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18 Electronic Excitation 
Energies of Molecular 
Systems from the Bethe–
Salpeter Equation
Example of the H2 Molecule

Elisa Rebolini, Julien Toulouse, and Andreas Savin

18.1  INTRODUCTION

Time-dependent density functional theory (TDDFT)[1] within the linear response 
formalism[2–4] is nowadays the most widely used approach to the calculation of 
electronic excitation energies of molecules and solids. Applied within the adiabatic 
approximation and with the usual local or semilocal density functionals, TDDFT 
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gives indeed in many cases excitation energies with reasonable accuracy and low 
computational cost. However, several serious limitations of these approximations 
are known, for example, for molecules, too low charge-transfer excitation ener-
gies,[5] lack of double excitations,[6] and wrong behavior of the excited-state surface 
along a bond-breaking coordinate (see, e.g., reference [7]). Several remedies to these 
problems are actively being explored, including long-range corrected TDDFT,[8, 9] 
which improves charge-transfer excitation energies; dressed TDDFT,[6, 10, 11] which 
includes double excitations; and time-dependent density-matrix functional theory 
(TDDMFT),[12–16] which tries to address all these problems.

In the condensed-matter physics community, the Bethe–Salpeter equation (BSE) 
applied within the GW approximation (see, e.g., references [17–19]) is often con-
sidered as the most successful approach to overcome the limitations of TDDFT. 
Although it has been often used to describe excitons (bound electron-hole pair) in 
periodic systems, it is also increasingly applied to calculations of excitation energies 
in finite molecular systems.[20–31] In particular, the BSE approach is believed to give 
accurate charge-transfer excitation energies in molecules,[29, 31] and when used with 
a frequency-dependent kernel, it is in principle capable of describing double excita-
tions.[32, 33]

In this work, we examine the merits of the BSE approach for calculating excita-
tion energies of the prototype system of quantum chemistry, the H2 molecule. The 
paper is organized as follows. In Section 18.2, we give a review of Green’s function 
many-body theory. In Section 18.3, we give the general working equations for a BSE 
calculation within the static GW approximation in a finite spin-orbital basis and the 
corresponding spin-adapted expressions for closed-shell systems. In Section 18.4, we 
apply the equations to the H2 molecule in a minimal basis and discuss the possibil-
ity of obtaining correct spin-singlet and spin-triplet excited-state energy curves as a 
function of the internuclear distance. Section 18.5 contains our conclusions. Hartree 
atomic units are used throughout.

18.2  REVIEW OF GREEN’S FUNCTION MANY-BODY THEORY

We start by giving a brief review of Green’s function many-body theory for calculat-
ing excitation energies. For more details, see references [17], [19], and [34].

18.2.1  One-Particle Green’s Function

Let |N〉 be the normalized ground-state wavefunction for a system of N electrons 
described by the Hamiltonian Ĥ. The time-ordered one-particle equilibrium Green’s 
function is defined as

	
iG N T N

t t N

( , ) | ˆ[ ˆ ( ) ˆ ( )] |

( ) | ˆ ( ) ˆ

†1 2 1 2

11 2

= 〈 〉

= − 〈

Ψ Ψ

Ψθ ΨΨ Ψ Ψ† †( ) | ( ) | ˆ ( ) ˆ ( ) |2 2 12 1N t t N N〉 − − 〈 〉θ .
	 (18.1)

Index 1 stands for space, spin, and time coordinates (r1,σ1,t1) = (x1,t1). T̂  is the 
Wick time-ordering operator that orders the operators with larger times on the left, 
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and θ is the Heaviside step function. The whole time dependence is contained in 
ˆ ( ) ˆ ( )

ˆ ˆΨ Ψ1 1 1
1= −e eiHt iHtx  and ˆ ( ) ˆ ( )† ˆ † ˆΨ Ψ2 2 2

2= −e eiHt iHtx , which are the annihilation and 
creation field operators in the Heisenberg representation.

In the absence of external potential, the system is invariant under time translation; 
therefore, the Green’s function depends only on τ = t1 – t2. By introducing the closure 
relation for excited states with N – 1 or N + 1 particles, one can get
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1〉∑ − − − ,

		
		

(18.2)

where EN, EN+1,A, and EN–1,I are the energies of the ground state |N〉, the Ath excited 
state with N + 1 particles |N + 1,A〉, and the Ith excited state with N – 1 particles 
|N – 1,I〉, respectively. The Lehmann representation of the one-particle Green’s func-
tion is obtained by Fourier transform

	 G
f f

i

f fA A

AA

I I( , ; )
( ) ( ) ( ) (* *

x x
x x x x

1 2
1 2 1 2

0
ω

ω
=

− +
++∑ E

))

ω − − +∑ EII
i0

,	 (18.3)

where f N N AA( ) | ˆ ( ) | ,x x= 〈 + 〉ψ 1  and f N I NI ( ) , | ˆ ( ) |x x= 〈 − 〉1 ψ  are the Dyson 
orbitals, and EA N A NE E= −+1,  and EI N N IE E= − −1,  are minus the electron affinities 
and ionization energies, respectively.

18.2.2  Two-Particle Green’s Function

The time-ordered two-particle Green’s function is defined as

	 i G N T2
2 1 2 1 2 1 2 2 1( , ; , ) | ˆ[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]† †′ ′ = 〈 ′ ′Ψ Ψ Ψ Ψ || N 〉.	 (18.4)

Depending on the time ordering, it describes the propagation of a pair of holes, of 
electrons, or of a hole and an electron. In the case of optical absorption, one is only 
interested in the propagation of a hole-electron pair.

Let χ be the four-point polarizability,

	 χ(1,2;1′,2′) = iG2 (1,2;1′,2′) – iG (1,1′) G(2,2′).	 (18.5)

It describes the coupled motion of two particles minus the motion of the indepen-
dent ones. When the times are appropriately ordered, the four-point polarizability 
reduces to the linear response function

	 χ τ χ( , ; , ; ) ( , , , ; , , ,x x x x x x x x1 2 1 2 1 1 2 2 1 1 2 2′ ′ = ′ ′+t t t t++ ),	 (18.6)
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where t t1 0+ += +1 . The Lehmann representation of the response function explicitly 
gives the excitation energies as poles in ω,
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where |N,K〉 is the Kth excited state with N particles of energy EN,K. The ground state 
|N,0〉 = |N〉 is excluded from the sum. It is also useful to define the independent-particle 
(IP) polarizability χIP (1,2;1′,2′) = –iG(1,2′)G(2,1′). Its Lehmann representation is 

easily obtained by calculating χ τ τ τIP iG Gx x x x x x x x1 2 1 2 1 2 2 1, ; , ; , ; , ;′ ′( ) = − ′( ) ′ −( ))  
with Equation 18.2 and taking the Fourier transform
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In practice, the one- and two-particle Green’s function can be calculated with 
equations of motion.

18.2.3	 Dyson Equation

To make easier the connection with expressions in a finite spin-orbital basis, we 
systematically use four-point indexes for all the two-electron quantities. The starting 
point is therefore a fully nonlocal time-dependent Hamiltonian

	

ˆ ( ) ˆ ( ) ( , ) ˆ ( )†H t d d h

d d d d

1 1

1

1 1 1 1 1

1
2

2 1 2

= ′ ′ ′
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∫ x

x

Ψ Ψ

ˆ̂ ( ) ˆ ( ) ( , ; , ) ˆ ( ) ˆ ( )† †Ψ Ψ Ψ Ψ1 2 1 2 1 2 1 2v ′ ′ ′ ′∫ ,

	 (18.9)

where v(1,2;1′,2′) = vee(|r1 – r2|)δ(t1,t2)δ(1,1′)δ(2,2′) is the spin-independent instan-
taneous Coulomb electron–electron interaction, and h(1,1′) is the one-electron 
Hamiltonian that contains the electron kinetic operator and the nuclei–electron inter-
action Vne

	 h Vne( , ) ( , ) ( , ) ( )1 1 1 1
2

1 11
2

1′ = − ′ + ′δ δ r .	 (18.10)
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Using the equations of motion for the Heisenberg creation and annihilation opera-
tors in the expression of the derivative of G with respect to time,[17] one can obtain 
the following equation:

	
i d

t
G d h G

i d d d v

3 1 3 3 2 3 1 3 3 2

3 1 3

1

δ( , ) ( , ) ( , ) ( , )
∂

∂
−

+ ′ ′

∫ ∫
(( , ; , ) ( , ; , ) ( , ),1 3 1 3 1 3 2 3 1 22′ ′ ′ ′ =+ ++∫ G δ

	 (18.11)

where ++ stands for t3 0+ ++ . A whole series of equations can be derived for the Green’s 
functions, relating the one-particle Green’s function to the two-particle Green’s func-
tion, the two-particle Green’s function to the three-particle Green’s function, etc. 
However, solving this set of equations is not wanted.

To avoid this, one can use the Schwinger derivative technique. Introducing an 
external time-dependent potential U U t t t( , ) ( , , ) ( , )1 1 1 1 1 1 1′ = ′ ′x x δ , one can express the 
two-particle Green’s function in terms of the one-particle Green’s function and its 
derivative with respect to U, evaluated at U = 0:

	
δ
δ

G
U

G G G
( , )
( , )

( , ; , ) ( , ) ( , )
1 2
3 4

1 4 2 3 1 2 4 32= − + .	 (18.12)

Using this relation in Equation 18.11, one can get
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∂
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
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where ΣHxc (1,2) is the Hartree exchange-correlation self-energy that takes into 
account all the two-particle effects. It can be decomposed into a Hartree contribution

	 Σ H i d d v G( , ) ( , ; , ) ( , )1 2 3 3 1 3 2 3 3 3= − ′ ′ ′+ ++∫ ,	 (18.14)

and an exchange-correlation one

	 Σ xc i d d d d v
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U
( , ) ( , ; , )
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3
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( , )G .	 (18.15)

One can define a Green’s function Gh which shows no two-particle effects and 
therefore follows the equation of motion:
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t
h Gh3 1 3 1 3 3 2 1 2

1
∫ ∂

∂
−




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
 =δ δ( , ) ( , ) ( , ) ( , ).	 (18.16)
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Using this relation in Equation 18.13, one finally gets the Dyson equation for the 
one-particle Green’s function:

	 d G Gh Hxc3 1 3 1 3 3 2 1 21∫ − −  =( , ) ( , ) ( , ) ( , )Σ δ .	 (18.17)

This equation is also often used under the form

	
G G d d G Gh h Hxc( , ) ( , ) ( , ) ( , ) ( , )1 2 1 2 3 4 1 3 3 4 4 2= + ∫ Σ ,	 (18.18)

or

	 G Gh Hxc
− −= −1 11 2 1 2 1 2( , ) ( , ) ( , )Σ .	 (18.19)

18.2.4 B ethe–Salpeter Equation

Starting from the Dyson equation (see Equation 18.19), and taking the derivative 
with respect to G, one can get the so-called BSE (see, e.g., reference [35]):

	 χ χ− −′ ′ = ′ ′ − ′ ′1 11 2 1 2 1 2 1 2 1 2 1 2( , ; , ) ( , ; , ) ( , ; , )IP HxcΞ ,	 (18.20)

or

	 χ χ χ( , ; , ) ( , ; , ) ( , ; ,1 2 1 2 1 2 1 2 3 4 5 6 1 4 1′ ′ = ′ ′ + ′IP IPd d d d 33 3 6 4 5 5 2 6 2) ( , ; , ) ( , ; , )ΞHxc χ ′∫ ,		
		  (18.21)

where ΞHxc is the Hartree-exchange-correlation Bethe–Salpeter kernel defined as

	 Ξ Σ
Hxc

Hxci
G

( , ; , )
( , )

( , )
3 6 4 5

3 4
5 6

= δ
δ

.	 (18.22)

18.2.5 H edin’s Equations

We now have equations of motion for the one- and two-particle Green’s functions. 
They depend on the Hartree-exchange-correlation self-energy. Its Hartree part is 
trivial, but a practical way of calculating its exchange-correlation part is needed. 
Hedin [36] proposed a scheme that yields to a set of coupled equations and allows 
in principle for the calculation of the exact self-energy. This scheme can be seen 
as a perturbation theory in terms of the screened interaction W instead of the bare 
Coulomb interaction v. We show a generalization of this derivation for the case of a 
nonlocal potential.
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Let V U i d d v G( , ) ( , ) ( , ; , ) ( , )5 6 5 6 3 3 5 3 6 3 3 3= − ′ ′ ′ +∫  be the nonlocal classic poten-

tial. Using the chain rule in the exchange-correlation self-energy, we get

	

Σ xc i d d d d d d v G
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( , ) ( , ; , ) ( , )1 2 3 1 3 4 5 6 1 3 1 3 1 4= − ′ ′ ′ ′ ′
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∫
dd v G6 1 3 1 3 1 4 4 6 2 5 5 3 6 31( , ; , ) ( , ) ( , ; , ) ( , ; , )′ ′ ′ ′− +�Γ ε ,,∫ 		

		  (18.23)

where the inverse dielectric function ε−1  that screens the bare Coulomb interaction 
v and the irreducible vertex function �Γ  are defined by

	 ε− = = −1 1 2 3 4
1 3
4 2

1 2 3 4( , ; , )
( , )
( , )

( , ; , )
δ

δ
δV

U
G

and �Γ
−−1 1 3

4 2
( , )

( , )δV
.	 (18.24)

We can therefore define a dynamically screened potential

	

W d d v( , ; , ) ( , ; , ) ( , ; , )1 2 1 2 3 3 1 3 1 3 2 3 2 31′ ′ = ′ ′ ′ ′ ′

=

− +∫ ε

dd d v3 3 1 3 1 3 3 2 3 21′ ′ ′ ′ ′− +∫ ε ( , ; , ) ( , ; , ),
	 (18.25)

where the symmetry of the Coulomb interaction v has been used, and we get the 
expression of the exchange-correlation self-energy:

	 Σ Γxc i d d d d G W( , ) ( , ) ( , , , ) ( , ;1 2 1 3 3 4 1 4 4 3 2 3 3 1 3= ′ ′ ′ ′ ′� ,, )′∫ 1 .	 (18.26)

We still need to express the dielectric function and the irreducible vertex function 
without the use of V and U. To achieve this, we define the irreducible polarizability 
�χ δ δ( , ; , ) ( , )/ ( , )1 2 3 4 1 3 4 2= −i G V , which, with the properties of the inverse and the 
definition of the vertex correction, can be rewritten as

	 � �χ( , ; , ) ( , ) ( , ) ( , ; , )1 2 3 4 5 5 1 5 5 3 5 2 5 4= − ′ ′ ′∫i d d G G Γ .	 (18.27)

Using this relation, one can rewrite the dielectric function as

	 ε( , ; , ) ( , ) ( , ) ( , ; , ) ( ,1 2 3 4 1 4 2 3 5 5 1 5 3 5 5 2= − ′ ′ ′δ δ χd d v � ;; , )5 4+∫ ,	 (18.28)

and the irreducible vertex correction as

	 � �Γ Σ
( , ; , ) ( , ) ( , )

( , )
( , )

1 2 3 4 1 4 2 3 5 6
1 3

5 6
= −δ δ δ

δ
i d d

G
xc χχ( , ; , )5 2 6 4∫ .	 (18.29)



374 Modern Theoretical Chemistry: Electronic Structure and Reactivity

We now have a set of five coupled equations (see Equations 18.25 through 18.29) 
to calculate the self-energy. In practice, this set of equations is never solved exactly, 
and approximations are made.

18.2.6  Static GW Approximation

We discuss now the static GW approximation that is the most often used approxima-
tion in practice in the BSE approach.

In the GW approximation, one takes �Γ( , ; , ) ( , ) ( , )1 2 3 4 1 4 2 3= δ δ . This greatly 
sim plifies Hedin’s equations. The irreducible polarizability becomes �χ( , ; , )1 2 3 4 = −iG 
�χ( , ; , )1 2 3 4 = −iG ( , ) ( , ) ( , ; , )1 4 2 3 1 2 3 4G IP= χ , and the exchange-correlation self-energy becomes

	 Σ xc i d d G W( , ) ( , ) ( , ; , ).1 2 1 3 1 3 3 1 2 1= ′ ′ ′∫ 	 (18.30)

If the derivative of W with respect to G is further neglected, as usually done, the 
corresponding Bethe–Salpeter kernel is then

	 ΞHxc (1,2;1′,2′) = v (1,2;1′,2′) – W(2,1;1′,2′).	 (18.31)

where W is obtained from Equation 18.25 and ε−1  with Equation 18.28 in which �χ 
is replaced by χIP. The Coulomb interaction is instantaneous, and the one-particle 
Green’s function depends only on the time difference; therefore, the time depen-
dence of the screened interaction is

	 W W t t t t( , ; , ) ( , ; , ; ) ( , ) ( ,1 2 1 2 1 2 1 1 1 22′ ′ = ′ ′ ′ ′x x x x τ δ δ 22), 	 (18.32)

where τ = t1 – t2. If one considers the time dependence in W, the Fourier transform 
of the BSE is not straightforward.[32] We will only consider the usual approximation 
where the screened interaction is static, that is,

	 W W t t t t( , ; , ) ( , ; , ) ( , ) ( , )1 2 1 2 1 2 1 2 1 1 2 2′ ′ = ′ ′ ′ ′x x x x δ δ δδ( , ).t t1 2 	 (18.33)

To summarize, the Fourier-space BSE in the static GW approximation writes

	 χ ω χ ω− −= −1
1 2 3 4

1
1 2 3 4 1( , ; , ; ) ( , ; , ; ) (x x x x x x x x xIP HxcΞ ,, ; , ),x x x2 3 4 	 (18.34)

where the kernel ΞHxc(x1,x2;x3,x4) = v(x1,x2;x3,x4) – W(x2,x1;x3,x4) contains the static 
screened interaction W calculated from

	 W d d v( , ; , ) ( , ; , ) (x x x x x x x x x x x1 2 1 2 3 3
1

1 3 1 3 3′ ′ = ′ ′ ′ ′−ε ,, ; , ),x x x2 3 2′∫ 	 (18.35)
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and

ε( , ; , ) ( , ) ( , ) ( , ;x x x x x x x x x x x x1 2 3 4 1 4 2 3 5 5 1 5= − ′δ δ d d v xx x x x x x3 5 5 2 5 4 0, ) ( , ; , ; ).′ ′ =∫ χ ωIP
		

		  (18.36)

We will refer to the approach of Equations 18.34 through 18.36 as the BSE-GW 
method. The one-particle Green’s function G in χIP = –iGG is not yet specified. 
Different choices can be made. The simplest option is to use a noninteracting Green’s 
function G0 from a Hartree–Fock (HF) or Kohn–Sham (KS) calculation. In this 
case, χIP = –iG0G0 = χ0 is just the noninteracting HF or KS response function. In 
the condensed-matter physics literature, the usual recipe is to use χ0 in Equation 
18.36 but an improved χIP in Equation 18.34 from a GW calculation. In the case of 
H2 in a minimal basis, it is simple enough to use χIP constructed with the exact one-
particle Green’s function G. Finally, we note that the dielectric function of Equation 
18.36 could be alternatively defined as including the HF exchange in addition to 
the Coulomb interaction, that is, v v v( , ; , ) ( , ; , ) ( , ; , )x x x x x x x x x x x x1 5 3 5 1 5 3 5 5 1 3 5′ → ′ − ′  
(see, e.g., reference [37]), which removes the “self-screening error” for one-electron 
systems,[38] but we do not explore this possibility here.

18.3  EXPRESSIONS IN FINITE ORBITAL BASIS

18.3.1  Spin-Orbital Basis

To solve the BSE for finite systems, all the equations are projected onto an orthonor-
mal spin-orbital basis {ϕp}. As the equations are four-point equations relating two-
particle quantities, they are in fact projected onto the basis of products of two spin 
orbitals. Each matrix element is thus indexed by two double indices.

We consider the simplest case for which χIP = χ0. The Lehmann representation of 
χ0 is

	 χ ω φ φ φ φ
0 1 2 1 2

1 1 2 2( , ; , ; )
( ) ( ) ( ) (* *

x x x x
x x x x′ ′ = ′ ′i a a i ))

( )

( ) ( ) ( ) ( )* *

ω ε ε
φ φ φ φ

− − +
− ′ ′

+∑
a iia

i a a i

i0
2 2 1 1x x x x

ωω ε ε+ − − +( )
,

a i i0
		

		
(18.37)

where ϕi is the ith occupied spin orbital of energy εi, and ϕa is the ath virtual spin orbital 
of energy εa. One can notice that χ0 is expanded only on occupied-virtual (ov) and 
virtual-occupied (vo) products of spin orbitals. The matrix elements of χ0 are given by

	 χ ω φ φ χ0 1 1 2 2 1 1 0( ) ( ) ( ) (
,

*  = ′ ′ ′
pq rs p qd d d dx x x x x x x11 2 1 2 2 2, ; , ; ) ( ) ( ).*x x x x x′ ′ ′∫ ω φ φr s 		

		  (18.38)

The matrix representation of its inverse, in the (ov,vo) subspace, is

	

χχ
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εε0
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
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1

1
	 (18.39)
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where Δεia,jb = Δεai,bj = (εa – εi)δijδab, where i,j refers to occupied spin orbitals, and 
a,b refers to virtual spin orbitals. The dimension of the matrix is thus 2MoMv × 
2MoMv, where Mo and Mv are the numbers of occupied and virtual spin orbitals, 
respectively. To build the matrix χ−1, one then needs to construct the matrix elements 
of the Bethe–Salpeter kernel ΞHxc, which are given by

	 (ΞHxc)pq,rs = vpq,rs – Wpr,qs,	 (18.40)

where vpq,rs = 〈qr|ps〉 are the usual two-electron integrals, and the matrix elements of 
W can be obtained from Equation 18.35:

	

W d d d d
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∫ x x x x x x
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1 1 2 2 3 3
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r s

pd d d d d d xx x

x x x x x x x x

1 1

1
1 3 1 3 3 2 3 2
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*φq

v

∫
× ′ ′ ′ ′−ε φφ φr s

*( ) ( ).x x2 2′

	 (18.41)

To decouple the common coordinates in ε−1  and v, one can introduce two delta func-

tions δ(x3,x4) and δ( , )′ ′x x3 4  and use the closure relations δ φ φ( , ) ( ) ( )*x x x x3 4 3 4= ∑ t
t

t  

and δ φ φ( , ) ( ) ( )*′ ′ = ′ ′∑x x x x3 4 3 4u
u

u . By doing so, the matrix elements of v and ε−1 

appear explicitly, and we get

	 W vpq rs pq tu

tu

tu rs, , , .= −∑ε 1 	 (18.42)

Similarly, for the dielectric function, we have

	 εpq rs pr qs pq tu

tu
tu rs pr qsv, , ,

( )= − =  = −∑δ δ χ ω δ δ0 0 vvpq rs rs rs, ,
( ) ,χ ω0 0=  		

		  (18.43)

where the last equality comes from the fact that χ0 has only diagonal elements. It can 
be seen that the static screened interaction consists of an infinite-order perturbation 
expansion in the Coulomb interaction, namely, using matrix notations,

	 W v v v v v v v= ⋅ = + ⋅ = ⋅ + ⋅ = ⋅ ⋅ = ⋅ +−ε 1
0 0 00 0 0χχ χχ χχ( ) ( ) ( ) ...ω ω ω ,, 	 (18.44)

with the first term in this expansion corresponding to time-dependent HF (TDHF). 
The matrix representation of the inverse of the interacting response function, in the 
(ov,vo) subspace, is then

	 χχ − = −






−

−


















1( ) ,
* *

ω ωA B
B A

1
0 1

0
	 (18.45)
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with the matrices

	 Aia,jb = Δεia,jb + via,jb − Wij,ab,	 (18.46)

	 Bia,jb = via,bj − Wib,aj.	 (18.47)

The block structure of Equation 18.45 is a consequence of the symmetry of the 
Coulomb interaction, v vqp sr pq rs, ,

*= , and the static screened interaction, W Wqs pr pr qs, ,
*= . 

Moreover, the matrix A is Hermitian (because v via jb jb ia, ,
*=  and W Wij ab ji ba, ,

*= ), and 

the matrix B is symmetric (because via,bj = vjb.ai and Wib,aj = Wja,bi). The excitation 
energies ωn are thus found by solving the usual linear response pseudo-Hermitian 
eigenvalue equation, just as in TDDFT,

	 A B
B A

X

Y

X

Y* *

















=
−













n

n
n

n

n

ω 1 0
0 1 


, 	 (18.48)

whose solutions come in pairs: excitation energies ωn with eigenvectors (Xn, Yn) and 

deexcitation energies –ωn with eigenvectors Y Xn n
* *,( ). For real spin orbitals and if 

A + B and A – B are positive definite, the eigenvalues are guaranteed to be real 
numbers, and the pseudo-Hermitian eigenvalue equation (see Equation 18.48) can 
be transformed into a half-size symmetric eigenvalue equation (see Equation 18.3).

If, instead of starting from χ0, one starts from χIP = –iGG with the exact one-
particle Green’s function G, the equations get more complicated because the matrix 
representation of χIP is generally not diagonal and has contributions not only in the 
(ov,vo) subspace of spin-orbital products but also in the occupied–occupied (oo) and 
virtual–virtual (vv) subspace of spin-orbital products. The dimension of the matrices 
thus becomes M 2 × M 2, where M is the total number of (occupied and virtual) spin 
orbitals. In this case, the number of solutions of the response equations is generally 
higher than the number of single excitations, and in particular, double excitations 
might be obtained even without a frequency-dependent kernel. Spurious excitations 
are also found. This is similar to what happens in linear response TDDMFT.[12–15] 
We will show this later in the case of H2 in a minimal basis.

18.3.2  Spin Adaptation

We give now the expressions for spin-restricted closed-shell calculations. For four 
fixed spatial orbitals referred to as p, q, r, and s, the Bethe–Salpeter kernel has the 
following spin structure:

	

Ξ Ξ

Ξ Ξ

Ξ

p q r s p q r s

p q r s p q r s

↑ ↑ ↑ ↑ ↑ ↑

↑ ↑

, ,

, ,

↓ ↓

↓ ↓ ↓ ↓ ↓ ↓

0 0

0 0

0 0 pp q r s p q r s

p q r s p q r s

↑ ↑ ↑ ↑

↑ ↑ ↑ ↑

↓ ↓ ↓ ↓

↓ ↓ ↓ ↓









, ,

, ,

Ξ

Ξ Ξ0 0













, 	 (18.49)
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which can be brought to a diagonal form after rotation (see, e.g., refs. [35], [39], 
and [40]):

	

1

3

3

3

0 0 0

0 0 0

0 0 0

0 0 0

Ξ

Ξ

Ξ

Ξ

pq rs

pq rs

pq rs

pq rs

,

,

,

,























, 	 (18.50)

with a spin-singlet term 1Ξpq,rs = 2vpq,rs – Wpr,qs and three degenerate spin-triplet terms 
3Ξpq,rs = –Wpr,qs. It has been used that the Coulomb interaction v and the screened 
interaction W are spin independent: vpq,rs = vp↑q↑,r↑s↑ = vp↑q↑,r↓s↓ = vp↓q↓,r↑s↑ = vp↓q↓,r↓s↓ 
and Wpq,rs = Wp↑q↑,r↑s↑ = Wp↑q↑,r↓s↓ = Wp↓q↓,r↑s↑ = Wp↓q↓,r↓s↓. The spin-adapted screened 
interaction is obtained by

	 W vpq rs pq tu

tu

tu rs, , , ,= −∑ 1 1ε 	 (18.51)

where t and u refer to spatial orbitals, and the singlet dielectric function 1εpq,rs = 
εp↑q↑,r↑s↑ + εp↑q↑,r↓s↓ is given by

	 1εpq rs pr qs pq rs rs rs
v, , ,

( ) .= − = δ δ χ ω2 00 	 (18.52)

The bottom line is that the linear response eigenvalue equation (see Equation 
18.48) decouples into a singlet eigenvalue equation

	
1 1

1 1

1

1

1
1

A B
B A

X

Y

X
* *























=
−







n

n

nω 1 0
0 1

nn

n
1Y













, 	 (18.53)

with the matrices

	 1Aia,jb = ∆εia,jb + 2via,jb − Wij,ab,	 (18.54)

	 1Bia,jb = 2via,bj − Wib,aj,	 (18.55)

and a triplet eigenvalue equation

	
3 3

3 3

3

3

3
3

A B
B A

X

Y

X
* *










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




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
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
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nω 1 0
0 1

nn
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
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, 	 (18.56)
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with the matrices

	 3Aia,jb = Δεia,jb – Wij,ab,	 (18.57)

	 3Bia,jb = –Wib,aj.	 (18.58)

18.4  EXAMPLE OF H2 IN A MINIMAL BASIS

As a pedagogical example, we apply the BSE-GW method to the calculation of the 
excitation energies of H2 in a minimal basis consisting of two Slater basis functions, 
φa and φb, centered on each hydrogen atom and with the same exponent ζ = 1. This 
is a closed-shell molecule; therefore, all the calculations are done with spin adapta-

tion in a spatial orbital basis. The molecular orbitals are ψ1 2 1= + +( )/ ( )a b abS  

(sym metry σg) and ψ 2 2 1= − −( )/ ( )a b abS  (symmetry σu), where Sab is the over-
lap between φa and φb. The matrix representations of all two-electron quantities in 
the space of spatial–orbital products are of the following form:

	 P =

P P P P

P P P P

11 11 11 22 11 12 11 21

22 11 22 22 22 12 22

, , , ,

, , , ,,

, , , ,

, , ,

21

12 11 12 22 12 12 12 21

21 11 21 22 21 12

P P P P

P P P P221 21,

,





















	 (18.59)

and we refer to the upper left block as the (oo,vv) block and to the bottom right block 
as the (ov,vo) block. All the values of the integrals as a function of the internuclear 
distance R can be found in reference [41]. Note that, in the condensed-matter physics 
literature, a simplified version of H2 in a minimal basis with only on-site Coulomb 
interaction is often used under the name “half-filled two-site Hubbard model” (see, 
e.g., references [38] and [42])*.

18.4.1 B SE-GW Method Using the Noninteracting Green’s Function

The simplest approximation in the BSE-GW method is to start from the noninteract-
ing HF Green’s function G0, leading to the noninteracting HF linear response func-
tion χIP = –iG0G0 = χ0 whose matrix representation reads

	 χχ0

0 0 0 0
0 0 0 0

0 0
1

0

0 0 0
1

( )ω
ω ε

ω ε

=
−

−
+





















∆

∆



, 	 (18.60)

*	With the notations used here, the Hubbard model is obtained for Δε = 2t and J11 = J22 = J12 = K12 = U/2 
where t is the hopping parameter and U is the on-site Coulomb interaction.
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where Δε = ε2 – ε1 is the difference between the energies of the molecular orbitals 
ψ2 and ψ1. The noninteracting linear response function has nonvanishing matrix ele-
ments only in the (ov,vo) block, but it will be necessary to consider the other blocks 
as well for the screened interaction W. The matrix of the Coulomb interaction is

	 v =




















J J

J J

K K

K K

11 12

12 22

12 12

12 12

0 0

0 0

0 0

0 0 

, 	 (18.61)

where Jpq = 〈pq|pq〉 and Kpq = 〈pq|qp〉 are the usual Coulomb and exchange two-
electron integrals over the molecular orbitals ψ1 and ψ2. The off-diagonal blocks of 
v are zero by symmetry for H2 in a minimal basis, but this is not the case in general. 
By matrix product and inversion, we get the static singlet dielectric matrix

	 1 12 12

12 12

1 0 0 0
0 1 0 0

0 0 1
2 2

0 0
2

1
2

ε = +

+








K K

K K
∆ ∆

∆ ∆

ε ε

ε ε



















, 	 (18.62)

which, in this case, is block diagonal with the (oo,vv) block being the identity. By 
using its inverse, we finally get the static screened interaction matrix

	 W =
+ +

J J

J J

K
K

K
K

11 12

12 22

12

12

12

12

0 0

0 0

0 0
1 4 1 4

0 0

/ /∆ ∆ε ε
KK
K

K
K

12

12

12

121 4 1 4+ +

























/ /

,

∆ ∆ε ε

	 (18.63)

which is block diagonal and the (oo,vv) block is just the bare Coulomb interaction in 
the case of H2 in a minimal basis, but this is not generally true. We have then every-
thing to construct the 1A and 1B matrices of Equation 18.53 for singlet excitations, 
which in the present case are just one-dimensional

	 1A = ∆ε + 2K12 − J12, 	 (18.64)

and

	 1
12

12

12

2
1 4

B K
K
K

= −
+ /

,
∆ε 	 (18.65)
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and the 3A and 3B matrices of Equation 18.56 for triplet excitations

	 3A = ∆ε − J12,	 (18.66)

and

	 3 12

121 4
B

K
K

= −
+ /

.
∆ε

	 (18.67)

Solving then the response equations by the standard Casida approach,[3] we get the 
singlet excitation energy

	 1
12 12

12

12
12

124
1 4 1 4

ω ε
ε

ε= + − −
+


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


− +
+

∆ ∆K J
K
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J
K
K/∆ 112 /∆ε


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


, 	 (18.68)

and the triplet excitation energy

	 3
12

12

12
12

12

121 4 1 4
ω ε

ε
ε

ε
= − −

+




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∆

∆
∆

J
K
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J
K
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





. 	 (18.69)

Note that, for this simple system, the A terms have the usual TDHF or configura-
tion interaction single (CIS) forms, and the screening has an effect only on the B 
terms, decreasing the exchange integral K12 by a factor of 1 + 4K12/Δε. Therefore, in 
the Tamm–Dancoff approximation,[43] which consists of neglecting B, the effect of 
screening would be lost and the method would be equivalent to CIS. It is interesting 
to analyze the effect of the screening as a function of the internuclear distance R. For 
small R, the orbital energy difference Δε is much greater than the exchange integral 
K12, so the screening factor 1 + 4K12/Δε is close to 1 and TDHF excitation energies 
are recovered. For large R (dissociation limit), Δε goes to zero, so the screening fac-
tor diverges and the term K12/(1 + 4K12/Δε) vanishes.

The excitation energies from the ground state 1 Σg
+  to the first singlet 1 Σu

+  and 
triplet 3 Σu

+  excited states are plotted as a function of R in Figure 18.1. The reference 
curves are from a full configuration-interaction (FCI) calculation giving the exact 
excitation energies on this basis. In a minimal basis, the singlet 1 Σu

+  excited state is 
constrained to dissociate into the ionic configuration H– … H+; so in the dissocia-
tion limit R → ∞, the exact singlet excitation energy goes to a constant, I – A ≈ 0.625 
hartree, where I and A are the ionization energy and electron affinity of the hydro-
gen atom, respectively. The triplet 3 Σu

+  dissociates into the neutral configuration 
H Hi i…  , as does the ground state, so the exact triplet excitation energy goes to zero 
in the dissociation limit. TDHF gives accurate excitation energies for small R but 
gives qualitatively wrong curves in the dissociation limit. For the singlet state, the 
TDHF excitation energy goes to zero, a wrong behavior inherited from the vanishing 
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Δε in this limit. For the triplet state, the TDHF response equation suffers from a 
triplet instability for R ≥ 4 Bohr and the excitation energy becomes imaginary. It is 
known that TDDFT with standard density functional approximations gives similarly 
incorrect energy curves.[7,42,44–46] The BSE-GW method using the noninteracting HF 
Green’s function G0 gives accurate excitation energies at small R but fails in the dis-
sociation limit. The singlet excitation energy becomes imaginary for R ≥ 4.9 Bohr. 
Indeed, in the dissociation limit, Δε goes to zero and Equation 18.68 leads to a nega-
tive term under the square root: 1

12 12 124ω → − −( )( )K J J . Similarly, the BSE-GW 
triplet excitation energy is imaginary between R = 4.0 and R = 4.9 Bohr and incor-
rectly tends to a nonzero value in the dissociation limit.
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FIGURE 18.1  Excitation energies of the singlet 1 Σu
+  (top) and triplet 3 Σu

+  (bottom) states of 
H2 in a minimal basis as a function of the internuclear distance R calculated by FCI, TDHF, 
and BSE-GW with the noninteracting HF Green’s function G0.
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The BSE-GW method using the noninteracting HF Green’s function G0 thus badly 
fails for H2 in the dissociation limit. As this method is based on a single-determinant 
reference, this should not come as a surprise. However, the BSE approach also allows 
one to start from an interacting Green’s function G, taking into account the multi-
configurational character of stretched H2. We will now test this alternative approach.

18.4.2 B SE-GW Method Using the Exact Green’s Function

18.4.2.1  Independent-Particle Response Function
We apply the BSE-GW equations (see Equations 18.34 through 18.36) with the IP 
response function χIP = –iGG constructed from the exact one-particle Green’s func-
tion G, which can be calculated by the Lehmann formula 18.8 using the N-electron 
ground state and the (N ± 1)-electron states. The states to consider for H2 in a min-
imal basis are given in Figure 18.2. The ground state is composed of two Slater 
determinants, and its energy is EN = 2ε1 – J11 + Ec, where E Kc = − +∆ ∆2

12
2  is 

the correlation energy with 2Δ = 2Δε + J11 + J22 – 4J12 + 2K12. The coefficients of 

the determinants are determined by c c K K2 1 12 12
2 2= + +/( )∆ ∆  and c c1

2
2
2+ = 1 . The 

energies of the two (N + 1)-electron states are EN+1,1 = 2ε1 + ε2 – J11 and EN+1,2 = 2ε2 + 
ε1 – J11 + J22 – 2J12 + K12. The energies of the two (N – 1)-electron states are EN–1,1 = 
ε1 – J11 and EN–1,2 = ε2 – 2J12 + K12. We thus obtain four poles for the exact one-
particle Green’s function. Two of them correspond to minus the electron affinities:

	
E2 1 1 2= = −−+EN N cE E, ε , 	 (18.70)

	 ′ = − = − + − + −+E2 1 2 2 1 22 12 122 2E E J J K EN N c, ,ε ε 	 (18.71)

and the other two correspond to minus the ionization energies:

	
E1 1 1 1= = +− −E EN N cE, ε , 	 (18.72)

	 ′ = − = − − + − +−E1 1 2 1 2 11 12 122 2E E J J K EN N c, .ε ε 	 (18.73)
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FIGURE 18.2  N-electron ground state and (N ± 1)-electron states for H2 in a minimal basis.
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In condensed-matter physics, E1 and E2 are associated with “quasi-particle” peaks 
of photoelectron spectra, whereas ′E1  and ′E2  are associated with “satellites.” The 
Dyson orbitals are also easily calculated, and we finally arrive at the matrix repre-
sentation of χIP on the basis of the products of spatial orbitals

	 χχIP

IP

IP

IP

( )

( )

( )

( )

,

,

,

ω

χ ω
χ ω

χ ω
χ

=

11

22
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0 0 0

0 0 0

0 0 0

0 0 0 IIP, ( )

,

21 ω



















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	 (18.74)

with the matrix elements

	 χ ω
ω ωIP

c c c c
, ( )

( ) ( )
,11

1
2

2
2

2 1

1
2

2
2

2 1

=
− ′ −

−
+ ′ −E E E E 	 (18.75)
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1
2

2
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2 1

1
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2
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2 1

=
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−
+ − ′E E E E 	 (18.76)

	 χ ω
ω ωIP

c c
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1
4

2 1

2
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	 (18.77)

	 χ ω
ω ωIP

c c
, ( )

( ) ( )
.21

2
4

2 11

1
4

2 1

=
− ′ − ′

−
+ −E E E E 	 (18.78)

Therefore, whereas χ0(ω) has only one positive pole, χIP(ω) has four distinct posi-
tive poles (and four symmetric negative poles). These poles are plotted in Figure 
18.3. The lowest one, E E2 1− , called fundamental gap in the condensed-matter phys-
ics literature, can be considered as an approximation to a neutral single excitation 
energy because, in the limit of noninteracting particles, it equals the difference of 
the orbital eigenvalues Δε = ε2 – ε1. The two intermediate poles, ′ −E E2 1 and E E2 1− ′, can 
be interpreted as approximations to a double excitation energy because they reduce 
to 2Δε in the limit of noninteracting particles. Surprisingly, the highest pole, ′ − ′E E2 1, 
reduces to 3Δε in this limit, and it is thus tempting to associate it with a triple exci-
tation, although the system contains only two electrons. In the dissociation limit 
R → ∞, the four poles tend to the same value, that is, I – A ≈ 0.625 hartree, which is 
also minus twice the correlation energy –2Ec, showing that the nonvanishing funda-
mental gap in this limit is a correlation effect. Note that it has been shown[38] that the 
non-self-consistent GW approximation (G0W0) to the one-particle Green’s function 
gives a fundamental gap that is too small by a factor of 2 in the dissociation limit, so 
we do not consider this approximation here.
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18.4.2.2  Excitation Energies
Having calculated the IP response function, the next steps of the BSE-GW calculation 
of the excitation energies continue similarly as in Section 18.4.1, although the expres-
sions get more complicated. From the matrix χIP(ω = 0) and the Coulomb interaction 
matrix (Equation 18.61), we calculate the singlet dielectric matrix that is still block 
diagonal, but the upper left block is no longer the identity matrix. We calculate then 
the static screened interaction matrix that is still block diagonal, but the elements of 
its upper left block are now also affected by screening. We can then construct the 
corresponding singlet and triplet Bethe–Salpeter kernel 1Ξ and 3Ξ. The response 
eigenvalue equations (see Equations 18.53 and 18.56) are no longer applicable, so the 
singlet excitation energies are found by searching the values of ω, giving vanishing 
eigenvalues of the inverse singlet linear response matrix 1χ(ω)–1 = χIP(ω)–1 – 1Ξ, and 
the triplet excitation energies are found by searching the values of ω, giving vanish-
ing eigenvalues of the inverse triplet linear response matrix 3χ(ω)–1 = χIP(ω)–1 – 3Ξ. 
For H2 in a minimal basis, 1χ(ω)–1 and 3χ(ω)–1 are 4 × 4 matrices that are block diago-
nal, the (oo,vv) block being uncoupled to the (ov,vo) block. For both singlet and triplet 
cases, the four positive poles of χIP(ω) transform into four excitation energies (plus 
four symmetric deexcitation energies).

Between the two positive excitation energies coming from the (ov,vo) block of the 
matrix 1χ(ω)–1, the lowest one is identified with the first singlet 1 Σu

+  excitation energy, 
which is called the optical gap. It is plotted in Figure 18.4 and compared with the ref-
erence FCI excitation energy and also with the fundamental gap E E2 1−  to highlight 
the effect of the Bethe–Salpeter kernel. At small internuclear distance, R ≤ 3 Bohr, 
the Bethe–Salpeter kernel brings the BSE-GW curve very close to the FCI curve. For 
large R, the BSE-GW excitation energy follows the curve of the fundamental gap, 
which slightly overestimates the excitation energy at R = 10 Bohr but eventually goes 
to the correct limit I – A when R → ∞. Thus, contrary to the BSE-GW method using 
the noninteracting Green’s function, the obtained excitation energy curve has now a 
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FIGURE 18.3  Positive poles of the IP linear response function as a function of the inter-
nuclear distance R.
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correct shape. This relies on the fundamental gap being a good starting approxima-
tion to the optical gap. As regards the second excitation energy coming from the 
(ov,vo) block of the matrix 1χ(ω)–1, which is connected to the highest pole ′ − ′E E2 1  of 
χIP(ω), it is a spurious excitation due to the approximate Bethe–Salpeter kernel used.

The lowest positive excitation energy coming from the (oo,vv) block of the matrix 
1χ(ω)–1 is identified with the second singlet 1 Σg

+  excited state that has a double exci-
tation character. It is plotted in Figure 18.5 and compared with the FCI excitation 
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energy for this state and with the poles ′ −E E2 1  and E E2 11− ′  of χIP(ω). It is noteworthy 
that the BSE-GW method starting from χIP(ω) instead of χ0(ω) but using a frequency-
independent kernel does describe this double excitation state with an overall correct 
shape for the energy curve. However, the BSE-GW excitation energy is almost iden-
tical to the two poles ′ −E E2 1  and E E2 1− ′. The Bethe–Salpeter kernel in the static 
GW approximation thus brings virtually no improvement for this state over the start-
ing poles of χIP(ω). The (oo,vv) block of the matrix 1χ(ω)–1 also gives a second higher 
excitation energy that is spurious.

We finally consider the triplet excited state 3 Σu
+ . The lowest positive excitation 

energy coming from the (ov,vo) block of the matrix 3χ(ω)–1 should be identified with 
this state. It is plotted in Figure 18.6 and compared with the FCI excitation energy 
for this state and with the fundamental gap E E2 1− . For small internuclear distances, 
R ≤ 3 Bohr, the BSE-GW method gives an accurate excitation energy, but for larger 
R, instead of going to zero, the BSE-GW excitation energy curve heads for the fun-
damental gap curve until the excitation energy becomes imaginary for R ≥ 6.5 Bohr. 
The problem is that the poles of χIP(ω) are the same for both singlet and triplet cases, 
and the fundamental gap E E2 1−  is not a good starting approximation to the triplet 
excitation energy in the dissociation limit. The Bethe–Salpeter kernel in the static 
GW approximation is not able to compensate for this bad starting point. In addi-
tion to this excitation energy, the BSE-GW method gives three other spurious triplet 
excitation energies.

18.5  CONCLUSION

We have applied the BSE approach in the static GW approximation for the calcu-
lation of the excitation energies on the toy model of H2 in a minimal basis. We 
have tested two variants for the starting one-particle Green’s function: the nonin-
teracting HF one and the exact one. Around the equilibrium internuclear distance, 
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both variants give accurate excitation energies to the first singlet 1 Σu
+ and triplet 3 Σu

+ 
excited states. In the dissociation limit, however, the two variants differ. The first 
variant, starting from the noninteracting one-particle Green’s function, badly fails 
in this limit for both singlet and triplet states, giving imaginary excitation energies. 
The second variant, starting from the exact one-particle Green’s function, gives a 
qualitatively correct energy curve for the singlet 1 Σu

+ excited state up to the dissocia-
tion limit. This relies on the fact that the fundamental gap (given by the one-parti-
cle Green’s function) is a good starting approximation to the first singlet excitation 
energy. However, the same variant gives an incorrect energy curve for the triplet 3 Σu

+  
excited state in the dissociation limit. In this case, the fundamental gap is a bad start-
ing approximation to the first triplet excitation energy.

The second BSE variant using the exact one-particle Green’s function gives more 
excitation energies than the first BSE variant. Most of them are spurious excitations 
due to the approximate Bethe–Salpeter kernel used. However, one of them can be 
identified with the excitation energy to the singlet 1 Σg

+ excited state that has a double 
excitation character. It is remarkable that such a double excitation can be described 
at all without using a frequency-dependent kernel. However, the Bethe–Salpeter ker-
nel in the static GW approximation is insufficient to describe accurately the energy 
curve of this state, even around the equilibrium distance.
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