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A coherent approach to the description of double excitations in correlated materials is presented:
We derive stringent mathematical conditions on the algebraical structure of the Bethe–Salpeter and
time-dependent density functional theory kernels that avoid the occurrence of spurious and nonphys-
ical excitations. We discuss how these conditions need to be respected at any level of approximation,
including the commonly used local density and static screening approximations. We propose a cor-
related kernel for the Bethe–Salpeter equation, and we illustrate several aspects of our approach
with numerical calculations for model molecular systems. © 2011 American Institute of Physics.
[doi:10.1063/1.3518705]

I. INTRODUCTION

The description of optical absorption spectrum of
extended crystalline materials as well as of nano-structured
systems is one of the main goals of modern theoretical
spectroscopy. In a simplified picture photons are absorbed
and turned into electron–hole pairs. It is well-known, how-
ever, that in realistic materials the strong spatial localization
may lead to the simultaneous formation of two e–h pairs,
i.e., double excitations. Double excitations can become es-
sential for the description of the optically excited states in
open-shell molecules;1 however they can play an important
role also in closed-shell systems, such as, e.g., in polyenes,
where the lowest-lying singlet state is known to have a
HOMO2–LUMO2 double-excitation character.2 The theoreti-
cal description of double excitations in conjugated polymers
constitutes an important challenge for the state-of-the-art
approaches used in physics and physical chemistry. Correla-
tion effects, indeed, tend to complicate dramatically the the-
oretical description and, for this reason, are often neglected.
Indeed the most common and widely used approach to the
problem of double excitations is given by post-HF methods
based on the assumption that correlation is small. However,
while this is often reasonable for small molecules, in long 1D
molecular chains the effects of correlation are crucial.3 On
the other hand, the currently used approximations to electron
correlation in the state-of-the-art approaches to the descrip-
tion of optical excitations in correlated systems, namely time-
dependent density functional theory (TDDFT) and many-
body perturbation theory (MBPT), fail to capture the physics
of double excitations.1, 2

a)Present address: Laboratoire de Physique Théorique-IRSAMC, CNRS,
Université Paul Sabatier, F-31062 Toulouse Cédex, France.

As post-HF methods are designed to work in a small cor-
relation regime, their extension to realistic materials is very
demanding, if not practically impossible. In this article, we
make a step beyond the state-of-the-art by showing how to
properly use the MBPT and TDDFT schemes to tackle the
problem of double excitations in correlated materials.

In the TDDFT approach the excitation energies of a sys-
tem can be obtained from the noninteracting Kohn–Sham
(KS) eigen-energies solving a Dyson equation for the re-
sponse function. In this equation exchange and correlation
(xc) effects are cast in an unknown xc kernel fxc[ρ](r, r ′,
t − t ′) = δvxc[ρ](r, t)/δρ(r ′, t ′), which needs to be approxi-
mated. Most of the success of the TDDFT is due to the success
of the adiabatic local density approximation (ALDA), which,
despite being extremely simple, is surprisingly accurate in
the case of isolated systems. Nevertheless the ALDA suffers
from some deficiencies that cause TDDFT to fail in some
cases, such as in the description of excited states with a mul-
tiple excitation character. The source of this failure has been
traced back in the literature to the adiabatic approximation,1, 4

which neglects the frequency dependence of the true xc ker-
nel: It turns out that it is precisely this frequency dependence
of the kernel that takes into account all the many-excitation
effects.

In MBPT the neutral excitations of the system are ob-
tained by solving the Bethe–Salpeter equation (BSE), which
is a Dyson-like equation for a four-point generalized response
function. Similarly to TDDFT, xc effects in the BSE are cast
in a four-point kernel, which, unlike in TDDFT, can be written
as a perturbative expansion. The most common and widely
used approximation to this kernel is based on the so-called
GW approximation to the self energy, which takes into ac-
count the many-body effects acting on a bare particle. Within
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this approximation the xc effects in the BSE are described by
the screened Coulomb interaction W (in the following we will
refer to this approximation to the BSE as GW-BSE), which,
moreover, is usually considered static, thus ruling out the pos-
sibility of describing double excitations.

In the TDDFT literature several solutions to the dou-
ble excitation problem have been proposed.1, 4–6 Wang and
Zeigler used a noncollinear representation of the xc kernel,6

which could be used to describe double excitations, but only
starting from the appropriate reference excited states. Casida
proposed a xc kernel which goes beyond the adiabatic approx-
imation constructed from a superoperator formalism1 that
contains as a special case the “dressed–TDDFT” recipe de-
rived by Maitra et al.4 The dressed-TDDFT approach how-
ever is not predictive since the existence of double excita-
tions must be defined a priori. Only very recently Huix-
Rotllant and Casida7 proposed an extension of the dressed
TDDFT method, which clarifies the relation between polar-
ization propagator (PP) approach and the BSE method and
is presently being tested on an extensive set of molecules.7

Finally, in a recent work Romaniello et al.8 proposed an xc
kernel that goes beyond the adiabatic approximation start-
ing from the BSE kernel and taking advantage of its connec-
tion with the TDDFT kernel. Romaniello et al. showed that,
by simply relaxing the static approximation to the screened
Coulomb interaction, double excitations are in fact described;
however, together with the desired excitations, nonphysical
excitations also appear. The authors interpret these spurious
excitations as due to the self screening error embodied in the
GW self energy.8, 9

The state-of-the-art approaches, then, suffer from differ-
ent types of pathologies. On one side, HF and post-HF meth-
ods can only treat small correlation effects and are, in gen-
eral, designed to describe isolated systems with the idea that
the interactions among particles can be treated perturbatively.
These approximations are obtained by truncating the pertur-
bative expansion to some finite order but always respecting
key principles of quantum mechanics such as quantum statis-
tics and Pauli exclusion principle. On the other side, in the
BSE and TDDFT approaches, correlation is treated to all or-
ders of perturbation theory, but the quantum statistics and
Pauli exclusion principle are easily broken in simple approxi-
mations, thus leading to uncontrolled effects such as unphys-
ical excitations.

In this paper we propose a novel approach to describe
double excitations in correlated materials by embodying the
mathematical properties of post-HF methods in a coherent
many-body framework. In order to achieve this we first de-
fine the conditions for a number-conserving (NC) approach,
which avoids the appearance of spurious excitations; we then
embody the NC condition in an extension to the BSE that de-
scribes double excitations in a consistent manner. The formu-
lation by Romaniello et al. is recovered as a subset of the
Feynman diagrams included in the present approach, which
makes possible to tackle the problem of double excitations in
correlated systems.

The paper is organized as follows: In Sec. II we briefly
review the second-RPA (sRPA) method, a post-HF approach
to the description of double excitations. In particular we dis-

cuss the symmetry structure of the sRPA equations, in order to
define the conditions that a kernel must fulfill to be number-
conserving, i.e., without spurious solutions. The dynamical
BSE (DBSE) is introduced in Sec. III, and used in Sec. III C
to derive a NC and frequency-dependent kernel. In Sec. IV
we report calculations of the polarizability of two hydrocar-
bon chains, C8H2 and C4H6, and we show how our approach
can produce the correct number of physical excitations, un-
derlying the role played by the various Feynman diagrams.
We finally draw our conclusions.

II. THE SECOND RPA: A NUMBER-CONSERVING
APPROACH

In the second RPA the equation of motion for the excita-
tion operator (which creates a one-photon state) is solved in
the space of single and double excitations. Thus double exci-
tations are explicitly introduced in the formulation. The key
concept introduced by the sRPA method that is relevant to our
development is the folding of the sRPA equation in the sub-
space of single excitations.

Both the sRPA and the BSE equation can be cast in the
form of an eigenvalue problem. Both approaches in practice
describe a generalized response function χ , written in the
space of the electron–hole transitions (eh):

χeh,e′h′(ω) =
∑
λλ′

Aλ,eh S−1
λλ′ A∗

λ,e′h′

ω − Eλ

. (1)

Here Aλ,eh and Eλ are, respectively, eigenvectors and
eigenvalues of the Hamiltonian associated to the equa-
tion of motion for the excitation operator, and Sλ,λ′ =∑

eh,e′h′ A∗
λ,eh Aλ′,e′h′ is the overlap matrix. The optical re-

sponse function χ can be easily connected to the macroscopic
polarizability tensor by noticing10 that

↔
α (ω) = −

∑
eh,e′h′

reh χeh,e′h′ re′h′ , (2)

with reh = 〈e|r |h〉.

A. Second RPA and the folding

The Hamiltonian associated to the sRPA equation of mo-
tion can be written11 in the Fock space of single and double
excitations(

S C
C† D

)(
e1

e2

)
= ωI

(
e1

e2

)
. (3)

Here S and D represent, respectively, the Hamiltonian in the
space of single excitations (dimension Ns × Ns) and of dou-
ble excitations (dimension Nd × Nd ). C represents the cou-
pling between single and double excitations. The number of
eigenvalues of Eq. (3) is thus, Ns + Nd . e1 and e2 are the sRPA
excitation operator components11 in the singles and doubles
subspaces, respectively.

The question now is how to obtain these Nd poles work-
ing only in the space of single excitations, without introducing
explicitly the doubles subspace. This step is crucial to create a
link between the sRPA and the BSE, which is strictly defined
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only in the singles subspace. To create this link we fold the
total Hamiltonian matrix in the RNs subspace.11 This is done
by expressing e2 in terms of e1, and then solving the equation
for e1:

(S + �(ω)) e1 = ωI e1, (4)

with �(ω) = C(ωI − D)−1C†. Equations (3) and (4), then,
have the same Ns + Nd eigenvalues but Eq. (4) is solved in the
single-excitation subspace, and the frequency-dependent ker-
nel �(ω) takes into account the down-folding of the double-
excitation space to the single-excitation space. The correct
structure of the � kernel is thus crucial to get the correct
number of solutions. In particular, if D can be diagonalized,
then Eq. (4) can be written in terms of the diagonal matrix
D′ = U †DU as:⎛

⎝S +
Nd∑

ξ=1

K (ξ )

(ωI − D′
ξξ )

⎞
⎠ e1 = ωI e1, (5)

with K = C ′C ′† and C ′ = CU .
An explicit expression for the � kernel of sRPA in the

electron–hole and hole–electron transition space (ij) can be
found within the Tamm–Dancoff approximation (TDA):11

�(i j),(hk)(ω) =
∑

(nq)(mp)

C(i j),(nq)(mp)C
†
(nq)(mp),(hk)

ω − (εn − εq + εm − εp)
, (6)

with

C(i j),(nq)(mp) = 1

2
(v(in),(mp)δ j,q + v( jq),(mp)δi,n − {n ↔ m}

− {q ↔ p} + {(nq) ↔ (mp)}). (7)

Here εi are the poles of the HF Green’s function, (GF) GHF,
whereas

v(i j),(hk) =
∫

dxdx ′φ∗
j (x)φi (x)v(x, x ′)φk(x ′)φ∗

h (x ′), (8)

are the projections of the Coulomb interaction in the space
of single particle wave functions. The structure of Eq. (6) is
the same of the kernel in Eq. (5). A key property of the � ker-
nel is that it remains unchanged under −{n ↔ m}, −{q ↔ p}
(Pauli exclusion principle) and {(nq) ↔ (mp)} (particle indis-
tinguishability) transformations, due to the symmetry of the
C(i j),(nq)(mp) factors.

Therefore the algebraic structure of Eq. (6) ensures the
respect of the particle indistinguishability and of the Pauli ex-
clusion principle which constitute necessary conditions for a
number-conserving (NC) theory of double excitations.

This can be shown in detail by solving the characteristic
equation arising from Eq. (4), i.e., det(ω − S − �(ω)) = 0.
Using the nonlinearity of the determinant,

det

(
K (ξ )

ω − D′
ξξ

)
= det(K (ξ ))

(ω − D′
ξξ )Ns

(here Ns is the dimension of the matrix K and ξ stands for
the set of indexes {(nq)(mp)}), and exploiting the relation12

det(A + B) = ∑
PR ,PC

minor(A) minor(B), (here PR and PC

are partitions of the rows and the columns of A and B13), the

eigenvalue equation can then be rewritten as

det(ω − S − �(ω))

=
∑

PR ,PC

minor(ω − S) minor(�(ω))

= det(ω − S) +
Nd∑

ξ=1

det(K (ξ ))

(ω − D′
ξξ )Ns

+ · · · . (9)

In the last line of Eq. (9) we considered the two terms in
the minor expansion that have the maximum and the mini-
mum degree in ω, respectively Ns and −Ns . Thus, assuming
a completely general structure for the K (ξ ) terms, Eq. (9) is a
polynomial equation of degree Ns + Nd Ns . Consequently the
introduction of a frequency-dependent kernel yields, in gen-
eral, more solutions than the single electron transitions (Ns),
although larger than the correct number of poles, Ns + Nd .
However, in our case, the particular structure of the matrices
K (ξ )

i j,hk = Ci j,ξ C∗
hk,ξ ensures that the determinant of any but the

one-dimensional sub-block of K (i) is zero. This means that the
second term on the right-hand side (rhs) of Eq. (9) is zero and
in the minor expansion only Nd terms of degree −1 survives,
from which it follows that the total degree of the polynomial
expression det(ω − S − �(ω)) is Ns + Nd .

In the notation of Eq. (1) e1 = Aλ,eh . By plugging the
eigenvectors and eigenvalues of Eq. (4) in Eq. (1), we see im-
mediately that the Nd double excitations will appear as poles

of
↔
α (ω).

B. Second RPA, correlation, and TDA: A closed end

In extended systems the dressing up of bare particles in-
duced by correlation effects is mediated by collective charge
oscillations, i.e., by plasmons. Therefore a coherent approach
to double excitations in correlated materials should correctly
describe the interaction with plasmons. The key problem in
the description of plasmons is the possible breakdown of the
TDA, as it occurs, for example, in nanostructures.14 Indeed,
within the TDA neutral excitations are described as packets
of electron–hole pairs propagating only forward in time, and,
therefore, charge oscillations (plasmons) cannot be captured.

sRPA can, in principle, describe plasmons by going be-
yond the TDA. However, as a matter of fact, the complexity of
the method imposes to retain only a few terms beyond TDA.
Indeed, the sRPA, given by Eq. (4), is equivalent to a Dyson
equation for the response function that can be analyzed by
using the diagrammatic technique.

It results that while kernel diagrams [see Fig. 1(a)] are
included in the sRPA, self-energy diagrams [see Fig. 1(b)]
are not. A more accurate diagrammatic analysis of the sRPA
method will be presented in Sec. III C. It has been shown
that, starting from the HF approach, including only the ker-
nel diagrams yields an incorrect description of the excitation
energies.15 In a recent paper by Gambacurta et al.,16 studying
the spectrum of Sodium clusters, this problem is discussed
and identified as lack of ground-state correlation.

This is one of the major reasons why the sRPA ap-
proach is not very popular in the condensed matter field.
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(a) kernel diagrams

(b) self-energy diagrams

FIG. 1. Second-order Feynman diagrams relevant to the description of col-
lective excitations. Time flows from left to right. While kernel diagrams
(a) are included in the sRPA, trough the iteration of the Dyson equation, self-
energy ones (b) are not. This inconsistency prevent the sRPA to work in a
correlated regime.

Approaches like the algebraic diagrammatic construction
(ADC) are preferred.17 However in the ADC approach kernel
and self-energy diagrams beyond TDA are included only up
to finite orders. While this is a reasonable approach for small
systems, it is expected to fail in extended correlated ones. In
extended systems, any order diagram in the bare interaction
is relevant and kernel and self-energy diagrams must be in-
cluded up to an infinite order.

III. A NUMBER-CONSERVING APPROXIMATION
FOR THE BSE

It is now clear that a well-defined approach to the de-
scription of double excitations must be NC, i.e., it must not
introduce spurious nonphysical solutions. At the same time,
it must include diagrams up to infinite order and beyond the
TDA in order to describe screening effect and collective ex-
citations. The BSE approach is an alternative scheme which
includes the infinite series of both kernel- and self-energy di-
agrams, thus providing a suitable approach to achieve both
goals in a coherent manner.

A. From the static to the dynamical BSE

The low energy neutral excitations of a N-particle system
can be obtained within many body perturbation theory using
the BSE,18

L(12; 1′, 2′) = L0(12; 1′2′)

+ L0(14; 1′3)�(35; 46)L(62; 52′). (10)

The variables appearing in the above equations comprise po-
sition, spin, and time coordinates: (1) = (x1t1) = (r1σ1t1).
For simplicity, in the following the spatial and spin depen-
dence will not be specified, if not necessary. Repeated in-
dexes are integrated, as assumed implicitly throughout the pa-
per. L0 is given in terms of one-particle GFs as L0(12; 1′2′)
= −iG(12′)G(21′) and the four-point kernel �(35; 46) is
given by

�(35; 46) = i
δ [vH (3)δ(34) + δ
(34)]

δG(65)
, (11)

with vH (1) = −iv(13)G(33+) the Hartree potential. Physi-
cally the two terms on the rhs of Eq. (11) represent exchange

interaction (first term) and screening processes (second term)
produced by the correlated motion of the electron density.

The optical excitations are obtained in the limiting case
t ′
1 = t1, t ′

2 = t2. As a consequence they are given by the poles
of L̃(ω) = ∫

dω′dω′′L(ω,ω′, ω′′) by considering the Fourier
transform of Eq. (10) and using the convention8, 18

L(ω,ω′, ω′′) =
∫

dτdτ ′dτ ′′eiωτ eiω′τ ′
eiω′′τ ′′

L(t1, t ′
1, t2, t ′

2),

(12)

with τ = (t1 + t ′
1)/2 − (t2 + t ′

2)/2, τ ′ = t1 − t ′
1 and τ ′

= t2 − t ′
2. The BSE then reads:

L̃(ω) = L̃0(ω) + 1

4π2

∫
dω′dω′′L0(ω,ω′)

×�(ω,ω′, ω′′)L(ω,ω′′). (13)

Note that Eq. (13) is not a closed equation as the rhs is
not a functional of L̃(ω). Therefore one usually uses specific
approximations to reduce its complexity. The most widely
used is based on the GW approximation to the self energy.
In this case, the exchange-correlation part of the kernel is ap-
proximated as ∂
/∂G � W (where the functional derivative
δW/δG is neglected). Furthermore, the energy dependence
of W is usually neglected.19 However, it is now well under-
stood that the resulting static BSE cannot describe double ex-
citations. In Ref. 8 for example, the frequency dependence of
W (ω) has been used to describe double excitations in confined
materials. The problem is, that the simple use of a frequency-
dependent interaction leads to the appearance of unphysical
excitations, as previously mentioned.8 To trace back those
spurious solutions to the kind of diagrams included in the BSE
we introduce the dynamical BSE (DBSE),19 which is obtained
by fully exploiting the frequency dependence of Eq. (13). As
shown in the Appendix, Eq. (13) can be rewritten as

L̃(ω) = L̃s(ω) + L̃s(ω)�d (ω)L̃(ω). (14)

In Eq. (14) L̃s(ω) = −iGs Gs with Gs the one-particle GFs
containing the static part only of the self energy; �d is com-
posed of the two terms, �d

1 and �d
2 : �d

1 describes the con-
tributions coming from the dynamical part of the self energy
(its derivation is outlined in the Appendix); �d

2 describes the
contributions coming from the electron–hole coupling and is
obtained by multiplying the second term of the rhs of Eq. (13)
by L̃0(ω)L̃−1

0 (ω) on the left and by L̃−1(ω)L̃(ω) on the right,

�d
1(ω) � −i L̃−1

s (ω)
∫

dω′

2π

[
Gs(ω′ + ω/2)Gs(ω′ − ω/2)

×
d (ω′ − ω/2)G(ω′ − ω/2) + Gs(ω′ + ω/2)

×
d (ω′ + ω/2)G(ω′ + ω/2)Gs(ω′ − ω/2)], (15)

�d
2(ω) = L̃−1

0 (ω)
1

(2π )3

∫
dω′dω′′dω′′′L0(ω,ω′, ω′′)

×�(ω,ω′, ω′′′)L(ω,ω′′′, ω′′)L̃−1(ω). (16)

The complexity of the original Eq. (13) is thus transferred,
in Eq. (14), in the structure of the DBSE kernel �d (ω). We
can, however, simplify the dependence on G and L in �d (ω)
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by starting from its linear limit where G(ω) � Gs(ω) in
Eq. (15) and L(ω,ω′, ω′′) � L0(ω,ω′, ω′′) � Ls(ω,ω′, ω′′)
in Eq. (16). This limit is fully justified in the DBSE by the fact
that, as shown in the following, it accounts for the simultane-
ous evolution of two e–h pairs, which represent the dominant
channel in the description of double excitations.

We need now to approximate the unknown quantities 
s ,

d (ω) and �(ω,ω′, ω′′). For the static part of the self energy
we consider the common 
 = iGW approximation evaluated
at the quasi-particle eigen-energies. The dynamical part of the
self energy 
d (ω) and the kernel �(ω,ω′, ω′′) are derived
later in the paper: Starting from the sRPA approach we obtain
a kernel �d that fulfills the NC condition and that includes the
statically screened Coulomb interaction in the ω → 0 limit,
thus recovering the commonly used static GW-BSE.

B. DBSE in the configuration space

The DBSE can be solved by projecting Eq. (14) in the
basis of single particle wave functions {ψi },

L̃ (i j)(hk)(ω) =
∫

d3x1d3x2d3x3d3x4 φi (x1)φ∗
j (x2)

× L̃(x1x2; x3x4; ω)φ∗
h (x3)φk(x4). (17)

The indexes (i j) represent hole–electron and electron–hole
pairs, as in Eq. (6). Eq. (14) can then be recast in the form
of an eigenvalue problem,(

H (Eλ) K (Eλ)
−K ∗(−Eλ) −H∗(−Eλ)

)
(Aλ,i j (Eλ))

= Eλ(Aλ,i j (Eλ)), (18)

where

H(i j)(hk)(ω) = δi,hδ j,k(ε j − εi ) + �d
(i j)(hk)(ω), (19)

K(i j)(hk)(ω) = �d
(i j)(kh)(ω). (20)

Here εi are the poles of the one-particle GF and Eλ are the ex-
citation energies of the system. Eigenvectors and eigenvalues

of Eq. (18) can be used to evaluate
↔
α(ω) as shown in Eq. (1).

Using a static approximation for the kernel, the K and H sub-
blocks become ω independent and consequently the number
of eigenvalues of Eq. (18) is strictly equal to the dimension
of the matrix, that is the number of single-particle transitions
Ns . Double excitations are then not described at all. Instead,
by retaining the full frequency dependence of the DBSE ker-
nel Eq. (18) becomes a nonlinear equation whose solutions,
in general, are more than Ns . This gives us a close connec-
tion with the sRPA equations and the ideal starting point for
imposing the NC condition to the DBSE kernel.

C. A number-conserving kernel for the BSE

The DBSE equation provides a powerful starting point
to tackle the double-excitation problem, as the diagrammatic
approach makes possible to introduce different levels of ap-
proximation that overcome the limits of the sRPA. We achieve
this by following two essential steps: (i) we use the sRPA
to establish a connection between Feynmann diagrams and

(a) bubbles diagrams

(b) e–h exchange diagrams

(c) one particle exchange diagrams

t

t1

t2

t′

(a1)

FIG. 2. Basic Feynman diagrams included in the second RPA approach (Ref.
11) beyond the standard TDHF. The time flows from left to right respecting
the Tamm–Dancoff approximation. The sRPA approach, when the TDA is
relaxed, includes other 16 basic diagrams obtained by inverting the direction
of all GF. The complete set of diagrams is obtained by iterating the Dyson
equation.

particle indistinguishability and the Pauli exclusion principle;
(ii) we use this connection to define a number-conserving
correlated kernel starting from the well established GW
approximation.

1. The diagrammatic number conserving rule

In order to create a common language for both the sRPA
and the DBSE approaches, we start by noticing that within
the TDA, sRPA is equivalent to the DBSE when 
s = 
HF.
Specifically, 
d (ω) contains all second-order Feynman dia-
grams, and �(ω) = [∂(
s + 
d )]/∂G. The 16 diagrams of
Fig. 2, in particular, come from 
d and its functional deriva-
tive. From now on we work within TDA, in order to keep the
discussion as simple as possible.

To understand why double excitations are described
within this approximation we focus on diagram (a1) in
Fig. 2(a), drawn for a specific time ordering. The diagram de-
scribes a physical process where the electron–hole pair cre-
ated at time t emits a photon that generates another electron–
hole pair at time t1. The second e–h pair is annihilated at time
t2. Therefore this Feynman diagram is describing the coupling
between a single and a double excitation.

By taking into account the 16 diagrams of Fig. 2, the
DBSE (and consequently the sRPA) correctly describes par-
ticle indistinguishability and Pauli exclusion principle. Here
we illustrate how this can be deduced from the inspection of
Feynman diagrams. The 16 diagrams describe processes in
which a double excitation appears from a photon emitted ei-
ther from the electron or from the hole and then absorbed back
[these two possibilities are the first two terms in the definition
of C(i j),(nq)(mp), see Eq. (7)]. Therefore each double-excitation
process can start and end in two ways so that there are four
possible processes, which are the four bubble diagrams of
Fig. 2. The other 12 diagrams reflect the particle indistin-
guishability that imposes the electron lines, as well as the hole
lines, to be interchangeable between each other. Following
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(c) Half diagrams recombination

FIG. 3. The DNCR in practice. We take as reference the two time orderings of the kernel bubble diagram, corresponding to the two first diagrams of Fig. 2.
The general procedure to get a NC kernel is to split each initial diagram in two half diagrams. Then these half diagrams must be connected by exchanging in
all possible ways all e–h pairs and all single particles. This produces a new group of diagrams that must be processed using the same procedure. When no new
diagrams appear the resulting kernel is NC.

Fig. 3 we can derive a graphical rule that any approximation
has to respect in order to be NC, this is the proposed diagram-
matic number conserving rule (DNCR). First we consider an
initial group of diagrams, chosen in such a way to describe
the relevant physics we want to introduce in the theory (like
plasmons and excitons). Then we split any diagram in two
parts that, connected in all possible ways obtained by impos-
ing particle exchange, lead to a new group of diagrams. When
the same procedure applied to the resulting diagrams does not
lead to any new diagram the approximation is, by definition,
NC. As an illustration, the DNCR can be applied to the sRPA
diagrams, shown in Fig. 2. It can be shown that all sRPA di-
agrams can be obtained from the first two by applying the
proposed DNCR.

2. The DNCR applied to the BSE

A crucial consequence of the DNCR is that, as exempli-
fied in Fig. 3, a NC kernel must include all kinds of diagrams.
Therefore, whatever initial approximation is chosen, the re-
peated application of the DNCR will create a balanced mix-
ture of diagrams in order to respect particle indistinguishabil-
ity and Pauli exclusion principle. If the DNCR is not respected
by selecting only a class of diagrams, then spurious solutions
are expected to appear. This is the case of the kernel proposed
in Ref. 8, which was obtained from the standard � � W (ω)
by simply relaxing the static approximation for W . This ker-
nel introduces an infinite series of RPA diagrams only in the
interaction W , neglecting all consequent diagrams imposed
by the DNCR. As a consequence spurious poles in the polar-
izability are found as predicted by the DNCR.

Nevertheless the kernel proposed in Ref. 8 describes the
interaction with plasmons, which is a desirable property we
want to retain, at the same time forcing the kernel to be NC.
However, before applying the DNRC, we have to notice that
the W (ω) propagator describes the evolution of charge os-
cillations, composed by renormalized packets of e–h pairs.
This clearly introduces a distinction between the e–h pairs
embodied in W (ω) and the real e–h pairs created by the

scattering process, thus leading to the breakdown of particle
indistinguishability. A better starting point is instead the basic
diagram shown in Fig. 4, where all e–h pairs are correctly
renormalized. In this diagram the filled bubble and the filled
rectangle represent the RPA response function χRPA(ω). By
introducing the Lehman representation for χRPA we can write

χRPA
eh,e′h′(ω) =

∑
ν

Rν,eh R∗
ν,e′h′

ω − �ν

. (21)

Here Rν,eh and �ν can be obtained as solution of the time-
dependent Hartree equation written in the e–h basis. We will
call the poles of χRPA RPA excitations. Notice that in the long-
wavelength limit these excitations describe the plasmonic
oscillations.

The DNCR imposes to consider all possible diagrams ob-
tained from Fig. 4 by exchanging the basic excitation prop-
agators. The key point here is to rotate from the indepen-
dent e–h pairs to the RPA basis, where e–h pairs are replaced
by the RPA excitations. Therefore we proceed by splitting
the RPA propagators, using Eq. (21), as sketched in Fig. 5.
Then we consider all diagrams where the RPA excitations are
exchanged.

Mathematically the procedure sketched in Fig. 5 corre-
sponds to rotate in the RPA excitation space the residuals
and poles of Eq. (6). Each term in the rotated counterpart of
Eq. (7) will correspond to a possible connection induced by

FIG. 4. Basic RPA diagram used as a starting point for the correlated kernel.
All other diagrams are obtained by applying the DNCR, as discussed in the
text.
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ν1

ν3 ν4

ν2

ν1 ν2

ν2 ν1

FIG. 5. Building up of correlated Feynman diagrams connecting two Feyn-
man diagrams. The effect of exchange among two RPA excitations is shown
by the dotted lines.

the DNCR:

CRPA
(i j),ν1ν2

= 1

2

∑
(nq),(mp)

((v(in),(mp)δ j,q + v(mp),( jq)δi,n)

× Rν1,(np) Rν2,(mq) + {ν1 ↔ ν2}). (22)

As a consequence the correlated version of Eq. (6) will look
like

(
�d

RPA

)
(i j),(hk) =

∑
ν1 	=ν2

CRPA
(i j),ν1ν2

[
CRPA

(hk),ν1ν2

]∗

ω − (Eν1 + Eν2 + 2iη)
. (23)

The symbol {ν1 ↔ ν2} in Eq. (22) imposes the invariance
of the correlated kernel under exchange of RPA excitations.
Consequently the kernel �d

RPA is by definition invariant under
exchange of two RPA excitations. However RPA excitations
are bosons, so that Pauli exclusion principle does not apply
and the obtained kernel is not fully NC. To fix this problem it
is sufficient to impose the condition ν1 	= ν2 in Eq. (23).

The DBSE obtained by using the �d
RPA kernel in-

cludes all self-energy terms obtained from 
d = GW − 
s

and �(ω,ω′, ω′′) = δ(ω − ω′)W (ω′ − ω′′). In addition, extra
terms appear in order to fulfill the NC condition. Interest-
ingly �d

RPA also embodies the full-frequency-dependent term
G δW/δG(ω), which is usually neglected in the standard BSE
approach. In the present case these second-order diagrams in
W are indeed needed to correctly account for the particle in-
distinguishability. The resulting kernel, whose diagrammatic
expression is sketched in Fig. 6, does have the right math-
ematical structure by construction, so that no spurious solu-
tions are present.

FIG. 6. The final correlated DBSE kernel. The filled regions represent the
propagation of RPA excitations.

IV. NUMERICAL RESULTS ON MODEL
MOLECULAR SYSTEMS

In the following we will illustrate various conceptual
and technical aspects of our approach using two benchmark
model systems, based on the C8H2 and the C4H6 molecules.
These unsaturated hydrocarbon chains are often chosen as
benchmark systems to test theoretical methods aimed to de-
scribe double excitations. By calculating the polarizability
of these systems we will show: (i) The role played by sub-
groups of diagrams in the description of double excitations;
(ii) the fact that the number conserving rule not only applies
to the total number of poles, but also to the number of opti-
cally active poles; (iii) the absence of spurious double exci-
tation peaks that appear in approaches8 that violate the NC
rule.

The calculations have been performed using the YAMBO
code,21 where we implemented sRPA for closed-shell sys-
tems, within the TDA. Furthermore we approximate both QP
and HF wave functions with KS–LDA wave functions.

sRPA produces results similar to the GW-BSE approach
or to the DBSE when only “bubble diagrams” (first row of
Fig. 2) or “bubble diagrams and e–h exchange diagrams” (sec-
ond row of Fig. 2), respectively, are selected. Therefore this
implementation allows us to explore the performances of the
various approaches by selecting specific subgroups of dia-
grams.

We first performed a ground-state calculation with the
ABINIT code,22 within DFT/LDA, with an energy plane-
wave cutoff of 20 Hartree and a super cell of 25 × 25
× 40 Bohr for the C8H2 (a linear molecule ≈ 21 Bohr long)
and a smaller super cell of 25 × 25 × 15 Bohr for the C4H6

(the molecule extends for ≈10 Bohr both in the x and y
directions). Then we performed excited-state calculations in
the basis set of KS states, considering only the states from
HOMO −3 to LUMO +3. In this way our systems can be
mapped into an eight level model with 16 single and 240 dou-
ble excitations. All the C8H2 eigenvalues are doubly degener-
ate due to the symmetry of the molecule.

In the description of double excitations the kernel fre-
quency dependence becomes crucial when one or more poles
fall in the absorption spectrum energy range. In this case the
static approximation fails, and extra peaks appear. In order
to artificially simulate this situation in our systems we use
HF eigenvalues to construct L0, while the kernel is built with
KS–LDA ones. This choice gives us the possibility to investi-
gate more physical situations which could arise for correlated
materials.

The results of these calculations are plotted in Fig. 7. For
both systems at the HF independent-particle (IP) level there is
a clear peak, which falls close to 9 eV for the C8H2, and close
to 12 eV for C4H6. As expected the kernel constructed with
KS–LDA eigenvalues has poles in these energy ranges, so that
extra peaks appear in the spectrum. The effect is visible in
both model systems: in C8H2 the main peak is essentially split
in two [see Fig. 7(a)]; for C4H6 several extra peaks appear as
shown in the inset of Fig. 7(b).

We will now explore the role played by the various
subgroups of diagrams, namely (a) the bubble diagrams in
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FIG. 7. Second random phase approximation spectra. For both model sys-
tems the frequency-dependent kernel produces extra peaks (red line) which
cannot be described by a static kernel. The black thin dashed line is the
independent-particle spectrum. The inset is present here as reference to detect
spurious peaks in the insets of Figs. 8 and 9.

Fig. 2(a); (b) the e–h exchange diagrams in Fig. 2(b), which
are obtained from the bubble diagrams via e–h exchange; (c)
the particle exchange diagrams in Fig. 2(c), which are ob-
tained from the bubble diagrams via single-particle exchange.

Figure 8 shows the spectra obtained taking into account,
beyond the TDHF scheme, only selected families of dia-
grams. By selecting only diagrams of type (b) or (c) the
spectra are not positive defined. This unphysical property can
be understood by noticing that the frequency-dependent ker-
nel constructed from diagrams (b) and (c) does not have the
mathematical structure of Eq. (6). On the contrary, the kernel
constructed from the bubble diagrams (a) is positive, though
particle indistinguishability and Pauli exclusion principle are
not respected as illustrated in previous sections.

Indeed the spectra constructed from bubble diagrams
is positive defined, though spurious peaks appear: in C8H2

[Fig. 8(a)] one has three peaks at around 12 eV, and in the
C4H6 many peaks appear [see Fig. 8(b), the left inset] which
are not present in the full sRPA spectra.

Figure 9 shows the spectra constructed taking into ac-
count both subsets of diagrams (a) and (b) or (a) and (c) to-
gether. The spectra are positive defined. However, only the
former combination gives the right number of peaks (i.e., the
same number of the full sRPA spectrum) whereas the latter
produces spurious poles.

In this perspective, it is interesting to compare the two
cases. In the C8H2 model the subset of diagrams (a) and (b)
(green dashed line) gives a spectrum which is very close to
the full sRPA spectrum of Fig. 7 (red line) both in the struc-
ture and number of poles. Diagrams of kind (c) are, instead,
negligible.

In the C4H6 model, on the contrary, diagrams of kind (c)
play an important role: They shift the peak of the bubbles po-
larizability toward the results obtained with the sRPA kernel.
Diagrams of kind (b), instead, in this case have a negligible
effect on the position of the peaks. However the choice (a) +
(c) gives several spurious poles [see Fig. 9(b), blue line in the
right inset] and, as for C8H2, only the combination (a) and (b)
yields the correct number of poles [see Fig. 9(b), green dashed
line in the left].

The sum of diagrams (a) and (b) describes e–h pairs as
indistinguishable bosons, whereas the sum of diagrams (a)
and (c) does not correspond to any defined statistic. We can
then conclude that diagrams of kind (c) are meaningful only if
added to the other two classes of diagrams in order to describe
particle indistinguishability. However, the spectrum obtained
combining the diagrams (a) and (b) has indeed the same num-
ber of peaks of the spectrum obtained using the complete ker-
nel, thus supporting our recipe to construct a correlated kernel
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FIG. 8. The spectra obtained selecting only specific subgroup of diagrams. By selecting only e–h exchange (green dashed line) or one particle exchange (blue
dots) an unphysical (negative) polarizability is observed. Only the spectra obtained with the kernel constructed using the bubble diagrams (red line) is positive
defined. However when only bubble diagrams are used, as proposed by Romaniello et al. (Ref. 8), spurious peaks appear. These peaks do not appear in the
spectra obtained from the full sRPA kernel (see Fig. 7).



034115-9 A novel ab-initio number-conserving approach J. Chem. Phys. 134, 034115 (2011)

4 5 6 7 8 9 10 11 12 13 14
energy [eV]

po
la

ri
za

bi
lit

y 
[a

rb
itr

ar
y 

un
its

]

8 10 12 14

4 5 6 7 8 9 10 11 12 13 14

(a)  C
8
H

2
                                                (b)  C

4
H

6

8 10 12 14

FIG. 9. Spectra obtained with the kernel constructed using the bubble plus e–h exchange diagrams (green dashed line) and the bubble plus e–h exchange
diagrams (blue line). Both spectra are positive defined but only the combination bubbles plus e–h exchange gives the same number of poles of the full sRPA
spectra (see Fig. 7). On the contrary the combination bubbles plus one particle exchange gives spurious solutions.

discarding the subset of diagrams (c). Another conclusion we
draw from these results is that our approach, by respecting the
NC rule, ensures that the theory produces not only the correct
total number of poles, but also the correct total number of op-
tically active (and optically not active) poles.

V. CONCLUSIONS

With the present paper we presented a method to include
double excitations in a consistent manner within the GW +
BSE approach. The main idea has been to correct the stan-
dard BSE kernel in order to go beyond the static approxima-
tion while, at the same time, fulfilling the number conserving
condition. The resulting scheme keeps all the advantages of
the many-body approach, that is the ability of describing ex-
tended and correlated materials in a consistent manner, with-
out producing spurious excitations.

We derived a number–conserving condition from an in-
spection of the similarities and the differences between the
BSE scheme, designed for solids, and the sRPA approach,
designed for isolated systems. While in the BSE screening
plays a crucial role, the sRPA shows the importance of par-
ticle exchange effects. As pointed out in a very recent work
by Huix-Rotllant and Casida,7 there is a great interest in this
direction in order to develop approximations at the nanoscale
interface between molecules and solids. In contrast to previ-
ous approaches, however, we do not directly consider all ex-
change diagrams related to the RPA screening resummation,
because we believe that such an approach would be unprac-
tical, especially for realistic materials. Instead, our method is
aimed to capture the main feature related to the exchange prin-
ciple without requiring to diagonalize matrices in the space of
double excitations.

Our numerical calculations on model molecular systems
show that the bubbles plus e–h exchange Feynman diagrams,
chosen as reference for our correlated kernel, are essential
to get the correct number of physical excitations. The kernel
constructed from these diagrams produces double excitations
without any extra spurious peak and the number conserving
rule turns out to apply also to the number of optically active
poles.
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APPENDIX: CONTRIBUTION OF THE SELF-ENERGY
DIAGRAM TO THE DBSE KERNEL

The self-energy terms in the kernel of the BSE equation
are due to the L̃0(ω) = −i

∫
dω′/(2π )G(ω′ + ω/2)G(ω′ −

ω/2) term. We start from the Dyson equation for the Green’s
Function written in the form:

G−1 = g−1 − 
s − 
d (ω) = G−1
s − 
d (ω). (A1)
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where G−1
s = g−1 − 
s , and we split the self-energy in its

static (
s) and dynamic (
d ) parts. We can then write:

L̃0(ω)

= L̃s(ω) − i
∫

dω′

2π
Gs(ω′ + ω/2)Gs(ω′ − ω/2)

×
d (ω′ − ω/2)G(ω′ − ω/2) − i
∫

dω′

2π
Gs(ω′ + ω/2)

×
d (ω′ + ω/2)G(ω′ + ω/2)Gs(ω′ − ω/2)

− i
∫

dω′

2π
Gs(ω′ + ω/2)
d (ω′ + ω/2)G(ω′ + ω/2)

× Gs(ω′ − ω/2)
d (ω′ − ω/2)G(ω′ − ω/2), (A2)

where L̃s = −iGs Gs . Using the same trick adopted for the
kernel, we multiply the second, third, and fourth term on the
right-hand side of Eq. (A2) by L̃s L̃−1

s from the left and by
L̃−1

0 L̃0 from the right, and we obtain

L̃0(ω) = L̃s(ω) + L̃s(ω)�d
1(ω)L̃0(ω). (A3)

Equation (A3) defines the �d
1(ω) kernel:

�d
1 (ω) = −i L̃−1

s (ω)
∫

dω′

2π

[
Gs(ω′ + ω/2)Gs(ω′ − ω/2)

×
d (ω′ − ω/2)G(ω′ − ω/2) + Gs(ω′ + ω/2)

×
d (ω′ + ω/2)G(ω′ + ω/2)Gs(ω′ − ω/2)

+ Gs(ω′ + ω/2)
d (ω′ + ω/2)G(ω′ + ω/2)

× Gs(ω′ − ω/2)
d (ω′ − ω/2)G(ω′ − ω/2)
]

× L̃−1
0 (ω). (A4)

To describe double excitations we will neglect the last
term on the rhs of Eq. (A2) as it describes a process where
six Green-function lines appear simultaneously, thus induc-
ing a triple excitation. Moreover we linearize the expression
for the kernel setting L̃0 � L̃s(ω) and G(ω) � Gs(ω) as dia-
grams beyond this approximation describe processes not in-
cluded within the two-particles two-holes space. Accordingly

it is crucial that the static part of the self energy is treated in
a separate way. In fact, it has been shown, within the standard
GW approximation, that the linearization of the static self-
energy contribution is numerically unstable and gives rise to
scattered spectra.20
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