B2 4: A2 * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 Isotopic Masses --------------- C 12.000000 O 15.994915 Total mass: 27.994915 amu Natural abundance: 98.663 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 -0.000000 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 2 Basis set used is "cc-pVTZ" from the basis set library. label atoms charge prim cont basis ---------------------------------------------------------------------- C 1 6.0000 47 35 [10s5p2d1f|4s3p2d1f] O 1 8.0000 47 35 [10s5p2d1f|4s3p2d1f] ---------------------------------------------------------------------- total: 2 14.0000 94 70 ---------------------------------------------------------------------- Cartesian basis used. (Note that d, f, ... atomic GTOs are not all normalized.) Threshold for neglecting AO integrals: 1.00D-12 Cartesian Coordinates (a.u.) ---------------------------- Total number of coordinates: 6 C : 1 x 0.0000000000 2 y 0.0000000000 3 z -1.9997275398 O : 4 x 0.0000000000 5 y 0.0000000000 6 z 1.5002724602 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry A1 ( 1) 1 C z 3 2 O z 6 Symmetry B1 ( 2) 3 C x 1 4 O x 4 Symmetry B2 ( 3) 5 C y 2 6 O y 5 Interatomic separations (in Angstrom): -------------------------------------- C O ------ ------ C : 0.000000 O : 1.852120 0.000000 Max interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr) between atoms 2 and 1, "O " and "C ". Min YX interatomic separation is 1.8521 Angstrom ( 3.5000 Bohr) Bond distances (Angstrom): -------------------------- atom 1 atom 2 distance ------ ------ -------- Principal moments of inertia (u*A**2) and principal axes -------------------------------------------------------- IA 0.000000 0.000000 0.000000 1.000000 IB 23.519191 0.000000 1.000000 0.000000 IC 23.519191 1.000000 0.000000 0.000000 Rotational constants -------------------- @ The molecule is linear. B = 21487.94 MHz ( 0.716761 cm-1) @ Nuclear repulsion energy : 13.714285714286 Hartree Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 32 16 16 6 Symmetry A1 ( 1) 1 C s 1 2 C s 2 3 C s 3 4 C s 4 5 C pz 7 6 C pz 10 7 C pz 13 8 C dxx 14 9 C dyy 17 10 C dzz 19 11 C dxx 20 12 C dyy 23 13 C dzz 25 14 C fxxz 28 15 C fyyz 33 16 C fzzz 35 17 O s 36 18 O s 37 19 O s 38 20 O s 39 21 O pz 42 22 O pz 45 23 O pz 48 24 O dxx 49 25 O dyy 52 26 O dzz 54 27 O dxx 55 28 O dyy 58 29 O dzz 60 30 O fxxz 63 31 O fyyz 68 32 O fzzz 70 Symmetry B1 ( 2) 33 C px 5 34 C px 8 35 C px 11 36 C dxz 16 37 C dxz 22 38 C fxxx 26 39 C fxyy 29 40 C fxzz 31 41 O px 40 42 O px 43 43 O px 46 44 O dxz 51 45 O dxz 57 46 O fxxx 61 47 O fxyy 64 48 O fxzz 66 Symmetry B2 ( 3) 49 C py 6 50 C py 9 51 C py 12 52 C dyz 18 53 C dyz 24 54 C fxxy 27 55 C fyyy 32 56 C fyzz 34 57 O py 41 58 O py 44 59 O py 47 60 O dyz 53 61 O dyz 59 62 O fxxy 62 63 O fyyy 67 64 O fyzz 69 Symmetry A2 ( 4) 65 C dxy 15 66 C dxy 21 67 C fxyz 30 68 O dxy 50 69 O dxy 56 70 O fxyz 65 Symmetries of electric field: B1 (2) B2 (3) A1 (1) Symmetries of magnetic field: B2 (3) B1 (2) A2 (4) .---------------------------------------. | Starting in Integral Section (HERMIT) | `---------------------------------------' *************************************************************************************** ****************** Output from **INTEGRALS input processing (HERMIT) ****************** *************************************************************************************** ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 * Nuclear model: Point charge Calculation of one- and two-electron Hamiltonian integrals. The following one-electron property integrals are calculated as requested: - overlap integrals - dipole length integrals - Geometrical derivatives of overlap integrals - Geometrical derivatives of one-electron Hamiltonian integrals Center of mass (bohr): 0.000000000000 0.000000000000 -0.000000000000 Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000 Gauge origin (bohr): 0.000000000000 0.000000000000 -0.000000000000 Dipole origin (bohr): 0.000000000000 0.000000000000 -0.000000000000 ************************************************************************ ************************** Output from HERINT ************************** ************************************************************************ Nuclear contribution to dipole moments -------------------------------------- au Debye C m (/(10**-30) z 0.00381444 0.00969535 0.03234019 Threshold for neglecting two-electron integrals: 1.00D-12 HERMIT - Number of two-electron integrals written: 757487 ( 24.5% ) HERMIT - Megabytes written: 8.677 Time used in TWOINT is 0.63 seconds Total CPU time used in HERMIT: 0.66 seconds Total wall time used in HERMIT: 0.17 seconds .----------------------------------. | End of Integral Section (HERMIT) | `----------------------------------' .--------------------------------------------. | Starting in Wave Function Section (SIRIUS) | `--------------------------------------------' NCCEXCI for singlet: 3 3 3 3 NCCEXCI for triplet: 3 3 3 3 *** Output from Huckel module : Using EWMO model: T Using EHT model: F Number of Huckel orbitals each symmetry: 6 2 2 0 EWMO - Energy Weighted Maximum Overlap - is a Huckel type method, which normally is better than Extended Huckel Theory. Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973) Huckel EWMO eigenvalues for symmetry : 1 -20.681282 -11.338857 -1.328178 -0.793745 -0.550570 -0.312269 Huckel EWMO eigenvalues for symmetry : 2 -0.635675 -0.387425 Huckel EWMO eigenvalues for symmetry : 3 -0.635675 -0.387425 ********************************************************************** *SIRIUS* a direct, restricted step, second order MCSCF program * ********************************************************************** Date and time (Linux) : Wed Oct 9 15:27:21 2019 Host name : nazare063.cluster Title lines from ".mol" input file: CO/Scan Dalton Run w/o symmetry Print level on unit LUPRI = 2 is 0 Print level on unit LUW4 = 2 is 5 @ (Integral direct) CC calculation. @ This is a combination run starting with @ a restricted, closed shell Hartree-Fock calculation Initial molecular orbitals are obtained according to ".MOSTART EWMO " input option Wave function specification ============================ For the specification of the Coupled Cluster: see later. @ Wave function type --- CC --- @ Number of closed shell electrons 14 @ Number of electrons in active shells 0 @ Total charge of the molecule 0 @ Spin multiplicity and 2 M_S 1 0 @ Total number of symmetries 4 (point group: C2v) @ Reference state symmetry 1 (irrep name : A1 ) Orbital specifications ====================== @ Abelian symmetry species All | 1 2 3 4 @ | A1 B1 B2 A2 --- | --- --- --- --- @ Total number of orbitals 70 | 32 16 16 6 @ Number of basis functions 70 | 32 16 16 6 ** Automatic occupation of RHF orbitals ** -- Initial occupation of symmetries is determined from extended Huckel guess. -- Initial occupation of symmetries is : @ Occupied SCF orbitals 7 | 5 1 1 0 Maximum number of Fock iterations 0 Maximum number of DIIS iterations 60 Maximum number of QC-SCF iterations 60 Threshold for SCF convergence 1.00D-06 Changes of defaults for CC: --------------------------- -Iterative triple excitations included -Implicit frozen core calculation -Excitation energies calculated *********************************************** ***** DIIS acceleration of SCF iterations ***** *********************************************** C1-DIIS algorithm; max error vectors = 8 Automatic occupation of symmetries with 14 electrons. Iter Total energy Error norm Delta(E) SCF occupation ----------------------------------------------------------------------------- Calculating AOSUPINT (Precalculated AO two-electron integrals are transformed to P-supermatrix elements. Threshold for discarding integrals : 1.00D-12 ) CPU time used in FORMSUP is 0.21 seconds WALL time used in FORMSUP is 0.04 seconds @ 1 -112.013543095 2.50D+00 -1.12D+02 5 1 1 0 Virial theorem: -V/T = 1.987149 @ MULPOP C 1.24; O -1.24; 1 Level shift: doubly occupied orbital energies shifted by -2.00D-01 ----------------------------------------------------------------------------- @ 2 -111.113674312 4.94D+00 9.00D-01 5 1 1 0 Virial theorem: -V/T = 2.025082 @ MULPOP C -1.36; O 1.36; 2 Level shift: doubly occupied orbital energies shifted by -2.00D-01 ----------------------------------------------------------------------------- @ 3 -112.280107027 1.28D+00 -1.17D+00 5 1 1 0 Virial theorem: -V/T = 2.017125 @ MULPOP C -0.07; O 0.07; 3 Level shift: doubly occupied orbital energies shifted by -1.00D-01 ----------------------------------------------------------------------------- @ 4 -112.372446151 2.28D-01 -9.23D-02 5 1 1 0 Virial theorem: -V/T = 2.009674 @ MULPOP C 0.33; O -0.33; 4 Level shift: doubly occupied orbital energies shifted by -2.50D-02 ----------------------------------------------------------------------------- @ 5 -112.381907247 1.28D-01 -9.46D-03 5 1 1 0 Virial theorem: -V/T = 2.008039 @ MULPOP C 0.46; O -0.46; 5 Level shift: doubly occupied orbital energies shifted by -2.50D-02 ----------------------------------------------------------------------------- @ 6 -112.383995563 1.25D-01 -2.09D-03 5 1 1 0 Virial theorem: -V/T = 2.007969 @ MULPOP C 0.46; O -0.46; 6 Level shift: doubly occupied orbital energies shifted by -2.50D-02 ----------------------------------------------------------------------------- @ 7 -112.400280837 8.65D-02 -1.63D-02 5 1 1 0 Virial theorem: -V/T = 2.007095 @ MULPOP C 0.39; O -0.39; 7 Level shift: doubly occupied orbital energies shifted by -2.50D-02 ----------------------------------------------------------------------------- @ 8 -112.402475007 2.22D-02 -2.19D-03 5 1 1 0 Virial theorem: -V/T = 2.006313 @ MULPOP C 0.40; O -0.40; 8 Level shift: doubly occupied orbital energies shifted by -1.25D-02 ----------------------------------------------------------------------------- @ 9 -112.402788274 2.71D-02 -3.13D-04 5 1 1 0 !!! Info: DIIS restarted because it was stalled ... - energy changed by -3.133E-04 - gradient changed by 4.913E-03 - or strange C vector coeff. for current index (= 1) : 0.959312 -0.000521 0.000237 0.120579 -1.835559 2.007890 -0.456700 0.204762 Virial theorem: -V/T = 2.005566 @ MULPOP C 0.38; O -0.38; 9 Level shift: doubly occupied orbital energies shifted by -1.56D-02 ----------------------------------------------------------------------------- @ 10 -112.402838079 2.84D-02 -4.98D-05 5 1 1 0 Info: SCF gradient has been lower than now, therefore 1 old iterations are removed from DIIS. Virial theorem: -V/T = 2.005386 @ MULPOP C 0.40; O -0.40; 10 Level shift: doubly occupied orbital energies shifted by -1.56D-02 ----------------------------------------------------------------------------- @ 11 -112.402850456 3.21D-02 -1.24D-05 5 1 1 0 Info: SCF gradient has been lower than now, therefore 1 old iterations are removed from DIIS. Virial theorem: -V/T = 2.005926 @ MULPOP C 0.38; O -0.38; 11 Level shift: doubly occupied orbital energies shifted by -1.56D-02 ----------------------------------------------------------------------------- @ 12 -112.402849129 3.58D-02 1.33D-06 5 1 1 0 Virial theorem: -V/T = 2.005335 @ MULPOP C 0.40; O -0.40; 12 Level shift: doubly occupied orbital energies shifted by -1.56D-02 ----------------------------------------------------------------------------- @ 13 -112.402918038 4.22D-03 -6.89D-05 5 1 1 0 Virial theorem: -V/T = 2.005676 @ MULPOP C 0.39; O -0.39; ----------------------------------------------------------------------------- @ 14 -112.402932926 1.26D-03 -1.49D-05 5 1 1 0 Virial theorem: -V/T = 2.005751 @ MULPOP C 0.39; O -0.39; ----------------------------------------------------------------------------- @ 15 -112.402933500 3.23D-04 -5.75D-07 5 1 1 0 Virial theorem: -V/T = 2.005761 @ MULPOP C 0.39; O -0.39; ----------------------------------------------------------------------------- @ 16 -112.402933529 6.34D-05 -2.88D-08 5 1 1 0 Virial theorem: -V/T = 2.005764 @ MULPOP C 0.39; O -0.39; ----------------------------------------------------------------------------- @ 17 -112.402933529 5.78D-06 -2.12D-10 5 1 1 0 Virial theorem: -V/T = 2.005765 @ MULPOP C 0.39; O -0.39; ----------------------------------------------------------------------------- @ 18 -112.402933529 9.76D-07 -5.74D-12 5 1 1 0 @ *** DIIS converged in 18 iterations ! @ Converged SCF energy, gradient: -112.402933529215 9.76D-07 - total time used in SIRFCK : 0.00 seconds *** SCF orbital energy analysis *** Only the 20 lowest virtual orbital energies printed in each symmetry. Number of electrons : 14 Orbital occupations : 5 1 1 0 Sym Hartree-Fock orbital energies 1 A1 -20.60870330 -11.51909362 -1.20432269 -0.80844936 -0.46521372 0.13412122 0.26642460 0.39402167 0.69183770 0.79154058 0.97885917 1.14026975 1.24329939 1.78630850 1.81216113 2.45152471 2.66862657 2.87636692 3.01277441 3.14245746 3.44656561 3.91516774 4.57348126 5.50868509 5.59886097 2 B1 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551 1.73900633 1.94603785 2.83501363 2.97296242 3.29005435 3.44346990 3.78127919 5.62404799 5.67489902 6.88379287 7.19373689 3 B2 -0.47257168 -0.02060215 0.40842012 0.76361006 0.90970551 1.73900633 1.94603785 2.83501363 2.97296242 3.29005435 3.44346990 3.78127919 5.62404799 5.67489902 6.88379287 7.19373689 4 A2 0.79154058 1.78630850 2.87636692 3.14245746 5.59886097 6.74824933 E(LUMO) : -0.02060215 au (symmetry 2) - E(HOMO) : -0.46521372 au (symmetry 1) ------------------------------------------ gap : 0.44461157 au --- Writing SIRIFC interface file CPU and wall time for SCF : 0.469 0.105 .-----------------------------------. | --- Final results from SIRIUS --- | `-----------------------------------' @ Spin multiplicity: 1 @ Spatial symmetry: 1 ( irrep A1 in C2v ) @ Total charge of molecule: 0 @ Final HF energy: -112.402933529215 @ Nuclear repulsion: 13.714285714286 @ Electronic energy: -126.117219243501 @ Final gradient norm: 0.000000975566 Date and time (Linux) : Wed Oct 9 15:27:21 2019 Host name : nazare063.cluster INFO: Sorry, plot of MOs with Molden is only implemented for spherical GTOs File label for MO orbitals: 9Oct19 FOCKDIIS (Only coefficients > 0.0100 are printed.) Molecular orbitals for symmetry species 1 (A1 ) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 C :s 0.0001 0.9973 -0.0008 -0.0016 0.0004 -0.0023 -0.0102 2 C :s 0.0006 -0.0122 0.1896 -1.0021 -0.0999 0.3157 -0.3958 3 C :s -0.0002 0.0034 -0.0029 -0.0284 0.0037 0.0875 -0.8989 4 C :s 0.0007 -0.0007 -0.0228 0.1275 -0.0793 -0.0804 4.1981 5 C :pz -0.0001 0.0037 0.1020 0.0655 0.8135 0.6156 0.1889 6 C :pz 0.0005 -0.0032 -0.0083 -0.0146 0.0151 -0.1278 0.2202 7 C :pz 0.0005 -0.0011 -0.0168 0.0059 -0.0422 0.4544 -0.0866 8 C :dxx -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073 9 C :dyy -0.0000 0.0008 -0.0019 -0.0025 -0.0019 0.0163 -0.1073 10 C :dzz -0.0001 0.0012 0.0031 -0.0043 0.0067 -0.0012 -0.1053 11 C :dxx -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715 12 C :dyy -0.0002 0.0019 -0.0047 -0.0093 0.0031 0.0641 -0.6715 13 C :dzz 0.0001 0.0019 0.0058 -0.0163 0.0252 0.0500 -0.7047 14 C :fxxz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126 15 C :fyyz -0.0001 0.0001 -0.0001 0.0014 -0.0002 0.0115 -0.0126 16 C :fzzz -0.0000 0.0000 0.0018 -0.0004 -0.0009 0.0070 -0.0165 17 O :s 0.9957 -0.0001 -0.0077 0.0010 -0.0045 0.0128 0.0084 18 O :s -0.0157 -0.0003 0.9217 0.2518 -0.1807 -0.1440 -0.0829 19 O :s 0.0053 -0.0000 0.0027 0.0006 0.0120 0.0183 0.0047 20 O :s -0.0002 0.0007 0.0125 0.0396 -0.1378 -0.4338 -0.3372 21 O :pz -0.0025 0.0002 -0.0083 0.1530 -0.4598 0.7529 0.1205 22 O :pz 0.0013 -0.0010 -0.0144 0.0044 -0.0012 -0.1368 -0.1336 23 O :pz 0.0012 -0.0003 -0.0013 -0.0057 -0.0219 0.4074 0.1623 27 O :dxx 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071 28 O :dyy 0.0025 -0.0001 -0.0005 0.0005 0.0072 0.0212 0.0071 29 O :dzz 0.0022 0.0002 0.0016 -0.0074 0.0222 0.0164 0.0200 32 O :fzzz 0.0001 0.0000 0.0006 0.0005 -0.0017 0.0115 0.0087 Orbital 8 9 10 11 12 13 14 1 C :s 0.0650 0.0341 0.0000 0.1458 0.2382 -0.5856 -0.0000 2 C :s 0.3275 0.1363 0.0000 0.7052 1.3729 -3.0105 -0.0000 3 C :s 0.2078 0.1183 -0.0000 -0.1877 -0.9384 0.9990 0.0000 4 C :s -1.6039 -0.6761 -0.0000 -0.9584 3.6216 -0.7712 -0.0000 5 C :pz 0.2741 -0.1258 0.0000 0.2713 0.1769 0.6272 -0.0000 6 C :pz 1.2829 0.3838 -0.0000 -0.9361 -0.2098 -0.9074 0.0000 7 C :pz -1.9396 -0.2529 -0.0000 -0.7544 1.4010 0.5873 -0.0000 8 C :dxx 0.0146 0.0117 0.0141 -0.0316 -0.1172 0.1393 -0.0131 9 C :dyy 0.0146 0.0117 -0.0141 -0.0316 -0.1172 0.1393 0.0131 10 C :dzz 0.0338 0.0005 -0.0000 -0.0366 -0.1200 0.1439 0.0000 11 C :dxx 0.1904 0.0046 -0.5054 -0.2155 -1.1283 0.7235 -0.0462 12 C :dyy 0.1904 0.0046 0.5054 -0.2155 -1.1283 0.7235 0.0462 13 C :dzz 0.0966 0.3210 -0.0000 -0.1742 -0.1009 1.3619 -0.0000 14 C :fxxz -0.0779 -0.0292 -0.0007 0.0698 0.0161 0.0721 0.0362 15 C :fyyz -0.0779 -0.0292 0.0007 0.0698 0.0161 0.0721 -0.0362 16 C :fzzz -0.0895 -0.0180 0.0000 0.0372 0.0220 0.0627 0.0000 17 O :s -0.0419 0.0391 0.0000 -0.0830 0.1204 0.0405 -0.0000 18 O :s -0.0673 -0.2238 0.0000 -0.5141 0.5344 0.0765 -0.0000 19 O :s -0.0807 -0.6219 -0.0000 -0.5987 0.5720 0.1709 0.0000 20 O :s 1.3317 2.6728 0.0000 3.6986 -4.3949 -1.5470 0.0000 21 O :pz 0.1746 -0.1721 -0.0000 0.1408 0.1561 0.1819 0.0000 22 O :pz 0.1561 -0.7121 0.0000 1.3589 -0.2330 0.2947 -0.0000 23 O :pz -0.4982 0.8309 -0.0000 -1.9723 1.1523 0.4045 -0.0000 24 O :dxx -0.0030 -0.0696 0.0007 -0.0482 0.0405 0.0079 -0.0081 25 O :dyy -0.0030 -0.0696 -0.0007 -0.0482 0.0405 0.0079 0.0081 26 O :dzz -0.0058 -0.0611 -0.0000 -0.0591 0.0559 0.0241 0.0000 27 O :dxx -0.0924 -0.4480 -0.0231 -0.4632 0.4512 0.1454 0.5012 28 O :dyy -0.0924 -0.4480 0.0231 -0.4632 0.4512 0.1454 -0.5012 29 O :dzz -0.0483 -0.4833 -0.0000 -0.5011 0.4955 0.1280 -0.0000 30 O :fxxz -0.0084 0.0482 0.0016 -0.0881 0.0087 -0.0261 -0.0024 31 O :fyyz -0.0084 0.0482 -0.0016 -0.0881 0.0087 -0.0261 0.0024 32 O :fzzz -0.0084 0.0506 -0.0000 -0.0890 0.0112 -0.0180 0.0000 Orbital 15 1 C :s 0.0396 3 C :s -0.0252 4 C :s -0.3532 5 C :pz -3.5868 6 C :pz 4.9898 7 C :pz 0.2966 8 C :dxx -0.0265 9 C :dyy -0.0265 10 C :dzz 0.0467 11 C :dxx 0.0786 12 C :dyy 0.0786 13 C :dzz -0.0804 14 C :fxxz -0.3119 15 C :fyyz -0.3119 16 C :fzzz -0.3332 17 O :s -0.1391 18 O :s -0.6893 19 O :s 0.0132 20 O :s 0.9671 21 O :pz 0.2450 22 O :pz 0.0190 23 O :pz -0.3390 24 O :dxx 0.0135 25 O :dyy 0.0135 26 O :dzz 0.0126 27 O :dxx -0.1446 28 O :dyy -0.1446 29 O :dzz 0.2850 Molecular orbitals for symmetry species 2 (B1 ) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 C :px -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064 2 C :px 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285 3 C :px -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095 4 C :dxz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209 5 C :dxz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141 6 C :fxxx -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260 7 C :fxyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260 8 C :fxzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877 9 O :px -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599 10 O :px 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039 11 O :px -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713 13 O :dxz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563 14 O :fxxx -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012 15 O :fxyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012 16 O :fxzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005 Orbital 8 9 10 11 1 C :px 0.0000 -0.0889 -0.0041 0.1019 2 C :px -0.0000 0.1308 -0.0994 0.7366 3 C :px -0.0000 0.1158 0.1622 -0.0029 4 C :dxz -0.0000 0.4507 -1.1113 0.0525 5 C :dxz 0.0000 -0.1066 0.7398 -0.0311 6 C :fxxx -0.2041 -0.1435 -0.0423 -0.0903 7 C :fxyy 0.6124 -0.1435 -0.0423 -0.0903 8 C :fxzz -0.0000 0.5310 0.2405 -0.3482 9 O :px -0.0000 -1.0753 -0.6480 -3.7850 10 O :px -0.0000 1.8102 1.0634 6.0541 11 O :px 0.0000 -0.0203 -0.2022 0.3527 12 O :dxz -0.0000 0.0291 0.0188 -0.0050 13 O :dxz 0.0000 0.3099 0.2808 -0.0603 14 O :fxxx -0.0007 -0.1464 -0.0782 -0.4213 15 O :fxyy 0.0020 -0.1464 -0.0782 -0.4213 16 O :fxzz 0.0000 -0.0882 -0.0453 -0.4475 Molecular orbitals for symmetry species 3 (B2 ) ------------------------------------------------ Orbital 1 2 3 4 5 6 7 1 C :py -0.1797 -0.8503 0.2598 0.0274 0.1050 3.8621 2.5064 2 C :py 0.0115 0.1271 1.6366 -0.0712 0.0130 -5.8584 -3.8285 3 C :py -0.0288 -0.2671 -1.4741 -0.1770 -0.3949 -0.3385 -0.4095 4 C :dyz -0.0043 0.0001 0.0015 -0.0027 0.0157 0.0111 -0.0209 5 C :dyz -0.0283 0.0121 0.0371 0.5299 -0.8902 0.2339 -0.3141 6 C :fxxy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260 7 C :fyyy -0.0005 -0.0111 -0.1090 0.0093 0.0040 0.4156 0.2260 8 C :fyzz -0.0043 -0.0063 -0.1115 -0.0010 -0.0060 0.3486 0.3877 9 O :py -0.9192 0.3033 0.0632 -0.2822 -0.0269 0.1789 -0.0599 10 O :py 0.0364 -0.0486 0.0027 -1.1127 -1.0108 -0.1083 -0.0039 11 O :py -0.0644 0.0851 0.0997 1.0705 1.1630 -0.2648 0.1713 13 O :dyz 0.0126 0.0069 -0.0188 -0.0268 0.1095 0.4819 -0.8563 14 O :fxxy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012 15 O :fyyy -0.0019 0.0036 -0.0006 0.0801 0.0702 0.0115 -0.0012 16 O :fyzz -0.0056 0.0034 -0.0002 0.0779 0.0689 0.0080 0.0005 Orbital 8 9 10 11 1 C :py 0.0000 -0.0889 -0.0041 0.1019 2 C :py -0.0000 0.1308 -0.0994 0.7366 3 C :py -0.0000 0.1158 0.1622 -0.0029 4 C :dyz -0.0000 0.4507 -1.1113 0.0525 5 C :dyz 0.0000 -0.1066 0.7398 -0.0311 6 C :fxxy 0.6124 -0.1435 -0.0423 -0.0903 7 C :fyyy -0.2041 -0.1435 -0.0423 -0.0903 8 C :fyzz 0.0000 0.5310 0.2405 -0.3482 9 O :py -0.0000 -1.0753 -0.6480 -3.7850 10 O :py 0.0000 1.8102 1.0634 6.0541 11 O :py -0.0000 -0.0203 -0.2022 0.3527 12 O :dyz 0.0000 0.0291 0.0188 -0.0050 13 O :dyz 0.0000 0.3099 0.2808 -0.0603 14 O :fxxy 0.0020 -0.1464 -0.0782 -0.4213 15 O :fyyy -0.0007 -0.1464 -0.0782 -0.4213 16 O :fyzz 0.0000 -0.0882 -0.0453 -0.4475 Molecular orbitals for symmetry species 4 (A2 ) ------------------------------------------------ Orbital 1 2 3 4 5 6 1 C :dxy -0.0283 -0.0262 0.0521 1.1790 -0.0297 -0.0219 2 C :dxy 1.0109 -0.0923 -0.0194 -0.6069 0.0436 0.0389 3 C :fxyz 0.0014 0.0724 0.9959 -0.0422 0.0488 0.0325 4 O :dxy -0.0014 -0.0161 -0.0120 0.0063 -0.0196 1.1643 5 O :dxy 0.0461 1.0025 -0.1029 0.0552 0.0084 -0.5861 6 O :fxyz -0.0032 -0.0049 -0.0279 0.0125 1.0000 0.0177 Total CPU time used in SIRIUS : 0.52 seconds Total wall time used in SIRIUS : 0.11 seconds Date and time (Linux) : Wed Oct 9 15:27:21 2019 Host name : nazare063.cluster NOTE: 1 informational messages have been issued. Check output, result, and error files for "INFO". .---------------------------------------. | End of Wave Function Section (SIRIUS) | `---------------------------------------' .------------------------------------------. | Starting in Coupled Cluster Section (CC) | `------------------------------------------' ******************************************************************************* ******************************************************************************* * * * * * START OF COUPLED CLUSTER CALCULATION * * * * * ******************************************************************************* ******************************************************************************* I am freezing! Freezing HF-orbital 1 of symmetry 1 and with orbital energy -20.6087 Freezing HF-orbital 2 of symmetry 1 and with orbital energy -11.5191 In total frozen-core per symmetry-class: 2 0 0 0 CCR12 ANSATZ = 0 CCR12 APPROX = 0 ******************************************************************* * * *---------- >---------* *---------- OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >---------* *---------- >---------* * * ******************************************************************* The Direct Coupled Cluster Energy Program ----------------------------------------- Number of t1 amplitudes : 111 Number of t2 amplitudes : 13554 Total number of amplitudes in ccsd : 13665 Iter. 1: Coupled cluster MP2 energy : -112.7773856028926502 Iter. 1: Coupled cluster CC2 energy : -112.7770933888469500 Iter. 2: Coupled cluster CC2 energy : -112.8137922537585496 Iter. 3: Coupled cluster CC2 energy : -112.7904242518014968 Iter. 4: Coupled cluster CC2 energy : -112.6423644822100840 Iter. 5: Coupled cluster CC2 energy : -112.5914453803792838 Iter. 6: Coupled cluster CC2 energy : -112.6369074663839172 Iter. 7: Coupled cluster CC2 energy : -112.6447203089726514 Iter. 8: Coupled cluster CC2 energy : -112.6665699511032983 Iter. 9: Coupled cluster CC2 energy : -112.7225305910940563 Iter. 10: Coupled cluster CC2 energy : -112.7138733952231746 Iter. 11: Coupled cluster CC2 energy : -112.7338279900195488 Iter. 12: Coupled cluster CC2 energy : -112.7024717340119508 Iter. 13: Coupled cluster CC2 energy : -112.6740504818013022 Iter. 14: Coupled cluster CC2 energy : -112.5429360260324927 Iter. 15: Coupled cluster CC2 energy : -112.7204802290550560 Iter. 16: Coupled cluster CC2 energy : -112.7934415671459334 Iter. 17: Coupled cluster CC2 energy : -112.8745073746495251 Iter. 18: Coupled cluster CC2 energy : -112.8456091602496087 Iter. 19: Coupled cluster CC2 energy : -112.8931642786740213 Iter. 20: Coupled cluster CC2 energy : -112.8915457836657055 Iter. 21: Coupled cluster CC2 energy : -112.8656715850652859 Iter. 22: Coupled cluster CC2 energy : -112.5967377263952898 Iter. 23: Coupled cluster CC2 energy : -113.1783083877397758 Iter. 24: Coupled cluster CC2 energy : -113.2041962137215592 Iter. 25: Coupled cluster CC2 energy : -112.7256774167516511 Iter. 26: Coupled cluster CC2 energy : -113.0077166610892334 Iter. 27: Coupled cluster CC2 energy : -112.9998497251534246 Iter. 28: Coupled cluster CC2 energy : -113.0600211061207006 Iter. 29: Coupled cluster CC2 energy : -113.0583365816296464 Iter. 30: Coupled cluster CC2 energy : -113.0442818421477824 Iter. 31: Coupled cluster CC2 energy : -113.0362152100644124 Iter. 32: Coupled cluster CC2 energy : -113.0348288119392208 Iter. 33: Coupled cluster CC2 energy : -113.0340084652755905 Iter. 34: Coupled cluster CC2 energy : -113.0342351407926031 Iter. 35: Coupled cluster CC2 energy : -113.0340592933379043 Iter. 36: Coupled cluster CC2 energy : -113.0338296743684623 Iter. 37: Coupled cluster CC2 energy : -113.0337665860615743 Iter. 38: Coupled cluster CC2 energy : -113.0338022391669028 Iter. 39: Coupled cluster CC2 energy : -113.0337964124492061 Iter. 40: Coupled cluster CC2 energy : -113.0337964329622196 Energy not converged in 40 iterations --- SEVERE ERROR, PROGRAM WILL BE ABORTED --- Date and time (Linux) : Wed Oct 9 15:27:23 2019 Host name : nazare063.cluster Reason: CC equations not converged. Total CPU time used in DALTON: 19.50 seconds Total wall time used in DALTON: 2.20 seconds QTRACE dump of internal trace stack ======================== level module ======================== 5 CCSD_ENERGY 4 CC_DRV 3 CC 2 DALTON 1 DALTON main ========================