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Using the fluctuation-dissipation theordfDT) in the context of density-functional theot@FT),

one can derive an exact expression for the ground-state correlation energy in terms of the
frequency-dependent density response function. When combined with time-dependent
density-functional theory, a new class of density functionals results that use approximations to the
exchange-correlation kern&i° as input. This FDT-DFT scheme holds promise to solve two of the
most distressing problems of conventional Kohn—Sham DTIt leads to correlation energy
functionals compatible with exact exchange, indit naturally includes dispersion. The price is a
moderately expensiv®(N®) scaling of computational cost and a slower basis set convergence.
These general features of FDT-DFT have all been recognized previously. In this paper, we present
the first benchmark results for a set of molecules using FDT-DFT beyond the random-phase
approximation RPA)—that is, the first such results witfi®# 0. We show that kernels derived from

the adiabatic local-density approximation and other semilocal functionals suffer from an “ultraviolet
catastrophe,” producing a pair density that diverges at small interparticle distance. Nevertheless,
dispersion interactions can be treated accurately if hybrid functionals are employed, as is
demonstrated for Heand HeNe. We outline constraints that future approximationg%should

satisfy and discuss the prospects of FDT-DFT.ZD05 American Institute of Physics
[DOI: 10.1063/1.1884112

- INTROBECTION o [Pl Tl
X(Xl,Xz,w)—_ E O —w—i
Time-dependent density-functional theotyDDFT)*2 n=0 nT @17
has developed into an accurate and inexpensive tool for de- (Wolp(xo) [W o XW | p(x0) | W)
scribing excited state properties, energies and response prop- + Q+otin . (2)

erties of a variety of systeméee, e.g., Refs. 3351t is

somewhat less widely appreciated that TDDFT also provides

an alternative prediction of statground-stateproperties via  In the last equatiorp(x) denotes the density operator, tifg
the fluctuation-dissipation theorefDT). The FDT was first ~are excited states with excitation energ{@s and 7—0 is
derived by Callen and Welton in 1951, who used it to relateuS€d to indicate thag is analytic in the upper half of the
the mean square fluctuation of a local one-particle obsen/£omplexw plane.

able in the ground stat¥, to the imaginarydissipative part An intriguing aspect of the FDT is that it can be used to
of the density-density response functigtx, , x; ) factorizetwo-particlequantities into a sum oveme-particle
guantities. In the constrained-search formulation of density-

functional theor)7/ we consider arN electron system with a
scaled Coulomb interactioa/r,, whose ground-state den-
“ do ity p,(x) is fixed at the physical valug(x) = p,, (X)|,=1; thus
Wo|(O - (0N ¥y =—Im —jdx X) ¥ (X, X; @)O(X): SItY Pa physica %) = Pa \Wla=1s
(Wol (O =(ONF¥o) fo T C0)x(xx;: @)O) «=0 corresponds to the noninteracting Kohn—Shés)
systent Langreth and Perdew generalized the EBTto
obtain an expression for the correlated part of the pair den-
sity,

()

as usualx=(r,o) denotes a set of space-spin coordinates.

The FDT may be considered as a special sum rule. The fre-

quency integral over the imaginary part pfis used to gen- Pa(X1,%0) = = Imf
erate a resolution of the identity, as is easy to verify by 0
inserting the Lehmann representation pf (Ref. 6 into 3)

Eq. (1),

©

d
f(Xa(XIIXZ; o) = Xo(X1,Xp; w)).

The correlation energy is obtained froRf, via coupling-
dElectronic mail: tvan@mit.edu strength integration,
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(4) the RPA and present applications of the formalism to non-
uniform systems. Through several numerical applications,
On the other handy, describes the response of the one-We showcase the appealing features of FDT-OED., the
particle density, and is therefore accessible from timenatural treatment of dispersiprHowever, we also demon-
dependent density-functional response thébrylore pre- Strate that standard semilod@GA and hybrid approaches

cisely, for a pure density functiong, satisfies the Dyson- Predict adivergent electron-electron cusp condition. This
type equatiotf* rather serious limitation argues strongly for the development

of nonlocal approximations t&.

1! PC(X1,Xp) work, we extend the basis set approach to FDT-DFT beyond
E°= > da | dxdx,——.
0

12

Xo6X ;@) = xo(X, X" ; w) + f dx %o xo(X, X1; @)

1 Il. THEORY
L exc . r.
X<r12+fa(xl’XZ'“’)>Xa(X2'X @) A EDT-DFT formalism
We stress again that this is @xactexpression for the cor- To evaluate Eqs3)—5) we use an extension of the for-

relation energy that has been known for quite some time. Ifnalism developed previously by one of 1s® Here, we
practice, one can compute all excitation energies and trans@nly reiterate the crucial points.
tion densities to construg, from its Lehmann representa- All our calculations will be performed in a finite basis of
tion. Thus, for a givenapproximateexchange-correlation ©One-particle orbitals. In this case, the TDDFT response is
(XC) functional, wheref*® and x, are both given as explicit naturally expressed in the Hilbert spatge.® Ly ® Lyin
functionals of the density, Eq§3)<(5) define the FDT-DFT  ® Loco Where Loc(Lyir) is the space of occupietlirtual)
correlation energy as a functional pf Kohn—Sham orbitals, denoted by indide$,k...(a,b,c...).

Conventional DFT directly uses parametrizations of theWe will generalize the previous treatment to allow for hybrid
XC energy functionalE*9p], as obtained, e.g., within the functionals, containing an admixturey=0 of exact
local-density approximatiofiLDA) or the generalized gradi- exc:hangé.8 The key quantities are the so-called orbital rota-
ent approximation(GGA). At first sight, the FDT-DFT tion HessiangA,+B,),
scheme_ appears to be an unnecessary detour, es_pecially since (Ay=Boiajp = (€a— €)8; Sap+ yal(i] Iba) - (ialjb)),
computing the full response functigy, from Eq.(5) is com-
putation_ally much more demanding than a conventional DFT (Ay+Biajp = (€2 — €)8; 8ap— yal(i] Iba) + (ia|jb))
calculation. However, FDT-DFT still produces useful results
even in the simplest possible approximatidif=0, which + ij|ab) + 2f0,p-
corresE[;><1)(§1lciE_)sl6 to the random-phase approximatioQ
(RPA.‘); o this is certainly not t'rue for the Hartree ap- notation; the ¢,(x) are the ground-state KS orbitals with
proximation (E*{p]=0) of conventional DFT. Moreover, : P

) . . . orbital energies,,

RPA correlation energies are compatible with exact exchange P
and include some dispersion, which is very difficult to w
achieve with semilocal functionals. For dynamical correla- aiajb
tion, one hopes that FDT-DFT approximations can approach . . )
the accuracy of coupled cluster methods such as coupldd & matrix X(Eepresentat!on of the XC kernel at coupling
cluster with single and double and perturbative triple excitaStrengtha, fi’(x;,xp), which is a functional of the ground-
tions[CCSOT)].1” Moreover, because FDT-DFT is based on Staté density. In the ad::a_batlc approximatigwn), the fre--
a density-functional reference, it holds promise for meta|qu§n§:¥gdependence 6f° is neglected by taking the static
clusters and other small gap systems where Hartree—FodiMit,”
(HF)-based single reference methods often fat® For SEXC
nearly uniform systems, this goal has actually been fa(X1,X2) = W;() (7)
achieved®® Another advantage of FDT-DFT is the link be- P oplXe
tween ground-state theory and TDDFT; apart from theE.]p] is related to the XC energy functional at full coupling
ground-state densityor, equivalently, the independent par- strengthE*|p]=E. [p]|.=1 (Withoutthe admixture of exact
ticle Hamiltonian that generates this dengityooth ap- exchanggvia the relatio

ij |ab) denotes a two-electron repulsion integftal Dirac

J dxq A% ¢ (X1) a(X0) Fi (X1, %) j(X2) hy(X2)  (6)

proaches depend on the XC kernel as input only. Ideally, Ep] = 2By, ] ®)
both fields will benefit from progress in approximations to alP Pital:
fxe, wherep, (r,o)=\3p(\r,0) is a scaled density, with uniform

FDT-DFT beyond the RPA has been applied only to ascaling parameterh. An analogous identity for the
few cases—the uniform electron ¢d<? jellium  frequency-dependent XC kernel can be derfvefidom the
models?**and a selection of few electron systefié®For  scaling behavior of the time-dependent XC poteritial.
the uniform gas, accurate parametrizations ©f are The RPA is recovered in the limiting cag§(x,,x,)=0.
availablé’ that yield virtually exact results for the correla- The bare RPA in a density-functional context corresponds to
tion energy per particle in the FDT-DFT scheftdut much  y=0, while the HF-based RPA with exchange results corre-

less is known about‘ in nonuniform systems. In the present sponds toy=1, provided that HF orbitals and orbital ener-
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gies are used. From this perspectiff§,gives rise to a static to the fact that the LB94 referencernst the ground state at
local-field correctioff that accounts for effects beyond the this intermediate value o.
RPA. We will term these two effectphysicaland artifactual
The coupling-strength integrand can be constructed diinstabilities, respectively. Our desire to avoid artifactual in-
rectly in terms of the response matrices if we introduce thestabilities leads us to focus our attention eonsistent
correlation part of the two-particle density mat#, choices ofy, and f*. That is, we consideg, and f*° to be
Pt = (A, - B)Y2M YA ~B )21, 9) o_lerived from a single exchange-correlati_on energy func-
@ « e @ « e tional. For the semilocal functionals used in this paper, we
where have found only two casd€l atom and NO molecule within
the local spin-density approximatipwhere this leads to an

— _ 1/2 _ 1/2
M= (Aq = Bo) ™ (Aa + Bo) (A = Bo) ™ (10 instability. On the other hand, jfy andf*¢ are chosen incon-
Then Eq.(4) becomes sistently, we find in practice that instabilities are encountered
1t ca. 10% of the time. This should not be confused with a
Ec FDT-DFT _ _f da >, (ij[ab)PS,yp. (11)  self-consistentreatment of the FDT-DFT energy functional
2Jo e which is beyond our present scope.
The FDT-DFT XC energy is obtained by adding this corre-
lation energy to the exact exchange energy, Ill. SHORT-RANGE BEHAVIOR OF THE PAIR
1 DISTRIBUTION FUNCTION
R | .
Exc FDT-DFT - _ 52 (ijljiy + Ef da >, (ij[ab)PSqjp- Local-field corrections have a long history in the theory
ij 0 iajb

of uniform systemssee, e.g., Ref. 36 for a recent overvjew
(12 Their original motivation was to remedy the spurious behav-

Because the ground-state KS orbitals are uniquely fixed by of the RPA pair density at small inter-electron separa-

o CFDT-DET: . ; ions. Most work in uniform gas theory focuses on the pair
the densityE 's a functional of the density as well. distribution function(PDF), g,, that gives the conditional

probability of finding an electron at’ given that another
B. Stability electron is located at, its correlated part is closely related to

the correlated part of the pair density,
The FDT-DFT formalism is based on the tacit assump- P P Y

tion that the response calculated from an approximate XC c EUlO'ZPZ(XliXZ)

kernel is qualitatively similar to the exact response. Most ~ 9a(f1.r2) = Tty

notably, we require that none of the approximate excitation vz

energies arémaginary, or else the use of the Lehmann rep- In the last equationp(r)=2,p(x) is the total density. The

resentation[Eq. (2)] is questionable. As first shown by uniform gas PDF is known accuratéfyln the present for-

Bauernschmitt and Ahlrich&, an approximate functional malism,Pg(x;,X,) is obtained from the correlated part of the

gives real excitation energies only if the matridés,+B,)  two-particle density matrix defined in E¢p),

are positive semidefinite. Thestability conditionshold for c _ c

any value of the coupling constant and are hence a powerful Palx1%) = 3% Pliaib #1(X1) $a0%0) ¢1(x2) (x2). (14)

constraint on approximations t&°. In our FDT-DFT ap- o o

proach, instabilities are easily detected because they lead to The exact PDF is finite at;,=0 and satisfies a cusp

negative eigenvalues of the matri,, defined in Eq.(10) condition™~" How does a semilocal XC kernel affect the

and, consequently, tinaginary correlation energiés short-range behavior af,? The adiabatic local spin-density
What is the physical origin of imaginary excitation en- a@Pproximation(ALDA) energy expression

ergies? The exact, has poles at real, non-negative excita-

tion energies for alv because it describes the response of a  E° APA[p] = @® f d*rF (a3p(x)) (15)

ground state for alke by construction. An approximatg,,,

generated from an approximate XC kernel, may violate thismplies that the XC kernel

condition in one of two ways(1l) The KS ground state may 1 PFap(x)

be connected to aexcited stateat finite « due to the influ- fXCALDA (%) %) = = P

ence of strong multireference correlation in the systerg., adp(ry,01)dp(ry,07)

singlet-triplet instabilities in the response malrix2) The s proportional to a three-dimensional delta function. We re-
response can be artificially spoiled by a mismatch betweestrict ourselves to the ALDA in the followingrather quali-
the definition of ° and the orbitals(or equivalently, the tative) discussion; gradient corrections lead to additional

potentia) used to definey,. For example, say one has a terms that behave like derivatives &fr;—r»).
system where van Leeuwen-Baerends 199894)°" pre-

dicts a singlet ground state for some valuengfwhile LDA
predicts a triplet ground state for this same valuexoThen,
if we use LB94 to approximatg, (i.e., we use the LB94 It is well known that the ALDA kernelEq. (16)] is
orbitals and eigenvalugsind then compute the response us-incorrect even for uniform systenisee, e.g., Ref. 40 for a
ing f{54, the response will have an imaginary eigenvalue dueeview of properties of the uniform gas XC kerhein the

(13

ari-ry) (16

A. Uniform systems
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uniform gasg’, x.. andf*® depend only on the inter-electron B. Small coupling strength  (high-density ) limit
distancer 1, We consider the spln—_unpolarlzed case hgﬁ{e. For small coupling strength, a perturbation expansion
can be obtained from the correlation part of the static struc c :
) . for PS may be derived from Eq9),
ture factor at coupling strengt, S (q), by Fourier transfor-

- ijab) + £,
mation, P iajp = — 2a—1—<1+| >_ 'ib , (23
9772 - €y T €T € 6]'
9alrip) = mfo dqgsin(ari)S;(9). (17 wheref* is defined via
1
In the last equationky=(372p)'"® denotes the Fermi wave (X, %p) = ||m0 ;fﬁc(xl,xz)- (24)

vector. S (q) itself is related to the XC kernel via
To extract the short-range behavior Bf, at small «, we

" do_ AT e | = d it into pair contributions
(o) =1 f Qo q: ( am e ) ), expand i p ,
Q) == 1m . pp CCHOLC PG PRCHD o N )
PS (X1, %) = 202, i (X1, %) i (X1, %) + O(a”),  (25)
(19 ij
where Fourier-transformed quantities are denoted by a bawhere ¢’ )(X11X2):¢i(1xl)¢j(xz)- To recover Eq.(23), the
e.g., first-order geminalsbi(j) must satisfy
4w (” (HOx) + Hxo) = (6 + €)) i (%0, %)
XC( ) — T . Xc
=", dnaesnaniic A9 = U000 - BP0, (26

subject to the orthonormality Constrami(jl)| =0 for all
i,j,k,l. Here,H is the effective one-particle Hamiltonian of
the KS ground state,

Equationg17) and(18) are equivalent to the definition of the
pair density within FDT-DFT given in Eq.3), but apply to
spin-unpolarized uniform systems only.

According to Eq.(17), smallry, behavior ofgS(ry,) is
determined by the largg-behavior of S (q). We consider
only the case of small coupling strengithere. The lowest- ) o ) O (D] 40)
order contribution toS(q) is obtained by setting,(q;w) IS @ first-order effective interaction, afﬁﬂo =(yi;” VP )
=Yo(q; ®) in Eq. (18). For largeq, the frequency integration \We now turn to the ALDA. Since Ed26) is linear, we may

1
U(l)(xl,xz) = r_ + (X1, %), (27)
12

can be carried odt decompose the first-order geminal into an RPA part and a
o singular part
4 4 — i
Sia) =~ a977422<q_7zr + fX(Q))' q—®, a—0. ‘ﬂi(jl)ALDA (X1,%2) = lﬁi(jl)RPA(Xl.Xz) + lﬂi(jl)SIng(Xl.Xz)- (29

wi(jl)RPA is the solution of Eq.(26) within the RPA, i.e.,
*(xq,%,)=0. zpi(jl)RPA is well behaved at the origin and satis-
As noted by Kimbalf* ’(q) should decay as B for large  fies the first-order cusp condition. The singular part must
g to make the PDF finite at the origin. This implies that satisfy
X(q) « yqz for g— o, i.e., the exc.hange kernel used in FDT- (H(x,) + H(x,) — (¢ + ej)),pfjl)‘si“g(xl,xz)
DFT within the AA should not diverge faster thanrly at O 1(0)

FALDA () i ; = (P (X0, %) = B ) i (X1, %2)
smallry,. On the other hand, (q) is a constant, which et

(20)

leads to Xt 8y =19) 8y 0 U (X1 %), T12— 0. (29)
1 The singularity on the right-hand side can be canceled only if
9 ALDA (rqp o r—, ri,—0, (21 l/,i(;)sing behaves as

12 ]

i.e., the short-ranged ALDA kernel makgs”-P* diverge at lﬂi(jl)sing(xl,xz) oL 5,
small interparticle distances, at least in the limit of small r
This “ultraviolet catastrophe” of the ALDA may be related to 1ps implies thatP® A°A andg® AP exhibit a 1, diver-

the fact that gence to first order irv, which generalizes the result of the
last section.

r12—> 0. (30)

192’

fXALDA = fim (q), (22)
q*?

i.e., the ALDA kernel corresponds to tisenall glimit of the C. General case

exact static exchange kernel. The literature is largely silent It is very difficult to address the precise short-range be-
on this pathological aspect of the ALDA, except for a hint in havior of the FDT-DFT pair density function for finite values
the work of Dobson and Waﬁ‘bwho mention in passing a of the coupling constant. This is mainly becausBS (x;,X,)
weak divergence of the PDF at smajl, but do not give is not directly related to a wave function in the present ap-
further details. proach. It seems likely that the behavior observed in first
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order ina is not remedied at stronger coupling. One even hagalculation involves threes stepél) A ground-state DFT
to face the possibility thaP¢ behaves worse for finitex. calculation produces the orbitals and eigenval@@sUsing
Caution seems appropriate in view of the pathological disthese orbital and eigenvalues as input, a TDDFT response
continuities of the wave function at small interparticle sepa-calculation is performedusing the f** appropriate to the
ration observed for three-dimensional attractive delta interground-state functionplto construct the FDT-DFT correla-
actions at any finite coupling streng‘ﬁm tion energy[Egs.(11)]. (3) This correlation energy is com-
Given thatP¢ can diverge at the origin in certain circum- bined with the exact exchange energy computed using the
stances, one begins to wonder if the correlation energy presame orbitals to obtain the exchange-correlation engEgy
dicted by ALDA-FDT-DFT can also be infinite. The first- (12)]. For large systems, the rate-determining step is the
order term proportional to X{, gives afinite contribution to  computation of the square root bf [and (A-B) for hybrid
the second-order correlation energy. We cannot, howevefunctionald, which scales a®\® if N measures the system
rule out the possibility that higher-order contributions to thesize. This is the same for all semilocal XC kernels within the
correlation energy are divergent. On the other hand, in théA. Our algorithm gives the exact coupling-strength inte-
case of GGA functionals, a similar analysis at weak couplinggrand within the RPA, and a nearly exact oné*ffis evalu-
uncovers an apparent ﬂié divergence in the PDF, which, ated on a numerical grid.
taken by itself, would lead to a divergent correlation energy.  The only modification of the RPA algorithm necessary
In this situation, the challenge arises in how different diver-for FDT-DFT concerns the definition ¢fA,+B,). For each
gent quantities can be added (@nd subtracted fromone  coupling-strength integration point, the integre[iI};‘.cljb have
another as different terms in the coupling strength and grato be added to the RPA part ¢4,+B,). Within the adiabatic
dient expansions are summed up. It is therefore not clear IGGA
one should expect a finite correlation energy from semilocal

FDT-DFT. B A% p] = a® f FrF(a3p(x),a*Vp(x). (34

D. Basis set approach Defining a first-order density

In a finite basis, the divergence gf, can only be de- Do —
scribedapproximately and thus the finite basis estimates of P X =p() + 2 Uiadi(X) a(X), (35
E. will always be finite. In what follows, then, we turn our “
attention to the obvious question: Can reasonable approximanalytical expressions for the matrix elementg’{fare con-
tions toE, be found by applying FDT-DFT within a large but veniently derived from
finite basis? In this respect, it is important to note that the xer (D)
expected divergence & will result in avery slow conver- xc M (

e : ) . iajb = 36)
gence of the correlation energy with basis set size. For ex-  “¥° " gUjadUjp | y=o.
ample, if we assume that the pair density behaves as at
short distances, then standard techniéﬁ‘é“sshow that the
Ith partial-wave contribution t&, scales asymptotically as

The quadrature over is done numerically using standard
molecular integration schem@&sSince there ar®(N%) inte-
gralsf*¢ . | this is anN® step. The transformation to compute

aiajb?
E () o 1 (31) the integralgij |ab) has the same scaling; however, except in
¢ 1+D(1+2)° the exchange-only case tmﬁajb have to be constructed for

teachoz integration point, becausg,;, is nonlinear ina. The

Svaluation of the orbital products;(x) ¢,(x) on the molecu-

lar grid is an N3 step that is done before the coupling-

strength integration starts. Our code takes advantage of non-
Lmax 1 [ Abelian point-group symmetry. This is achieved by the

max . . . .
Eco 2 (+D1+2) T (32 reduction ofL,.® L, into irreducible tensor spaces, on the
=0 max one hand, and the use of integration points that are nonre-

for large |, This convergence is much slower than thedundant by symmetry, on the other. Thus, the total cost for
conventional case, computingfﬁjajb is reduced approximately by a factor gf,
whereg is the order of the point group. For the small, highly
1 (33) symmetric systems considered in this wogg, is typically

(Imax+ 1/2)%° around 100 or larger.

On the other hand, we can test the predicted short-range 1ne ground-state energies and orbitals were generated
behavior of the PDF by comparing E€82) to results of with the bscF module of TURBOMOLE. Tight convergence of
calculations in large basis sets. the density matriX10™’ a.u), fine integration gridgsize 5,

Ref. 47 and accurate coupling-constant integrati¢n
pointy were used throughout. A further increase in the size
of either grid did not change the results significantly, as was
verified in exploratory calculations. Atomization energies
Our FDT-DFT code is based on the RPA implementationwere computed at the experimental geometries taken from
described in Ref. 15, which is part pbRBOMOLE.***®Each  the computational chemistry comparison and benchmark da-

which means that in a basis that is composed of a comple
set of functions up to a maximum angular momentiy,
the correlation energy will scale as

EgOnV o

IV. IMPLEMENTATION AND COMPUTATIONAL
DETAILS
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TABLE . Basis set dependence of the correlation energy of Nsing the  ample, for finitel a5 the (2l nat 1)‘l term can be obscured

PBE functional in the FDT-DFT scheme. The first three columns refer to theoy the (2l +1)—3 contribution that comes from the Cou-
total molecular correlation energy, while the last three refer to the correla-I bic i tmaxl ¢ 83 . " lation based
tion contribution to the binding energy. “Raw” refers to the unextrapolated ombic Int€relectron cusp, causing extrapolation based on

result, and subsequent columns give various extrapolations based on the rif¥€ pure largel ., behavior to fail. Indeed, this effect is
results. Energies are in kcal/mol. The experimental result corresponds to @vident in the data presented in Table |. T(Rb.+1)"°

total correlation energy of —215 kcal/mol and a relative correlation energyterm, which contains RPA-like correlations and is primarily
of ~97 keal/mol(Ref. 48. energy lowering, partially cancels th@l,,,+1)"* contribu-
tion, which comes fromf*® and is typically positive. As a
result the incremental correlation energiEg(X) —E.(X-1),
cc-pVXZ  Raw (2X+D)7' (2X+1)7? Raw (2X+D)™' (2X+1)7?  gre actuallylarger for cc-pV6Z than for cc-pV5Z due to
smaller cancellation of terms in the larger basis.

Total correlation Relative correlation

X=3  -1486 -~ . -87.3 \ _

X=4 -1381 -101.3  -1220 -90.6 -1020  -95.6 In practice, we find that the form

X=5  -1227 -532  -914 -914 -953  -931 A

X=6 -106.7  -19.0 -66.5 -91.9 -944  -93.0 E(X) =Ex(®) + o 38
o(X) = E¢() (2X+ 1? (38)

is a good compromise, taking into account the averaged ef-
tabase(CCCBDB)."® All open-shell systems were treated fect of the(2X+1)"* and (2X+1)-3 contributions in a stable
with a spin-unrestricted reference state allowing for full sym-way. The results using this extrapolation scheme are shown
metry breaking and all correlation energies were determinegh the last column of the figure and the resulting predictions

within the frozen-core approximation. are more satisfactorfespecially for the relative energetics
However, it should be stressed that the extrapolated results
V. RESULTS presented here should not be considered complete basis re-

sults; rather they correspond to “the best one can do” in the
present circumstances. Unlikab initio approaches, where
We employed Dunning’s correlation-consistent polarizedihe extrapolation is only needed to get the last few kcal/mol
valence X-tuple zeta (cc-pVXZ) basis sets [X  of the total energy, here the data clearly indicate that we are
=3(T),4(Q),5,6]* to facilitate extrapolation to the infinite trying to predict a complete basis result that is many tens of
basis set limit®*" In all these basis sets, the exchange conkcal/mol from the best finite basis calculation we can per-
tribution is always converged to within a few tenths of aform. Further, based on the analysis of the last section, we
kcal/mol, and hence the challenge lies in extrapolating theannot even rule out the possibility that the basis set limit of
correlation part. Table | illustrates the typical situation, fromthe total correlation energy is not well defined for semilocal
which several conclusions can be drawn. First, it is obviougunctionals. Based on the variance in atomization energies
that the total correlation energies obtained are much too pospredicted by different extrapolation schemes, we estimate
tive. ALDA calculations for the uniform gas at metallic den- that there is a residual uncertainty of at least 2-3 kcal/mol in
sities lead to a very similar picture, with an underestimationthe energies presented here.
of the correlation energy by approximately the same amount
that the RPA overestimates?it** Second, because of the
unphysical cusp behavior, the convergenceEg(iX) is ex-
tremelyslow, and the basis sets we are using are\stity far The FDT-DFT results for the atomization energies of 18
from convergence. However, since both these failures ultismall molecules using several standard functionals are pre-
mately derive from a very short-ranged effect, one hopes thadented in Table Il. The local-density approximation gives
the resulting errors will largely cancel when energy differ- pinding energies that are somewhat worse than RPA
ences are considered. This turns out to be the case, as illusg) overall. Further, including gradient corrections, as is
trated in the last few columns of Table I. done in F)erdew_Burke_ErnzerhcﬂbBE)52 and Becke—
Even for differential correlation, the basis set conver-perdew 1986BP86 GGAs>>* has little effect on the re-
gence of the energy is still extremely slow, as would be exsyits. These pure functionals tend to overbind by approxi-
pected from the predicted (@,,+1) asymptotic error of  mately the same amount as that by which RPA and time-
the partial-wave expansion of the correlation energy. Unforgependent Hartree—Fock meth6BDHF) underbind. Thus,
tunately, the theoretical largkax limiting behavior is not e conclude that a completely local model of the XC kernel
quantitatively observed in our calculations. As shown injs not adequate. Meanwhile, including exact exchange in the

A. Basis set convergence

B. Atomization energies

Table I, extrapolation using the simple form calculation, as in Perdew—Burke—Ernzerhof 20Q6BEQ>
A and in Becke’s three-parameter hybf@3LYP),%° tends to
Eo(X) = Eg() + X+ 1 (37)  reduce the binding energy substantially, resulting in a signifi-

cantly improved agreement with experiment. The PBEO pre-
does not produce a rapidly convergent prediction of the coméictions are particularly good, with a mean absolute error
plete basis result. This failure is primarily attributable to the(MAE) of 3.3 kcal/mol over the whole set. Thus, even the
fact that the cc-pVXZ set@xtended though they arstill do relatively simple nonlocality that is present in hybrid func-
not contain high enough angular momentum components faionals allows for a more accurate description of FDT-DFT
the asymptotic partial-wave expansion to be valid. For ex-correlation energies. This may be compared to results for the
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TABLE II. FDT-DFT atomization energiesin kcal/mol) using various approximate functionals. Molecules
which have an error greater than twice the standard deviation for the given method are indicated in bold. RPA
energies are computed using PBE orbitals. Experimental vainelsiding zero-point vibrational corrections

are from Ref. 52.

Molecule RPA TDHF LSDA PBE BP86 B3LYP PBEO Expt.
C,H2 381 394 421 427 423 396 409 405
CH,’ 538 555 578 581 573 549 568 563
CH,? 405 416 426 426 419 408 422 419
cl? 50 57 ¢ 74 74 56 64 58
coP 244 249 287 287 286 258 264 259
F° 31 22 74 63 76 42 43 39
sz 109 108 110 110 107 110 111 109
H,0° 224 226 249 245 241 230 235 232
HCNP 299 298 322 325 321 304 315 312
HF? 133 138 157 152 157 143 144 141
LiF? 130 136 158 159 165 152 148 139
LiH? 57 58 61 63 63 66 62 58
N, 223 210 229 230 228 220 228 229
NH3b 290 289 296 293 286 285 297 297
NO? 148 132 ¢ 163 163 147 154 153
02 113 97 155 151 150 119 125 121
OHP 104 103 117 114 112 106 109 107
P, 116 105 118 118 116 112 118 117
MAE 9.1 9.2 135 12.3 12.9 6.0 3.3

%4/5 extrapolation.
b5/6 extrapolation.
°KS-LDA reference is unstable for Cl atom and NO molecule.

RPA+ functional proposed by Yan, Perdew, and Kdfth, been able to test these kernels in atomization energy calcu-

which uses a conventional GGA for short-range correlatiorlations because no spin-resolved version was available to us.

effects beyond RPA. As RPA, RPA+ has a well-behaved paiHowever, all of these kernels are local, and thny param-

density, but it does not improve consistently upon atomiza&trization will retain the unphysical pair density and slow

tion energies? basis set convergence. Any effort toward designing FDT-
These results should be compared with the results oPFT functionals should foremost be directed at fixing these

conventional DFT using these functionals in a large cc-pv5z°Problems.

basis, in which case one finds MAEs of 31.4 kcal/rlotal

spin-density approximation, LSDA 7.9 kcal/mol (PBE), ¢ Dispersion

7.3 kcal/mol (BP86, 1.6 kcal/mol (B3LYP), and

3.1 kcal/mol (PBEO. Thus, the atomization energies pre-

dicted by FDT-DFT using standard functionals are typically

somewhat worse than the conventional approach. This is n

ntirel rprisin we have m no effort t librate th L .
entirely surprising, as we have made no effort to calibrate in situations where it works poorly, such as bond breaﬁﬁwg,

functionals to the new methodology. All the functionals con- ., i state energetiésand nonbonded interactiofi%In
sidered here contain parameters that are selected either em-

. . . iy e specific case of long-range dispersion forces, it has long
pirically based on experimental energetics or nonemmncall;b

. he k . f the XC In both een realized that conventional Dt least with local func-
using the known properties of the energy. In bot Casesﬂ'onals does not contain the proper physics to describe the

the functionals are in some sense optimal for describing thBinding of van der Waals clustef&! However, several au-
energetics in the conventional DFT framework. The fact thagyors have noted that dispersion interactions, in the form of
we want to use these functionals in conjunction with theC6 coefficients, can be obtained from TDDFT response
FDT may imply an entirely different set of empirical and fynctions®?-%* These dispersion coefficients are actually
nonempirical constraints. For example, while one particulahuite accurate, with typical errors in the order of 3% when
parametrization may lead to an accurate description of thgtandard functionals are used to compute the resgbnse.
energy of a nearly-uniform system, this is not necessarily thlong these lines, TDDFT has successfully been used to
best set of parameters for describing teeponseof the sys-  compute intermolecular forces in the framework of
tem. symmetry-adapted perturbation the8fyThe dissatisfying
Similar considerations have motivated the “energy-aspect of these approaches is that dispersion is included after
optimized” parametrization of local, static exchange-the fact rather than as a limiting case of a more accurate
correlation kernels by Dobson and WﬁgWe have not energy functional. With FDT-DFT, though, thentire corre-

In some sense, comparing FDT-DFT with conventional

DFT for electron pair bond energies is not very useful. It is
ell known that standard DFT already describes bond ener-

Jies very well, and our primary focus is on improving DFT
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FIG. 1. Van der Waals interaction in the helium dimer. Energies are com- . o . )
puted using two functionals, BP86 and PBEO, using either the fluctuationf!G-. 2. Van der Waals interaction in HeNe. Energies are computed using the

dissipation theoren{FDT-BP86 and FDT-PBEOor conventional means. PBEO func@ional using either the qu_ctuation-dissipation theo(ebir-DFT)
The RPA results computed using BP86 orbitals are presented for comparf” conventional meandFT). Experimental results are from Ref. 72.
son. Experimental results are from Ref. 70. Triangles denote accalpate

initio results from Ref. 71. clearly demonstrate the poor quality of pure density func-

tionals in the FDT-DFT scheme. Further, it has previously

lation energy is computed using the TDDFT response funcbeen shown that the dispersion energies predicted by hybrid
tion; it is therefore the natural framework for treating disper-functionals are a vast improvement over pure functioffals.
sion interactions in DFT. In fact, the “seamless” van-der-In fact, second-order perturbation theory based on an LDA
Waals density functionals recently proposed by Dobson anéeference shows a very similar repulsive cuf¥ote that
Wang an84'67 and by Langreth and CO'WOfké?gg start out one can prove that, for Iarge enOUgh distances, pure function-
by approximating the FDT-DFT expression for the correla-als do show the expected B9 energy dependenc8.Our
tion energy[Eq. (4)]. results simply indicate that, for pure functionals, the correct
To illustrate this point, Figs. 1 and 2 present FDT-DFT energy term is swamped at moderate distances by unphysical
predictions of the dissociation curves for Hand HeNe, repulsive terms irf .
respectively. The calculations were performed in the aug- However, for a hybrid functiongin this case, PBEOwve
mented cc-pV6Z basis, with a large radial grid to ensures€e that the FDT-DFT results describe dispersion effects in
accurate integration of the XC energy. We haw¢corrected ~ He, essentially quantitatively. The inner wall is somewhat
our results for basis set superposition e®8SH. Because 100 steep, but the depth of the well and the long-range tail are
of the slow convergence of the total correlation energy withdescribed very well. Furthermore FDT-DFT makes a quali-
|maX’ the Counterpoise correction is unphysica”y |arge fortatively different prediction than conventional DFT, Using the
FDT-DFT and is not expected to be an accurate predictor o$@me functional. The conventional PBEO calculation predicts
the BSSE. Nevertheless, we conclude that our calculationd binding energy that is nearly 100% too large and does not
are fairly well-converged with respect to basis set, as th&xhibit the expected H° decay at large separations. We
FDT-DFT binding energies change by ca. 1% in going fromtherefore conclude that hybrid functionals are absolutely cru-
aug-cc-pV5Z to aug-cc-pV6Z. The more rapid convergencéial for the accurate description of dispersion effects. For
of the present calculations as compared to that of the calcideNe, we have therefore focused our attention only on the
lations in the previous section is to be expected, since digdybrid functionals. The results are somewhat less accurate,
persion is a long-range correlation phenomenon and hendt Iead to similar conclusions. The FDT-DFT binding en-
unlikely to be strongly affected by the short-range diver-€rgy is underestimated and the van der Waals radius is sig-
gence of the pair density. nificantly too large. However, the long-range behavior of the
Perhaps the most important point that can be g|eaneaotentia| is aga.in very aCCUrater described by the FDT-DFT
from the figures is that dispersion energies in FDT-DFT de2Pproach, which again points to the proper treatment of long-
pend strongly on the choice of functional. Pure density funcf@nge dispersion effects in FDT-DFT.
tionals give such a poor description 8F that they do not
pre_tdi_ct _reasonable binding curves in §imple rare gas dimer§,|_ CONCLUSIONS AND OUTLOOK
This is illustrated by the BP86 curves in Fig. 1. Although the
FDT-DFT result is an improvement over conventional DFT, In this article, the FDT-DFT formalism beyond the RPA
even the RPA(f*=0) gives a much better description of has been implemented and applied to molecular systems. We
dispersion than FDT-DFT using this functional. This is nothave tested several approximate XC kernels within the AA.
entirely surprising; the atomization energies obtained abov&ernels derived from semilocal functionals are too short-
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