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Analytic gradients, geometry optimization and
excited state potential energy surfaces from the
particle-particle random phase approximation†

Du Zhang,a Degao Peng,a Peng Zhanga and Weitao Yang*ab

The energy gradient for electronic excited states is of immense interest not only for spectroscopy but

also for the theoretical study of photochemical reactions. We present the analytic excited state energy

gradient of the particle-particle random phase approximation (pp-RPA). The analytic gradient formula is

developed from an approach similar to that of time-dependent density-functional theory (TDDFT). The

formula is verified for both the Hartree–Fock and (Generalized) Kohn–Sham reference states via comparison

with finite difference results. The excited state potential energy surfaces and optimized geometries of some

small molecules are investigated, yielding results of similar or better quality compared to adiabatic TDDFT.

The singlet-to-triplet instability in TDDFT resulting in underestimated energies of the lowest triplet states is

eliminated by pp-RPA. Charge transfer excitations and double excitations, which are challenging for most

adiabatic TDDFT methods, can be reasonably well captured by pp-RPA. Within this framework, ground state

potential energy surfaces of stretched single bonds can also be described well.

I. Introduction

The theoretical description of electronic excitation energies and
excited state potential energy surfaces is of great significance in
chemistry, biology, materials science, etc. It provides insight
into highly relevant topics such as artificial photosynthesis and
design of solar cells.1–3 The development of electronic structure
theories based on quantum mechanics has thus enabled the
mechanistic understanding of electronic excitations. There are
several categories of electronic structure theories for describing
excited states. The first category uses the many-body wave
function as the basic variable. The simplest of this category is
configuration interaction singles (CIS)4 and its perturbative
corrections like CIS(D).5,6 Higher level methods include multi-
reference coupled-cluster theories (MRCC),7 complete active space
second order perturbation theory (CASPT2),8–11 and equation-of-
motion and linear response coupled-cluster theories (EOM-CC
and LR-CC),12–15 which are generally of higher accuracy but are
also more computationally demanding. The second category is
based on the density functional theory (DFT)16–18 formulation of
quantum mechanics, and in particular time-dependent density

functional theory (TDDFT) within the adiabatic approximation19–21

has been extensively applied to both finite and extended systems.
The third category of methods is developed from the Green’s
function approach, of which the GW-Bethe–Salpeter equation
(GW-BSE) method within the static approximation has become
a standard way of treating solids.22–26 Recent extension of the
BSE beyond the static approximation27 has shown very promising
results. Highly accurate results have been obtained for atomic
and molecular systems even with a second-order dynamical
Bethe–Salpter kernel,28 which also provides a unique perspective of
the connection to TDDFT beyond the adiabatic approximation.29–31

The construction of a frequency-dependent two-point TDDFT kernel
from the static four-point BSE kernel by Gatti et al. illustrates
the trading of spatial non-locality and time-nonlocality between
BSE and TDDFT, furthering the understanding of the frequency-
dependent nature of the TDDFT kernel.32 In addition, methods
based on the particle-particle channel two-particle Green’s func-
tion serve as yet another approach.33,34 With the particle-particle
random phase approximation (pp-RPA), superior results of
Rydberg, double and charge transfer excitations compared to
adiabatic TDDFT have already been obtained.34 Moreover, the
pp-RPA has recently been used to obtain correlation energy
for chemical systems by virtue of the adiabatic-connection
fluctuation-dissipation theorem (AC-FDT).35 It is the first
density functional approximation (DFA) to satisfy the flat-plane
conditions,36 outperforming the traditional particle-hole RPA
(ph-RPA) in many ways.37 Theoretical analysis has also established
the equivalence between pp-RPA and ladder coupled-cluster
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doubles (l-CCD),38,39 making an interesting connection between
orbital dependent DFAs and ab initio wave-function-based quantum
chemistry methods.

In addtion to obtaining vertical excitation energies, it would
be important to explore excited state total energy gradients
and potential energy surfaces in order to understand photo-
chemical processes. The cornerstone of most electronic struc-
ture theory tools for ground state and excited state gradients
and other response properties is the coupled-perturbed self-
consistent field (CPSCF) equation,40 which yield the first deri-
vatives of molecular orbital coefficient relaxation. The excited
state analytic energy gradient is obtained by adding up the
analytic ground state energy gradient and the analytic excita-
tion energy gradient. The analytic gradient equations have
been developed and extensively implemented for excited state
theories like CIS,4 TDDFT41–44 as well as other higher-level
theories.45–47 Such developments make excited state geometry
optimization and MD simulations possible,48 expanding the
scope of electronic structure theory into the realm of complex
chemical processes involving excited states. In this work, the
development of a pp-RPA analytic excited state energy gradient
proceeds in a manner similar to the TDDFT analytic gradient.
The total energy gradient is the sum of the ground state and the
excitation energy gradients.

II. Theoretical development
II. 1. The pp-RPA equation and its extension to non-canonical
molecular orbital basis

In this section we review the pp-RPA equation and its extension
to the non-canonical molecular orbital basis.

The pp-RPA generalized eigenvalue equation can be solved
to obtain the double-electron-addition energies,35

A B

By C

 !
Xn;Nþ2

Yn;Nþ2

 !
¼ oNþ2

n

1 0

0 �1

 !
Xn;Nþ2

Yn;Nþ2

 !
; (1)

where

Aab;cd ¼ dacdbd ea þ ebð Þ þ 1

2
½ðacjbdÞ � ðadjbcÞ�; (2)

Bab;ij ¼
1

2
½ðaijbjÞ � ðajjbiÞ�; (3)

Cij;kl ¼ �dikdjl ei þ ej
� �

þ 1

2
½ðikjjlÞ � ðiljjkÞ�; (4)

X n,N+2
ab = hCN

0 |âaâb|CN+2
n i, (5)

Y n,N+2
ij = hCN

0 |âiâj|C
N+2
n i. (6)

The indices a, b, c, d. . . stand for virtual orbitals, and i, j,
k, l. . . stand for occupied orbitals. The orbital energies are
denoted by ea, eb, etc. The two-electron integrals in the
chemist’s notation are (ac|bd), (ad|bc), etc. |CN

0 i and |CN+2
n i

stand for the N-particle ground state and the nth state (the
ground state or an excited state) of the (N + 2)-particle system,

respetively. âa is the electron removal operator for orbital a.
The eigenvalue oN+2

n stands for the double-electron-addition
energy from |CN

0 i to |CN+2
n i. The eigenvectors for this set of

solutions satisfy the normalization conditions

hXn,N+2, Yn,N+2|D|Xn,N+2, Yn,N+2i = (Xn,N+2)† Xn,N+2 � (Yn,N+ 2)† Yn,N+2

= 1, (7)

where

jXn;Nþ2;Yn;Nþ2i ¼
Xn;Nþ2

Yn;Nþ2

 !
; (8)

D ¼
1 0

0 �1

 !
: (9)

Notice that the pp-RPA eqn (1) can be derived from the
linear response of a molecular system in the presence of an
external pairing field,49 related to the formalism of DFT for
superconductors50 where both the normal density r(x) and the
anomalous/pairing density k(x,x0) are used as basic variables.
By neglecting the many-body effects as contained in the
exchange-correlation functional Exc[r,k], the pp-RPA matrix

elements do not contain the second derivative gxc ¼
d2Exc

dk�dk
except the ERIs resulting from the anomalous Hartree contri-

bution. Nor does the derivative fxc ¼
d2Exc

drdr
come in here

because of the absence of a particle-hole perturbation that
couples to dr, which is present in the conventional particle-
hole TDDFT.

The same matrix eqn (1) has another set of solutions
that correspond to double-electron-removal energies oN�2

n .
The eigenvalue oN�2

n stands for the double-electron-removal
energy from |CN

0 i to |CN�2
n i, for which the eigenvectors are

given by

X n,N�2
ab = hCN�2

n |âaâb|CN
0 i, (10)

Y n,N�2
ij = hCN�2

n |âiâj|C
N
0 i, (11)

which satisfy the following normalization conditions

hX n,N�2, Y n,N�2|D|X n,N�2, Y n,N�2i = � 1. (12)

As an extension, if we use orthonormal molecular orbitals
that are unitarily transformed from the canonical orbitals, the
matrix elements become

Aab;cd ¼ dac bjHsjdh i þ dbd ajHsjch i þ 1

2
½ðacjbdÞ � ðadjbcÞ�;

(13)

Bab;ij ¼
1

2
½ðaijbjÞ � ðajjbiÞ�; (14)

Cij;kl ¼ �dik jjHsjlh i � djl ijHsjkh i þ 1

2
½ðikjjlÞ � ðiljjkÞ�: (15)
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where Hs is the HF or DFT effective one-electron operator
defined as

Hs ¼ �
1

2
rr

2 þ vðrÞ þ
ð
dx0

rðx0Þ
r� r0j j þ vxcðx; x0Þ

¼ HcoreðrÞ þ
ð
dx0

rðx0Þ
r� r0j j þ vxcðx; x0Þ; (16)

where in the second line we define the core Hamiltonian Hcore.
Here we allow the exchange–correlation potential to be non-local,
which accounts for the case of the generalized Kohn–Sham theory,
where vxc can include both the local contribution from LDA/GGA
and the non-local hybrid or long-range Hartree–Fock exchange
contribution. Utilizing the antisymmetry of the eigenvectors

X n
ab = �X n

ba, (17)

Y n
ij = �Y n

ji, (18)

we can impose the restriction i o j, a o b for eqn (1). Now the
matrix elements of (1) become

Aab,cd = dachb|Hs|di + dbdha|Hs|ci � dadhb|Hs|ci � dbcha|Hs|di
+ [(ac|bd) � (ad|bc)], (19)

Bab,ij = [(ai|bj) � (aj|bi)], (20)

Cij,kl = � dikhj|Hs|li � djlhi|Hs|ki + dilhj|Hs|ki + djkhi|Hs|li
+ [(ik|jl) � (il|jk)]. (21)

Notice that with the restriction i o j, a o b, the terms
�dadhb|Hs|ci � dbcha|Hs|di in (19) and dilh j|Hs|ki + djkhi|Hs|li in
(21) will drop out when using canonical orbitals, recovering
eqn (12) of the supporting information of35

Aab,cd = dacdbd(ea + eb) + [(ac|bd) � (ad|bc)], (22)

Bab,ij = [(ai|bj) � (aj|bi)], (23)

Cij,kl = �dikdjl(ei + ej) + [(ik|jl) � (il|jk)]. (24)

Eqn (19) to (21) will be useful for the development of the
analytic excitation energy gradient.

II. 2. Calculation of the N-electron ground state and excited
state energies from the (N � 2)-electron reference system

According to Section II. 1., a calculation performed for the
N-electron system gives information about the ground state
and excited state energies of the (N + 2)- and (N � 2)-electron
system,

E N�2
n ’ N - E N+2

n . (25)

Therefore, to obtain the ground and excited state energies of
the N-electron system, one can choose the (N � 2)-electron
system as reference as developed by Yang,34

E N�4
n ’ N � 2 - E N

n . (26)

The (N + 2)-electron system in principle can also be used as
reference but not in usual practice since the SCF N + 2 can often

be unbound. The N-electron ground state or excited state total
energy of the system can be obtained via

E N
n (A) = E N�2

0 (SCF) + oN
n , (27)

where E N�2
0 (SCF) is the ground state SCF energy for the (N � 2)-

particle system and oN
n is the pp-RPA eigenvalue corresponding

to the double-electron-addition excitation energy on top of the
(N � 2)-particle system. We shall denote this scheme as Plan A
throughout the article. We note that this idea of calculating the
ground state and excited state energies of the N-particle by
resorting to another reference than the N-particle ground state
had also been adopted in the spin-flip (SF)-TDDFT,51–54 where
the lowest energy N-particle state of a higher spin is taken as
reference on top of which a particle-hole excitation takes place.
By taking the (N � 2)-particle reference, pp-RPA, like SF-TDDFT,
gives the qualitatively correct picture for systems with singlet-
to-triplet instability and low-lying double excitations, later to be
illustrated numerically.

Another scheme of calculating the total energy is given by

E N
n (B) = E N

0 (SCF) + (oN
n � oN

0 ), (28)

where the total energy of the nth state for the N-particle system is
calculated as the sum of the N-particle ground state SCF energy
EN

0 (SCF) plus a difference in the double-electron-addition energies
(oN

n � oN
0 ). This scheme is denoted as Plan B. Notice that both

plans give identical vertical excitation energies (oN
n � oN

0 ) for the
N-particle systems. They differ only in the way the N-particle
ground state energy is calculated. Specifically, in Plan A (27) both
the ground state and the excited states for the N-electron system
can be viewed as double-electron-addition excited states from the
SCF (N � 2)-electron system, and thus the N-electron ground and
excited states are treated on the same footing. This method can be
viewed as a single-reference counterpart of the DIP/DEA-EOM-CC
methods which use coupled-cluster references.55–57 The use of
DFT reference within the pp-RPA connects to TDDFT-P, the time-
dependent DFT in the pairing field with the neglect of the
exchange-correlation kernel dependence on the pairing matrix.58

At this point, we would like to specifically emphasize that for
n = 0, eqn (27) yields the ground state energy for the N-particle
system, which can alternatively be written as

E N
0 = E N�2

0 + oN
0

¼ min
fN�2
i
jfN�2

j

� �
¼dij

EN�2
v fN�2

i

� �� 	

þoN
0 fN�2

i

� �


minimizing EN�2

v
;X0;N ;Y0;N

h i
: (29)

The first term, the N � 2 SCF energy, is a functional of the
KS/GKS orbitals for the N � 2 system, which are not necessarily
the canonical ones (notice that even in the case of canonical
orbitals, the N � 2 system’s KS/GKS orbital energies are also
functionals of the corresponding KS/GKS orbitals once the
effective one-particle operator Ĥs is given). The second term,
the excitation energy oN

0 , is a functional of the N � 2 KS/GKS
orbitals and the pp-RPA vectors X0,N and Y0,N. Notice that this
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expression also indicates an uncoupled two-step calculation,
where the orbitals in the second term oN

0 are minimizers of
the first term E N�2

v . Now by virtue of the variational-principle
definition of the eigenvectors X0,N and Y0,N corresponding
to the lowest double electron addition energy, we have the
following relation,

o0
N ¼ min

hX;Y jDjX ;Yi¼1
oN

v fN�2
i

� �


minimizingEN�2

v
;X;Y

h i

¼ min
hX;Y jDjX ;Yi¼1

Xy Yy
� � A B

By C

 !





fN�2
if gminimizingEN�2

v

X

Y

 !
:

(30)

where we used the normalization relation for the eigenvectors
corresponding to double electron addition

hX n,N,Y n,N|D|X n,N,Y n,Ni = (Xn,N)† Xn,N � (Yn,N)† Yn,N = 1. (31)

To summarize, the ground state total energy expression for
the N-particle system is written as

EN
0 ¼ EN�2

0 þ oN
0

¼ min
fN�2
i
jfN�2

j

� �
¼dij

EN�2
v fN�2

i

� �� 	

þ min
hX;Y jDjX;Yi¼1

oN
v fN�2

i

� �


minimizing EN�2

v
;X;Y

h i
:

(32)

This expression defined a new pathway to calculate the
ground state energy, which is very different from the normal
orbital-dependent density functional for the ground state
energy, like ph-RPA and pp-RPA. It follows a stepwise minimiz-
ing scheme. More interestingly, this new functional treats the
exchange-correlation effect for the N � 2 system with tradi-
tional KS/GKS DFT (as in the E N�2

0 term) while also explicitly
correlating the two electrons from the HOMO in a configuration-
interaction-like manner (as in the oN

0 ) term, thus combining
the implicit treatment of the exchange-correlation effect by
KS/GKS DFT and the explicit treatment of the correlation of
the HOMO electrons. It is also physically well-grounded as
viewed from a pairing field perturbation perspective.58 Because
it only uses the lowest excitation energy, the computational cost
of this approach in eqn (32) is significantly lower than the pp-RPA
correlation energy approach,35 which uses all the excitation
energies. Therefore, it opens up new opportunities in which the
strengths of DFT and wave function methods may be seamlessly
combined.

Finally, starting from eqn (30), we can obtain the first excited
state energy in the following manner

EN
1 ¼ min

fN�2
i
jfN�2

j

� �
¼dij

EN�2
v fN�2

i

� �� 	

þ min
hX ;Y jDjX ;Yi¼1;hX;Y jDjX0;N ;Y0;N i¼0

oN
v fN�2

i

� �


minimizingEN�2

v
;X;Y

h i� �
:

(33)

Likewise, to obtain higher excited state energies, we only
add extra orthogonality constraints to previous ones such that

the new variational space is orthogonal to the space spanned by
the eigenvectors corresponding to states with lower energies.
Thus the extension to excited states is successfully accomplished
within this variational-principle picture.

II. 3. Analytic excitation energy gradient for pp-RPA

Starting from the matrix eqn (1) with the matrix elements given
by (19) to (21), and by virtue of the Hellmann–Feynman theorem,
the excitation energy gradient is calculated from

@on

@l
¼ Xnð Þy Ynð Þy
� � @

@l

AðlÞ BðlÞ

ByðlÞ CðlÞ

 !





l¼0

" #
Xn

Yn

 !
; (34)

where the normalization is taken as

hX n,Y n|D|X n,Y ni = (Xn)† Xn � (Yn)† Yn = 1 (35)

for the double electron addition case. Also the matrices A(l),
B(l) and C(l) are constructed in terms of non-canonical per-
turbed orbitals, and the matrix elements are given by (19) to (21).

The first derivative matrix elements
@

@l
Aab;cdðlÞ,

@

@l
Bab;hiðlÞ and

@

@l
Cij;klðlÞ have both direct contributions due to the nuclear

coordinate shift of basis functions and indirect contributions
due to the molecular orbital coefficient relaxation, which can be
obtained by solving the CPSCF equations,40

H(1)ul = bl, (36)

where

H
ð1Þ
ai;bj ¼ dabdij ea � eið Þ þ

X
bj

2ðaijbjÞ þ 2ðaij fxcjbjÞ½ �; (37)

blai ¼ �
@

@l
ajHcorejih i þ @

@l

X
j

ðaijjjÞ þ
X
j

aij fxcj
@

@l
jj


 �(

þ @

@l
ajvxcji

� �
þ ajvxcj

@

@l
i

� �� ��

þ
X
jk

Ol
jk ðaijjkÞ þ ðaij fxcjjkÞ½ � þ eiOl

ai;

(38)

where
@

@l
refers to the explicit derivative with respect to the

spatial shift of nuclei positions in the Hamiltonian or the atomic

orbitals, and Hcore ¼ �1
2
rr

2 þ vðrÞ is the core Hamiltonian. Also

the matrix elements are given by

ajHcorejih i ¼
ð
dxfa

�ðxÞ �1
2
rr

2 þ vextðrÞ
� �

fiðxÞ; (39)

ðaijbjÞ ¼
ð
dx1

ð
dx2fa

� x1ð Þfi x1ð Þ
1

r12
fb x2ð Þfj

� x2ð Þ; (40)

aij fxcjbjð Þ ¼
ð
dx1

ð
dx10

ð
dx2

ð
dx20fa

� x1ð Þfi x10ð Þ

� d2Exc

drs x10 ; x1ð Þdrs x20 ; x2ð Þfb x2ð Þfj
� x20ð Þ;

(41)
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Ol
ai ¼

@

@l

ð
dxfa

�ðxÞfiðxÞ
� �

; (42)

@

@l
ajvxcji

� �
¼
ð
dx

ð
dx0

@

@l
fa
�ðx0Þ

� �
dExc

drsðx; x0Þ
fiðxÞ; (43)

aij fxcj
@

@l
jj


 �
¼
ð
dx1

ð
dx10

ð
dx2

ð
dx20fa

� x1ð Þfi x10ð Þ

� d2Exc

drs x10 ; x1ð Þdrs x20 ; x2ð Þ
@

@l
fj x2ð Þfj

� x20ð Þ
h i

:

(44)

Now, one can split the excitation energy gradient into two

different parts,
@on

@l






direct

, which are associated with the explicit

derivative with respect to the spatial shift of nuclei positions in

the Hamiltonian or the atomic orbitals, and
@on

@l






indirect

, which

are associated with the molecular orbital coefficient relaxation.
After some straightforward but tedious algebra, we arrive at

@on

@l






direct

¼�
X
e

X
ab

Xn
abKebO

l
ea�2

X
m

X
ab

Xn
ab

nKmbO
l
am�

X
ab

nVabO
l
abea

�
X
ab

nVab

X
nm

Ol
nm ðabjmnÞþðabj fxcjmnÞð Þ

" #

þ
X

aob;cod

Xn
abX

n
cd

@

@l
ðacjbdÞ�ðadjbcÞ½ �þ

X
ab

nVab
@

@l
ajHcorejbh i

þ
X
ab

nVab

X
m

@

@l
ðabjmmÞþ

X
m

abjfxcj
@

@l
mm


 �"

þ @

@l
ajvxcjb

� �
þ ajvxcj

@

@l
b

� ��

�
X
ab

X
e

Xn
ab

nGebO
l
eaþ2

X
ab

X
m

Xn
ab

nGbmO
l
am

�
X
hi

X
m

Yn
hi
nKmiO

l
mhþ2

X
aob;hoi

Xn
abY

n
hi

@

@l
ðahjbiÞ�ðaijbhÞ½ �

�
X
hi

X
m

Yn
hi
nGmiO

l
mhþ

X
hi

nUhiO
l
iheh

þ
X
hi

nUhi

X
nm

Ol
nm ðhijmnÞþðhij fxcjmnÞð Þ

" #

þ
X

hoi;jok

Yn
hiY

n
jk

@

@l
ðhjjikÞ�ðhkjijÞ½ �

X
hi

nUhi
@

@l
hjHcorejih i

�
X
hi

nUhi

X
m

@

@l
ðhijmmÞþ

X
m

hij fxcj
@

@l
mm


 �"

þ @

@l
hjvxcji

� �
þ hjvxcj

@

@l
i

� ��
; (45)

where the following matrix elements are defined as

nKmb¼
X
cod

Xn
cd ðmcjbdÞ�ðmdjbcÞ½ �; (46)

nVbc¼
X
ðb;cÞod

Xn
bdX

n
cdþ

X
doðb;cÞ

Xn
dbX

n
dc�

X
codob

Xn
dbX

n
cd

�
X

bodoc

Xn
bdX

n
dc;

(47)

nGaj¼
X
hoi

Yn
hi ðahjjiÞ�ðaijjhÞ½ �; (48)

nUhj¼
X
ðh; jÞoi

Yn
hiY

n
jiþ

X
ioðh; jÞ

Yn
ihY

n
ij�

X
joioh

Yn
ihY

n
ji�

X
hoioj

Yn
hiY

n
ij :

(49)

And the indirect contribution is given by

@on

@l






indirect

¼ nLð ÞTul¼
X
am

nLamu
l
am; (50)

where

nLam ¼�2
X
b

Xn
ab

nKmbþ2
X
bc

nVbc ðbcjamÞþ bcj fxcjamð Þð Þ

�2
X
i

Yn
mi

nKiaþ2
X
b

Xn
ab

nGbm

þ2
X
j

Yn
mj

nGaj�2
X
hj

nUhj ðhjjamÞþ hjj fxcjamð Þð Þ;

(51)

Using the Z-vector method59 one can calculate the indirect
contributions by solving the equation

H(1)zn = nL. (52)

and then using the the following relation

(nL)Tul = (zn)Tbl. (53)

Thus, we have obtained the analytic gradient for the excita-
tion energy contribution of pp-RPA using either HF or DFT
reference. Finally, one adds the ground state SCF contribution

@ESCF

@l
, for the N � 2 electron system or the N-electron system,

in Plan A or Plan B, to
@on

@l
to obtain the ground and excited

state total energy gradient for the N electron system. An alter-
native derivation has also been given in the ESI† following the
Langrangian approach by Furche and Ahlrichs, which avoids the
introduction of the molecular orbital relaxation first derivatives
from the very beginning.21

III. Computational details

The pp-RPA excitation energy calculations with the HF and DFT
references are performed with the QM4D quantum chemistry
package.60 The analytic gradient and geometry optimization are
implemented in the QM4D quantum chemistry package60 for
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the HF and the local density approximation (LDA) references
in the MO basis for Plan A according to eqn (45), using the

Z-vector method.59 The B3LYP,61,62 CAM-B3LYP,63 CASSCF,64

CCSD65 and EOM-CCSD66,67 calculations are performed with
Gaussian 09.68 The Full CI and MRCISD(Q)69,70 results are
obtained with GAMESS.71 The Cartesian 6-311++G(d,p)72–74 basis
sets are used.

IV. Results and discussion
IV. 1. Verification of analytic and numerical gradient

In this section we verify the analytic gradient formula by comparing
the analytic and numerical gradient values of the diatomic molecule
BH, for both the ground state 1S and the doubly excited state
3S� using Plan A (eqn (27)). According to Table 1, the numerical
and analytic gradients for different SCF references are shown to
be equivalent, with absolute errors only at the sixth or seventh
digit for both the ground state and the doubly excited state.

Table 1 Analytic and numerical gradients of the BH molecule for both the
ground state 1S and the doubly excited state 3S�. The B–H bond length
is taken as the ground state experimental value 1.232 Å.75 The numerical
gradients are calculated by the finite difference method, taking the
difference between the energies at 1.233 Å and 1.231 Å. (Unit: Hartree Å�1)

Reference

dE 1S
� �
dR

(analytic)

dE 1S�
� �
dR

(numerical)

dE 3S�
� �
dR

(analytic)

dE 3S�
� �
dR

(numerical)

LDA �0.02160924 �0.02160884 0.03451664 0.03451460
HF 0.00459937 0.00459903 0.04793338 0.04793303
LDA5050a �0.01254669 �0.01254751 0.04441725 0.04441517
HF-cLDAb 0.00528831 0.00528854 0.05561382 0.05561203

a LDA5050 stands for 0.5EHF
x + 0.5ELDA

x + ELDA
c . b HF-cLDA stands for

EHF
x + ELDA

c .

Fig. 1 Ground and lowest excited state potential energy surfaces of the BH molecule: (a) Full CI; (b) (TD-)LDA; (c) Plan A pp-RPA with B3LYP reference;
(d) Plan B pp-RPA with B3LYP reference. The 3S� excitation is a HOMO(2)-LUMO(2) double excitation.
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Therefore, the analytic gradient formula has been verified to be
correct both mathematically and in terms of implementation
for both HF and LDA references.

IV. 2. Ground and excited state potential energy surfaces and
equilibrium bond lengths of some diatomic molecules

In this section we investigate the ground state and excited state
potential energy surfaces with the pp-RPA method. The pp-RPA
ground state and excited state total energies of the N-electron
systems are calculated from both Plan A and Plan B (see
eqn (27) to (28)).

The first two examples are BH and the isoelectric CH+. For
these two systems the Full CI results are used as benchmark
(Fig. 1(a) and 2(a)). The B3LYP reference is adopted for these two
systems. The potential energy surfaces for these two systems from
both Plan A and Plan B are in agreement with the Full CI curves,
with the gaps between different states reasonably well described

(Fig. 1(c), (d), 2(c) and (d)). Particularly, for both systems the
reported 3S� state is a predominantly doubly excited state from
the HOMO s orbital to the two degenerate LUMO p orbitals,
i.e. c|p1�p2i � c|p2�p1i, where c is around 0.69 for BH and 0.68 for
CH+throughout the bond lengths studied. TDDFT within the
adiabatic approximation fails to capture this excitation completely,
as is illustrated in the absence of that curve in TD-LDA (Fig. 1(b)
and 2(b)), while pp-RPA captures this state correctly. Worse still for
TD-LDA in the case of CH+, the 3P state is predicted as below the
1S ground state in energy (Fig. 2(b)). In fact the same is observed
for the TD-B3LYP calculation of the BH molecule,28 and such
unphysical predictions have been a challenge for the TDDFT
description of the lowest triplet excitations. But this issue
is qualitatively resolved here within the pp-RPA treatment.
Concerning the ground state and excited state bond lengths, the
pp-RPA calculations tend to give slightly underestimated results.
And the doubly excited state surfaces are less well described,

Fig. 2 Ground and lowest excited state potential energy surfaces of the CH+ molecule: (a) Full CI; (b) (TD-)LDA; (c) Plan A pp-RPA with B3LYP reference;
(d) Plan B pp-RPA with B3LYP reference. The 3S� excitation is a HOMO(2)-LUMO(2) double excitation.
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presumably due to the absence of higher excitation contributions.
Similarly, predominantly double excitations are also less accurately
captured by EOM-CCSD, which is improved only after the triply
excited contributions are included, as shown by Table 5 and
related comments in ref. 76. A minorimprovement is observed
when Plan B (28) is used instead of Plan A (27) for CH+. The
equilibrium bond lengths and adiabatic excitation energies are
reported in Tables S1 and S2 in the ESI† for reference.

Next, we consider the LiH and NaH molecules around equili-
brium bond lengths. For these two systems the (EOM-)CCSD
method is chosen as a benchmark, and the HF reference pp-RPA
with both Plan A and Plan B is reported here. For the case of LiH,
all the methods give reasonable potential energy surfaces, as
illustrated in Fig. 3. pp-RPA within both Plan A (27) and Plan B
(28) yields slightly better relative energy gaps compared to (TD-)LDA
results. The same is true for NaH, as illustrated in Fig. 4, only in

this case the TD-LDA results are clearly worse than those of pp-RPA
by widening the gap between the 3S and 1S excited state surfaces.
However we found that at large bond lengths (TD-)LDA fails
qualitatively by greatly overestimating the ground state energy
due to its huge static correlation errors. Even EOM-CCSD predicts
incorrect energy ordering for the ground state and the lowest triplet
excited state. By contrast, pp-RPA accurately reproduces the refer-
ence Full CI and MRCISD(Q) results (see ESI† III.3 for detail). Thus
it appears that the choice of the N � 2 reference system could be
critical when significant static correlation is present.

Comparing the two schemes (Plan A and Plan B) for total
energy calculations, both schemes calculate the N-particle system
excitation energy by taking the difference between two double
electron affinities from the (N � 2)-particle SCF reference state,
and the calculated N-particle system excitation energy is identical.
The difference is only in the choice of the N-particle ground state,

Fig. 3 Ground and lowest excited state potential energy surfaces of the LiH molecule: (a) (EOM-)CCSD; (b) (TD-)LDA; (c) Plan A pp-RPA with HF
reference; (d) Plan B pp-RPA with HF reference.
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which in Plan B is simply chosen to be the N-particle SCF DFT
ground state, while in Plan A it is chosen to be an explicitly
correlated double-electron-added state on top of the (N � 2)-
particle SCF reference state. The quality of N-particle total
energy depends on whether the N-particle DFT ground state
or pp-RPA double electron addition ground state is better.
The latter explicitly correlates 2 electrons and treats the
rest of the N � 2 electrons with implicit DFT correlation.
Numerically the GS equilibrium geometries are similar for the
systems considered. However, for excited state total energy
calculations with Plan B, two separate SCF calculations must
be performed (one at N and another at N � 2). Moreover,
although the pp-RPA double electron addition ground state
performs similarly as DFT ground state near the equilibrium,
the former is superior for stretched single bonds, as will be
shown in Section IV. 5 (Fig. 8).

IV. 3. Ground state geometry optimization of some small
molecules

In this section we present the optimized ground state structures
of some small molecules. Throughout this section Plan A (see
eqn (27)) is used to calculate the total energy and the analytic
gradient of the ground state. CCSD geometries have been used
for benchmarking (Tables 2–4).

The first two examples contain the fluorine element. Specifically,
the hypofluorous acid (HFO) (Fig. 5) molecule O–H bond length, as
in the case of water, is uniformly underestimated in pp-RPA for all
references considered. The LDA reference O–H bond length is in
closer proximity to the CCSD benchmark in this case. Also, the O–F
bond length is again best captured by the LDA reference. However,
in terms of the H–O–F bond angle, pp-RPA results with the HF and
LDA references deviate from the CCSD result in opposite directions,

Fig. 4 Ground and lowest excited state potential energy surfaces of the NaH molecule: (a) (EOM-)CCSD; (b) (TD-)LDA; (c) Plan A pp-RPA with HF
reference; (d) Plan B pp-RPA with HF reference.
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with the HF and HF-cLDA (EHF
x + ELDA

c ) reference both over-
estimating the bond angle by about 3.5 degrees and the LDA

reference underestimating it by about 4 degrees. The LDA5050
reference (0.5EHF

x + 0.5ELDA
x + ELDA

c ) predicts the best bond angle
here due to error cancellation (Table 2). Concerning OF2, both the
O–F bond length and the F–O–F bond angle are best captured
by the LDA reference pp-RPA, which are very close to the CCSD
benchmark results (Fig. 6, Table 3).

The third example presented is the ozone molecule. This
molecule has two resonance structures, allowing greater delocali-
zation of electrons throughout the conjugated p bond. For this
case, the LDA5050 (0.5EHF

x + 0.5ELDA
x + ELDA

c ) does best in reprodu-
cing both the bond length and bond angle, yielding very similar
results compared to CCSD. pp-RPA with the HF-cLDA (EHF

x + ELDA
c )

reference, however, tends to give greater deviation than HF itself in
terms of the O–O bond length and the O–O–O bond angle, as is the
case in the previous examples considered (Fig. 7, Table 4).

IV. 4. Excited state geometry optimization for water

Now we continue to consider the geometry optimization for the
lowest triplet and lowest singlet excitation of the water molecule.
The MRCISD(Q) method with 10 active electrons and 7 active
orbitals is used for benchmarking. The ground state geometries
as well as the total energies of the ground state and excited states
are also given for comparison. According to Table 5, we observe that,
as for the ground state, there is also a similar underestimation
of the O-H bond length in the excited states by pp-RPA in
comparison to the benchmark results. The LDA5050 reference

Table 2 Bond lengths and bond angle of HFO

Method R(H–O)/Å R(O–F)/Å A(H–O–F)/deg.

CCSD 0.9670 1.4255 98.63
LDA 0.9822 1.4196 98.78
pp-RPA/HF ref 0.9029 1.2672 102.19
pp-RPA/HF-cLDAa ref. 0.8934 1.2560 102.24
pp-RPA/LDA5050b ref. 0.9115 1.3665 97.79
pp-RPA/LDA ref. 0.9347 1.4399 94.78

a HF-cLDA stands for EHF
x + ELDA

c . b LDA5050 stands for 0.5EHF
x +

0.5ELDA
x + ELDA

c .

Table 3 Bond lengths and bond angle of OF2

Method R(O–F)/Å A(F–O–F)/deg.

CCSD 1.3968 103.34
LDA 1.3966 104.63
pp-RPA/HF ref 1.2500 104.74
pp-RPA/HF-cLDAa ref. 1.2393 104.80
pp-RPA/LDA5050b ref. 1.3266 103.14
pp-RPA/LDA ref. 1.3946 103.41

a HF-cLDA stands for EHF
x + ELDA

c . b LDA5050 stands for 0.5EHF
x +

0.5ELDA
x + ELDA

c .

Table 4 Bond lengths and bond angle of O3

Method R(O–O)/Å A(O–O–O)/deg.

CCSD 1.2519 117.78
LDA 1.2536 118.61
pp-RPA/HF ref. 1.2353 118.53
pp-RPA/HF-cLDAa ref. 1.2199 118.68
pp-RPA/LDA5050b ref. 1.2442 118.11

a HF-cLDA stands for EHF
x + ELDA

c . b LDA5050 stands for 0.5EHF
x +

0.5ELDA
x + ELDA

c .

Fig. 5 Structure of the hypofluorous acid molecule.

Fig. 6 Structure of the oxygen difluoride molecule.

Fig. 7 Structure of the ozone molecule.

Table 5 Bond lengths and bond angles the ground state, the lowest triple and singlet excited states of the H2O molecule

Method

1A1 (ground state) 3B1
1B1

R(O–H)/Å A(H–O–H)/deg. R(O–H)/Å A(H–O–H)/deg. E. E.d/eV R(O–H)/Å A(H–O–H)/deg. E. E.d/eV

MRCISD(Q)a 0.9612 103.30 1.1122 111.17 6.548 1.0825 105.84 7.058
(TD)LDA 0.9698 105.12 1.0912 108.48 6.010 1.0563 104.18 6.436
pp-RPA/HF ref. 0.9070 108.90 0.9954 104.59 3.127 0.9906 104.22 3.377
pp-RPA/HF-cLDAb ref. 0.8969 108.93 0.9934 104.27 3.821 0.9875 103.62 4.105
pp-RPA/LDA5050c ref. 0.9016 107.18 1.0536 102.97 5.596 1.0418 99.27 6.012

a MRCISD(Q) with 10 active electrons and 7 active orbitals. b HF-cLDA stands for EHF
x + ELDA

c . c LDA5050 stands for 0.5EHF
x + 0.5ELDA

x + ELDA
c .

d Adiabatic excitation energies.
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(0.5EHF
x + 0.5ELDA

x + ELDA
c ) performs best of all in terms of both

the adiabatic excitation energies and the O–H bond lengths. All
methods display the same trend of O–H bond length change

from the ground state 1A1 to the 3B1 state and then to the 1B1 state
compared with MRCISD(Q). The improvement of results with
increased LDA exchange indicates that DFT references might be

Fig. 8 Bond dissociation curves and energy deviation from the MRCI for BH ((a1) and (a2)); CH+ ((b1) and (b2)); Li2 ((c1) and (c2)); ethylene ((d1) and (d2)). For the
dissociation of ethylene we constrain the bond length of C–H to 1.07 Å, and the bond angle of H–C–H to 120 degrees for the C–C bond length scan. The
MRCISD(Q) calculations for BH and CH+ have 6 active electrons and 6 active orbitals, for Li2 6 electrons and 10 orbitals, and for ethylene 12 electrons and 12 orbitals.
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superior for pp-RPA. This superiority of the DFT reference over HF
here and in Section IV. 3 indicates the importance of the treat-
ment of the exchange-correlation effect for the N � 2 system, in
particular when the number of valence electrons is large. For
these cases, the LDA reference seems to be an acceptable starting
point. We expect the GGA reference to further improve the pp-RPA
geometries and plan for further investigation.

IV. 5. Ground state dissociation curves for single and double
bonds

In this part we study the ground state dissociation curves for
single and double bonds. Throughout this section Plan A (see
eqn (27)) is adopted for calculation of the ground state total
energy. The CCSD and MRCISD(Q) methods have been used for
benchmarking. The MRCISD(Q) calculations for BH and CH+

have 6 active electrons and 6 active orbitals, for Li2 6 electrons
and 10 orbitals, and for ethylene 12 electrons and 12 orbitals.

As far as the single bonds are concerned (see (a1), (a2), (b1),
(b2), (c1) and (c2) of Fig. 8), the pp-RPA with the HF reference
outperforms that with either the pp-RPA with the B3LYP
reference or the CAM-B3LYP reference63 in terms of the shape
of the curve and the binding energies, whereas the pp-RPA
correlation energy functional from AC-FDT yields unphysical
bumps for the potential energy curve of single bond dissocia-
tion of H2 at intermediate bond lengths35 despite its correct
dissociating limit. The pp-RPA with the HF reference curves
closely resembles those of CCSD and MRCISD(Q), while by
contrast the curves obtained with B3LYP, CAM-B3LYP and the
pp-RPA calculations with these DFT references all tend to
overestimate the binding energy of the molecules. Although
pp-RPA with the HF reference gives absolute potential energies
that are a little too high, yet we note that this will not be
problematic so long as relative energies are concerned. In fact
all density functional approximations have deviations in terms
of absolute energies (see the B3LYP curve in (c1) of Fig. 8), yet
they still prove useful when only relative energies, such as
reaction energies, ionization energies, excitation energies, etc.,
are of interest. Therefore, as long as the energy deviation from the
accurate values is reasonably consistent with respect to changing
geometries (e.g. the pp-RPA curves with the HF reference in (a1),
(b1) and (c1)), the method will prove useful in application. For the
equilibrium bond lengths as interpolated from cubic splines
(Table 6), fairly good agreement is achieved for BH and CH+

between the results of pp-RPA with both the HF reference and the
B3LYP reference and the results of CCSD and MRCISD(Q). Yet for
the case of Li2, the ground state equilibrium bond lengths
predicted by the pp-RPA with the B3LYP and the CAM-B3LYP

references are both severely underestimated, while the pp-RPA
with the HF reference gives very accurate result. We ascribe this to
the small number of valence electrons (only 2 here), for which the
HF orbitals may turn out to be better reference since they make
better connection to the configuration interaction picture than
DFT orbitals. On the choice of SCF reference, we observe that for
relatively small numbers of valence electrons the HF reference
gives better results, evidenced by the single-bond dissociation
curves in Fig. 8. For larger systems as recently studied with the
Davidson’s algorithm, B3LYP or other DFT references works
better,77 also shown in the excited state geometries of water
(Tables 4 and 5). Calculations of Rydberg excitations34 shows
the HF reference to be better than the B3LYP reference.

However, the situation is trickier with the ethylene molecule.
As it is with the pp-RPA correlation energy functional,35 unphy-
sical bumps in the dissociation curves are also observed for
intermediate bond lengths for the pp-RPA with both the HF and
the CAM-B3LYP references. Also the equilibrium bond lengths
are slightly overestimated by pp-RPA with the HF, CAM-B3LYP
and rCAM-B3LYP78 references. Also we notice that even for CCSD,
the dissociation curve is far from satisfactory: the binding energy
is a bit too high and the description for intermediate bond lengths
is inaccurate. The SCF CAM-B3LYP curve is very similar to that of
CCSD, if only it were shifted down by about �0.2 hartrees.
To better understand this issue, we remark that the eigenvectors
in eqn (1) formally allow for only excitations that add two
electrons into the virtual orbitals of the N � 2 systems. From
a different perspective, if the HF orbitals of the N-electron
system are used, known as the HF* scheme, we would obtain
something very readily connected to a restricted version of CISD that
only accounts for only excitations from HOMO and HOMO � 1.
Particularly, it has been shown that such a scheme is exact for
two-electron systems, like the hydrogen molecule34 (see ESI† for
the numerical verification). Therefore, so long as CISD and/or
CCSD fails, for instance the dissociation of double or triple
bonds, the pp-RPA results will also be problematic, since for
such systems the single-determinant reference is already highly
questionable. However, as illustrated by the three single-bond
dissociation examples, reasonable relative energies can still be
obtained so long as the excitations from HOMO and HOMO � 1
dominate the configuration space. Also, despite this restriction
in configuration space, the recent successful application of
pp-RPA to large systems by use of the Davidson’s algorithm,
featuring single excitation benchmark tests, charge transfer
excitations and diradical problems, has obtained very good excita-
tion energies, especially so with DFT references. This, we believe,
is a consequence of the inherently built-in correlation by the

Table 6 Interpolated equilibrium bond lengths from the dissociation curves using cubic splines. (Unit: Å)

System MRCISD(Q) CCSD B3LYP CAM-B3LYP

pp-RPA with different references

HF B3LYP CAM-B3LYP rCAM-B3LYP

BH 1.243 1.240 1.237 1.237 1.223 1.250 1.232 —
CH+ 1.130 1.130 1.137 1.135 1.115 1.090 1.087 —
Li2 2.683 2.682 2.705 2.682 2.700 2.230 2.325 —
Ethylene 1.348 1.354 1.343 — 1.419 — 1.396 1.399
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exchange-correlation functionals themselves even for the N � 2
reference states.77 These exciting results certainly endorse further
effort on this unique approach with pp-RPA to tackle electronic
excitation problems for sizable molecules of practical interest.

V. Conclusion

The analytic total energy gradient has been developed for excited
states calculated from pp-RPA, which is a single-reference counter-
part of the DIP/DEA-EOM-CC method. The derivation follows a
similar fashion to that of the TDDFT gradient equations. The
gradient equations have been verified to be correct via a finite
difference method for both HF and LDA references. Results with
accuracy comparable to DFT/TDDFT have been obtained for
ground state and excited potential energies and bond lengths of
tested diatomic molecules. Geometry optimization of some small
polyatomic molecules also displays a similar accuracy to that of
DFT and compares nicely with the benchmark results. Accurate
ground state bond dissociation curves are obtained for single
bonds, while the results are slightly deteriorated for double bonds.
Furthermore, the accuracy of the results depends on a proper
choice of the SCF reference for the (N� 2)-particle system. The HF
reference works well with small number of valence electrons, while
DFT references are better for larger number of valence electrons.
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