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Abstract In the past decade, the random phase approxi-

mation (RPA) has emerged as a promising post-Kohn–Sham

method to treat electron correlation in molecules, surfaces,

and solids. In this review, we explain how RPA arises nat-

urally as a zero-order approximation from the adiabatic

connection and the fluctuation-dissipation theorem in a

density functional context. This is contrasted to RPA with

exchange (RPAX) in a post-Hartree–Fock context. In both

methods, RPA and RPAX, the correlation energy may be

expressed as a sum over zero-point energies of harmonic

oscillators representing collective electronic excitations,

consistent with the physical picture originally proposed by

Bohm and Pines. The extra factor 1/2 in the RPAX case is

rigorously derived. Approaches beyond RPA are briefly

summarized. We also review computational strategies

implementing RPA. The combination of auxiliary expan-

sions and imaginary frequency integration methods has lead

to recent progress in this field, making RPA calculations

affordable for systems with over 100 atoms. Finally, we

summarize benchmark applications of RPA to various

molecular and solid-state properties, including relative

energies of conformers, reaction energies involving weak

and covalent interactions, diatomic potential energy curves,

ionization potentials and electron affinities, surface

adsorption energies, bulk cohesive energies and lattice

constants. RPA barrier heights for an extended benchmark

set are presented. RPA is an order of magnitude more

accurate than semi-local functionals such as B3LYP for

non-covalent interactions rivaling the best empirically

parametrized methods. Larger but systematic errors are

observed for processes that do not conserve the number of

electron pairs, such as atomization and ionization.

Keywords Electronic structure theory � Density

functional theory � Random phase approximation �
Resolution-of-the-identity (RI) approximation �
Van-der-Waals forces � Thermochemistry

1 Introduction

The random phase approximation (RPA) is one of the oldest

non-perturbative methods for computing the ground-state

correlation energy of many-electron systems. In 1962, when

the first issue of Theoretica Chimica Acta was published,

RPA had already been in existence for 11 years and was

reaching its first bloom in solid-state physics. The term

‘‘random phase approximation’’ was apparently first used in

the groundbreaking series of three papers entitled ‘‘A Col-

lective Description of Electron Interactions,’’ which

appeared between 1951 and 1953 [1–3]. In this work, Bohm

and Pines attempted to solve the many-electron problem for

the uniform electron gas by a transformation to a much

simpler coupled harmonic oscillator problem describing

long-range plasma oscillations plus a short-range correction.
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Bohm and Pines showed that this is possible if cross-terms

arising from density oscillations with different phases can be

neglected, hence the name RPA. Within the RPA of Bohm

and Pines, the ground-state correlation energy is given by the

zero-point vibrational energy (ZPVE) of the oscillators plus

a short-range correction that can be treated perturbatively.

This physically appealing picture probably had a strong

influence on the development of diagrammatic many-body

perturbation theory (MBPT), which treats the ground-state

correlation energy in analogy to the vacuum self-energy of

quantum electrodynamics. Indeed, in 1957, Gell-Mann and

Brueckner obtained the RPA result for the uniform gas cor-

relation energy by summation of all ring diagrams in the

MBPT expansion [4], see Fig. 1.

The random phase approximation made its first appear-

ance in chemistry in 1964, when McLachlan and Ball pointed

out that time-dependent Hartree–Fock (HF) theory is

equivalent to RPA with exchange (RPAX) [5]. In the fol-

lowing decades, RPAX was widely used to compute

molecular electronic excitation energies and transition

moments and triggered the development of polarization

propagator methods in the 1970s [6]. RPAX was rarely

applied to molecular correlation energies, partly due to its

comparatively high computational cost and partly because

applications to small systems showed little promise [7].

Perhaps the most serious limitation of RPAX is its sensitivity

to instabilities of the HF reference state. This and the

emergence of coupled cluster theory effectively halted fur-

ther development of RPAX-based correlation methods in the

late 1970s. Attempts to make RPAX more stable by iteration

of excitation operators (‘‘higher-order RPA’’) [8, 9] were

later shown to be related to the antisymmetrized geminal

power method [10].

On the side of density functional theory, Langreth and

Perdew [11, 12] and Gunnarsson and Lundqvist [13]

established the adiabatic connection (AC) formalism in the

mid 1970s. The AC underlies most modern post-Kohn–

Sham (KS) correlation treatments that attempt to compute

the ground-state correlation energy using the KS determi-

nant as a reference. A crucial difference between the AC

formalism and post-HF methods that the ground-state

density is independent of the coupling strength in the for-

mer but not in the latter. Langreth and Perdew showed that

RPA arises as a natural zero-order approximation if the AC

framework is combined with the fluctuation-dissipation

theorem [14]. RPA was the basis for the development of

the first van der-Waals density functionals of Langreth–

Lundqvist type in the 1990s [15]. Dobson pioneered the use

of RPA for the seamless treatment of long-range dispersion

interactions [16, 17]. Only in 2001, RPA using a KS ref-

erence was first applied to molecules [18].

In the past decade, RPA has seen a remarkable revival.

This review aims to introduce RPA in its modern form to a

wider audience and explain why RPA-based electron cor-

relation methods seem more attractive than ever. The present

work reflects our personal views on the subject, and we do

not claim to be exhaustive in view of a rapidly growing

literature on RPA. In Sect. 2, we outline the derivation of

RPA starting from the AC formalism. We also include a

section on RPAX using a HF reference, highlighting the

common aspects and differences between the two approa-

ches (see also the recent review by Heßelmann and Görling

[134]). An important feature of RPA is that it can be sys-

tematically improved; some beyond-RPA approaches are

briefly addressed in Sect. 2.3. Section 3 contains an overview

of recent RPA implementations. Recent progress in this area

has helped transform RPA from a theory of mostly formal

interest to a viable computational tool. In Sect. 4, we sum-

marize recent results on the performance of RPA for a variety

of molecular properties. Section 5 concludes our review.

2 Theory

2.1 Kohn–Sham reference

2.1.1 Adiabatic connection

The starting point for post-KS density functional theory is

the adiabatic connection Hamiltonian [11, 13]

Ĥa ¼ T̂ þ V̂a½q� þ aV̂ee: ð1Þ

T̂ denotes the kinetic energy operator of the electrons. The

dimensionless coupling strength parameter a scales the

electron–electron interaction V̂ee: The local multiplicative

one-particle potential V̂a½q� constrains [19] the one-particle

density qa of the ground state jWa
0i to equal the interacting

ground-state density q for all a,

qaðxÞ ¼ qaðxÞja¼1¼ qðxÞ: ð2Þ

x = (r, r) denotes space–spin coordinates. Thus, for

a = 1, the physical system of N interacting electrons is

recovered, while a = 0 corresponds to the KS system

whose ground state is the KS determinant jU0i ¼ jWa
0i
�
�
a¼0

:

The interacting ground-state energy functional may be

expressed as the energy expectation value of the Kohn–

Sham determinant plus a correction for correlation,

Fig. 1 MBPT expansion of the RPA correlation energy using

Goldstone diagrams. (ia|jb) denotes an electron repulsion integral in

Mulliken notation, and �p is a canonical Kohn–Sham orbital

eigenvalue. Indices i; j; . . . denote occupied, a; b; . . . virtual, and

p; q; . . . general orbitals
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E0½q� ¼ hU0½q�jĤjU0½q�i þ EC½q�; ð3Þ

where Ĥ ¼ Ĥa
�
�
a¼1

is the physical Hamiltonian. While the

explicit form of EC[q] as a functional of the density is

unknown, it can be expressed by a coupling strength

integral [11, 13],

EC½q� ¼
Z1

0

daWa
C½q�: ð4Þ

The coupling strength integrand is the difference potential

energy of the electron interaction

Wa
C½q� ¼ hWa

0½q�jV̂eejWa
0½q�i � hU0½q�jV̂eejU0½q�i: ð5Þ

2.1.2 Density fluctuations

An important hierarchy of approximations to Wa
C½q� is

based on the idea to reexpress the potential energy of the

electron–electron interaction in terms of density fluctua-

tions. To this end, it is convenient to express V̂ee in second

quantized form,

V̂ee ¼
1

2

X

pqrs

hpqjrsiĉyp ĉyq ĉsĉr; ð6Þ

where ĉ
y
p and their adjoints denote electron creation and

annihilation operators, and hpqjrsi is a two-electron

repulsion integral in Dirac notation. To take advantage of

the locality of the electron–electron interaction, we

introduce electron field operators,

ŵyðxÞ ¼
X

p

/�pðxÞĉyp ; ð7Þ

/p(x) denotes a Kohn–Sham spin orbital. Defining the two-

particle density operator,

P̂ðx1; x2Þ ¼
1

2
ŵyðx1Þŵyðx2Þŵðx2Þŵðx1Þ; ð8Þ

the electron interaction operator may be written as

V̂ee ¼
Z

dx1dx2

P̂ðx1; x2Þ
jr1 � r2j

: ð9Þ

Our goal is to factorize P̂ðx1; x2Þ into products of one-

particle operators. Using the fermion anticommutation

relations, we obtain

P̂ðx1; x2Þ ¼
1

2
q̂ðx1Þq̂ðx2Þ � dðx1 � x2Þq̂ðx1Þð Þ; ð10Þ

where q̂ is the one-particle density operator

q̂ðxÞ ¼ ŵyðxÞŵðxÞ: ð11Þ

This may be further rewritten using the density fluctuation

operator Dq̂ðxÞ ¼ q̂ðxÞ � qðxÞ;

P̂ðx1; x2Þ ¼
1

2
ðDq̂ðx1ÞDq̂ðx2Þ þ q̂ðx1Þqðx2Þ þ qðx1Þq̂ðx2Þ

� qðx1Þqðx2Þ:�dðx1 � x2Þq̂ðx1ÞÞ: ð12Þ

The last identity and Eq. 9 may be combined to evaluate

the coupling strength integrand, Eq. 5. Because the density

is independent of a, all one-electron terms cancel, yielding

the simple result

Wa
C ¼

1

2

Z

dx1dx2

� hW
a
0jDq̂ðx1ÞDq̂ðx2ÞjWa

0i � hU0jDq̂ðx1ÞDq̂ðx2ÞjU0i
jr1 � r2j

:

ð13Þ

2.1.3 Fluctuation-dissipation theorem

Equation 13 expresses the coupling strength integrand Wa
C

as an expectation value of products of the density fluctu-

ation operator Dq̂: Using the completeness of the electronic

states jWa
ni at any a,

X

n

jWa
nihWn

aj ¼ 1; ð14Þ

the expectation value of Dq̂ðx1ÞDq̂ðx2Þ; a two-particle

operator, may be factorized into products of one-particle

transition densities,

hWa
0jDq̂ðx1ÞDq̂ðx2ÞjWa

0i ¼
X

n 6¼0

qa
0nðx1Þqa

0nðx2Þ: ð15Þ

Here, we used that the ground-state expectation value of

Dq̂ is zero, and

qa
0nðxÞ ¼ hWa

0jq̂ðxÞjWa
ni ¼ hWa

0jDq̂ðxÞjWa
ni: ð16Þ

Combining Eqs. 4, 13, and 15, we obtain an exact

expression for the ground-state correlation energy,

EC ¼
Z1

0

da
X

n6¼0

EH½qa
0n� � EH½qð0Þ0n �

� �

: ð17Þ

EH [q] denotes the Hartree or classical Coulomb energy

functional,

EH½q� ¼
1

2

Z

dx1dx2

qðx1Þqðx2Þ
jr1 � r2j

: ð18Þ

This result is remarkable, because it expresses the

correlation energy entirely in terms of one-particle

quantities, the transition densities. Transition densities are

accessible from response theory. This becomes obvious if

the zero-temperature fluctuation-dissipation theorem [14] is

used to express the sum in Eq. 15 by a frequency integral

of the density–density response function at coupling

strength a,
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hWa
0jDq̂ðx1ÞDq̂ðx2ÞjWa

0i ¼ �
Z1

0

dx
p

Imvaðx; x1; x2Þ: ð19Þ

The latter follows, e.g., from the Lehmann representation

[20] of va,

vaðx; x1; x2Þ ¼ �
X

n6¼0

qa
0nðx1Þqa

0nðx2Þ
Xa

0n � x� ig
þ qa

0nðx1Þqa
0nðx2Þ

Xa
0n þ xþ ig

� �

;

ð20Þ

where Xa
0n denote excitation energies, and ig is a small

contour distortion making va analytical in the upper complex

plane. By Eqs. 19, 15, and 4, the ground-state correlation

energy may be entirely expressed in terms of va [11, 12],

EC½q� ¼ �
1

2

Z1

0

da
Z1

0

dx
p

Im

�
Z

dx1dx2

vaðx; x1; x2Þ � vð0Þðx; x1; x2Þ
jr1 � r2j

: ð21Þ

2.1.4 Connection to time-dependent density functional

theory

The density–density response function va or, alternatively,

the transition densities qa
0n; are accessible from time-

dependent density functional theory (TDDFT) [21]. va

satisfies the Dyson-type equation [22]

va ¼ vð0Þ þ vð0Þf a
HXCva: ð22Þ

The frequency-dependent Hartree, exchange, and correlation

kernel can be decomposed into the bare Coulomb interaction

and an exchange and correlation (XC) piece,

f a
HXCðx; x1; x2Þ ¼ a

1

jr1 � r2j
þ f a

XCðx; x1; x2Þ: ð23Þ

Alternatively, the transition densities can be computed

from the response of the time-dependent KS density matrix,

leading to the symplectic eigenvalue problem [23, 24]

ðKa � Xa
0nDÞjXa

0n; Y
a
0ni ¼ 0: ð24Þ

The super-vectors Xa
0n and Ya

0n are defined on the product

space Locc 9 Lvirt and Locc 9 Lvirt, respectively, where Locc

and Lvirt denote the one-particle Hilbert spaces spanned by

occupied and virtual static KS molecular orbitals (MOs).

We use indices i; j; . . . for occupied, a; b; . . . for virtual, and

p; q; . . . for general MOs and assume that all MOs are real.

The super-operator

Ka ¼ Aa Ba

Ba Aa

� �

ð25Þ

contains the so-called orbital rotation Hessians,

ðAþ BÞaiajb ¼ ð�a � �iÞdijdab þ 2ahijjabi þ 2f a
XCiajb; ð26Þ

ðA� BÞaiajb ¼ ð�a � �iÞdijdab: ð27Þ

�i and �a denote the energy eigenvalues of canonical

occupied and virtual KS MOs. The eigenvectors jXa
0n; Y

a
0ni

satisfy the symplectic normalization constraint

hXa
0n; Y

a
0njDjXa

0n; Y
a
0ni ¼ 1; ð28Þ

where

D ¼ 1 0
0 �1

� �

: ð29Þ

The real-space transition density can be extracted from the

eigenvectors jXa
0n; Y

a
0ni according to

qa
0nðxÞ ¼

X

ia

ðX þ YÞaia/iðxÞ/aðxÞ: ð30Þ

Using Eq. 17, the correlation energy in terms of X0n
a and

Y0n
a is thus [18]

EC¼
1

2

Z1

0

da
X

iajb

hijjabi
X

n 6¼0

ðXþYÞa0niaðXþYÞa0njb�dijdab

 !

:

ð31Þ

2.1.5 Random phase approximation

The XC kernel as a functional of the ground-state density is

not explicitly known. Within RPA, the XC kernel is set to

zero,

f aRPA
XC ðx; x1; x2Þ ¼ 0: ð32Þ

Thus, RPA within a density functional context is identical

to the time-dependent Hartree approximation.

Within RPA, the correlation energy takes a particularly

simple form. Applying the Hellmann–Feynman theorem to

the eigenvalue problem (Eq. 24) within RPA, it follows

that

dXaRPA
0n

da
¼
X

iajb

ðX þ YÞaRPA
ia hijjabiðX þ YÞaRPA

jb

¼ 2EH½qaRPA
0n �: ð33Þ

Thus, the RPA correlation energy may be written as

ERPA
C ¼ 1

2

Z1

0

da
X

n

dXaRPA
0n

da
� dXaRPA

0n

da

�
�
�
�
a¼0

� �

: ð34Þ
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The coupling strength integration can thus be carried out

analytically, yielding

ERPA
C ¼ 1

2

X

n

XRPA
0n � XD

0n

� �

: ð35Þ

XRPA
0n is an RPA excitation energy at full coupling, and XD

0n is

an RPA excitation energy to first order in a. Using the unitary

invariance of the trace in Eq. 35, the sum over the XD
0n may

be replaced by the sum over the RPA excitation energies

within the Tamm–Dancoff approximation (TDA) [25],

ERPA
C ¼ 1

2

X

n

XRPA
0n � XTDARPA

0n

� �

: ð36Þ

Equation 36 expresses the RPA correlation energy as a

ZPVE difference of harmonic oscillators, where each

oscillator corresponds to an electronic excitation, in

agreement with Bohm’s and Pines’s original idea.

2.1.6 Connection to Green’s function methods

RPA may be derived from the GW approximation to the

one-electron self energy [26, 27]. This self-energy is the

derivative of the functional

UGW ¼ 1

2
tr ln 1þ iVGSGSð Þf g; ð37Þ

with respect to the non-interacting Green’s function GS [28].

V denotes the bare Coulomb interaction.�iUGW plays the role

of the exchange-correlation energy in the Klein functional of

the total energy. The GW method is widely used to compute

band structures of solids [29, 30] because it incorporates

basic screening physics beyond the single-particle picture.

2.2 Hartree–Fock reference

2.2.1 Correlation energy from coupling strength

integration

Post-HF methods are usually based on the Møller–Plesset

partitioning of the Hamiltonian [31],

Ĥa
HF ¼ Ĥ

ð0Þ
HF þ aĤ

ð1Þ
HF : ð38Þ

The zero-order Hamiltonian is the Fock operator,

Ĥ
ð0Þ
HF ¼ T̂ þ V̂ne þ Ĵ þ K̂; ð39Þ

where V̂ne denotes the operator of the nucleus–electron

attraction; Ĵ and K̂ are the Coulomb and non-local

exchange operators, respectively.

Ĥ
ð1Þ
HF ¼ Ĥ � Ĥ

ð0Þ
HF ¼ V̂ee � Ĵ � K̂ ð40Þ

is the so-called fluctuation potential. At zero coupling

strength, the ground state jWa
HF0i equals the HF

determinant jUHF0i: Except for the physical system at a ¼
1; Ĥa

HF and the ground state jWa
HF0i are different from the

adiabatic connection Hamiltonian Ĥa and its ground state

jWa
0i defined by Eq. 1: jWa

0i is constrained to yield the

interacting ground-state density for any a, while the

density of jUHF0i changes with a; on the other hand,

jUHF0i minimizes the energy expectation value

hUHF0jĤjUHF0i ¼ EHF ¼ E
ð0Þ
HF þ E

ð1Þ
HF; ð41Þ

while the KS determinant jU0i does not.

For a HF reference, the interacting ground-state

energy E0 equals the HF energy plus the HF correlation

energy,

E0 ¼ EHF þ EHFC: ð42Þ

The latter thus differs from the KS correlation energy

defined in Eq. 3. The HF correlation energy may be

expressed as an integral over coupling strength,

EHF C ¼
Z1

0

da
dEa

HF0

da
� E

ð1Þ
HF ¼

Z1

0

daWa
HF C ð43Þ

By virtue of the Hellmann–Feynman theorem, the coupling

strength integrand is given by an expectation value

difference of the fluctuation potential,

Wa
HF C ¼ hWa

HF0jĤ
ð1Þ
HF jWa

HF0i � hUHF0jĤð1ÞHF jUHF0i: ð44Þ

This may be contrasted with the adiabatic connection

integrand, Eq. 5, which does not contain any one-particle

terms.

2.2.2 Factorization of the fluctuation potential

To apply factorization techniques along the lines of Sect.

2.1.2, we rewrite the fluctuation potential operator as

Ĥ
ð1Þ
HF ¼

X

pqrs

hpqjrsiÛpqrs; ð45Þ

where

Ûpqrs ¼
1

2
ĉyp ĉyq ĉsĉr � ĉprcHFqs þ ĉpscHFqr: ð46Þ

ĉpq ¼ ĉ
y
p ĉq is the density matrix operator in second

quantization, and

cHFpq ¼ hUHF0jĉpqjUHF0i ð47Þ

is the density matrix of the HF ground-state determinant.

Since the ground-state density matrix

ca
pq ¼ hWa

HF0jĉpqjWa
HF0i ð48Þ
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(and the density) varies with a, fluctuation operators do not

lead to simplifications here. However, using the Fermion

anticommutation relations, Û can still be factorized into

one-particle operators,

Ûpqrs ¼
1

2
ĉpr ĉqs � ĉprcHFqs þ ĉps cHFqr �

1

2
dqr

� �

: ð49Þ

While Ûpqrs as a whole is antisymmetric under the

exchange of p and q or r and s, the individual terms in

the last equation are not. To preserve the antisymmetry of

Û and thus of the two-particle density matrix when

approximations are introduced, it is convenient to use the

explicitly antisymmetrized expression

Ûpqrs ¼
1

4
ðĉpr ĉqs � ĉpsĉqrÞ � ĉpr cHFqs �

1

4
dqs

� �

þ ĉps cHFqr �
1

4
dqr

� �

: ð50Þ

2.2.3 Fluctuation-dissipation theorem

In analogy to Sect. 2.1.3, we use the completeness of the

states jWa
HFni to factorize expectation values of products of

two density matrix operators,

hWa
HF0jĉpr ĉqsjWa

HF0i ¼
X

n 6¼0

ca
0npqc

ay
0nqs þ ca

pqc
a
qs: ð51Þ

Instead of transition densities qa
0nðxÞ; we now encounter the

more general one-particle transition density matrices at

coupling strength a,

ca
0npq ¼ hWa

HF0jĉpqjWa
HFni: ð52Þ

The additional ground-state term arises because fluctuation

operators are not used here, as explained previously.

Defining the Hartree plus exchange functional of the

one-particle density matrix

Eð1Þ½c� ¼ 1

2

X

pqrs

hpqjrsiðcprc
y
qs � cpsc

y
qrÞ; ð53Þ

we obtain the following exact expression for the HF

correlation energy:

EHFC ¼
1

2

Z1

0

da
X

n6¼0

ðEð1Þ½ca
0n� � Eð1Þ½cð0Þ0n �Þ þ DEHFC ð54Þ

It is instructive to compare this result to its density

functional equivalent, Eq. 17. The additional factor of

1/2 in Eq. 54 arises from enforcing the antisymmetry of

Upqrs in Eq. 50. The correction term DEHFC; which is

not present in the density functional case, is due to the

change of the ground-state density matrix with a,

DEHFC ¼
Z1

0

da
X

pqrs

hpqjrsi
	

1

4

�

ca
prc

a
qs � ca

psc
a
qr � cHFprcHFqs

þ cHFpscHFqr

�

� ca
pr � cHFpr

� �

cHFqs þ
1

4
dqs

� �

þ ca
ps � cHFps

� �

cHFqr þ
1

4
dqr

� �


:

ð55Þ

Using the zero-temperature fluctuation-dissipation theorem,

the sum over transition density matrices may be expressed

by a frequency integral over the density matrix—density

matrix response function at coupling strength a,

X

n 6¼0

ca
0nprc

ay
0nqs ¼ �

Z1

0

dx
p

ImPa
prqsðxÞ: ð56Þ

This follows, e.g., from the Lehmann representation of Pa

[20],

Pa
prqsðxÞ ¼ �

X

n6¼0

ca
0nprc

ay
0nqs

Xa
0n � x� ig

þ
cay

0nprc
a
0nqs

Xa
0n þ xþ ig

0

@

1

A:

ð57Þ

The ground-state density matrix ca
pr occurring in DEc HF is

accessible from Pa via a partial trace of the two-particle

density matrix. Thus, knowledge of Pa is sufficient to

compute the HF correlation energy.

2.2.4 Connection to polarization propagator theory

The density matrix–density matrix response function

PaðxÞ is identical to the causal polarization propagator.

PaðxÞ satisfies the Bethe–Salpeter equation [20]

PaðxÞ ¼ Pð0ÞðxÞ þPð0ÞðxÞKaðxÞPaðxÞ: ð58Þ

The frequency-dependent kernel Ka(x) may be computed

perturbatively. The lowest non-vanishing order in a is

Kð1ÞprqsðxÞ ¼ hprjqsi � hpsjqri: ð59Þ

2.2.5 Random phase approximation with exchange

The random phase approximation with exchange consists

in replacing the kernel Ka(x) in Eq. 58 with its first-order

approximation a K(1), which is frequency independent. In

addition, the ground-state density matrices ca
pq are replaced

by cHFpq, making DEHFC vanish. Thus, the RPAX coupling

strength integrand is correct to first order in a, and the

RPAX correlation energy is correct to O(a2), that is, it

reduces to second-order Møller–Plesset perturbation theory
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(MP2) for small a. Within RPAX, the transition density

matrices may be written as

cRPAXa
0npr ¼ XRPAXa

npr npð1� nrÞ þ YRPAXa
nrp nrð1� npÞ; ð60Þ

where np and nr denote orbital occupation numbers. The

super-vectors jXRPAXa
n ; YRPAXa

n i satisfy a symplectic

eigenvalue problem of the same form as Eq. 24. The

RPAX orbital rotation Hessians are [32]

ðAþ BÞRPAXa
iajb ¼ ð�a � �iÞdijdab þ a½2hijjabi � hijjbai

� hiajjbi�;
ð61Þ

ðA�BÞRPAXa
iajb ¼ ð�a� �iÞdijdab þ a½hijjbai � hiajjbi�: ð62Þ

Using the Hellmann–Feynman theorem once more, one

finds that the excitation energies XRPAXa
0n satisfy

dXRPAXa
0n

da
¼ 1

2

X

iajb

	

ðX þ YÞRPAXa
ia ½2ðijjabÞ � ðijjbaÞ

� ðiajjbÞ�ðX þ YÞRPAXa
jb þ ðX � YÞRPAXa

ia ½ðijjbaÞ

� ðiajjbÞ�ðX � YÞRPAXa
jb




¼ 2Eð1Þ½cRPAXa
0n �

ð63Þ

Again, the coupling strength integration may be carried out

analytically, yielding

ERPAX
C ¼ 1

4

X

n

XRPAX
0n � XTDARPAX

0n

� �

: ð64Þ

Compared to Eq. 36, Eq. 64 contains an extra factor 1/2

resulting from the antisymmetrization applied in Eq. 50. If

the antisymmetrization is not applied, and the exchange

part of K(1) is neglected, Eq. 36 is recovered, now using a

HF reference. Other combinations such as the RPAx

method of Toulouse and coworkers [33, 135] generally do

not lead to an analytically integrable coupling strength

integral, because the Hellmann–Feynman theorem cannot

be used. This also applies to ‘‘hybrid’’ schemes that

incorporate only a fraction of exchange [34].

A drawback of RPAX is that it includes spin-flip exci-

tations. For example, for a spin-restricted closed-shell HF

ground state, Eq. 64 becomes

ERPAX
C (RHF) ¼ 1

4

X

n

XRPAX
0nS � XTDARPAX

0nS

� �

þ 3

4

X

n

XRPAX
0nT � XTDARPAX

0nT

� �

; ð65Þ

where subscripts S and T denote singlet and triplet exci-

tation energies, respectively. RPAX spin-flip excitation

energies are very sensitive to the quality of the HF refer-

ence. Triplet instabilities are common, leading to a

breakdown of RPAX and imaginary correlation energies

[35]. In contrast, spin-flip excitations cancel out of Eq. 36,

because they are the same with and without TDA.

RPAX contains all third-order particle-hole diagrams,

albeit with incorrect pre-factors [6, 7, 36, 37]. Direct RPA,

Eq. 36, contains ring diagrams only, but the pre-factors are

correct.

2.2.6 Connection to coupled cluster theory

From a coupled cluster perspective, RPA is a simplified

coupled cluster doubles (CCD) method [38, 39]. The

RPAX correlation energy may be written as

ERPAX
C ¼ 1

4
trðBRPAXTÞ; ð66Þ

where BRPAX
iajb ¼ hijjabi � hijjbai: The doubles amplitudes

T are related to the vectors jXRPAX
n ; YRPAX

n i at full coupling

according to [40]

T ¼ YRPAXXRPAX�1 ð67Þ

and satisfy the ring-CCD equation [9, 41]

BRPAX þ ARPAXTþ TARPAX þ TBRPAXT ¼ 0: ð68Þ

Similar relations hold in the KS case for direct RPA [136].

2.3 Beyond RPA

Beyond-RPA methods aim to approximate the beyond-

RPA correlation energy

EbRPA
C ½q� ¼ EC½q� � ERPA

C ½q�: ð69Þ

Due to the deficiencies of RPAX, most work so far uses

direct RPA and a KS reference. Beyond-RPA methods are

a rapidly growing field, and we give a brief overview of

some important directions only.

2.3.1 Density functional corrections

In the uniform electron gas, corrections to RPA arise from

short-range electron interactions. If the same holds for

molecules and solids, a generalized gradient approximation

(GGA) to EbRPA
C ½q� should be accurate, since GGAs are

generally believed to work best for short-range interactions

[42]. The so-called RPA? [43] thus approximates beyond-

RPA correlation by the beyond-RPA piece of the PBE

GGA,

EbRPA
C ðRPA+Þ½q� ¼ EPBE

C ½q� � EPBE RPA
C ½q�: ð70Þ

While RPA? improves total molecular correlation energies

considerably, energy differences such as atomization

energies are essentially unchanged compared to RPA [18].

Recently, Ruzsinszky et al. explained this puzzling result

by non-local multi-center correlation that is present in
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molecules but not in the uniform electron gas [44]. This

hypothesis is corroborated by a considerable improvement

upon RPA atomization energies obtained from a non-local

correction to RPA [45].

Range-separation methods go one step further, removing

all short-range correlation from RPA using a screened

interaction [33, 46, 137, 47, 138]. Range separation

improves the basis set convergence of RPA correlation

energies by largely eliminating the electron coalescence

cusp in the pair density. The results of range-separated

RPA depend on the adjustable range-separation parameter.

2.3.2 Perturbative corrections

The lowest order non-vanishing correction to RPA is sec-

ond-order exchange,

EbRPA
C ðX2Þ ¼ 1

2

X

iajb

hijjabihijjbai
�a þ �b � �i � �j

: ð71Þ

However, EbRPA
C ðX2Þ does not improve upon RPA sys-

tematically because it suffers from the shortcomings of

second-order Görling–Levy perturbation theory [48]. The

latter is very sensitive to the KS HOMO-LUMO gap and

breaks down already for moderately small-gap cases [49].

Based on early work by Freeman [38], Kresse et al.

proposed a second-order screened exchange (SOSEX)

correction to RPA [50],

EbRPA
C ðSOSEXÞ ¼ � 1

2

X

iajb

hijjbaiTiajb; ð72Þ

where T is computed by solving the ring-CCD equation

(without exchange). SOSEX is free of one-electron self-

correlation, yields much improved total correlation energies,

and appears to improve upon RPA atomization energies [50–

52]. SOSEX is more stable than bare second-order exchange

and finite for small-gap systems and metals. The trade-off for

eliminating self-interaction error is the reintroduction of an

incorrect dissociation behavior for covalent bonds in a spin-

restricted closed-shell treatment [53], see Sect. 4.2.

Recently, Ren and coworkers showed that a perturbative

single-excitation correction, which arises in second-order

Görling–Levy perturbation theory, leads to an improve-

ment of RPA for weakly interacting systems [54]. Lotrich

and Bartlett also obtained improved results for such sys-

tems using a correction based on external coupled cluster

perturbation theory [139].

2.3.3 Local field corrections

Local field corrections to RPA were first explored for the

uniform electron gas by Singwi, Tosi, Land, and Sjölander

(STLS) [55], who introduced an XC kernel depending on

the pair distribution function to correct RPA at short range.

In a broader sense, local field corrections use non-zero XC

kernels to improve upon RPA.

A straightforward choice motivated by TDDFT is to use

XC kernels derived from semi-local functionals within the

adiabatic approximation [56], which replaces f a
XC by its

static limit,

f a
XCð0; x1; x2Þ ¼

d2EXC½q�
dqðx1Þdqðx2Þ

: ð73Þ

However, the spacial locality of these kernels leads to an

unphysical divergence in the RPA pair density [34, 57].

Even for the uniform electron gas correlation energy, the

adiabatic local-spin density approximation (ALDA) kernel

yields poor results [58].

Dobson et al. [59] extended the original STLS model to

inhomogeneous systems. The resulting ISTLS method is

equivalent to a non-local tensor exchange-correlation ker-

nel in the context of time-dependent current density func-

tional theory [60]. ISTLS yields highly accurate jellium

surface energies [61] but apparently has not been applied to

molecular systems so far.

2.3.4 Optimized effective potential methods

Kotani and Akai [62] were the first to combine the exact

Kohn–Sham exchange potential and RPA correlation

[RPA(EXX)]. The Kohn–Sham exchange potential is

obtained from the exact exchange using the framework of the

optimized effective potential (OEP) method. The exact

exchange potential is both non-local and frequency-depen-

dent and is, therefore, expected to show no divergence of the

pair density at short interelectronic distances. Hellgren and

von Barth [63] applied RPA(EXX) to atoms, reporting good

agreement with accurate configuration interaction results.

A disadvantage of OEP methods is the need to compute

the inverse of the Kohn–Sham response matrix, which

leads to numerical instabilities in conjunction with finite

basis set methods [64, 65]. Heßelmann, Ipatov, and Görling

developed an approximate scheme that avoids inverses of

the Kohn–Sham response matrix [66]. Heßelmann and

Görling reported RPA(EXX) correlation energies for small

organic molecules that improve considerably upon RPAX

correlation energies [67]. Reaction energies involving these

molecules are less affected.

3 Implementation

3.1 Diagonalization

In quantum chemistry, the molecular orbitals are usually

approximated by a finite linear combination of atom-
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centered basis functions (LCAO-MO approach). The

expansion coefficients are determined variationally. The

finite number of basis functions used results in a finite

number of virtual orbitals, which in turn leads to a finite

dimension of the RPA eigenvalue problem, Eq. 36. Thus,

in a finite basis, the total number of excitation energies is

given by Locc 9 Lvirt.

The RPA eigenvalue problem may be transformed to a

Hermitian eigenvalue problem [18]

MZ ¼ ZX2; ZZT ¼ 1; ð74Þ

where

M ¼ ðA� BÞ1=2ðAþ BÞðA� BÞ1=2; ð75Þ

is easily computed since (A - B)1/2 is diagonal within

RPA, see Eq. 27. Thus, Eq. 36 may be rewritten in terms of

the square root of M,

EC RPA ¼ 1

2
trðM1=2 � AÞ: ð76Þ

Straightforward evaluation of all excitation energies in

Eq. 36 leads to a OðN6Þ scaling with system size N. This

follows from the dimension of the eigenvalue problem

(Locc 9 Lvirt) and from the OðN3Þ scaling of the diago-

nalization procedure.

The first RPA correlation energies on molecules were

obtained by full diagonalization of Eq. 75 [18, 34] com-

bined with a grid-based coupling constant integration. The

steep increase in computational cost with system size

limited these applications to small molecules (approxi-

mately 10 atoms).

3.2 Resolution-of-the-identity approximation

A more efficient method can be obtained by taking

advantage of the rank deficiency of the two-electron Cou-

lomb integrals present in Eq. 36. The key idea is to rep-

resent the rank deficient orbital product densities in a small

number of auxiliary basis functions. Several such methods

exist [39, 68–70], but the resolution-of-the-identity (RI)

approximation [71] with the Coulomb metric [72] repre-

sents an optimum choice for RPA, as explained later. The

RI approximation is used extensively and successfully in

the context of ground-state density functional theory (DFT)

[73] and TDDFT excitation energy calculations [74–76] as

well as MP2 [77, 78]. In the RI approximation, the two-

electron integrals can be factorized, using Mulliken nota-

tion, as

ðiajjbÞRI ¼
X

PQ

ðiajPÞðPjQÞ�1ðQjjbÞ ¼
X

P

SiaPSjbP; ð77Þ

where SiaP ¼
P

RðiajRÞL�1
RP , P, Q, R denote atom-centered

Gaussian auxiliary basis functions, and LRP is determined

by Cholesky decomposition of the two-electron integrals

(P|Q)

ðPjQÞ ¼
X

R

LPRLQR: ð78Þ

Since the number of auxiliary basis functions Naux

increases only linearly with N, it is much more efficient

to work with matrix S instead of the full two-electron

matrix (ia|jb). EC RIRPA is evaluated by replacing the two-

electron integrals in Eq. 76 with (ia|jb)RI. Importantly, the

error due to RI is quadratic in each RPA excitation

energy [79]. Therefore, high accuracy can be achieved

with moderately sized auxiliary basis sets. The variational

stability of the excitation energies carries over to the

RPA correlation energy. Thus, the RIRPA correlation

energy is a variational upper bound to the exact RPA

correlation energy [79]. This variational property also

allows for systematic optimization of the auxiliary basis

sets.

Four-index quantities are entirely avoided by evaluating

M1/2 as an integral over imaginary frequency [80]

tr M1=2
� �

¼ 2

Z1

�1

dx
2p

tr 1� x2 Mþ x21
� ��1

� �

: ð79Þ

Within RI, M = D2 ? 2 D1/2 S ST D1/2, where Diajb = Dia

dijdab, and Dia ¼ �a � �i; is the diagonal matrix of bare

orbital energy differences. The inverse of M ? x2 1 may

be written as

M þ x21
� ��1 ¼ D�1GðxÞ � 2D�1=2GðxÞ

S 1aux þQðxÞð Þ�1STGðxÞD�1=2;
ð80Þ

where

GðxÞ ¼ DðD2 þ x21Þ�1 ð81Þ

is diagonal in the canonical Kohn–Sham orbital basis, and

QðxÞ ¼ 2STGðxÞS ð82Þ

is Naux 9 Naux. Using an analogous expression for

tr(A), the RPA correlation energy is expressed as

EC RIRPA ¼
Z1

�1

dx
2p

FCðxÞ; ð83Þ

where the integrand contains Naux 9 Naux quantities only,

FCðxÞ ¼ 1

2
tr ln 1aux þQðxÞð Þ �QðxÞð Þ: ð84Þ

Taylor expansion of lnð1aux þQÞ in Eq. 83 leads to the

diagrammatic RPA, where Q is the equivalent of a single
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ring diagram [4], see Fig. 1. The variational upper bound

property of RIRPA is maintained in Eq. 83.

The efficient evaluation of Eq. 83 hinges on an efficient

quadrature scheme to compute the frequency integral.

Eshuis, Yarkony, and Furche used an exponentially con-

verging Clenshaw–Curtis quadrature [81] with a single

scaling parameter, which is determined from the orbital

energies and the diagonal elements of M. RIRPA scales as

OðN4 log NÞ: It is straightforward to achieve an additional

speed-up by parallelization over the frequency integration

grid.

The RI approximation leads to sub-millihartree errors

when MP2-optimized auxiliary basis sets are used [83], as

shown in Fig. 2 for the HEAT test set [84]. The RI errors

are much smaller than the intrinsic errors of RPA. The

dependence of the RIRPA correlation energy for the HEAT

test set on the number of grid points is shown in Fig. 3.

Submillihartree accuracy is achieved for the numerical

integration with typically 40–50 grid points using a basis of

quadruple-zeta quality. Larger grids are required when core

electrons are included. Exceptions arise when contributions

from different eigenvalues to the integrand have very dif-

ferent scaling, for example, in small-gap systems. A mea-

sure for the spread of the excitation energies is the

condition number j ¼ Xmax=Xmin: A large number of grid

points are required for large j.

To address this difficulty, a hybrid scheme was devel-

oped, which computes a few small eigenvalues explicitly

and the remainder on the grid. Starting from the exact

spectral representation of FCðXÞ for the nlowest

eigenvalues

~FC ¼ 1

2

Xnlowest

ia

ln 1þ X2
ia � D2

ia

x2 þ D2
ia

� �

�Miaia � D2
ia

x2 þ D2
ia

� �

; ð85Þ

we can compute

~EC RIRPA ¼ 1

2

Z1

�1

dx
2p

~FCðxÞ

¼ 1

2

Xnlowest

ia

Xia � ðDia þ ðiajiaÞRIÞ
� �

ð86Þ

efficiently if nlowest � Locc 9 Lvirt. The hybrid RIRPA

correlation energy is now given by

EC RIRPA ¼ 1

2

Z1

�1

dx
2p

FCðxÞ � ~FCðxÞ
� �

þ 1

2

Xnlowest

ia

Xia � ðDia þ ðiajiaÞRIÞ
� �

: ð87Þ

The new integrand, FC � ~FC; is associated with a smaller

condition number ~j ¼ Xmax=Xnlowestþ1: Preliminary results

show microhartree accuracy can be reached if eigenvalues

less than approximately 0.05 Hartree are treated explicitly.

The RIRPA scheme leads to considerable speed-ups, as

demonstrated for a set of polyacenes in Fig. 4. Also, the

memory requirements are much smaller, because 4-index

objects are avoided altogether. For the Grubbs II Ru cat-

alyst, which consists of 117 atoms, using def2-TZVP basis

sets [85] on C,H, and N and def2-QZVPP [85] on the other

atoms, see Sect. 4.1, the RIRPA correlation energy can be

computed in approximately 8 CPU hours on 16 processors

of a single 2.2 GHz AMD Opteron 6174 node using

multithreaded BLAS routines and 10 Gb of memory [86].

The number of excitations involved is 287036, which is

clearly out of reach for full diagonalization.
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3.3 Other implementations

3.3.1 Ring coupled cluster doubles

Random phase approximation correlation energies can also

be computed from the ring approximation to coupled

cluster doubles theory (rCCD) [39] by solving for the

amplitudes in Eq. 68. This can be easily done starting from

an existing CCD code and removing all but ring contrac-

tions. rCCD correlation energies can, therefore, be obtained

from minor modifications. However, the computational

cost scales as OðN6Þ and I/O as OðN5Þ because of the need

to store all doubles amplitudes on disk.

Scuseria et al. proposed the use of Cholesky decompo-

sitions to reduce the scaling by writing

ðiajjbÞ ¼
X

A

uA
iauA

jb; ð88Þ

and

�Tab
ij ¼

X

A

hA
iah

A
jb: ð89Þ

This is possible in direct RPA, because both (ia|jb) and

-Tij
ab are positive definite. The rCCD expression can then

be rewritten as

�Tab
ij ¼ �

1

�i þ �j � �a � �b

�
X

A

uA
iauA

jb �
X

AB

uA
iaNABhB

jb

�
X

AB

hA
iaMABhB

jb �
X

ABC

hA
iaNABMBChC

jb

�

; ð90Þ

where MAB ¼
P

kc hA
kcuB

kc and NAB ¼
P

kc uA
kch

B
kc: Iterative

methods can be used to solve Eq. 90 for the amplitudes,

although no implementations seem to be available so far.

3.3.2 Plane wave implementations

In plane wave implementations of RPA, the use of auxi-

liary basis expansions is fairly straightforward. Core elec-

trons must be treated by pseudopotentials or projector

augmented wave methods [87]. The starting point for plane

wave codes [87–90] is the expression by Langreth and

Perdew [12]

EC RPA ¼ 1

2

Z1

�1

dx
2p

tr ln 1þ vðixÞWð Þ � vðixÞWð Þ; ð91Þ

where v is the Kohn–Sham density–density response

function, and W is the bare Coulomb interaction. The

number of virtual orbitals depends on the size of the plane

wave basis, which is determined by an energy cutoff Ecut.

In addition, the correlation energy depends on the length of

the maximum reciprocal lattice vector Gv
cut and its energy

Ev
cut. These quantities determine the size of the plane wave

expansion of the response function. Convergence with

respect to Ev
cut is slow, but good results can be obtained by

using an extrapolation scheme [87]. The frequency integ-

ration in Eq. 91 is done using Gauss–Legendre quadrature.

Alternatively, the rCCD expression can be used as a

starting point [50].

4 Applications

4.1 Non-covalent interactions

Non-covalent interactions play an important role in

chemistry, physics, and biology, e.g., in DNA, enzymes,

and graphene sheets [91–93]. A striking example are the

relative energies of alkane conformers, which crucially

depend on mid-range non-covalent electronic interactions

between two bonds separated by another bond (1–3 inter-

actions) [94–97]. These systems exemplify the failure of

semi-local DFT to describe weak interactions [98, 99]. This

well-known problem has resulted in many corrective

schemes to account for weak interactions. The semi-clas-

sical corrections designed by Grimme are particularly

popular, because they can be included at almost no extra

cost and give much improved results for weak interactions

[97, 100, 101]. A promising alternative are the van der

Waals (vdW) density functionals of Langreth–Lundqvist

type [102–104], but they depend strongly on the exchange

functionals used [105]. From the wavefunction perspective,
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Def2-TZVPP basis sets were used, and the calculations were performed

on a single CPU of a Xeon X5560 2.80 GHz workstation
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highly accurate interaction energies for weakly bound

systems can be obtained using CCSD(T), but the steep

O(N7) scaling of this method prohibits application to larger

systems. A less costly alternative is MP2, but here long-

range interactions are only included at the uncoupled

monomer level, leading to mixed results [98]. In contrast,

dispersion is naturally included in RPA in a seamless

fashion as RPA describes interaction energies at the cou-

pled monomer level [7]. In addition, RPA is the only

method apart from CCSD(T) to properly capture the non-

pairwise-additive nature of long-range interactions [106,

107].

The random phase approximation was applied exten-

sively to weakly bound dimers, where non-covalent inter-

actions play a crucial role [47, 108]. Here, RPA describes

the long-range part of the PES correctly, but underbinds

around the equilibrium distance and gives somewhat too

large equilibrium bond distances.

Figure 5 shows errors in the relative energies of

n-butane, n-hexane, and n-pentane conformers for several

methods [86]. Quadruple-zeta basis sets (def2-QZVP, Ref.

[85]) were used throughout. The average isomer energy

difference is only 1.8 kcal/mol [109]. The branched con-

formers are more stable than the linear ones, due to the

medium-range electronic interactions between bonds.

Semi-local DFT fails to include these medium-range

interactions and, therefore, leads to incorrect relative

energetics for these systems, with errors that are of equal

magnitude to the average isomer energy difference. RPA

yields a spectacular improvement over semi-local DFT; the

errors are now similar to the errors in the reference method.

Grimme’s double-hybrid B2PLYP [94], which adds a

correction based on MP2 theory, is not accurate for this set,

but better results are obtained when adding a semi-empir-

ical dispersion correction, particularly the recent -D3 cor-

rection [100, 110]. The Minnesota functional M06-2X

[111, 112] yields smaller errors than the semi-local func-

tionals, but does not reach the accuracy of RPA. MP2

performs well; somewhat surprisingly, the spin-compo-

nent-scaled version of MP2 [113] leads to slightly inferior

results. Overall, RPA performs very well for these systems

where intramolecular medium-range interactions play a

crucial role. Its accuracy is comparable to the best available

density functionals, such as B2PLYP-D3 and M06-2X, but

without any empirical parameters.

The S22 set, designed by Jurecka et al. [115], is a

widely used benchmark for weak interactions in biologi-

cally relevant systems. The set consists of 22 small- to

medium-size dimers, of which 7 systems are primarily

hydrogen bound and 8 dispersion bound; the remaining

systems contain both interactions. Accurate theoretical

reference results are available for this test set [114].

Figure 6 compares RPA results for the S22 set with

other commonly used functionals and wave function-based

methods. The MAE for RPA is 0.41 kcal/mol, a substan-

tially smaller error than obtained from semi-local DFT,
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Geometries and reference energies were taken from Ref. [114]. No

counterpoise correction was applied, and def2-QZVP basis sets were

used, except for the VdW-DF2 and VV10 results [103], which were

counterpoise corrected, and were obtained using aug-cc-pVTZ basis

sets [82]; RPA results were taken from Ref. [86] and other results

from Ref. [110]. RPA results were obtained from self-consistent

TPSS orbitals
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which seriously fails. The addition of a dispersion correc-

tion improves results for semi-local DFT considerably,

reducing the MAE to 0.36 kcal/mol for B3LYP-D. The

M06-2X functional yields errors of the same order of

magnitude [111]. MP2 errors are somewhat larger [110,

115], which is not surprising given the well-known mixed

performance of MP2 for dispersion interactions [98]. The

recent non-local van der-Waals functional by Vydrov and

van Voorhis yields results comparable to RPA, though with

a larger maximum error [103]. The vdW-DF2 functional

has mean errors comparable to MP2, but with a very large

maximum error [103]. In comparison, RPA yields inter-

action energies of high accuracy (MAE = 0.41 kcal/mol),

though it appears that results for weakly bound systems

may not be fully converged with respect to basis set size.

Further work to assess the basis set convergence of RPA

shows an increase of the RPA MAE to 0.82 kcal/mol in the

basis set limit. Changing input orbitals from TPSS to self-

consistent PBE orbitals hardly effects the errors (MAE =

0.37 kcal/mol). This is in line with previous results [116,

117], showing little variation of the results with the choice

of semi-local functional used to compute the orbitals.

Eshuis and Furche [86] applied RPA to the predissoci-

ation of a second-generation Grubbs catalyst used for olefin

metathesis [118, 119]. The dissociation energy of this

complex depends strongly on the medium-range interac-

tions between the bulky ligands [120–122]. Semi-local

DFT fails badly with errors of more than half of the

experimental dissociation enthalpy of 36.8 kcal/mol [120].

Addition of dispersion corrections reduces the error. Of the

Minnesota family of functionals, the M06 and M06-2X

functionals achieve high accuracy. RPA improves much

upon semi-local DFT, but does not achieve the accuracy of

M06-2X. The error in RPA is possibly due to the poor

description of short-range correlation within RPA, which is

important here because of bond-breaking.

Though results of comparable accuracy can be achieved

with other methods, RPA is the only one that is simulta-

neously parameter-free, non-dependent on a partitioning of

the system and computationally efficient. In addition, RPA

does not break down for zero-gap systems.

4.2 Self-interaction error and static correlation

Figure 7 shows the PES for H2 obtained from several

methods [53]. Stretched H2 is a prototype for static corre-

lation; at infinite separation, the orbital energies for the two

electrons are exactly degenerate. RPA based on a closed-

shell reference determinant describes this limit correctly

[53, 123]. On the other hand, the RPA correlation energy in

this limit is non-zero, due to the inherent one-electron self-

interaction of direct RPA. Semi-local density functionals

lead to large errors in the dissociation limit. Spin symmetry

breaking produces qualitatively correct potential energy

curves, but also causes unphysical spin-polarization. RPA,

in contrast, leads to the correct dissociation limit based on a

single-determinant singlet reference state [123]. RPA

(EXX) also leads to the correct limit [140].

SOSEX rigorously removes all one-electron self-inter-

action, as demonstrated by Henderson and Scuseria [53].

But it simultaneously destroys the correct asymptotic

behavior, due to non-vanishing ionic terms in the pair

density. Self-interaction error causes RPA to fail com-

pletely for (effective) single electron cases such as H2
? and

He2
? (Fig. 8), because of many-electron self-interaction

error. Here, SOSEX improves the dissociation limit

greatly, by largely eliminating the self-interaction error. In

short, SOSEX removes the one-electron self-interaction

error, reduces the many-electron self-interaction error, but

also removes some desirable left–right correlation.

At medium range, the RPA curve has an unphysical

maximum, which is also observed in N2 [18] and in the

challenging case of Be2 dimer [47]. It has been speculated

that the origin of this bump is due to self-interaction error

or due to the non-self-consistent nature of the RPA scheme

[53]. Though RPA underbinds at the equilibrium distance,

it gives good equilibrium bond lengths compared to

experiment.

4.3 Atomization energies

The random phase approximation systematically under-

binds in molecular atomization energy benchmarks [18].

Fig. 7 H2 dissociation curves

for RPA and SOSEX evaluated

with self-consistent PBE

orbitals using aug-cc-pVQZ

basis sets: a relative to two H

atoms, b on an absolute energy

scale. (Reprinted with

permission from Ref. [53].

Copyright 2010 Taylor &

Francis.) The circle, rectangle,

and triangle symbols were

added to help distinguish the

curves
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Table 1 lists RPA results for small molecules and com-

pares them to other methods [18]. RPA errors are of the

same order of magnitude as semi-local DFT. Similar results

were obtained by Harl et al. [117] for 24 solids. The rel-

atively poor performance of RPA for atomization energies

might be linked to its deficient description of short-range

correlation: in the process of atomization, all covalent

bonds are broken, leading to large rearrangements of the

electronic structure at short-range. RPA? [43] does not

improve upon RPA for atomization energies [18, 34, 117],

though it corrects total correlation energies to a large

extent.

The good performance for atomization energies of many

semi-empirical density functionals is linked to the inclu-

sion of atomization energies in the fitting reference set. The

behavior of RPA is similar to non-empirical wavefunction-

based methods; as shown for n-homodesmotic reactions,

RPA errors become systematically smaller with decreasing

change in the electronic environment [86, 128], see Sect.

4.5.

4.4 Ionization potentials and electron affinities

Jiang and Engel [116] first published RPA ionization

potentials for atoms. They found that the semi-local func-

tional BLYP performs better than RPA, but also report a

significant improvement for RPA?. Here, we present a

more extended set of ionization potentials and electron

affinities that include molecular systems. Tables 2 and 3

compare RPA errors in ionization potentials and electron

Fig. 8 Dissociation of Heþ2 for RPA and SOSEX evaluated with self-

consistent PBE orbitals using aug-cc-pVQZ basis sets. (Reprinted

with permission from Ref [53]. Copyright 2010 Taylor & Francis.)

The circle, rectangle, and triangle symbols were added to help

distinguish the curves

Table 1 Calculated atomization energies (kcal/mol) compared to

experiment

System PBE x-only RPA RPA? Expt.a

H2 105 84 109 110 109

N2 244 111 223 223 228

O2 144 25 113 111 121

F2 53 -43 30 29 38

Ne2
b 0.11 -0.15 0.01 -0.08 0.08c

Si2 81 38 70 70 75

HF 142 96 133 132 141

CO 269 170 244 242 259

CO2 416 234 364 360 389d

C2H2 415 291 381 378 405d

H2O 234 155 223 222 232d

C6H5–He 115 100 112 112 120 ± 1f

Dunning’s cc-pVQZ and cc-pV5Z basis sets [82] were used. Results

were obtained using 4–5 extrapolation and basis set superposition

correction. (Reprinted with permission from Ref. [18]. Copyright

2001 APS)
a Ref. [124], unless otherwise stated
b All electron results
c Ref. [125]
d Ref. [126]
e TZVPP basis, no counterpoise
f Ref. [127]

Table 2 Mean errors (ME), mean absolute errors (MAE), and max-

imum errors (Max) (kcal/mol) for the G21IP ionization potential test

set for various density functionals using def2-QZVP basis sets

PBE TPSS B3LYP B2PLYP RPAa

ME -0.12 -0.87 -0.12 -0.73 -5.01

MAE 3.85 3.95 3.55 2.31 5.11

Max 10.17 11.74 9.59 5.89 13.96

Core electrons were kept frozen; RPA results were obtained from

self-consistent TPSS orbitals. Geometries, reference energies, and

non-RPA results were taken from Ref. [129]. See supporting infor-

mation for complete results
a Computed for this review

Table 3 Mean errors (ME), mean absolute errors (MAE), and max-

imum errors (Max) (kcal/mol) for the G21EA electron affinities test

set for various density functionals using def2-QZVP basis sets

PBE TPSS B3LYP B2PLYP RPAa

ME 2.96 0.42 0.30 -0.79 -0.70

MAE 3.43 2.21 1.81 1.37 3.02

Max 7.72 5.83 2.33 3.84 21.60

Core electrons were frozen for the RPA correlation energy calcula-

tions. RPA results were obtained from self-consistent TPSS orbitals.

Geometries, reference energies, and non-RPA results were taken from

Refs. [129] and [110]. See supporting information for complete

results
a Computed for this review
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affinities for the G21 set to other methods [129]. In contrast

to other results presented here, these reactions are not

isoelectronic, that is, they do not conserve the number of

electrons. The errors for RPA are larger than those of semi-

local functionals. However, the nearly equal magnitude of

the ME and MAE for the ionization potentials in RPA

suggests that RPA lends itself well to systematic

improvement. Due caution is necessary for electron affin-

ities, which do not have a well-defined basis set limit if a

semi-local density functional is used [130].

4.5 Reaction energies

The accurate calculation and prediction of reaction ener-

gies are of great importance for thermochemistry. Most

chemical processes involve covalent bondbreaking and

making. In recent work, Eshuis and Furche [86] assessed

the quality of RPA for the n-homodesmotic reaction hier-

archy presented by Wheeler et al. [128]. They showed that

for isogyric and isodesmic reactions, which involve bond-

breaking and making typical for chemical reactions, RPA

leads to smaller errors than B3LYP or M06-2X.

Here, we present new results for two test sets. Table 4

contains results for a subset of the 76 reactions studied for

barrier heights (cf. Sect. 4.6) [129], and Table 5 shows

results for a subset of the G2/97 test set. See the supporting

information for complete results.

The G2/97 subset consists of 25 reactions involving

closed-shell molecules containing first and second row

elements [129]. The reaction energies vary from just

1 kcal/mol to over 200 kcal/mol. RPA achieves an accuracy

comparable to B3LYP, but with a larger maximum error.

The double-hybrid B2PLYP performs somewhat better. The

MAE for RPA is approximately two times smaller than the

MAE for the PBE or TPSS functional. Similar results

are observed for the BH76 subset, which consists of 30

reactions involving atoms and small molecules containing

first and second row elements. Here, open-shell free atoms

and molecules as well as anions are present, making this a

challenging set for semi-local DFT. The reaction energies

vary from 1 to 100 kcal/mol. Two sets of RPA results are

presented to show that for these energy differences, a rel-

atively large dependence on the input orbitals is observed. It

is likely that this is caused by the open-shell atoms and

anions, which pose a particular challenge for semi-local

DFT. In summary, RPA is accurate even for non-isodesmic

reactions, rivaling B3LYP as a general purpose functional

for reaction energies.

4.6 Barrier heights

Table 6 shows errors in RPA results compared to other

functionals for 76 barrier heights of hydrogen and heavy-

atom transfers, nucleophilic substitution, unimolecular and

association reactions [129]. The set consists of 38 reac-

tions, and results for forward and backward barriers are

presented. The average barrier height is 18.5 kcal/mol, and

the reference energies are obtained from W1 and theoret-

ical estimates. GGA functionals fail with MAEs of

approximately 40% of the average barrier height. B3LYP

improves upon that considerably, while B2PLYP performs

best, though chemical accuracy is not reached. RPA per-

forms at the same level as B2PLYP. Grimme’s dispersion

Table 4 Mean errors (ME), mean absolute errors (MAE), and max-

imum errors (Max) (kcal/mol) for the BH76RC reaction energy set for

various density functionals. def2-QZVP basis sets were used and core

electrons were kept frozen

PBE TPSS B3LYP B2PLYP RPA/

PBEa
RPA/

TPSSa

ME 0.96 0.59 -0.25 -0.11 -0.05 0.39

MAE 4.33 3.78 2.34 1.17 2.61 1.89

Max 22.69 12.90 7.24 5.16 8.75 4.55

RPA results were obtained from self-consistent TPSS or self-consis-

tent PBE orbitals. Geometries, reference energies, and non-RPA

results taken from Ref. [129]. See supporting information for com-

plete results
a Computed for this review

Table 5 Mean Error (ME), mean absolute error (MAE), and maxi-

mum error (Max) (kcal/mol) for the G2RC test set for various density

functionals using def2-QZVP basis sets

PBE TPSS B3LYP B2PLYP RPAa

ME 0.32 3.12 0.53 -0.22 -1.03

MAE 6.20 6.42 2.60 1.71 2.72

Max 18.96 19.97 7.00 5.63 14.47

Core electrons were kept frozen. RPA results were obtained from self-

consistent TPSS orbitals. Geometries, reference energies and non-

RPA results taken from Ref. [129]. See supporting information for

complete results
a Computed for this review

Table 6 Mean errors (ME), mean absolute errors (MAE), and max-

imum errors (Max) (kcal/mol) for the BH76 barrier heights test set for

several density functionals using def2-QZVP basis sets

PBE TPSS B3LYP B2PLYP RPA/

PBEa
RPA/

TPSSa

ME -9.18 -8.55 -4.56 -2.08 -1.65 -1.79

MAE 9.23 8.57 4.66 2.24 3.10 2.77

Max -30.68 -23.60 -10.98 -6.47 -11.4 -11.19

Core electrons were kept frozen. RPA results were obtained from either

self-consistent TPSS or self-consistent PBE orbitals. Geometries,

reference energies, and non-RPA results taken from Ref. [129].

See supporting information for complete results
a Computed for this review
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correction does not seem to improve barrier heights. These

data show, that RPA is also promising for chemical

kinetics.

4.7 Adsorption on surfaces and solid-state properties

Ren et al. [90] applied RPA to the adsorption of CO on a

Cu(111) surface. The results were compared to two GGA

functionals, PBE and AM05, and two hybrid functionals,

PBE0 and HSE03. RPA adsorption energies were found to be

most accurate. Importantly, RPA correctly predicts the atop

site to be preferred for adsorption over the hollow site. The

latter is preferred by the GGA functionals, whereas the

hybrid functionals yield a slight preference for the atop site.

Harl et al. [117] evaluated lattice constants for a set of

insulators, semiconductors, and metals. RPA using PBE

orbitals improves considerably upon semi-local DFT

(Fig. 9). In contrast to semi-local DFT, RPA errors do not

increase with system size. Similar results were found for

bulk moduli and heats of formation. The influence of the

input orbitals was found to be small, when starting from

LDA orbitals instead of PBE orbitals.

In recent work, Lebègue et al. [131] studied the cohe-

sive properties of graphite using RPA. Graphite is the

parent compound of carbon-based materials, which have

drawn much interest, both experimentally and theoreti-

cally. Of special interest is the interaction between graph-

ene sheets. Here, van der Waals interactions play a crucial

role. LSDA binding energies (24 meV/atom) are signifi-

cantly too small, compared to quantum Monte Carlo results

(56 ± 5 meV/atom).

Using RPA, the interlayer equilibrium distance, the

elastic constant, and the net layer binding energy were

found to be in excellent agreement with experiment,

though the computed binding energy of 48 meV/atom is

15% smaller than the binding energy obtained from

quantum Monte Carlo methods. In comparison with vdW-

type functionals, RPA is more accurate for all three com-

puted properties, though computationally significantly

more expensive. It was also found that the correlation

energy behaves as 1/d3 for large interlayer distances d, in

agreement with previous analytical work [132, 133]. This

illustrates that RPA captures the non-pairwise additive

character of the long-range interactions.

5 Conclusions

RPA has many attractive features: (1) It dramatically

improves upon semi-local density functionals for non-

covalent interactions; (2) it is non-perturbative and finite

for small-gap systems and thus more widely applicable

than perturbation theory; (3) it is compatible with 100%

exact exchange and captures significant static correlation;

(4) it is based on sound physics and does not contain

empirical parameters; (5) it is computationally affordable

for molecules with well over 100 atoms. For chemical

processes that conserve the number of electron pairs, RPA

rivals the best available methods in the size range [20

atoms.

Nevertheless, there is room for improvement, especially

for processes that change the number of electron pairs. In

many ways, RPA is to the correlation energy what the

Hartree energy is to the total ground-state energy: An

important part that captures essential physics and chemis-

try, yet is not sufficient for many purposes. But this anal-

ogy also suggests that the development of beyond-RPA

exchange and correlation methods is a worthwhile

endeavor.
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to experiment. (Reprinted with permission from Ref [117]. Copyright

2010 The American Physical Society)
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